/*------------------------------------------------------------------------- * * datetime.c * Support functions for date/time types. * * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/utils/adt/datetime.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include #include #include #include "access/htup_details.h" #include "access/xact.h" #include "catalog/pg_type.h" #include "common/int.h" #include "common/string.h" #include "funcapi.h" #include "miscadmin.h" #include "nodes/nodeFuncs.h" #include "utils/builtins.h" #include "utils/date.h" #include "utils/datetime.h" #include "utils/memutils.h" #include "utils/tzparser.h" static int DecodeNumber(int flen, char *field, bool haveTextMonth, int fmask, int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits); static int DecodeNumberField(int len, char *str, int fmask, int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits); static int DecodeTimeCommon(char *str, int fmask, int range, int *tmask, struct pg_itm *itm); static int DecodeTime(char *str, int fmask, int range, int *tmask, struct pg_tm *tm, fsec_t *fsec); static int DecodeTimeForInterval(char *str, int fmask, int range, int *tmask, struct pg_itm_in *itm_in); static const datetkn *datebsearch(const char *key, const datetkn *base, int nel); static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits, struct pg_tm *tm); static char *AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros); static bool int64_multiply_add(int64 val, int64 multiplier, int64 *sum); static bool AdjustFractMicroseconds(double frac, int64 scale, struct pg_itm_in *itm_in); static bool AdjustFractDays(double frac, int scale, struct pg_itm_in *itm_in); static bool AdjustFractYears(double frac, int scale, struct pg_itm_in *itm_in); static bool AdjustMicroseconds(int64 val, double fval, int64 scale, struct pg_itm_in *itm_in); static bool AdjustDays(int64 val, int scale, struct pg_itm_in *itm_in); static bool AdjustMonths(int64 val, struct pg_itm_in *itm_in); static bool AdjustYears(int64 val, int scale, struct pg_itm_in *itm_in); static int DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp, pg_time_t *tp); static bool DetermineTimeZoneAbbrevOffsetInternal(pg_time_t t, const char *abbr, pg_tz *tzp, int *offset, int *isdst); static pg_tz *FetchDynamicTimeZone(TimeZoneAbbrevTable *tbl, const datetkn *tp); const int day_tab[2][13] = { {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0}, {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0} }; const char *const months[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", NULL}; const char *const days[] = {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", NULL}; /***************************************************************************** * PRIVATE ROUTINES * *****************************************************************************/ /* * datetktbl holds date/time keywords. * * Note that this table must be strictly alphabetically ordered to allow an * O(ln(N)) search algorithm to be used. * * The token field must be NUL-terminated; we truncate entries to TOKMAXLEN * characters to fit. * * The static table contains no TZ, DTZ, or DYNTZ entries; rather those * are loaded from configuration files and stored in zoneabbrevtbl, whose * abbrevs[] field has the same format as the static datetktbl. */ static const datetkn datetktbl[] = { /* token, type, value */ {EARLY, RESERV, DTK_EARLY}, /* "-infinity" reserved for "early time" */ {DA_D, ADBC, AD}, /* "ad" for years > 0 */ {"allballs", RESERV, DTK_ZULU}, /* 00:00:00 */ {"am", AMPM, AM}, {"apr", MONTH, 4}, {"april", MONTH, 4}, {"at", IGNORE_DTF, 0}, /* "at" (throwaway) */ {"aug", MONTH, 8}, {"august", MONTH, 8}, {DB_C, ADBC, BC}, /* "bc" for years <= 0 */ {"d", UNITS, DTK_DAY}, /* "day of month" for ISO input */ {"dec", MONTH, 12}, {"december", MONTH, 12}, {"dow", UNITS, DTK_DOW}, /* day of week */ {"doy", UNITS, DTK_DOY}, /* day of year */ {"dst", DTZMOD, SECS_PER_HOUR}, {EPOCH, RESERV, DTK_EPOCH}, /* "epoch" reserved for system epoch time */ {"feb", MONTH, 2}, {"february", MONTH, 2}, {"fri", DOW, 5}, {"friday", DOW, 5}, {"h", UNITS, DTK_HOUR}, /* "hour" */ {LATE, RESERV, DTK_LATE}, /* "infinity" reserved for "late time" */ {"isodow", UNITS, DTK_ISODOW}, /* ISO day of week, Sunday == 7 */ {"isoyear", UNITS, DTK_ISOYEAR}, /* year in terms of the ISO week date */ {"j", UNITS, DTK_JULIAN}, {"jan", MONTH, 1}, {"january", MONTH, 1}, {"jd", UNITS, DTK_JULIAN}, {"jul", MONTH, 7}, {"julian", UNITS, DTK_JULIAN}, {"july", MONTH, 7}, {"jun", MONTH, 6}, {"june", MONTH, 6}, {"m", UNITS, DTK_MONTH}, /* "month" for ISO input */ {"mar", MONTH, 3}, {"march", MONTH, 3}, {"may", MONTH, 5}, {"mm", UNITS, DTK_MINUTE}, /* "minute" for ISO input */ {"mon", DOW, 1}, {"monday", DOW, 1}, {"nov", MONTH, 11}, {"november", MONTH, 11}, {NOW, RESERV, DTK_NOW}, /* current transaction time */ {"oct", MONTH, 10}, {"october", MONTH, 10}, {"on", IGNORE_DTF, 0}, /* "on" (throwaway) */ {"pm", AMPM, PM}, {"s", UNITS, DTK_SECOND}, /* "seconds" for ISO input */ {"sat", DOW, 6}, {"saturday", DOW, 6}, {"sep", MONTH, 9}, {"sept", MONTH, 9}, {"september", MONTH, 9}, {"sun", DOW, 0}, {"sunday", DOW, 0}, {"t", ISOTIME, DTK_TIME}, /* Filler for ISO time fields */ {"thu", DOW, 4}, {"thur", DOW, 4}, {"thurs", DOW, 4}, {"thursday", DOW, 4}, {TODAY, RESERV, DTK_TODAY}, /* midnight */ {TOMORROW, RESERV, DTK_TOMORROW}, /* tomorrow midnight */ {"tue", DOW, 2}, {"tues", DOW, 2}, {"tuesday", DOW, 2}, {"wed", DOW, 3}, {"wednesday", DOW, 3}, {"weds", DOW, 3}, {"y", UNITS, DTK_YEAR}, /* "year" for ISO input */ {YESTERDAY, RESERV, DTK_YESTERDAY} /* yesterday midnight */ }; static const int szdatetktbl = sizeof datetktbl / sizeof datetktbl[0]; /* * deltatktbl: same format as datetktbl, but holds keywords used to represent * time units (eg, for intervals, and for EXTRACT). */ static const datetkn deltatktbl[] = { /* token, type, value */ {"@", IGNORE_DTF, 0}, /* postgres relative prefix */ {DAGO, AGO, 0}, /* "ago" indicates negative time offset */ {"c", UNITS, DTK_CENTURY}, /* "century" relative */ {"cent", UNITS, DTK_CENTURY}, /* "century" relative */ {"centuries", UNITS, DTK_CENTURY}, /* "centuries" relative */ {DCENTURY, UNITS, DTK_CENTURY}, /* "century" relative */ {"d", UNITS, DTK_DAY}, /* "day" relative */ {DDAY, UNITS, DTK_DAY}, /* "day" relative */ {"days", UNITS, DTK_DAY}, /* "days" relative */ {"dec", UNITS, DTK_DECADE}, /* "decade" relative */ {DDECADE, UNITS, DTK_DECADE}, /* "decade" relative */ {"decades", UNITS, DTK_DECADE}, /* "decades" relative */ {"decs", UNITS, DTK_DECADE}, /* "decades" relative */ {"h", UNITS, DTK_HOUR}, /* "hour" relative */ {DHOUR, UNITS, DTK_HOUR}, /* "hour" relative */ {"hours", UNITS, DTK_HOUR}, /* "hours" relative */ {"hr", UNITS, DTK_HOUR}, /* "hour" relative */ {"hrs", UNITS, DTK_HOUR}, /* "hours" relative */ {"m", UNITS, DTK_MINUTE}, /* "minute" relative */ {"microsecon", UNITS, DTK_MICROSEC}, /* "microsecond" relative */ {"mil", UNITS, DTK_MILLENNIUM}, /* "millennium" relative */ {"millennia", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */ {DMILLENNIUM, UNITS, DTK_MILLENNIUM}, /* "millennium" relative */ {"millisecon", UNITS, DTK_MILLISEC}, /* relative */ {"mils", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */ {"min", UNITS, DTK_MINUTE}, /* "minute" relative */ {"mins", UNITS, DTK_MINUTE}, /* "minutes" relative */ {DMINUTE, UNITS, DTK_MINUTE}, /* "minute" relative */ {"minutes", UNITS, DTK_MINUTE}, /* "minutes" relative */ {"mon", UNITS, DTK_MONTH}, /* "months" relative */ {"mons", UNITS, DTK_MONTH}, /* "months" relative */ {DMONTH, UNITS, DTK_MONTH}, /* "month" relative */ {"months", UNITS, DTK_MONTH}, {"ms", UNITS, DTK_MILLISEC}, {"msec", UNITS, DTK_MILLISEC}, {DMILLISEC, UNITS, DTK_MILLISEC}, {"mseconds", UNITS, DTK_MILLISEC}, {"msecs", UNITS, DTK_MILLISEC}, {"qtr", UNITS, DTK_QUARTER}, /* "quarter" relative */ {DQUARTER, UNITS, DTK_QUARTER}, /* "quarter" relative */ {"s", UNITS, DTK_SECOND}, {"sec", UNITS, DTK_SECOND}, {DSECOND, UNITS, DTK_SECOND}, {"seconds", UNITS, DTK_SECOND}, {"secs", UNITS, DTK_SECOND}, {DTIMEZONE, UNITS, DTK_TZ}, /* "timezone" time offset */ {"timezone_h", UNITS, DTK_TZ_HOUR}, /* timezone hour units */ {"timezone_m", UNITS, DTK_TZ_MINUTE}, /* timezone minutes units */ {"us", UNITS, DTK_MICROSEC}, /* "microsecond" relative */ {"usec", UNITS, DTK_MICROSEC}, /* "microsecond" relative */ {DMICROSEC, UNITS, DTK_MICROSEC}, /* "microsecond" relative */ {"useconds", UNITS, DTK_MICROSEC}, /* "microseconds" relative */ {"usecs", UNITS, DTK_MICROSEC}, /* "microseconds" relative */ {"w", UNITS, DTK_WEEK}, /* "week" relative */ {DWEEK, UNITS, DTK_WEEK}, /* "week" relative */ {"weeks", UNITS, DTK_WEEK}, /* "weeks" relative */ {"y", UNITS, DTK_YEAR}, /* "year" relative */ {DYEAR, UNITS, DTK_YEAR}, /* "year" relative */ {"years", UNITS, DTK_YEAR}, /* "years" relative */ {"yr", UNITS, DTK_YEAR}, /* "year" relative */ {"yrs", UNITS, DTK_YEAR} /* "years" relative */ }; static const int szdeltatktbl = sizeof deltatktbl / sizeof deltatktbl[0]; static TimeZoneAbbrevTable *zoneabbrevtbl = NULL; /* Caches of recent lookup results in the above tables */ static const datetkn *datecache[MAXDATEFIELDS] = {NULL}; static const datetkn *deltacache[MAXDATEFIELDS] = {NULL}; static const datetkn *abbrevcache[MAXDATEFIELDS] = {NULL}; /* * Calendar time to Julian date conversions. * Julian date is commonly used in astronomical applications, * since it is numerically accurate and computationally simple. * The algorithms here will accurately convert between Julian day * and calendar date for all non-negative Julian days * (i.e. from Nov 24, -4713 on). * * Rewritten to eliminate overflow problems. This now allows the * routines to work correctly for all Julian day counts from * 0 to 2147483647 (Nov 24, -4713 to Jun 3, 5874898) assuming * a 32-bit integer. Longer types should also work to the limits * of their precision. * * Actually, date2j() will work sanely, in the sense of producing * valid negative Julian dates, significantly before Nov 24, -4713. * We rely on it to do so back to Nov 1, -4713; see IS_VALID_JULIAN() * and associated commentary in timestamp.h. */ int date2j(int y, int m, int d) { int julian; int century; if (m > 2) { m += 1; y += 4800; } else { m += 13; y += 4799; } century = y / 100; julian = y * 365 - 32167; julian += y / 4 - century + century / 4; julian += 7834 * m / 256 + d; return julian; } /* date2j() */ void j2date(int jd, int *year, int *month, int *day) { unsigned int julian; unsigned int quad; unsigned int extra; int y; julian = jd; julian += 32044; quad = julian / 146097; extra = (julian - quad * 146097) * 4 + 3; julian += 60 + quad * 3 + extra / 146097; quad = julian / 1461; julian -= quad * 1461; y = julian * 4 / 1461; julian = ((y != 0) ? ((julian + 305) % 365) : ((julian + 306) % 366)) + 123; y += quad * 4; *year = y - 4800; quad = julian * 2141 / 65536; *day = julian - 7834 * quad / 256; *month = (quad + 10) % MONTHS_PER_YEAR + 1; } /* j2date() */ /* * j2day - convert Julian date to day-of-week (0..6 == Sun..Sat) * * Note: various places use the locution j2day(date - 1) to produce a * result according to the convention 0..6 = Mon..Sun. This is a bit of * a crock, but will work as long as the computation here is just a modulo. */ int j2day(int date) { date += 1; date %= 7; /* Cope if division truncates towards zero, as it probably does */ if (date < 0) date += 7; return date; } /* j2day() */ /* * GetCurrentDateTime() * * Get the transaction start time ("now()") broken down as a struct pg_tm, * converted according to the session timezone setting. * * This is just a convenience wrapper for GetCurrentTimeUsec, to cover the * case where caller doesn't need either fractional seconds or tz offset. */ void GetCurrentDateTime(struct pg_tm *tm) { fsec_t fsec; GetCurrentTimeUsec(tm, &fsec, NULL); } /* * GetCurrentTimeUsec() * * Get the transaction start time ("now()") broken down as a struct pg_tm, * including fractional seconds and timezone offset. The time is converted * according to the session timezone setting. * * Callers may pass tzp = NULL if they don't need the offset, but this does * not affect the conversion behavior (unlike timestamp2tm()). * * Internally, we cache the result, since this could be called many times * in a transaction, within which now() doesn't change. */ void GetCurrentTimeUsec(struct pg_tm *tm, fsec_t *fsec, int *tzp) { TimestampTz cur_ts = GetCurrentTransactionStartTimestamp(); /* * The cache key must include both current time and current timezone. By * representing the timezone by just a pointer, we're assuming that * distinct timezone settings could never have the same pointer value. * This is true by virtue of the hashtable used inside pg_tzset(); * however, it might need another look if we ever allow entries in that * hash to be recycled. */ static TimestampTz cache_ts = 0; static pg_tz *cache_timezone = NULL; static struct pg_tm cache_tm; static fsec_t cache_fsec; static int cache_tz; if (cur_ts != cache_ts || session_timezone != cache_timezone) { /* * Make sure cache is marked invalid in case of error after partial * update within timestamp2tm. */ cache_timezone = NULL; /* * Perform the computation, storing results into cache. We do not * really expect any error here, since current time surely ought to be * within range, but check just for sanity's sake. */ if (timestamp2tm(cur_ts, &cache_tz, &cache_tm, &cache_fsec, NULL, session_timezone) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); /* OK, so mark the cache valid. */ cache_ts = cur_ts; cache_timezone = session_timezone; } *tm = cache_tm; *fsec = cache_fsec; if (tzp != NULL) *tzp = cache_tz; } /* * Append seconds and fractional seconds (if any) at *cp. * * precision is the max number of fraction digits, fillzeros says to * pad to two integral-seconds digits. * * Returns a pointer to the new end of string. No NUL terminator is put * there; callers are responsible for NUL terminating str themselves. * * Note that any sign is stripped from the input sec and fsec values. */ static char * AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros) { Assert(precision >= 0); if (fillzeros) cp = pg_ultostr_zeropad(cp, Abs(sec), 2); else cp = pg_ultostr(cp, Abs(sec)); /* fsec_t is just an int32 */ if (fsec != 0) { int32 value = Abs(fsec); char *end = &cp[precision + 1]; bool gotnonzero = false; *cp++ = '.'; /* * Append the fractional seconds part. Note that we don't want any * trailing zeros here, so since we're building the number in reverse * we'll skip appending zeros until we've output a non-zero digit. */ while (precision--) { int32 oldval = value; int32 remainder; value /= 10; remainder = oldval - value * 10; /* check if we got a non-zero */ if (remainder) gotnonzero = true; if (gotnonzero) cp[precision] = '0' + remainder; else end = &cp[precision]; } /* * If we still have a non-zero value then precision must have not been * enough to print the number. We punt the problem to pg_ultostr(), * which will generate a correct answer in the minimum valid width. */ if (value) return pg_ultostr(cp, Abs(fsec)); return end; } else return cp; } /* * Variant of above that's specialized to timestamp case. * * Returns a pointer to the new end of string. No NUL terminator is put * there; callers are responsible for NUL terminating str themselves. */ static char * AppendTimestampSeconds(char *cp, struct pg_tm *tm, fsec_t fsec) { return AppendSeconds(cp, tm->tm_sec, fsec, MAX_TIMESTAMP_PRECISION, true); } /* * Add val * multiplier to *sum. * Returns true if successful, false on overflow. */ static bool int64_multiply_add(int64 val, int64 multiplier, int64 *sum) { int64 product; if (pg_mul_s64_overflow(val, multiplier, &product) || pg_add_s64_overflow(*sum, product, sum)) return false; return true; } /* * Multiply frac by scale (to produce microseconds) and add to itm_in->tm_usec. * Returns true if successful, false if itm_in overflows. */ static bool AdjustFractMicroseconds(double frac, int64 scale, struct pg_itm_in *itm_in) { int64 usec; /* Fast path for common case */ if (frac == 0) return true; /* * We assume the input frac has abs value less than 1, so overflow of frac * or usec is not an issue for interesting values of scale. */ frac *= scale; usec = (int64) frac; /* Round off any fractional microsecond */ frac -= usec; if (frac > 0.5) usec++; else if (frac < -0.5) usec--; return !pg_add_s64_overflow(itm_in->tm_usec, usec, &itm_in->tm_usec); } /* * Multiply frac by scale (to produce days). Add the integral part of the * result to itm_in->tm_mday, the fractional part to itm_in->tm_usec. * Returns true if successful, false if itm_in overflows. */ static bool AdjustFractDays(double frac, int scale, struct pg_itm_in *itm_in) { int extra_days; /* Fast path for common case */ if (frac == 0) return true; /* * We assume the input frac has abs value less than 1, so overflow of frac * or extra_days is not an issue. */ frac *= scale; extra_days = (int) frac; /* ... but this could overflow, if tm_mday is already nonzero */ if (pg_add_s32_overflow(itm_in->tm_mday, extra_days, &itm_in->tm_mday)) return false; /* Handle any fractional day */ frac -= extra_days; return AdjustFractMicroseconds(frac, USECS_PER_DAY, itm_in); } /* * Multiply frac by scale (to produce years), then further scale up to months. * Add the integral part of the result to itm_in->tm_mon, discarding any * fractional part. * Returns true if successful, false if itm_in overflows. */ static bool AdjustFractYears(double frac, int scale, struct pg_itm_in *itm_in) { /* * As above, we assume abs(frac) < 1, so this can't overflow for any * interesting value of scale. */ int extra_months = (int) rint(frac * scale * MONTHS_PER_YEAR); return !pg_add_s32_overflow(itm_in->tm_mon, extra_months, &itm_in->tm_mon); } /* * Add (val + fval) * scale to itm_in->tm_usec. * Returns true if successful, false if itm_in overflows. */ static bool AdjustMicroseconds(int64 val, double fval, int64 scale, struct pg_itm_in *itm_in) { /* Handle the integer part */ if (!int64_multiply_add(val, scale, &itm_in->tm_usec)) return false; /* Handle the float part */ return AdjustFractMicroseconds(fval, scale, itm_in); } /* * Multiply val by scale (to produce days) and add to itm_in->tm_mday. * Returns true if successful, false if itm_in overflows. */ static bool AdjustDays(int64 val, int scale, struct pg_itm_in *itm_in) { int days; if (val < INT_MIN || val > INT_MAX) return false; return !pg_mul_s32_overflow((int32) val, scale, &days) && !pg_add_s32_overflow(itm_in->tm_mday, days, &itm_in->tm_mday); } /* * Add val to itm_in->tm_mon (no need for scale here, as val is always * in months already). * Returns true if successful, false if itm_in overflows. */ static bool AdjustMonths(int64 val, struct pg_itm_in *itm_in) { if (val < INT_MIN || val > INT_MAX) return false; return !pg_add_s32_overflow(itm_in->tm_mon, (int32) val, &itm_in->tm_mon); } /* * Multiply val by scale (to produce years) and add to itm_in->tm_year. * Returns true if successful, false if itm_in overflows. */ static bool AdjustYears(int64 val, int scale, struct pg_itm_in *itm_in) { int years; if (val < INT_MIN || val > INT_MAX) return false; return !pg_mul_s32_overflow((int32) val, scale, &years) && !pg_add_s32_overflow(itm_in->tm_year, years, &itm_in->tm_year); } /* * Parse the fractional part of a number (decimal point and optional digits, * followed by end of string). Returns the fractional value into *frac. * * Returns 0 if successful, DTERR code if bogus input detected. */ static int ParseFraction(char *cp, double *frac) { /* Caller should always pass the start of the fraction part */ Assert(*cp == '.'); /* * We want to allow just "." with no digits, but some versions of strtod * will report EINVAL for that, so special-case it. */ if (cp[1] == '\0') { *frac = 0; } else { errno = 0; *frac = strtod(cp, &cp); /* check for parse failure */ if (*cp != '\0' || errno != 0) return DTERR_BAD_FORMAT; } return 0; } /* * Fetch a fractional-second value with suitable error checking. * Same as ParseFraction except we convert the result to integer microseconds. */ static int ParseFractionalSecond(char *cp, fsec_t *fsec) { double frac; int dterr; dterr = ParseFraction(cp, &frac); if (dterr) return dterr; *fsec = rint(frac * 1000000); return 0; } /* ParseDateTime() * Break string into tokens based on a date/time context. * Returns 0 if successful, DTERR code if bogus input detected. * * timestr - the input string * workbuf - workspace for field string storage. This must be * larger than the largest legal input for this datetime type -- * some additional space will be needed to NUL terminate fields. * buflen - the size of workbuf * field[] - pointers to field strings are returned in this array * ftype[] - field type indicators are returned in this array * maxfields - dimensions of the above two arrays * *numfields - set to the actual number of fields detected * * The fields extracted from the input are stored as separate, * null-terminated strings in the workspace at workbuf. Any text is * converted to lower case. * * Several field types are assigned: * DTK_NUMBER - digits and (possibly) a decimal point * DTK_DATE - digits and two delimiters, or digits and text * DTK_TIME - digits, colon delimiters, and possibly a decimal point * DTK_STRING - text (no digits or punctuation) * DTK_SPECIAL - leading "+" or "-" followed by text * DTK_TZ - leading "+" or "-" followed by digits (also eats ':', '.', '-') * * Note that some field types can hold unexpected items: * DTK_NUMBER can hold date fields (yy.ddd) * DTK_STRING can hold months (January) and time zones (PST) * DTK_DATE can hold time zone names (America/New_York, GMT-8) */ int ParseDateTime(const char *timestr, char *workbuf, size_t buflen, char **field, int *ftype, int maxfields, int *numfields) { int nf = 0; const char *cp = timestr; char *bufp = workbuf; const char *bufend = workbuf + buflen; /* * Set the character pointed-to by "bufptr" to "newchar", and increment * "bufptr". "end" gives the end of the buffer -- we return an error if * there is no space left to append a character to the buffer. Note that * "bufptr" is evaluated twice. */ #define APPEND_CHAR(bufptr, end, newchar) \ do \ { \ if (((bufptr) + 1) >= (end)) \ return DTERR_BAD_FORMAT; \ *(bufptr)++ = newchar; \ } while (0) /* outer loop through fields */ while (*cp != '\0') { /* Ignore spaces between fields */ if (isspace((unsigned char) *cp)) { cp++; continue; } /* Record start of current field */ if (nf >= maxfields) return DTERR_BAD_FORMAT; field[nf] = bufp; /* leading digit? then date or time */ if (isdigit((unsigned char) *cp)) { APPEND_CHAR(bufp, bufend, *cp++); while (isdigit((unsigned char) *cp)) APPEND_CHAR(bufp, bufend, *cp++); /* time field? */ if (*cp == ':') { ftype[nf] = DTK_TIME; APPEND_CHAR(bufp, bufend, *cp++); while (isdigit((unsigned char) *cp) || (*cp == ':') || (*cp == '.')) APPEND_CHAR(bufp, bufend, *cp++); } /* date field? allow embedded text month */ else if (*cp == '-' || *cp == '/' || *cp == '.') { /* save delimiting character to use later */ char delim = *cp; APPEND_CHAR(bufp, bufend, *cp++); /* second field is all digits? then no embedded text month */ if (isdigit((unsigned char) *cp)) { ftype[nf] = ((delim == '.') ? DTK_NUMBER : DTK_DATE); while (isdigit((unsigned char) *cp)) APPEND_CHAR(bufp, bufend, *cp++); /* * insist that the delimiters match to get a three-field * date. */ if (*cp == delim) { ftype[nf] = DTK_DATE; APPEND_CHAR(bufp, bufend, *cp++); while (isdigit((unsigned char) *cp) || *cp == delim) APPEND_CHAR(bufp, bufend, *cp++); } } else { ftype[nf] = DTK_DATE; while (isalnum((unsigned char) *cp) || *cp == delim) APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); } } /* * otherwise, number only and will determine year, month, day, or * concatenated fields later... */ else ftype[nf] = DTK_NUMBER; } /* Leading decimal point? Then fractional seconds... */ else if (*cp == '.') { APPEND_CHAR(bufp, bufend, *cp++); while (isdigit((unsigned char) *cp)) APPEND_CHAR(bufp, bufend, *cp++); ftype[nf] = DTK_NUMBER; } /* * text? then date string, month, day of week, special, or timezone */ else if (isalpha((unsigned char) *cp)) { bool is_date; ftype[nf] = DTK_STRING; APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); while (isalpha((unsigned char) *cp)) APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); /* * Dates can have embedded '-', '/', or '.' separators. It could * also be a timezone name containing embedded '/', '+', '-', '_', * or ':' (but '_' or ':' can't be the first punctuation). If the * next character is a digit or '+', we need to check whether what * we have so far is a recognized non-timezone keyword --- if so, * don't believe that this is the start of a timezone. */ is_date = false; if (*cp == '-' || *cp == '/' || *cp == '.') is_date = true; else if (*cp == '+' || isdigit((unsigned char) *cp)) { *bufp = '\0'; /* null-terminate current field value */ /* we need search only the core token table, not TZ names */ if (datebsearch(field[nf], datetktbl, szdatetktbl) == NULL) is_date = true; } if (is_date) { ftype[nf] = DTK_DATE; do { APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); } while (*cp == '+' || *cp == '-' || *cp == '/' || *cp == '_' || *cp == '.' || *cp == ':' || isalnum((unsigned char) *cp)); } } /* sign? then special or numeric timezone */ else if (*cp == '+' || *cp == '-') { APPEND_CHAR(bufp, bufend, *cp++); /* soak up leading whitespace */ while (isspace((unsigned char) *cp)) cp++; /* numeric timezone? */ /* note that "DTK_TZ" could also be a signed float or yyyy-mm */ if (isdigit((unsigned char) *cp)) { ftype[nf] = DTK_TZ; APPEND_CHAR(bufp, bufend, *cp++); while (isdigit((unsigned char) *cp) || *cp == ':' || *cp == '.' || *cp == '-') APPEND_CHAR(bufp, bufend, *cp++); } /* special? */ else if (isalpha((unsigned char) *cp)) { ftype[nf] = DTK_SPECIAL; APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); while (isalpha((unsigned char) *cp)) APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); } /* otherwise something wrong... */ else return DTERR_BAD_FORMAT; } /* ignore other punctuation but use as delimiter */ else if (ispunct((unsigned char) *cp)) { cp++; continue; } /* otherwise, something is not right... */ else return DTERR_BAD_FORMAT; /* force in a delimiter after each field */ *bufp++ = '\0'; nf++; } *numfields = nf; return 0; } /* DecodeDateTime() * Interpret previously parsed fields for general date and time. * Return 0 if full date, 1 if only time, and negative DTERR code if problems. * (Currently, all callers treat 1 as an error return too.) * * External format(s): * " -- ::" * "Fri Feb-7-1997 15:23:27" * "Feb-7-1997 15:23:27" * "2-7-1997 15:23:27" * "1997-2-7 15:23:27" * "1997.038 15:23:27" (day of year 1-366) * Also supports input in compact time: * "970207 152327" * "97038 152327" * "20011225T040506.789-07" * * Use the system-provided functions to get the current time zone * if not specified in the input string. * * If the date is outside the range of pg_time_t (in practice that could only * happen if pg_time_t is just 32 bits), then assume UTC time zone - thomas * 1997-05-27 */ int DecodeDateTime(char **field, int *ftype, int nf, int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp) { int fmask = 0, tmask, type; int ptype = 0; /* "prefix type" for ISO y2001m02d04 format */ int i; int val; int dterr; int mer = HR24; bool haveTextMonth = false; bool isjulian = false; bool is2digits = false; bool bc = false; pg_tz *namedTz = NULL; pg_tz *abbrevTz = NULL; pg_tz *valtz; char *abbrev = NULL; struct pg_tm cur_tm; /* * We'll insist on at least all of the date fields, but initialize the * remaining fields in case they are not set later... */ *dtype = DTK_DATE; tm->tm_hour = 0; tm->tm_min = 0; tm->tm_sec = 0; *fsec = 0; /* don't know daylight savings time status apriori */ tm->tm_isdst = -1; if (tzp != NULL) *tzp = 0; for (i = 0; i < nf; i++) { switch (ftype[i]) { case DTK_DATE: /* * Integral julian day with attached time zone? All other * forms with JD will be separated into distinct fields, so we * handle just this case here. */ if (ptype == DTK_JULIAN) { char *cp; int val; if (tzp == NULL) return DTERR_BAD_FORMAT; errno = 0; val = strtoint(field[i], &cp, 10); if (errno == ERANGE || val < 0) return DTERR_FIELD_OVERFLOW; j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday); isjulian = true; /* Get the time zone from the end of the string */ dterr = DecodeTimezone(cp, tzp); if (dterr) return dterr; tmask = DTK_DATE_M | DTK_TIME_M | DTK_M(TZ); ptype = 0; break; } /* * Already have a date? Then this might be a time zone name * with embedded punctuation (e.g. "America/New_York") or a * run-together time with trailing time zone (e.g. hhmmss-zz). * - thomas 2001-12-25 * * We consider it a time zone if we already have month & day. * This is to allow the form "mmm dd hhmmss tz year", which * we've historically accepted. */ else if (ptype != 0 || ((fmask & (DTK_M(MONTH) | DTK_M(DAY))) == (DTK_M(MONTH) | DTK_M(DAY)))) { /* No time zone accepted? Then quit... */ if (tzp == NULL) return DTERR_BAD_FORMAT; if (isdigit((unsigned char) *field[i]) || ptype != 0) { char *cp; if (ptype != 0) { /* Sanity check; should not fail this test */ if (ptype != DTK_TIME) return DTERR_BAD_FORMAT; ptype = 0; } /* * Starts with a digit but we already have a time * field? Then we are in trouble with a date and time * already... */ if ((fmask & DTK_TIME_M) == DTK_TIME_M) return DTERR_BAD_FORMAT; if ((cp = strchr(field[i], '-')) == NULL) return DTERR_BAD_FORMAT; /* Get the time zone from the end of the string */ dterr = DecodeTimezone(cp, tzp); if (dterr) return dterr; *cp = '\0'; /* * Then read the rest of the field as a concatenated * time */ dterr = DecodeNumberField(strlen(field[i]), field[i], fmask, &tmask, tm, fsec, &is2digits); if (dterr < 0) return dterr; /* * modify tmask after returning from * DecodeNumberField() */ tmask |= DTK_M(TZ); } else { namedTz = pg_tzset(field[i]); if (!namedTz) { /* * We should return an error code instead of * ereport'ing directly, but then there is no way * to report the bad time zone name. */ ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("time zone \"%s\" not recognized", field[i]))); } /* we'll apply the zone setting below */ tmask = DTK_M(TZ); } } else { dterr = DecodeDate(field[i], fmask, &tmask, &is2digits, tm); if (dterr) return dterr; } break; case DTK_TIME: /* * This might be an ISO time following a "t" field. */ if (ptype != 0) { /* Sanity check; should not fail this test */ if (ptype != DTK_TIME) return DTERR_BAD_FORMAT; ptype = 0; } dterr = DecodeTime(field[i], fmask, INTERVAL_FULL_RANGE, &tmask, tm, fsec); if (dterr) return dterr; /* check for time overflow */ if (time_overflows(tm->tm_hour, tm->tm_min, tm->tm_sec, *fsec)) return DTERR_FIELD_OVERFLOW; break; case DTK_TZ: { int tz; if (tzp == NULL) return DTERR_BAD_FORMAT; dterr = DecodeTimezone(field[i], &tz); if (dterr) return dterr; *tzp = tz; tmask = DTK_M(TZ); } break; case DTK_NUMBER: /* * Was this an "ISO date" with embedded field labels? An * example is "y2001m02d04" - thomas 2001-02-04 */ if (ptype != 0) { char *cp; int val; errno = 0; val = strtoint(field[i], &cp, 10); if (errno == ERANGE) return DTERR_FIELD_OVERFLOW; /* * only a few kinds are allowed to have an embedded * decimal */ if (*cp == '.') switch (ptype) { case DTK_JULIAN: case DTK_TIME: case DTK_SECOND: break; default: return DTERR_BAD_FORMAT; break; } else if (*cp != '\0') return DTERR_BAD_FORMAT; switch (ptype) { case DTK_YEAR: tm->tm_year = val; tmask = DTK_M(YEAR); break; case DTK_MONTH: /* * already have a month and hour? then assume * minutes */ if ((fmask & DTK_M(MONTH)) != 0 && (fmask & DTK_M(HOUR)) != 0) { tm->tm_min = val; tmask = DTK_M(MINUTE); } else { tm->tm_mon = val; tmask = DTK_M(MONTH); } break; case DTK_DAY: tm->tm_mday = val; tmask = DTK_M(DAY); break; case DTK_HOUR: tm->tm_hour = val; tmask = DTK_M(HOUR); break; case DTK_MINUTE: tm->tm_min = val; tmask = DTK_M(MINUTE); break; case DTK_SECOND: tm->tm_sec = val; tmask = DTK_M(SECOND); if (*cp == '.') { dterr = ParseFractionalSecond(cp, fsec); if (dterr) return dterr; tmask = DTK_ALL_SECS_M; } break; case DTK_TZ: tmask = DTK_M(TZ); dterr = DecodeTimezone(field[i], tzp); if (dterr) return dterr; break; case DTK_JULIAN: /* previous field was a label for "julian date" */ if (val < 0) return DTERR_FIELD_OVERFLOW; tmask = DTK_DATE_M; j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday); isjulian = true; /* fractional Julian Day? */ if (*cp == '.') { double time; dterr = ParseFraction(cp, &time); if (dterr) return dterr; time *= USECS_PER_DAY; dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec); tmask |= DTK_TIME_M; } break; case DTK_TIME: /* previous field was "t" for ISO time */ dterr = DecodeNumberField(strlen(field[i]), field[i], (fmask | DTK_DATE_M), &tmask, tm, fsec, &is2digits); if (dterr < 0) return dterr; if (tmask != DTK_TIME_M) return DTERR_BAD_FORMAT; break; default: return DTERR_BAD_FORMAT; break; } ptype = 0; *dtype = DTK_DATE; } else { char *cp; int flen; flen = strlen(field[i]); cp = strchr(field[i], '.'); /* Embedded decimal and no date yet? */ if (cp != NULL && !(fmask & DTK_DATE_M)) { dterr = DecodeDate(field[i], fmask, &tmask, &is2digits, tm); if (dterr) return dterr; } /* embedded decimal and several digits before? */ else if (cp != NULL && flen - strlen(cp) > 2) { /* * Interpret as a concatenated date or time Set the * type field to allow decoding other fields later. * Example: 20011223 or 040506 */ dterr = DecodeNumberField(flen, field[i], fmask, &tmask, tm, fsec, &is2digits); if (dterr < 0) return dterr; } /* * Is this a YMD or HMS specification, or a year number? * YMD and HMS are required to be six digits or more, so * if it is 5 digits, it is a year. If it is six or more * digits, we assume it is YMD or HMS unless no date and * no time values have been specified. This forces 6+ * digit years to be at the end of the string, or to use * the ISO date specification. */ else if (flen >= 6 && (!(fmask & DTK_DATE_M) || !(fmask & DTK_TIME_M))) { dterr = DecodeNumberField(flen, field[i], fmask, &tmask, tm, fsec, &is2digits); if (dterr < 0) return dterr; } /* otherwise it is a single date/time field... */ else { dterr = DecodeNumber(flen, field[i], haveTextMonth, fmask, &tmask, tm, fsec, &is2digits); if (dterr) return dterr; } } break; case DTK_STRING: case DTK_SPECIAL: /* timezone abbrevs take precedence over built-in tokens */ type = DecodeTimezoneAbbrev(i, field[i], &val, &valtz); if (type == UNKNOWN_FIELD) type = DecodeSpecial(i, field[i], &val); if (type == IGNORE_DTF) continue; tmask = DTK_M(type); switch (type) { case RESERV: switch (val) { case DTK_NOW: tmask = (DTK_DATE_M | DTK_TIME_M | DTK_M(TZ)); *dtype = DTK_DATE; GetCurrentTimeUsec(tm, fsec, tzp); break; case DTK_YESTERDAY: tmask = DTK_DATE_M; *dtype = DTK_DATE; GetCurrentDateTime(&cur_tm); j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) - 1, &tm->tm_year, &tm->tm_mon, &tm->tm_mday); break; case DTK_TODAY: tmask = DTK_DATE_M; *dtype = DTK_DATE; GetCurrentDateTime(&cur_tm); tm->tm_year = cur_tm.tm_year; tm->tm_mon = cur_tm.tm_mon; tm->tm_mday = cur_tm.tm_mday; break; case DTK_TOMORROW: tmask = DTK_DATE_M; *dtype = DTK_DATE; GetCurrentDateTime(&cur_tm); j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) + 1, &tm->tm_year, &tm->tm_mon, &tm->tm_mday); break; case DTK_ZULU: tmask = (DTK_TIME_M | DTK_M(TZ)); *dtype = DTK_DATE; tm->tm_hour = 0; tm->tm_min = 0; tm->tm_sec = 0; if (tzp != NULL) *tzp = 0; break; default: *dtype = val; } break; case MONTH: /* * already have a (numeric) month? then see if we can * substitute... */ if ((fmask & DTK_M(MONTH)) && !haveTextMonth && !(fmask & DTK_M(DAY)) && tm->tm_mon >= 1 && tm->tm_mon <= 31) { tm->tm_mday = tm->tm_mon; tmask = DTK_M(DAY); } haveTextMonth = true; tm->tm_mon = val; break; case DTZMOD: /* * daylight savings time modifier (solves "MET DST" * syntax) */ tmask |= DTK_M(DTZ); tm->tm_isdst = 1; if (tzp == NULL) return DTERR_BAD_FORMAT; *tzp -= val; break; case DTZ: /* * set mask for TZ here _or_ check for DTZ later when * getting default timezone */ tmask |= DTK_M(TZ); tm->tm_isdst = 1; if (tzp == NULL) return DTERR_BAD_FORMAT; *tzp = -val; break; case TZ: tm->tm_isdst = 0; if (tzp == NULL) return DTERR_BAD_FORMAT; *tzp = -val; break; case DYNTZ: tmask |= DTK_M(TZ); if (tzp == NULL) return DTERR_BAD_FORMAT; /* we'll determine the actual offset later */ abbrevTz = valtz; abbrev = field[i]; break; case AMPM: mer = val; break; case ADBC: bc = (val == BC); break; case DOW: tm->tm_wday = val; break; case UNITS: tmask = 0; ptype = val; break; case ISOTIME: /* * This is a filler field "t" indicating that the next * field is time. Try to verify that this is sensible. */ tmask = 0; /* No preceding date? Then quit... */ if ((fmask & DTK_DATE_M) != DTK_DATE_M) return DTERR_BAD_FORMAT; /*** * We will need one of the following fields: * DTK_NUMBER should be hhmmss.fff * DTK_TIME should be hh:mm:ss.fff * DTK_DATE should be hhmmss-zz ***/ if (i >= nf - 1 || (ftype[i + 1] != DTK_NUMBER && ftype[i + 1] != DTK_TIME && ftype[i + 1] != DTK_DATE)) return DTERR_BAD_FORMAT; ptype = val; break; case UNKNOWN_FIELD: /* * Before giving up and declaring error, check to see * if it is an all-alpha timezone name. */ namedTz = pg_tzset(field[i]); if (!namedTz) return DTERR_BAD_FORMAT; /* we'll apply the zone setting below */ tmask = DTK_M(TZ); break; default: return DTERR_BAD_FORMAT; } break; default: return DTERR_BAD_FORMAT; } if (tmask & fmask) return DTERR_BAD_FORMAT; fmask |= tmask; } /* end loop over fields */ /* do final checking/adjustment of Y/M/D fields */ dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm); if (dterr) return dterr; /* handle AM/PM */ if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2) return DTERR_FIELD_OVERFLOW; if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2) tm->tm_hour = 0; else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2) tm->tm_hour += HOURS_PER_DAY / 2; /* do additional checking for full date specs... */ if (*dtype == DTK_DATE) { if ((fmask & DTK_DATE_M) != DTK_DATE_M) { if ((fmask & DTK_TIME_M) == DTK_TIME_M) return 1; return DTERR_BAD_FORMAT; } /* * If we had a full timezone spec, compute the offset (we could not do * it before, because we need the date to resolve DST status). */ if (namedTz != NULL) { /* daylight savings time modifier disallowed with full TZ */ if (fmask & DTK_M(DTZMOD)) return DTERR_BAD_FORMAT; *tzp = DetermineTimeZoneOffset(tm, namedTz); } /* * Likewise, if we had a dynamic timezone abbreviation, resolve it * now. */ if (abbrevTz != NULL) { /* daylight savings time modifier disallowed with dynamic TZ */ if (fmask & DTK_M(DTZMOD)) return DTERR_BAD_FORMAT; *tzp = DetermineTimeZoneAbbrevOffset(tm, abbrev, abbrevTz); } /* timezone not specified? then use session timezone */ if (tzp != NULL && !(fmask & DTK_M(TZ))) { /* * daylight savings time modifier but no standard timezone? then * error */ if (fmask & DTK_M(DTZMOD)) return DTERR_BAD_FORMAT; *tzp = DetermineTimeZoneOffset(tm, session_timezone); } } return 0; } /* DetermineTimeZoneOffset() * * Given a struct pg_tm in which tm_year, tm_mon, tm_mday, tm_hour, tm_min, * and tm_sec fields are set, and a zic-style time zone definition, determine * the applicable GMT offset and daylight-savings status at that time. * Set the struct pg_tm's tm_isdst field accordingly, and return the GMT * offset as the function result. * * Note: if the date is out of the range we can deal with, we return zero * as the GMT offset and set tm_isdst = 0. We don't throw an error here, * though probably some higher-level code will. */ int DetermineTimeZoneOffset(struct pg_tm *tm, pg_tz *tzp) { pg_time_t t; return DetermineTimeZoneOffsetInternal(tm, tzp, &t); } /* DetermineTimeZoneOffsetInternal() * * As above, but also return the actual UTC time imputed to the date/time * into *tp. * * In event of an out-of-range date, we punt by returning zero into *tp. * This is okay for the immediate callers but is a good reason for not * exposing this worker function globally. * * Note: it might seem that we should use mktime() for this, but bitter * experience teaches otherwise. This code is much faster than most versions * of mktime(), anyway. */ static int DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp, pg_time_t *tp) { int date, sec; pg_time_t day, mytime, prevtime, boundary, beforetime, aftertime; long int before_gmtoff, after_gmtoff; int before_isdst, after_isdst; int res; /* * First, generate the pg_time_t value corresponding to the given * y/m/d/h/m/s taken as GMT time. If this overflows, punt and decide the * timezone is GMT. (For a valid Julian date, integer overflow should be * impossible with 64-bit pg_time_t, but let's check for safety.) */ if (!IS_VALID_JULIAN(tm->tm_year, tm->tm_mon, tm->tm_mday)) goto overflow; date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - UNIX_EPOCH_JDATE; day = ((pg_time_t) date) * SECS_PER_DAY; if (day / SECS_PER_DAY != date) goto overflow; sec = tm->tm_sec + (tm->tm_min + tm->tm_hour * MINS_PER_HOUR) * SECS_PER_MINUTE; mytime = day + sec; /* since sec >= 0, overflow could only be from +day to -mytime */ if (mytime < 0 && day > 0) goto overflow; /* * Find the DST time boundary just before or following the target time. We * assume that all zones have GMT offsets less than 24 hours, and that DST * boundaries can't be closer together than 48 hours, so backing up 24 * hours and finding the "next" boundary will work. */ prevtime = mytime - SECS_PER_DAY; if (mytime < 0 && prevtime > 0) goto overflow; res = pg_next_dst_boundary(&prevtime, &before_gmtoff, &before_isdst, &boundary, &after_gmtoff, &after_isdst, tzp); if (res < 0) goto overflow; /* failure? */ if (res == 0) { /* Non-DST zone, life is simple */ tm->tm_isdst = before_isdst; *tp = mytime - before_gmtoff; return -(int) before_gmtoff; } /* * Form the candidate pg_time_t values with local-time adjustment */ beforetime = mytime - before_gmtoff; if ((before_gmtoff > 0 && mytime < 0 && beforetime > 0) || (before_gmtoff <= 0 && mytime > 0 && beforetime < 0)) goto overflow; aftertime = mytime - after_gmtoff; if ((after_gmtoff > 0 && mytime < 0 && aftertime > 0) || (after_gmtoff <= 0 && mytime > 0 && aftertime < 0)) goto overflow; /* * If both before or both after the boundary time, we know what to do. The * boundary time itself is considered to be after the transition, which * means we can accept aftertime == boundary in the second case. */ if (beforetime < boundary && aftertime < boundary) { tm->tm_isdst = before_isdst; *tp = beforetime; return -(int) before_gmtoff; } if (beforetime > boundary && aftertime >= boundary) { tm->tm_isdst = after_isdst; *tp = aftertime; return -(int) after_gmtoff; } /* * It's an invalid or ambiguous time due to timezone transition. In a * spring-forward transition, prefer the "before" interpretation; in a * fall-back transition, prefer "after". (We used to define and implement * this test as "prefer the standard-time interpretation", but that rule * does not help to resolve the behavior when both times are reported as * standard time; which does happen, eg Europe/Moscow in Oct 2014. Also, * in some zones such as Europe/Dublin, there is widespread confusion * about which time offset is "standard" time, so it's fortunate that our * behavior doesn't depend on that.) */ if (beforetime > aftertime) { tm->tm_isdst = before_isdst; *tp = beforetime; return -(int) before_gmtoff; } tm->tm_isdst = after_isdst; *tp = aftertime; return -(int) after_gmtoff; overflow: /* Given date is out of range, so assume UTC */ tm->tm_isdst = 0; *tp = 0; return 0; } /* DetermineTimeZoneAbbrevOffset() * * Determine the GMT offset and DST flag to be attributed to a dynamic * time zone abbreviation, that is one whose meaning has changed over time. * *tm contains the local time at which the meaning should be determined, * and tm->tm_isdst receives the DST flag. * * This differs from the behavior of DetermineTimeZoneOffset() in that a * standard-time or daylight-time abbreviation forces use of the corresponding * GMT offset even when the zone was then in DS or standard time respectively. * (However, that happens only if we can match the given abbreviation to some * abbreviation that appears in the IANA timezone data. Otherwise, we fall * back to doing DetermineTimeZoneOffset().) */ int DetermineTimeZoneAbbrevOffset(struct pg_tm *tm, const char *abbr, pg_tz *tzp) { pg_time_t t; int zone_offset; int abbr_offset; int abbr_isdst; /* * Compute the UTC time we want to probe at. (In event of overflow, we'll * probe at the epoch, which is a bit random but probably doesn't matter.) */ zone_offset = DetermineTimeZoneOffsetInternal(tm, tzp, &t); /* * Try to match the abbreviation to something in the zone definition. */ if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp, &abbr_offset, &abbr_isdst)) { /* Success, so use the abbrev-specific answers. */ tm->tm_isdst = abbr_isdst; return abbr_offset; } /* * No match, so use the answers we already got from * DetermineTimeZoneOffsetInternal. */ return zone_offset; } /* DetermineTimeZoneAbbrevOffsetTS() * * As above but the probe time is specified as a TimestampTz (hence, UTC time), * and DST status is returned into *isdst rather than into tm->tm_isdst. */ int DetermineTimeZoneAbbrevOffsetTS(TimestampTz ts, const char *abbr, pg_tz *tzp, int *isdst) { pg_time_t t = timestamptz_to_time_t(ts); int zone_offset; int abbr_offset; int tz; struct pg_tm tm; fsec_t fsec; /* * If the abbrev matches anything in the zone data, this is pretty easy. */ if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp, &abbr_offset, isdst)) return abbr_offset; /* * Else, break down the timestamp so we can use DetermineTimeZoneOffset. */ if (timestamp2tm(ts, &tz, &tm, &fsec, NULL, tzp) != 0) ereport(ERROR, (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), errmsg("timestamp out of range"))); zone_offset = DetermineTimeZoneOffset(&tm, tzp); *isdst = tm.tm_isdst; return zone_offset; } /* DetermineTimeZoneAbbrevOffsetInternal() * * Workhorse for above two functions: work from a pg_time_t probe instant. * On success, return GMT offset and DST status into *offset and *isdst. */ static bool DetermineTimeZoneAbbrevOffsetInternal(pg_time_t t, const char *abbr, pg_tz *tzp, int *offset, int *isdst) { char upabbr[TZ_STRLEN_MAX + 1]; unsigned char *p; long int gmtoff; /* We need to force the abbrev to upper case */ strlcpy(upabbr, abbr, sizeof(upabbr)); for (p = (unsigned char *) upabbr; *p; p++) *p = pg_toupper(*p); /* Look up the abbrev's meaning at this time in this zone */ if (pg_interpret_timezone_abbrev(upabbr, &t, &gmtoff, isdst, tzp)) { /* Change sign to agree with DetermineTimeZoneOffset() */ *offset = (int) -gmtoff; return true; } return false; } /* DecodeTimeOnly() * Interpret parsed string as time fields only. * Returns 0 if successful, DTERR code if bogus input detected. * * Note that support for time zone is here for * SQL TIME WITH TIME ZONE, but it reveals * bogosity with SQL date/time standards, since * we must infer a time zone from current time. * - thomas 2000-03-10 * Allow specifying date to get a better time zone, * if time zones are allowed. - thomas 2001-12-26 */ int DecodeTimeOnly(char **field, int *ftype, int nf, int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp) { int fmask = 0, tmask, type; int ptype = 0; /* "prefix type" for ISO h04mm05s06 format */ int i; int val; int dterr; bool isjulian = false; bool is2digits = false; bool bc = false; int mer = HR24; pg_tz *namedTz = NULL; pg_tz *abbrevTz = NULL; char *abbrev = NULL; pg_tz *valtz; *dtype = DTK_TIME; tm->tm_hour = 0; tm->tm_min = 0; tm->tm_sec = 0; *fsec = 0; /* don't know daylight savings time status apriori */ tm->tm_isdst = -1; if (tzp != NULL) *tzp = 0; for (i = 0; i < nf; i++) { switch (ftype[i]) { case DTK_DATE: /* * Time zone not allowed? Then should not accept dates or time * zones no matter what else! */ if (tzp == NULL) return DTERR_BAD_FORMAT; /* Under limited circumstances, we will accept a date... */ if (i == 0 && nf >= 2 && (ftype[nf - 1] == DTK_DATE || ftype[1] == DTK_TIME)) { dterr = DecodeDate(field[i], fmask, &tmask, &is2digits, tm); if (dterr) return dterr; } /* otherwise, this is a time and/or time zone */ else { if (isdigit((unsigned char) *field[i])) { char *cp; /* * Starts with a digit but we already have a time * field? Then we are in trouble with time already... */ if ((fmask & DTK_TIME_M) == DTK_TIME_M) return DTERR_BAD_FORMAT; /* * Should not get here and fail. Sanity check only... */ if ((cp = strchr(field[i], '-')) == NULL) return DTERR_BAD_FORMAT; /* Get the time zone from the end of the string */ dterr = DecodeTimezone(cp, tzp); if (dterr) return dterr; *cp = '\0'; /* * Then read the rest of the field as a concatenated * time */ dterr = DecodeNumberField(strlen(field[i]), field[i], (fmask | DTK_DATE_M), &tmask, tm, fsec, &is2digits); if (dterr < 0) return dterr; ftype[i] = dterr; tmask |= DTK_M(TZ); } else { namedTz = pg_tzset(field[i]); if (!namedTz) { /* * We should return an error code instead of * ereport'ing directly, but then there is no way * to report the bad time zone name. */ ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("time zone \"%s\" not recognized", field[i]))); } /* we'll apply the zone setting below */ ftype[i] = DTK_TZ; tmask = DTK_M(TZ); } } break; case DTK_TIME: dterr = DecodeTime(field[i], (fmask | DTK_DATE_M), INTERVAL_FULL_RANGE, &tmask, tm, fsec); if (dterr) return dterr; break; case DTK_TZ: { int tz; if (tzp == NULL) return DTERR_BAD_FORMAT; dterr = DecodeTimezone(field[i], &tz); if (dterr) return dterr; *tzp = tz; tmask = DTK_M(TZ); } break; case DTK_NUMBER: /* * Was this an "ISO time" with embedded field labels? An * example is "h04mm05s06" - thomas 2001-02-04 */ if (ptype != 0) { char *cp; int val; /* Only accept a date under limited circumstances */ switch (ptype) { case DTK_JULIAN: case DTK_YEAR: case DTK_MONTH: case DTK_DAY: if (tzp == NULL) return DTERR_BAD_FORMAT; default: break; } errno = 0; val = strtoint(field[i], &cp, 10); if (errno == ERANGE) return DTERR_FIELD_OVERFLOW; /* * only a few kinds are allowed to have an embedded * decimal */ if (*cp == '.') switch (ptype) { case DTK_JULIAN: case DTK_TIME: case DTK_SECOND: break; default: return DTERR_BAD_FORMAT; break; } else if (*cp != '\0') return DTERR_BAD_FORMAT; switch (ptype) { case DTK_YEAR: tm->tm_year = val; tmask = DTK_M(YEAR); break; case DTK_MONTH: /* * already have a month and hour? then assume * minutes */ if ((fmask & DTK_M(MONTH)) != 0 && (fmask & DTK_M(HOUR)) != 0) { tm->tm_min = val; tmask = DTK_M(MINUTE); } else { tm->tm_mon = val; tmask = DTK_M(MONTH); } break; case DTK_DAY: tm->tm_mday = val; tmask = DTK_M(DAY); break; case DTK_HOUR: tm->tm_hour = val; tmask = DTK_M(HOUR); break; case DTK_MINUTE: tm->tm_min = val; tmask = DTK_M(MINUTE); break; case DTK_SECOND: tm->tm_sec = val; tmask = DTK_M(SECOND); if (*cp == '.') { dterr = ParseFractionalSecond(cp, fsec); if (dterr) return dterr; tmask = DTK_ALL_SECS_M; } break; case DTK_TZ: tmask = DTK_M(TZ); dterr = DecodeTimezone(field[i], tzp); if (dterr) return dterr; break; case DTK_JULIAN: /* previous field was a label for "julian date" */ if (val < 0) return DTERR_FIELD_OVERFLOW; tmask = DTK_DATE_M; j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday); isjulian = true; if (*cp == '.') { double time; dterr = ParseFraction(cp, &time); if (dterr) return dterr; time *= USECS_PER_DAY; dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec); tmask |= DTK_TIME_M; } break; case DTK_TIME: /* previous field was "t" for ISO time */ dterr = DecodeNumberField(strlen(field[i]), field[i], (fmask | DTK_DATE_M), &tmask, tm, fsec, &is2digits); if (dterr < 0) return dterr; ftype[i] = dterr; if (tmask != DTK_TIME_M) return DTERR_BAD_FORMAT; break; default: return DTERR_BAD_FORMAT; break; } ptype = 0; *dtype = DTK_DATE; } else { char *cp; int flen; flen = strlen(field[i]); cp = strchr(field[i], '.'); /* Embedded decimal? */ if (cp != NULL) { /* * Under limited circumstances, we will accept a * date... */ if (i == 0 && nf >= 2 && ftype[nf - 1] == DTK_DATE) { dterr = DecodeDate(field[i], fmask, &tmask, &is2digits, tm); if (dterr) return dterr; } /* embedded decimal and several digits before? */ else if (flen - strlen(cp) > 2) { /* * Interpret as a concatenated date or time Set * the type field to allow decoding other fields * later. Example: 20011223 or 040506 */ dterr = DecodeNumberField(flen, field[i], (fmask | DTK_DATE_M), &tmask, tm, fsec, &is2digits); if (dterr < 0) return dterr; ftype[i] = dterr; } else return DTERR_BAD_FORMAT; } else if (flen > 4) { dterr = DecodeNumberField(flen, field[i], (fmask | DTK_DATE_M), &tmask, tm, fsec, &is2digits); if (dterr < 0) return dterr; ftype[i] = dterr; } /* otherwise it is a single date/time field... */ else { dterr = DecodeNumber(flen, field[i], false, (fmask | DTK_DATE_M), &tmask, tm, fsec, &is2digits); if (dterr) return dterr; } } break; case DTK_STRING: case DTK_SPECIAL: /* timezone abbrevs take precedence over built-in tokens */ type = DecodeTimezoneAbbrev(i, field[i], &val, &valtz); if (type == UNKNOWN_FIELD) type = DecodeSpecial(i, field[i], &val); if (type == IGNORE_DTF) continue; tmask = DTK_M(type); switch (type) { case RESERV: switch (val) { case DTK_NOW: tmask = DTK_TIME_M; *dtype = DTK_TIME; GetCurrentTimeUsec(tm, fsec, NULL); break; case DTK_ZULU: tmask = (DTK_TIME_M | DTK_M(TZ)); *dtype = DTK_TIME; tm->tm_hour = 0; tm->tm_min = 0; tm->tm_sec = 0; tm->tm_isdst = 0; break; default: return DTERR_BAD_FORMAT; } break; case DTZMOD: /* * daylight savings time modifier (solves "MET DST" * syntax) */ tmask |= DTK_M(DTZ); tm->tm_isdst = 1; if (tzp == NULL) return DTERR_BAD_FORMAT; *tzp -= val; break; case DTZ: /* * set mask for TZ here _or_ check for DTZ later when * getting default timezone */ tmask |= DTK_M(TZ); tm->tm_isdst = 1; if (tzp == NULL) return DTERR_BAD_FORMAT; *tzp = -val; ftype[i] = DTK_TZ; break; case TZ: tm->tm_isdst = 0; if (tzp == NULL) return DTERR_BAD_FORMAT; *tzp = -val; ftype[i] = DTK_TZ; break; case DYNTZ: tmask |= DTK_M(TZ); if (tzp == NULL) return DTERR_BAD_FORMAT; /* we'll determine the actual offset later */ abbrevTz = valtz; abbrev = field[i]; ftype[i] = DTK_TZ; break; case AMPM: mer = val; break; case ADBC: bc = (val == BC); break; case UNITS: tmask = 0; ptype = val; break; case ISOTIME: tmask = 0; /*** * We will need one of the following fields: * DTK_NUMBER should be hhmmss.fff * DTK_TIME should be hh:mm:ss.fff * DTK_DATE should be hhmmss-zz ***/ if (i >= nf - 1 || (ftype[i + 1] != DTK_NUMBER && ftype[i + 1] != DTK_TIME && ftype[i + 1] != DTK_DATE)) return DTERR_BAD_FORMAT; ptype = val; break; case UNKNOWN_FIELD: /* * Before giving up and declaring error, check to see * if it is an all-alpha timezone name. */ namedTz = pg_tzset(field[i]); if (!namedTz) return DTERR_BAD_FORMAT; /* we'll apply the zone setting below */ tmask = DTK_M(TZ); break; default: return DTERR_BAD_FORMAT; } break; default: return DTERR_BAD_FORMAT; } if (tmask & fmask) return DTERR_BAD_FORMAT; fmask |= tmask; } /* end loop over fields */ /* do final checking/adjustment of Y/M/D fields */ dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm); if (dterr) return dterr; /* handle AM/PM */ if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2) return DTERR_FIELD_OVERFLOW; if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2) tm->tm_hour = 0; else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2) tm->tm_hour += HOURS_PER_DAY / 2; /* check for time overflow */ if (time_overflows(tm->tm_hour, tm->tm_min, tm->tm_sec, *fsec)) return DTERR_FIELD_OVERFLOW; if ((fmask & DTK_TIME_M) != DTK_TIME_M) return DTERR_BAD_FORMAT; /* * If we had a full timezone spec, compute the offset (we could not do it * before, because we may need the date to resolve DST status). */ if (namedTz != NULL) { long int gmtoff; /* daylight savings time modifier disallowed with full TZ */ if (fmask & DTK_M(DTZMOD)) return DTERR_BAD_FORMAT; /* if non-DST zone, we do not need to know the date */ if (pg_get_timezone_offset(namedTz, &gmtoff)) { *tzp = -(int) gmtoff; } else { /* a date has to be specified */ if ((fmask & DTK_DATE_M) != DTK_DATE_M) return DTERR_BAD_FORMAT; *tzp = DetermineTimeZoneOffset(tm, namedTz); } } /* * Likewise, if we had a dynamic timezone abbreviation, resolve it now. */ if (abbrevTz != NULL) { struct pg_tm tt, *tmp = &tt; /* * daylight savings time modifier but no standard timezone? then error */ if (fmask & DTK_M(DTZMOD)) return DTERR_BAD_FORMAT; if ((fmask & DTK_DATE_M) == 0) GetCurrentDateTime(tmp); else { /* a date has to be specified */ if ((fmask & DTK_DATE_M) != DTK_DATE_M) return DTERR_BAD_FORMAT; tmp->tm_year = tm->tm_year; tmp->tm_mon = tm->tm_mon; tmp->tm_mday = tm->tm_mday; } tmp->tm_hour = tm->tm_hour; tmp->tm_min = tm->tm_min; tmp->tm_sec = tm->tm_sec; *tzp = DetermineTimeZoneAbbrevOffset(tmp, abbrev, abbrevTz); tm->tm_isdst = tmp->tm_isdst; } /* timezone not specified? then use session timezone */ if (tzp != NULL && !(fmask & DTK_M(TZ))) { struct pg_tm tt, *tmp = &tt; /* * daylight savings time modifier but no standard timezone? then error */ if (fmask & DTK_M(DTZMOD)) return DTERR_BAD_FORMAT; if ((fmask & DTK_DATE_M) == 0) GetCurrentDateTime(tmp); else { /* a date has to be specified */ if ((fmask & DTK_DATE_M) != DTK_DATE_M) return DTERR_BAD_FORMAT; tmp->tm_year = tm->tm_year; tmp->tm_mon = tm->tm_mon; tmp->tm_mday = tm->tm_mday; } tmp->tm_hour = tm->tm_hour; tmp->tm_min = tm->tm_min; tmp->tm_sec = tm->tm_sec; *tzp = DetermineTimeZoneOffset(tmp, session_timezone); tm->tm_isdst = tmp->tm_isdst; } return 0; } /* DecodeDate() * Decode date string which includes delimiters. * Return 0 if okay, a DTERR code if not. * * str: field to be parsed * fmask: bitmask for field types already seen * *tmask: receives bitmask for fields found here * *is2digits: set to true if we find 2-digit year * *tm: field values are stored into appropriate members of this struct */ static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits, struct pg_tm *tm) { fsec_t fsec; int nf = 0; int i, len; int dterr; bool haveTextMonth = false; int type, val, dmask = 0; char *field[MAXDATEFIELDS]; *tmask = 0; /* parse this string... */ while (*str != '\0' && nf < MAXDATEFIELDS) { /* skip field separators */ while (*str != '\0' && !isalnum((unsigned char) *str)) str++; if (*str == '\0') return DTERR_BAD_FORMAT; /* end of string after separator */ field[nf] = str; if (isdigit((unsigned char) *str)) { while (isdigit((unsigned char) *str)) str++; } else if (isalpha((unsigned char) *str)) { while (isalpha((unsigned char) *str)) str++; } /* Just get rid of any non-digit, non-alpha characters... */ if (*str != '\0') *str++ = '\0'; nf++; } /* look first for text fields, since that will be unambiguous month */ for (i = 0; i < nf; i++) { if (isalpha((unsigned char) *field[i])) { type = DecodeSpecial(i, field[i], &val); if (type == IGNORE_DTF) continue; dmask = DTK_M(type); switch (type) { case MONTH: tm->tm_mon = val; haveTextMonth = true; break; default: return DTERR_BAD_FORMAT; } if (fmask & dmask) return DTERR_BAD_FORMAT; fmask |= dmask; *tmask |= dmask; /* mark this field as being completed */ field[i] = NULL; } } /* now pick up remaining numeric fields */ for (i = 0; i < nf; i++) { if (field[i] == NULL) continue; if ((len = strlen(field[i])) <= 0) return DTERR_BAD_FORMAT; dterr = DecodeNumber(len, field[i], haveTextMonth, fmask, &dmask, tm, &fsec, is2digits); if (dterr) return dterr; if (fmask & dmask) return DTERR_BAD_FORMAT; fmask |= dmask; *tmask |= dmask; } if ((fmask & ~(DTK_M(DOY) | DTK_M(TZ))) != DTK_DATE_M) return DTERR_BAD_FORMAT; /* validation of the field values must wait until ValidateDate() */ return 0; } /* ValidateDate() * Check valid year/month/day values, handle BC and DOY cases * Return 0 if okay, a DTERR code if not. */ int ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc, struct pg_tm *tm) { if (fmask & DTK_M(YEAR)) { if (isjulian) { /* tm_year is correct and should not be touched */ } else if (bc) { /* there is no year zero in AD/BC notation */ if (tm->tm_year <= 0) return DTERR_FIELD_OVERFLOW; /* internally, we represent 1 BC as year zero, 2 BC as -1, etc */ tm->tm_year = -(tm->tm_year - 1); } else if (is2digits) { /* process 1 or 2-digit input as 1970-2069 AD, allow '0' and '00' */ if (tm->tm_year < 0) /* just paranoia */ return DTERR_FIELD_OVERFLOW; if (tm->tm_year < 70) tm->tm_year += 2000; else if (tm->tm_year < 100) tm->tm_year += 1900; } else { /* there is no year zero in AD/BC notation */ if (tm->tm_year <= 0) return DTERR_FIELD_OVERFLOW; } } /* now that we have correct year, decode DOY */ if (fmask & DTK_M(DOY)) { j2date(date2j(tm->tm_year, 1, 1) + tm->tm_yday - 1, &tm->tm_year, &tm->tm_mon, &tm->tm_mday); } /* check for valid month */ if (fmask & DTK_M(MONTH)) { if (tm->tm_mon < 1 || tm->tm_mon > MONTHS_PER_YEAR) return DTERR_MD_FIELD_OVERFLOW; } /* minimal check for valid day */ if (fmask & DTK_M(DAY)) { if (tm->tm_mday < 1 || tm->tm_mday > 31) return DTERR_MD_FIELD_OVERFLOW; } if ((fmask & DTK_DATE_M) == DTK_DATE_M) { /* * Check for valid day of month, now that we know for sure the month * and year. Note we don't use MD_FIELD_OVERFLOW here, since it seems * unlikely that "Feb 29" is a YMD-order error. */ if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]) return DTERR_FIELD_OVERFLOW; } return 0; } /* DecodeTimeCommon() * Decode time string which includes delimiters. * Return 0 if okay, a DTERR code if not. * tmask and itm are output parameters. * * This code is shared between the timestamp and interval cases. * We return a struct pg_itm (of which only the tm_usec, tm_sec, tm_min, * and tm_hour fields are used) and let the wrapper functions below * convert and range-check as necessary. */ static int DecodeTimeCommon(char *str, int fmask, int range, int *tmask, struct pg_itm *itm) { char *cp; int dterr; fsec_t fsec = 0; *tmask = DTK_TIME_M; errno = 0; itm->tm_hour = strtoi64(str, &cp, 10); if (errno == ERANGE) return DTERR_FIELD_OVERFLOW; if (*cp != ':') return DTERR_BAD_FORMAT; errno = 0; itm->tm_min = strtoint(cp + 1, &cp, 10); if (errno == ERANGE) return DTERR_FIELD_OVERFLOW; if (*cp == '\0') { itm->tm_sec = 0; /* If it's a MINUTE TO SECOND interval, take 2 fields as being mm:ss */ if (range == (INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND))) { if (itm->tm_hour > INT_MAX || itm->tm_hour < INT_MIN) return DTERR_FIELD_OVERFLOW; itm->tm_sec = itm->tm_min; itm->tm_min = (int) itm->tm_hour; itm->tm_hour = 0; } } else if (*cp == '.') { /* always assume mm:ss.sss is MINUTE TO SECOND */ dterr = ParseFractionalSecond(cp, &fsec); if (dterr) return dterr; if (itm->tm_hour > INT_MAX || itm->tm_hour < INT_MIN) return DTERR_FIELD_OVERFLOW; itm->tm_sec = itm->tm_min; itm->tm_min = (int) itm->tm_hour; itm->tm_hour = 0; } else if (*cp == ':') { errno = 0; itm->tm_sec = strtoint(cp + 1, &cp, 10); if (errno == ERANGE) return DTERR_FIELD_OVERFLOW; if (*cp == '.') { dterr = ParseFractionalSecond(cp, &fsec); if (dterr) return dterr; } else if (*cp != '\0') return DTERR_BAD_FORMAT; } else return DTERR_BAD_FORMAT; /* do a sanity check; but caller must check the range of tm_hour */ if (itm->tm_hour < 0 || itm->tm_min < 0 || itm->tm_min > MINS_PER_HOUR - 1 || itm->tm_sec < 0 || itm->tm_sec > SECS_PER_MINUTE || fsec < 0 || fsec > USECS_PER_SEC) return DTERR_FIELD_OVERFLOW; itm->tm_usec = (int) fsec; return 0; } /* DecodeTime() * Decode time string which includes delimiters. * Return 0 if okay, a DTERR code if not. * * This version is used for timestamps. The results are returned into * the tm_hour/tm_min/tm_sec fields of *tm, and microseconds into *fsec. */ static int DecodeTime(char *str, int fmask, int range, int *tmask, struct pg_tm *tm, fsec_t *fsec) { struct pg_itm itm; int dterr; dterr = DecodeTimeCommon(str, fmask, range, tmask, &itm); if (dterr) return dterr; if (itm.tm_hour > INT_MAX) return DTERR_FIELD_OVERFLOW; tm->tm_hour = (int) itm.tm_hour; tm->tm_min = itm.tm_min; tm->tm_sec = itm.tm_sec; *fsec = itm.tm_usec; return 0; } /* DecodeTimeForInterval() * Decode time string which includes delimiters. * Return 0 if okay, a DTERR code if not. * * This version is used for intervals. The results are returned into * itm_in->tm_usec. */ static int DecodeTimeForInterval(char *str, int fmask, int range, int *tmask, struct pg_itm_in *itm_in) { struct pg_itm itm; int dterr; dterr = DecodeTimeCommon(str, fmask, range, tmask, &itm); if (dterr) return dterr; itm_in->tm_usec = itm.tm_usec; if (!int64_multiply_add(itm.tm_hour, USECS_PER_HOUR, &itm_in->tm_usec) || !int64_multiply_add(itm.tm_min, USECS_PER_MINUTE, &itm_in->tm_usec) || !int64_multiply_add(itm.tm_sec, USECS_PER_SEC, &itm_in->tm_usec)) return DTERR_FIELD_OVERFLOW; return 0; } /* DecodeNumber() * Interpret plain numeric field as a date value in context. * Return 0 if okay, a DTERR code if not. */ static int DecodeNumber(int flen, char *str, bool haveTextMonth, int fmask, int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits) { int val; char *cp; int dterr; *tmask = 0; errno = 0; val = strtoint(str, &cp, 10); if (errno == ERANGE) return DTERR_FIELD_OVERFLOW; if (cp == str) return DTERR_BAD_FORMAT; if (*cp == '.') { /* * More than two digits before decimal point? Then could be a date or * a run-together time: 2001.360 20011225 040506.789 */ if (cp - str > 2) { dterr = DecodeNumberField(flen, str, (fmask | DTK_DATE_M), tmask, tm, fsec, is2digits); if (dterr < 0) return dterr; return 0; } dterr = ParseFractionalSecond(cp, fsec); if (dterr) return dterr; } else if (*cp != '\0') return DTERR_BAD_FORMAT; /* Special case for day of year */ if (flen == 3 && (fmask & DTK_DATE_M) == DTK_M(YEAR) && val >= 1 && val <= 366) { *tmask = (DTK_M(DOY) | DTK_M(MONTH) | DTK_M(DAY)); tm->tm_yday = val; /* tm_mon and tm_mday can't actually be set yet ... */ return 0; } /* Switch based on what we have so far */ switch (fmask & DTK_DATE_M) { case 0: /* * Nothing so far; make a decision about what we think the input * is. There used to be lots of heuristics here, but the * consensus now is to be paranoid. It *must* be either * YYYY-MM-DD (with a more-than-two-digit year field), or the * field order defined by DateOrder. */ if (flen >= 3 || DateOrder == DATEORDER_YMD) { *tmask = DTK_M(YEAR); tm->tm_year = val; } else if (DateOrder == DATEORDER_DMY) { *tmask = DTK_M(DAY); tm->tm_mday = val; } else { *tmask = DTK_M(MONTH); tm->tm_mon = val; } break; case (DTK_M(YEAR)): /* Must be at second field of YY-MM-DD */ *tmask = DTK_M(MONTH); tm->tm_mon = val; break; case (DTK_M(MONTH)): if (haveTextMonth) { /* * We are at the first numeric field of a date that included a * textual month name. We want to support the variants * MON-DD-YYYY, DD-MON-YYYY, and YYYY-MON-DD as unambiguous * inputs. We will also accept MON-DD-YY or DD-MON-YY in * either DMY or MDY modes, as well as YY-MON-DD in YMD mode. */ if (flen >= 3 || DateOrder == DATEORDER_YMD) { *tmask = DTK_M(YEAR); tm->tm_year = val; } else { *tmask = DTK_M(DAY); tm->tm_mday = val; } } else { /* Must be at second field of MM-DD-YY */ *tmask = DTK_M(DAY); tm->tm_mday = val; } break; case (DTK_M(YEAR) | DTK_M(MONTH)): if (haveTextMonth) { /* Need to accept DD-MON-YYYY even in YMD mode */ if (flen >= 3 && *is2digits) { /* Guess that first numeric field is day was wrong */ *tmask = DTK_M(DAY); /* YEAR is already set */ tm->tm_mday = tm->tm_year; tm->tm_year = val; *is2digits = false; } else { *tmask = DTK_M(DAY); tm->tm_mday = val; } } else { /* Must be at third field of YY-MM-DD */ *tmask = DTK_M(DAY); tm->tm_mday = val; } break; case (DTK_M(DAY)): /* Must be at second field of DD-MM-YY */ *tmask = DTK_M(MONTH); tm->tm_mon = val; break; case (DTK_M(MONTH) | DTK_M(DAY)): /* Must be at third field of DD-MM-YY or MM-DD-YY */ *tmask = DTK_M(YEAR); tm->tm_year = val; break; case (DTK_M(YEAR) | DTK_M(MONTH) | DTK_M(DAY)): /* we have all the date, so it must be a time field */ dterr = DecodeNumberField(flen, str, fmask, tmask, tm, fsec, is2digits); if (dterr < 0) return dterr; return 0; default: /* Anything else is bogus input */ return DTERR_BAD_FORMAT; } /* * When processing a year field, mark it for adjustment if it's only one * or two digits. */ if (*tmask == DTK_M(YEAR)) *is2digits = (flen <= 2); return 0; } /* DecodeNumberField() * Interpret numeric string as a concatenated date or time field. * Return a DTK token (>= 0) if successful, a DTERR code (< 0) if not. * * Use the context of previously decoded fields to help with * the interpretation. */ static int DecodeNumberField(int len, char *str, int fmask, int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits) { char *cp; /* * Have a decimal point? Then this is a date or something with a seconds * field... */ if ((cp = strchr(str, '.')) != NULL) { /* * Can we use ParseFractionalSecond here? Not clear whether trailing * junk should be rejected ... */ if (cp[1] == '\0') { /* avoid assuming that strtod will accept "." */ *fsec = 0; } else { double frac; errno = 0; frac = strtod(cp, NULL); if (errno != 0) return DTERR_BAD_FORMAT; *fsec = rint(frac * 1000000); } /* Now truncate off the fraction for further processing */ *cp = '\0'; len = strlen(str); } /* No decimal point and no complete date yet? */ else if ((fmask & DTK_DATE_M) != DTK_DATE_M) { if (len >= 6) { *tmask = DTK_DATE_M; /* * Start from end and consider first 2 as Day, next 2 as Month, * and the rest as Year. */ tm->tm_mday = atoi(str + (len - 2)); *(str + (len - 2)) = '\0'; tm->tm_mon = atoi(str + (len - 4)); *(str + (len - 4)) = '\0'; tm->tm_year = atoi(str); if ((len - 4) == 2) *is2digits = true; return DTK_DATE; } } /* not all time fields are specified? */ if ((fmask & DTK_TIME_M) != DTK_TIME_M) { /* hhmmss */ if (len == 6) { *tmask = DTK_TIME_M; tm->tm_sec = atoi(str + 4); *(str + 4) = '\0'; tm->tm_min = atoi(str + 2); *(str + 2) = '\0'; tm->tm_hour = atoi(str); return DTK_TIME; } /* hhmm? */ else if (len == 4) { *tmask = DTK_TIME_M; tm->tm_sec = 0; tm->tm_min = atoi(str + 2); *(str + 2) = '\0'; tm->tm_hour = atoi(str); return DTK_TIME; } } return DTERR_BAD_FORMAT; } /* DecodeTimezone() * Interpret string as a numeric timezone. * * Return 0 if okay (and set *tzp), a DTERR code if not okay. */ int DecodeTimezone(char *str, int *tzp) { int tz; int hr, min, sec = 0; char *cp; /* leading character must be "+" or "-" */ if (*str != '+' && *str != '-') return DTERR_BAD_FORMAT; errno = 0; hr = strtoint(str + 1, &cp, 10); if (errno == ERANGE) return DTERR_TZDISP_OVERFLOW; /* explicit delimiter? */ if (*cp == ':') { errno = 0; min = strtoint(cp + 1, &cp, 10); if (errno == ERANGE) return DTERR_TZDISP_OVERFLOW; if (*cp == ':') { errno = 0; sec = strtoint(cp + 1, &cp, 10); if (errno == ERANGE) return DTERR_TZDISP_OVERFLOW; } } /* otherwise, might have run things together... */ else if (*cp == '\0' && strlen(str) > 3) { min = hr % 100; hr = hr / 100; /* we could, but don't, support a run-together hhmmss format */ } else min = 0; /* Range-check the values; see notes in datatype/timestamp.h */ if (hr < 0 || hr > MAX_TZDISP_HOUR) return DTERR_TZDISP_OVERFLOW; if (min < 0 || min >= MINS_PER_HOUR) return DTERR_TZDISP_OVERFLOW; if (sec < 0 || sec >= SECS_PER_MINUTE) return DTERR_TZDISP_OVERFLOW; tz = (hr * MINS_PER_HOUR + min) * SECS_PER_MINUTE + sec; if (*str == '-') tz = -tz; *tzp = -tz; if (*cp != '\0') return DTERR_BAD_FORMAT; return 0; } /* DecodeTimezoneAbbrev() * Interpret string as a timezone abbreviation, if possible. * * Returns an abbreviation type (TZ, DTZ, or DYNTZ), or UNKNOWN_FIELD if * string is not any known abbreviation. On success, set *offset and *tz to * represent the UTC offset (for TZ or DTZ) or underlying zone (for DYNTZ). * Note that full timezone names (such as America/New_York) are not handled * here, mostly for historical reasons. * * Given string must be lowercased already. * * Implement a cache lookup since it is likely that dates * will be related in format. */ int DecodeTimezoneAbbrev(int field, char *lowtoken, int *offset, pg_tz **tz) { int type; const datetkn *tp; tp = abbrevcache[field]; /* use strncmp so that we match truncated tokens */ if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0) { if (zoneabbrevtbl) tp = datebsearch(lowtoken, zoneabbrevtbl->abbrevs, zoneabbrevtbl->numabbrevs); else tp = NULL; } if (tp == NULL) { type = UNKNOWN_FIELD; *offset = 0; *tz = NULL; } else { abbrevcache[field] = tp; type = tp->type; if (type == DYNTZ) { *offset = 0; *tz = FetchDynamicTimeZone(zoneabbrevtbl, tp); } else { *offset = tp->value; *tz = NULL; } } return type; } /* DecodeSpecial() * Decode text string using lookup table. * * Recognizes the keywords listed in datetktbl. * Note: at one time this would also recognize timezone abbreviations, * but no more; use DecodeTimezoneAbbrev for that. * * Given string must be lowercased already. * * Implement a cache lookup since it is likely that dates * will be related in format. */ int DecodeSpecial(int field, char *lowtoken, int *val) { int type; const datetkn *tp; tp = datecache[field]; /* use strncmp so that we match truncated tokens */ if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0) { tp = datebsearch(lowtoken, datetktbl, szdatetktbl); } if (tp == NULL) { type = UNKNOWN_FIELD; *val = 0; } else { datecache[field] = tp; type = tp->type; *val = tp->value; } return type; } /* ClearPgItmIn * * Zero out a pg_itm_in */ static inline void ClearPgItmIn(struct pg_itm_in *itm_in) { itm_in->tm_usec = 0; itm_in->tm_mday = 0; itm_in->tm_mon = 0; itm_in->tm_year = 0; } /* DecodeInterval() * Interpret previously parsed fields for general time interval. * Returns 0 if successful, DTERR code if bogus input detected. * dtype and itm_in are output parameters. * * Allow "date" field DTK_DATE since this could be just * an unsigned floating point number. - thomas 1997-11-16 * * Allow ISO-style time span, with implicit units on number of days * preceding an hh:mm:ss field. - thomas 1998-04-30 */ int DecodeInterval(char **field, int *ftype, int nf, int range, int *dtype, struct pg_itm_in *itm_in) { bool force_negative = false; bool is_before = false; char *cp; int fmask = 0, tmask, type, uval; int i; int dterr; int64 val; double fval; *dtype = DTK_DELTA; type = IGNORE_DTF; ClearPgItmIn(itm_in); /*---------- * The SQL standard defines the interval literal * '-1 1:00:00' * to mean "negative 1 days and negative 1 hours", while Postgres * traditionally treats this as meaning "negative 1 days and positive * 1 hours". In SQL_STANDARD intervalstyle, we apply the leading sign * to all fields if there are no other explicit signs. * * We leave the signs alone if there are additional explicit signs. * This protects us against misinterpreting postgres-style dump output, * since the postgres-style output code has always put an explicit sign on * all fields following a negative field. But note that SQL-spec output * is ambiguous and can be misinterpreted on load! (So it's best practice * to dump in postgres style, not SQL style.) *---------- */ if (IntervalStyle == INTSTYLE_SQL_STANDARD && nf > 0 && *field[0] == '-') { force_negative = true; /* Check for additional explicit signs */ for (i = 1; i < nf; i++) { if (*field[i] == '-' || *field[i] == '+') { force_negative = false; break; } } } /* read through list backwards to pick up units before values */ for (i = nf - 1; i >= 0; i--) { switch (ftype[i]) { case DTK_TIME: dterr = DecodeTimeForInterval(field[i], fmask, range, &tmask, itm_in); if (dterr) return dterr; if (force_negative && itm_in->tm_usec > 0) itm_in->tm_usec = -itm_in->tm_usec; type = DTK_DAY; break; case DTK_TZ: /* * Timezone means a token with a leading sign character and at * least one digit; there could be ':', '.', '-' embedded in * it as well. */ Assert(*field[i] == '-' || *field[i] == '+'); /* * Check for signed hh:mm or hh:mm:ss. If so, process exactly * like DTK_TIME case above, plus handling the sign. */ if (strchr(field[i] + 1, ':') != NULL && DecodeTimeForInterval(field[i] + 1, fmask, range, &tmask, itm_in) == 0) { if (*field[i] == '-') { /* flip the sign on time field */ if (itm_in->tm_usec == PG_INT64_MIN) return DTERR_FIELD_OVERFLOW; itm_in->tm_usec = -itm_in->tm_usec; } if (force_negative && itm_in->tm_usec > 0) itm_in->tm_usec = -itm_in->tm_usec; /* * Set the next type to be a day, if units are not * specified. This handles the case of '1 +02:03' since we * are reading right to left. */ type = DTK_DAY; break; } /* * Otherwise, fall through to DTK_NUMBER case, which can * handle signed float numbers and signed year-month values. */ /* FALLTHROUGH */ case DTK_DATE: case DTK_NUMBER: if (type == IGNORE_DTF) { /* use typmod to decide what rightmost field is */ switch (range) { case INTERVAL_MASK(YEAR): type = DTK_YEAR; break; case INTERVAL_MASK(MONTH): case INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH): type = DTK_MONTH; break; case INTERVAL_MASK(DAY): type = DTK_DAY; break; case INTERVAL_MASK(HOUR): case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR): type = DTK_HOUR; break; case INTERVAL_MASK(MINUTE): case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE): case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE): type = DTK_MINUTE; break; case INTERVAL_MASK(SECOND): case INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): type = DTK_SECOND; break; default: type = DTK_SECOND; break; } } errno = 0; val = strtoi64(field[i], &cp, 10); if (errno == ERANGE) return DTERR_FIELD_OVERFLOW; if (*cp == '-') { /* SQL "years-months" syntax */ int val2; val2 = strtoint(cp + 1, &cp, 10); if (errno == ERANGE || val2 < 0 || val2 >= MONTHS_PER_YEAR) return DTERR_FIELD_OVERFLOW; if (*cp != '\0') return DTERR_BAD_FORMAT; type = DTK_MONTH; if (*field[i] == '-') val2 = -val2; if (pg_mul_s64_overflow(val, MONTHS_PER_YEAR, &val)) return DTERR_FIELD_OVERFLOW; if (pg_add_s64_overflow(val, val2, &val)) return DTERR_FIELD_OVERFLOW; fval = 0; } else if (*cp == '.') { dterr = ParseFraction(cp, &fval); if (dterr) return dterr; if (*field[i] == '-') fval = -fval; } else if (*cp == '\0') fval = 0; else return DTERR_BAD_FORMAT; tmask = 0; /* DTK_M(type); */ if (force_negative) { /* val and fval should be of same sign, but test anyway */ if (val > 0) val = -val; if (fval > 0) fval = -fval; } switch (type) { case DTK_MICROSEC: if (!AdjustMicroseconds(val, fval, 1, itm_in)) return DTERR_FIELD_OVERFLOW; tmask = DTK_M(MICROSECOND); break; case DTK_MILLISEC: if (!AdjustMicroseconds(val, fval, 1000, itm_in)) return DTERR_FIELD_OVERFLOW; tmask = DTK_M(MILLISECOND); break; case DTK_SECOND: if (!AdjustMicroseconds(val, fval, USECS_PER_SEC, itm_in)) return DTERR_FIELD_OVERFLOW; /* * If any subseconds were specified, consider this * microsecond and millisecond input as well. */ if (fval == 0) tmask = DTK_M(SECOND); else tmask = DTK_ALL_SECS_M; break; case DTK_MINUTE: if (!AdjustMicroseconds(val, fval, USECS_PER_MINUTE, itm_in)) return DTERR_FIELD_OVERFLOW; tmask = DTK_M(MINUTE); break; case DTK_HOUR: if (!AdjustMicroseconds(val, fval, USECS_PER_HOUR, itm_in)) return DTERR_FIELD_OVERFLOW; tmask = DTK_M(HOUR); type = DTK_DAY; /* set for next field */ break; case DTK_DAY: if (!AdjustDays(val, 1, itm_in) || !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in)) return DTERR_FIELD_OVERFLOW; tmask = DTK_M(DAY); break; case DTK_WEEK: if (!AdjustDays(val, 7, itm_in) || !AdjustFractDays(fval, 7, itm_in)) return DTERR_FIELD_OVERFLOW; tmask = DTK_M(WEEK); break; case DTK_MONTH: if (!AdjustMonths(val, itm_in) || !AdjustFractDays(fval, DAYS_PER_MONTH, itm_in)) return DTERR_FIELD_OVERFLOW; tmask = DTK_M(MONTH); break; case DTK_YEAR: if (!AdjustYears(val, 1, itm_in) || !AdjustFractYears(fval, 1, itm_in)) return DTERR_FIELD_OVERFLOW; tmask = DTK_M(YEAR); break; case DTK_DECADE: if (!AdjustYears(val, 10, itm_in) || !AdjustFractYears(fval, 10, itm_in)) return DTERR_FIELD_OVERFLOW; tmask = DTK_M(DECADE); break; case DTK_CENTURY: if (!AdjustYears(val, 100, itm_in) || !AdjustFractYears(fval, 100, itm_in)) return DTERR_FIELD_OVERFLOW; tmask = DTK_M(CENTURY); break; case DTK_MILLENNIUM: if (!AdjustYears(val, 1000, itm_in) || !AdjustFractYears(fval, 1000, itm_in)) return DTERR_FIELD_OVERFLOW; tmask = DTK_M(MILLENNIUM); break; default: return DTERR_BAD_FORMAT; } break; case DTK_STRING: case DTK_SPECIAL: type = DecodeUnits(i, field[i], &uval); if (type == IGNORE_DTF) continue; tmask = 0; /* DTK_M(type); */ switch (type) { case UNITS: type = uval; break; case AGO: is_before = true; type = uval; break; case RESERV: tmask = (DTK_DATE_M | DTK_TIME_M); *dtype = uval; break; default: return DTERR_BAD_FORMAT; } break; default: return DTERR_BAD_FORMAT; } if (tmask & fmask) return DTERR_BAD_FORMAT; fmask |= tmask; } /* ensure that at least one time field has been found */ if (fmask == 0) return DTERR_BAD_FORMAT; /* finally, AGO negates everything */ if (is_before) { if (itm_in->tm_usec == PG_INT64_MIN || itm_in->tm_mday == INT_MIN || itm_in->tm_mon == INT_MIN || itm_in->tm_year == INT_MIN) return DTERR_FIELD_OVERFLOW; itm_in->tm_usec = -itm_in->tm_usec; itm_in->tm_mday = -itm_in->tm_mday; itm_in->tm_mon = -itm_in->tm_mon; itm_in->tm_year = -itm_in->tm_year; } return 0; } /* * Helper functions to avoid duplicated code in DecodeISO8601Interval. * * Parse a decimal value and break it into integer and fractional parts. * Set *endptr to end+1 of the parsed substring. * Returns 0 or DTERR code. */ static int ParseISO8601Number(char *str, char **endptr, int64 *ipart, double *fpart) { double val; /* * Historically this has accepted anything that strtod() would take, * notably including "e" notation, so continue doing that. This is * slightly annoying because the precision of double is less than that of * int64, so we would lose accuracy for inputs larger than 2^53 or so. * However, historically we rejected inputs outside the int32 range, * making that concern moot. What we do now is reject abs(val) above * 1.0e15 (a round number a bit less than 2^50), so that any accepted * value will have an exact integer part, and thereby a fraction part with * abs(*fpart) less than 1. In the absence of field complaints it doesn't * seem worth working harder. */ if (!(isdigit((unsigned char) *str) || *str == '-' || *str == '.')) return DTERR_BAD_FORMAT; errno = 0; val = strtod(str, endptr); /* did we not see anything that looks like a double? */ if (*endptr == str || errno != 0) return DTERR_BAD_FORMAT; /* watch out for overflow, including infinities; reject NaN too */ if (isnan(val) || val < -1.0e15 || val > 1.0e15) return DTERR_FIELD_OVERFLOW; /* be very sure we truncate towards zero (cf dtrunc()) */ if (val >= 0) *ipart = (int64) floor(val); else *ipart = (int64) -floor(-val); *fpart = val - *ipart; /* Callers expect this to hold */ Assert(*fpart > -1.0 && *fpart < 1.0); return 0; } /* * Determine number of integral digits in a valid ISO 8601 number field * (we should ignore sign and any fraction part) */ static int ISO8601IntegerWidth(char *fieldstart) { /* We might have had a leading '-' */ if (*fieldstart == '-') fieldstart++; return strspn(fieldstart, "0123456789"); } /* DecodeISO8601Interval() * Decode an ISO 8601 time interval of the "format with designators" * (section 4.4.3.2) or "alternative format" (section 4.4.3.3) * Examples: P1D for 1 day * PT1H for 1 hour * P2Y6M7DT1H30M for 2 years, 6 months, 7 days 1 hour 30 min * P0002-06-07T01:30:00 the same value in alternative format * * Returns 0 if successful, DTERR code if bogus input detected. * Note: error code should be DTERR_BAD_FORMAT if input doesn't look like * ISO8601, otherwise this could cause unexpected error messages. * dtype and itm_in are output parameters. * * A couple exceptions from the spec: * - a week field ('W') may coexist with other units * - allows decimals in fields other than the least significant unit. */ int DecodeISO8601Interval(char *str, int *dtype, struct pg_itm_in *itm_in) { bool datepart = true; bool havefield = false; *dtype = DTK_DELTA; ClearPgItmIn(itm_in); if (strlen(str) < 2 || str[0] != 'P') return DTERR_BAD_FORMAT; str++; while (*str) { char *fieldstart; int64 val; double fval; char unit; int dterr; if (*str == 'T') /* T indicates the beginning of the time part */ { datepart = false; havefield = false; str++; continue; } fieldstart = str; dterr = ParseISO8601Number(str, &str, &val, &fval); if (dterr) return dterr; /* * Note: we could step off the end of the string here. Code below * *must* exit the loop if unit == '\0'. */ unit = *str++; if (datepart) { switch (unit) /* before T: Y M W D */ { case 'Y': if (!AdjustYears(val, 1, itm_in) || !AdjustFractYears(fval, 1, itm_in)) return DTERR_FIELD_OVERFLOW; break; case 'M': if (!AdjustMonths(val, itm_in) || !AdjustFractDays(fval, DAYS_PER_MONTH, itm_in)) return DTERR_FIELD_OVERFLOW; break; case 'W': if (!AdjustDays(val, 7, itm_in) || !AdjustFractDays(fval, 7, itm_in)) return DTERR_FIELD_OVERFLOW; break; case 'D': if (!AdjustDays(val, 1, itm_in) || !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in)) return DTERR_FIELD_OVERFLOW; break; case 'T': /* ISO 8601 4.4.3.3 Alternative Format / Basic */ case '\0': if (ISO8601IntegerWidth(fieldstart) == 8 && !havefield) { if (!AdjustYears(val / 10000, 1, itm_in) || !AdjustMonths((val / 100) % 100, itm_in) || !AdjustDays(val % 100, 1, itm_in) || !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in)) return DTERR_FIELD_OVERFLOW; if (unit == '\0') return 0; datepart = false; havefield = false; continue; } /* Else fall through to extended alternative format */ /* FALLTHROUGH */ case '-': /* ISO 8601 4.4.3.3 Alternative Format, * Extended */ if (havefield) return DTERR_BAD_FORMAT; if (!AdjustYears(val, 1, itm_in) || !AdjustFractYears(fval, 1, itm_in)) return DTERR_FIELD_OVERFLOW; if (unit == '\0') return 0; if (unit == 'T') { datepart = false; havefield = false; continue; } dterr = ParseISO8601Number(str, &str, &val, &fval); if (dterr) return dterr; if (!AdjustMonths(val, itm_in) || !AdjustFractDays(fval, DAYS_PER_MONTH, itm_in)) return DTERR_FIELD_OVERFLOW; if (*str == '\0') return 0; if (*str == 'T') { datepart = false; havefield = false; continue; } if (*str != '-') return DTERR_BAD_FORMAT; str++; dterr = ParseISO8601Number(str, &str, &val, &fval); if (dterr) return dterr; if (!AdjustDays(val, 1, itm_in) || !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in)) return DTERR_FIELD_OVERFLOW; if (*str == '\0') return 0; if (*str == 'T') { datepart = false; havefield = false; continue; } return DTERR_BAD_FORMAT; default: /* not a valid date unit suffix */ return DTERR_BAD_FORMAT; } } else { switch (unit) /* after T: H M S */ { case 'H': if (!AdjustMicroseconds(val, fval, USECS_PER_HOUR, itm_in)) return DTERR_FIELD_OVERFLOW; break; case 'M': if (!AdjustMicroseconds(val, fval, USECS_PER_MINUTE, itm_in)) return DTERR_FIELD_OVERFLOW; break; case 'S': if (!AdjustMicroseconds(val, fval, USECS_PER_SEC, itm_in)) return DTERR_FIELD_OVERFLOW; break; case '\0': /* ISO 8601 4.4.3.3 Alternative Format */ if (ISO8601IntegerWidth(fieldstart) == 6 && !havefield) { if (!AdjustMicroseconds(val / 10000, 0, USECS_PER_HOUR, itm_in) || !AdjustMicroseconds((val / 100) % 100, 0, USECS_PER_MINUTE, itm_in) || !AdjustMicroseconds(val % 100, 0, USECS_PER_SEC, itm_in) || !AdjustFractMicroseconds(fval, 1, itm_in)) return DTERR_FIELD_OVERFLOW; return 0; } /* Else fall through to extended alternative format */ /* FALLTHROUGH */ case ':': /* ISO 8601 4.4.3.3 Alternative Format, * Extended */ if (havefield) return DTERR_BAD_FORMAT; if (!AdjustMicroseconds(val, fval, USECS_PER_HOUR, itm_in)) return DTERR_FIELD_OVERFLOW; if (unit == '\0') return 0; dterr = ParseISO8601Number(str, &str, &val, &fval); if (dterr) return dterr; if (!AdjustMicroseconds(val, fval, USECS_PER_MINUTE, itm_in)) return DTERR_FIELD_OVERFLOW; if (*str == '\0') return 0; if (*str != ':') return DTERR_BAD_FORMAT; str++; dterr = ParseISO8601Number(str, &str, &val, &fval); if (dterr) return dterr; if (!AdjustMicroseconds(val, fval, USECS_PER_SEC, itm_in)) return DTERR_FIELD_OVERFLOW; if (*str == '\0') return 0; return DTERR_BAD_FORMAT; default: /* not a valid time unit suffix */ return DTERR_BAD_FORMAT; } } havefield = true; } return 0; } /* DecodeUnits() * Decode text string using lookup table. * * This routine recognizes keywords associated with time interval units. * * Given string must be lowercased already. * * Implement a cache lookup since it is likely that dates * will be related in format. */ int DecodeUnits(int field, char *lowtoken, int *val) { int type; const datetkn *tp; tp = deltacache[field]; /* use strncmp so that we match truncated tokens */ if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0) { tp = datebsearch(lowtoken, deltatktbl, szdeltatktbl); } if (tp == NULL) { type = UNKNOWN_FIELD; *val = 0; } else { deltacache[field] = tp; type = tp->type; *val = tp->value; } return type; } /* DecodeUnits() */ /* * Report an error detected by one of the datetime input processing routines. * * dterr is the error code, str is the original input string, datatype is * the name of the datatype we were trying to accept. * * Note: it might seem useless to distinguish DTERR_INTERVAL_OVERFLOW and * DTERR_TZDISP_OVERFLOW from DTERR_FIELD_OVERFLOW, but SQL99 mandates three * separate SQLSTATE codes, so ... */ void DateTimeParseError(int dterr, const char *str, const char *datatype) { switch (dterr) { case DTERR_FIELD_OVERFLOW: ereport(ERROR, (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW), errmsg("date/time field value out of range: \"%s\"", str))); break; case DTERR_MD_FIELD_OVERFLOW: /* same as above, but add hint about DateStyle */ ereport(ERROR, (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW), errmsg("date/time field value out of range: \"%s\"", str), errhint("Perhaps you need a different \"datestyle\" setting."))); break; case DTERR_INTERVAL_OVERFLOW: ereport(ERROR, (errcode(ERRCODE_INTERVAL_FIELD_OVERFLOW), errmsg("interval field value out of range: \"%s\"", str))); break; case DTERR_TZDISP_OVERFLOW: ereport(ERROR, (errcode(ERRCODE_INVALID_TIME_ZONE_DISPLACEMENT_VALUE), errmsg("time zone displacement out of range: \"%s\"", str))); break; case DTERR_BAD_FORMAT: default: ereport(ERROR, (errcode(ERRCODE_INVALID_DATETIME_FORMAT), errmsg("invalid input syntax for type %s: \"%s\"", datatype, str))); break; } } /* datebsearch() * Binary search -- from Knuth (6.2.1) Algorithm B. Special case like this * is WAY faster than the generic bsearch(). */ static const datetkn * datebsearch(const char *key, const datetkn *base, int nel) { if (nel > 0) { const datetkn *last = base + nel - 1, *position; int result; while (last >= base) { position = base + ((last - base) >> 1); /* precheck the first character for a bit of extra speed */ result = (int) key[0] - (int) position->token[0]; if (result == 0) { /* use strncmp so that we match truncated tokens */ result = strncmp(key, position->token, TOKMAXLEN); if (result == 0) return position; } if (result < 0) last = position - 1; else base = position + 1; } } return NULL; } /* EncodeTimezone() * Copies representation of a numeric timezone offset to str. * * Returns a pointer to the new end of string. No NUL terminator is put * there; callers are responsible for NUL terminating str themselves. */ static char * EncodeTimezone(char *str, int tz, int style) { int hour, min, sec; sec = abs(tz); min = sec / SECS_PER_MINUTE; sec -= min * SECS_PER_MINUTE; hour = min / MINS_PER_HOUR; min -= hour * MINS_PER_HOUR; /* TZ is negated compared to sign we wish to display ... */ *str++ = (tz <= 0 ? '+' : '-'); if (sec != 0) { str = pg_ultostr_zeropad(str, hour, 2); *str++ = ':'; str = pg_ultostr_zeropad(str, min, 2); *str++ = ':'; str = pg_ultostr_zeropad(str, sec, 2); } else if (min != 0 || style == USE_XSD_DATES) { str = pg_ultostr_zeropad(str, hour, 2); *str++ = ':'; str = pg_ultostr_zeropad(str, min, 2); } else str = pg_ultostr_zeropad(str, hour, 2); return str; } /* EncodeDateOnly() * Encode date as local time. */ void EncodeDateOnly(struct pg_tm *tm, int style, char *str) { Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR); switch (style) { case USE_ISO_DATES: case USE_XSD_DATES: /* compatible with ISO date formats */ str = pg_ultostr_zeropad(str, (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); *str++ = '-'; str = pg_ultostr_zeropad(str, tm->tm_mon, 2); *str++ = '-'; str = pg_ultostr_zeropad(str, tm->tm_mday, 2); break; case USE_SQL_DATES: /* compatible with Oracle/Ingres date formats */ if (DateOrder == DATEORDER_DMY) { str = pg_ultostr_zeropad(str, tm->tm_mday, 2); *str++ = '/'; str = pg_ultostr_zeropad(str, tm->tm_mon, 2); } else { str = pg_ultostr_zeropad(str, tm->tm_mon, 2); *str++ = '/'; str = pg_ultostr_zeropad(str, tm->tm_mday, 2); } *str++ = '/'; str = pg_ultostr_zeropad(str, (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); break; case USE_GERMAN_DATES: /* German-style date format */ str = pg_ultostr_zeropad(str, tm->tm_mday, 2); *str++ = '.'; str = pg_ultostr_zeropad(str, tm->tm_mon, 2); *str++ = '.'; str = pg_ultostr_zeropad(str, (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); break; case USE_POSTGRES_DATES: default: /* traditional date-only style for Postgres */ if (DateOrder == DATEORDER_DMY) { str = pg_ultostr_zeropad(str, tm->tm_mday, 2); *str++ = '-'; str = pg_ultostr_zeropad(str, tm->tm_mon, 2); } else { str = pg_ultostr_zeropad(str, tm->tm_mon, 2); *str++ = '-'; str = pg_ultostr_zeropad(str, tm->tm_mday, 2); } *str++ = '-'; str = pg_ultostr_zeropad(str, (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); break; } if (tm->tm_year <= 0) { memcpy(str, " BC", 3); /* Don't copy NUL */ str += 3; } *str = '\0'; } /* EncodeTimeOnly() * Encode time fields only. * * tm and fsec are the value to encode, print_tz determines whether to include * a time zone (the difference between time and timetz types), tz is the * numeric time zone offset, style is the date style, str is where to write the * output. */ void EncodeTimeOnly(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, int style, char *str) { str = pg_ultostr_zeropad(str, tm->tm_hour, 2); *str++ = ':'; str = pg_ultostr_zeropad(str, tm->tm_min, 2); *str++ = ':'; str = AppendSeconds(str, tm->tm_sec, fsec, MAX_TIME_PRECISION, true); if (print_tz) str = EncodeTimezone(str, tz, style); *str = '\0'; } /* EncodeDateTime() * Encode date and time interpreted as local time. * * tm and fsec are the value to encode, print_tz determines whether to include * a time zone (the difference between timestamp and timestamptz types), tz is * the numeric time zone offset, tzn is the textual time zone, which if * specified will be used instead of tz by some styles, style is the date * style, str is where to write the output. * * Supported date styles: * Postgres - day mon hh:mm:ss yyyy tz * SQL - mm/dd/yyyy hh:mm:ss.ss tz * ISO - yyyy-mm-dd hh:mm:ss+/-tz * German - dd.mm.yyyy hh:mm:ss tz * XSD - yyyy-mm-ddThh:mm:ss.ss+/-tz */ void EncodeDateTime(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, const char *tzn, int style, char *str) { int day; Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR); /* * Negative tm_isdst means we have no valid time zone translation. */ if (tm->tm_isdst < 0) print_tz = false; switch (style) { case USE_ISO_DATES: case USE_XSD_DATES: /* Compatible with ISO-8601 date formats */ str = pg_ultostr_zeropad(str, (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); *str++ = '-'; str = pg_ultostr_zeropad(str, tm->tm_mon, 2); *str++ = '-'; str = pg_ultostr_zeropad(str, tm->tm_mday, 2); *str++ = (style == USE_ISO_DATES) ? ' ' : 'T'; str = pg_ultostr_zeropad(str, tm->tm_hour, 2); *str++ = ':'; str = pg_ultostr_zeropad(str, tm->tm_min, 2); *str++ = ':'; str = AppendTimestampSeconds(str, tm, fsec); if (print_tz) str = EncodeTimezone(str, tz, style); break; case USE_SQL_DATES: /* Compatible with Oracle/Ingres date formats */ if (DateOrder == DATEORDER_DMY) { str = pg_ultostr_zeropad(str, tm->tm_mday, 2); *str++ = '/'; str = pg_ultostr_zeropad(str, tm->tm_mon, 2); } else { str = pg_ultostr_zeropad(str, tm->tm_mon, 2); *str++ = '/'; str = pg_ultostr_zeropad(str, tm->tm_mday, 2); } *str++ = '/'; str = pg_ultostr_zeropad(str, (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); *str++ = ' '; str = pg_ultostr_zeropad(str, tm->tm_hour, 2); *str++ = ':'; str = pg_ultostr_zeropad(str, tm->tm_min, 2); *str++ = ':'; str = AppendTimestampSeconds(str, tm, fsec); /* * Note: the uses of %.*s in this function would be risky if the * timezone names ever contain non-ASCII characters, since we are * not being careful to do encoding-aware clipping. However, all * TZ abbreviations in the IANA database are plain ASCII. */ if (print_tz) { if (tzn) { sprintf(str, " %.*s", MAXTZLEN, tzn); str += strlen(str); } else str = EncodeTimezone(str, tz, style); } break; case USE_GERMAN_DATES: /* German variant on European style */ str = pg_ultostr_zeropad(str, tm->tm_mday, 2); *str++ = '.'; str = pg_ultostr_zeropad(str, tm->tm_mon, 2); *str++ = '.'; str = pg_ultostr_zeropad(str, (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); *str++ = ' '; str = pg_ultostr_zeropad(str, tm->tm_hour, 2); *str++ = ':'; str = pg_ultostr_zeropad(str, tm->tm_min, 2); *str++ = ':'; str = AppendTimestampSeconds(str, tm, fsec); if (print_tz) { if (tzn) { sprintf(str, " %.*s", MAXTZLEN, tzn); str += strlen(str); } else str = EncodeTimezone(str, tz, style); } break; case USE_POSTGRES_DATES: default: /* Backward-compatible with traditional Postgres abstime dates */ day = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday); tm->tm_wday = j2day(day); memcpy(str, days[tm->tm_wday], 3); str += 3; *str++ = ' '; if (DateOrder == DATEORDER_DMY) { str = pg_ultostr_zeropad(str, tm->tm_mday, 2); *str++ = ' '; memcpy(str, months[tm->tm_mon - 1], 3); str += 3; } else { memcpy(str, months[tm->tm_mon - 1], 3); str += 3; *str++ = ' '; str = pg_ultostr_zeropad(str, tm->tm_mday, 2); } *str++ = ' '; str = pg_ultostr_zeropad(str, tm->tm_hour, 2); *str++ = ':'; str = pg_ultostr_zeropad(str, tm->tm_min, 2); *str++ = ':'; str = AppendTimestampSeconds(str, tm, fsec); *str++ = ' '; str = pg_ultostr_zeropad(str, (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); if (print_tz) { if (tzn) { sprintf(str, " %.*s", MAXTZLEN, tzn); str += strlen(str); } else { /* * We have a time zone, but no string version. Use the * numeric form, but be sure to include a leading space to * avoid formatting something which would be rejected by * the date/time parser later. - thomas 2001-10-19 */ *str++ = ' '; str = EncodeTimezone(str, tz, style); } } break; } if (tm->tm_year <= 0) { memcpy(str, " BC", 3); /* Don't copy NUL */ str += 3; } *str = '\0'; } /* * Helper functions to avoid duplicated code in EncodeInterval. */ /* Append an ISO-8601-style interval field, but only if value isn't zero */ static char * AddISO8601IntPart(char *cp, int64 value, char units) { if (value == 0) return cp; sprintf(cp, "%lld%c", (long long) value, units); return cp + strlen(cp); } /* Append a postgres-style interval field, but only if value isn't zero */ static char * AddPostgresIntPart(char *cp, int64 value, const char *units, bool *is_zero, bool *is_before) { if (value == 0) return cp; sprintf(cp, "%s%s%lld %s%s", (!*is_zero) ? " " : "", (*is_before && value > 0) ? "+" : "", (long long) value, units, (value != 1) ? "s" : ""); /* * Each nonzero field sets is_before for (only) the next one. This is a * tad bizarre but it's how it worked before... */ *is_before = (value < 0); *is_zero = false; return cp + strlen(cp); } /* Append a verbose-style interval field, but only if value isn't zero */ static char * AddVerboseIntPart(char *cp, int64 value, const char *units, bool *is_zero, bool *is_before) { if (value == 0) return cp; /* first nonzero value sets is_before */ if (*is_zero) { *is_before = (value < 0); value = Abs(value); } else if (*is_before) value = -value; sprintf(cp, " %lld %s%s", (long long) value, units, (value == 1) ? "" : "s"); *is_zero = false; return cp + strlen(cp); } /* EncodeInterval() * Interpret time structure as a delta time and convert to string. * * Support "traditional Postgres" and ISO-8601 styles. * Actually, afaik ISO does not address time interval formatting, * but this looks similar to the spec for absolute date/time. * - thomas 1998-04-30 * * Actually, afaik, ISO 8601 does specify formats for "time * intervals...[of the]...format with time-unit designators", which * are pretty ugly. The format looks something like * P1Y1M1DT1H1M1.12345S * but useful for exchanging data with computers instead of humans. * - ron 2003-07-14 * * And ISO's SQL 2008 standard specifies standards for * "year-month literal"s (that look like '2-3') and * "day-time literal"s (that look like ('4 5:6:7') */ void EncodeInterval(struct pg_itm *itm, int style, char *str) { char *cp = str; int year = itm->tm_year; int mon = itm->tm_mon; int64 mday = itm->tm_mday; /* tm_mday could be INT_MIN */ int64 hour = itm->tm_hour; int min = itm->tm_min; int sec = itm->tm_sec; int fsec = itm->tm_usec; bool is_before = false; bool is_zero = true; /* * The sign of year and month are guaranteed to match, since they are * stored internally as "month". But we'll need to check for is_before and * is_zero when determining the signs of day and hour/minute/seconds * fields. */ switch (style) { /* SQL Standard interval format */ case INTSTYLE_SQL_STANDARD: { bool has_negative = year < 0 || mon < 0 || mday < 0 || hour < 0 || min < 0 || sec < 0 || fsec < 0; bool has_positive = year > 0 || mon > 0 || mday > 0 || hour > 0 || min > 0 || sec > 0 || fsec > 0; bool has_year_month = year != 0 || mon != 0; bool has_day_time = mday != 0 || hour != 0 || min != 0 || sec != 0 || fsec != 0; bool has_day = mday != 0; bool sql_standard_value = !(has_negative && has_positive) && !(has_year_month && has_day_time); /* * SQL Standard wants only 1 "" preceding the whole * interval ... but can't do that if mixed signs. */ if (has_negative && sql_standard_value) { *cp++ = '-'; year = -year; mon = -mon; mday = -mday; hour = -hour; min = -min; sec = -sec; fsec = -fsec; } if (!has_negative && !has_positive) { sprintf(cp, "0"); } else if (!sql_standard_value) { /* * For non sql-standard interval values, force outputting * the signs to avoid ambiguities with intervals with * mixed sign components. */ char year_sign = (year < 0 || mon < 0) ? '-' : '+'; char day_sign = (mday < 0) ? '-' : '+'; char sec_sign = (hour < 0 || min < 0 || sec < 0 || fsec < 0) ? '-' : '+'; sprintf(cp, "%c%d-%d %c%lld %c%lld:%02d:", year_sign, abs(year), abs(mon), day_sign, (long long) Abs(mday), sec_sign, (long long) Abs(hour), abs(min)); cp += strlen(cp); cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true); *cp = '\0'; } else if (has_year_month) { sprintf(cp, "%d-%d", year, mon); } else if (has_day) { sprintf(cp, "%lld %lld:%02d:", (long long) mday, (long long) hour, min); cp += strlen(cp); cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true); *cp = '\0'; } else { sprintf(cp, "%lld:%02d:", (long long) hour, min); cp += strlen(cp); cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true); *cp = '\0'; } } break; /* ISO 8601 "time-intervals by duration only" */ case INTSTYLE_ISO_8601: /* special-case zero to avoid printing nothing */ if (year == 0 && mon == 0 && mday == 0 && hour == 0 && min == 0 && sec == 0 && fsec == 0) { sprintf(cp, "PT0S"); break; } *cp++ = 'P'; cp = AddISO8601IntPart(cp, year, 'Y'); cp = AddISO8601IntPart(cp, mon, 'M'); cp = AddISO8601IntPart(cp, mday, 'D'); if (hour != 0 || min != 0 || sec != 0 || fsec != 0) *cp++ = 'T'; cp = AddISO8601IntPart(cp, hour, 'H'); cp = AddISO8601IntPart(cp, min, 'M'); if (sec != 0 || fsec != 0) { if (sec < 0 || fsec < 0) *cp++ = '-'; cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false); *cp++ = 'S'; *cp++ = '\0'; } break; /* Compatible with postgresql < 8.4 when DateStyle = 'iso' */ case INTSTYLE_POSTGRES: cp = AddPostgresIntPart(cp, year, "year", &is_zero, &is_before); /* * Ideally we should spell out "month" like we do for "year" and * "day". However, for backward compatibility, we can't easily * fix this. bjm 2011-05-24 */ cp = AddPostgresIntPart(cp, mon, "mon", &is_zero, &is_before); cp = AddPostgresIntPart(cp, mday, "day", &is_zero, &is_before); if (is_zero || hour != 0 || min != 0 || sec != 0 || fsec != 0) { bool minus = (hour < 0 || min < 0 || sec < 0 || fsec < 0); sprintf(cp, "%s%s%02lld:%02d:", is_zero ? "" : " ", (minus ? "-" : (is_before ? "+" : "")), (long long) Abs(hour), abs(min)); cp += strlen(cp); cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true); *cp = '\0'; } break; /* Compatible with postgresql < 8.4 when DateStyle != 'iso' */ case INTSTYLE_POSTGRES_VERBOSE: default: strcpy(cp, "@"); cp++; cp = AddVerboseIntPart(cp, year, "year", &is_zero, &is_before); cp = AddVerboseIntPart(cp, mon, "mon", &is_zero, &is_before); cp = AddVerboseIntPart(cp, mday, "day", &is_zero, &is_before); cp = AddVerboseIntPart(cp, hour, "hour", &is_zero, &is_before); cp = AddVerboseIntPart(cp, min, "min", &is_zero, &is_before); if (sec != 0 || fsec != 0) { *cp++ = ' '; if (sec < 0 || (sec == 0 && fsec < 0)) { if (is_zero) is_before = true; else if (!is_before) *cp++ = '-'; } else if (is_before) *cp++ = '-'; cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false); /* We output "ago", not negatives, so use abs(). */ sprintf(cp, " sec%s", (abs(sec) != 1 || fsec != 0) ? "s" : ""); is_zero = false; } /* identically zero? then put in a unitless zero... */ if (is_zero) strcat(cp, " 0"); if (is_before) strcat(cp, " ago"); break; } } /* * We've been burnt by stupid errors in the ordering of the datetkn tables * once too often. Arrange to check them during postmaster start. */ static bool CheckDateTokenTable(const char *tablename, const datetkn *base, int nel) { bool ok = true; int i; for (i = 0; i < nel; i++) { /* check for token strings that don't fit */ if (strlen(base[i].token) > TOKMAXLEN) { /* %.*s is safe since all our tokens are ASCII */ elog(LOG, "token too long in %s table: \"%.*s\"", tablename, TOKMAXLEN + 1, base[i].token); ok = false; break; /* don't risk applying strcmp */ } /* check for out of order */ if (i > 0 && strcmp(base[i - 1].token, base[i].token) >= 0) { elog(LOG, "ordering error in %s table: \"%s\" >= \"%s\"", tablename, base[i - 1].token, base[i].token); ok = false; } } return ok; } bool CheckDateTokenTables(void) { bool ok = true; Assert(UNIX_EPOCH_JDATE == date2j(1970, 1, 1)); Assert(POSTGRES_EPOCH_JDATE == date2j(2000, 1, 1)); ok &= CheckDateTokenTable("datetktbl", datetktbl, szdatetktbl); ok &= CheckDateTokenTable("deltatktbl", deltatktbl, szdeltatktbl); return ok; } /* * Common code for temporal prosupport functions: simplify, if possible, * a call to a temporal type's length-coercion function. * * Types time, timetz, timestamp and timestamptz each have a range of allowed * precisions. An unspecified precision is rigorously equivalent to the * highest specifiable precision. We can replace the function call with a * no-op RelabelType if it is coercing to the same or higher precision as the * input is known to have. * * The input Node is always a FuncExpr, but to reduce the #include footprint * of datetime.h, we declare it as Node *. * * Note: timestamp_scale throws an error when the typmod is out of range, but * we can't get there from a cast: our typmodin will have caught it already. */ Node * TemporalSimplify(int32 max_precis, Node *node) { FuncExpr *expr = castNode(FuncExpr, node); Node *ret = NULL; Node *typmod; Assert(list_length(expr->args) >= 2); typmod = (Node *) lsecond(expr->args); if (IsA(typmod, Const) && !((Const *) typmod)->constisnull) { Node *source = (Node *) linitial(expr->args); int32 old_precis = exprTypmod(source); int32 new_precis = DatumGetInt32(((Const *) typmod)->constvalue); if (new_precis < 0 || new_precis == max_precis || (old_precis >= 0 && new_precis >= old_precis)) ret = relabel_to_typmod(source, new_precis); } return ret; } /* * This function gets called during timezone config file load or reload * to create the final array of timezone tokens. The argument array * is already sorted in name order. * * The result is a TimeZoneAbbrevTable (which must be a single malloc'd chunk) * or NULL on malloc failure. No other error conditions are defined. */ TimeZoneAbbrevTable * ConvertTimeZoneAbbrevs(struct tzEntry *abbrevs, int n) { TimeZoneAbbrevTable *tbl; Size tbl_size; int i; /* Space for fixed fields and datetkn array */ tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) + n * sizeof(datetkn); tbl_size = MAXALIGN(tbl_size); /* Count up space for dynamic abbreviations */ for (i = 0; i < n; i++) { struct tzEntry *abbr = abbrevs + i; if (abbr->zone != NULL) { Size dsize; dsize = offsetof(DynamicZoneAbbrev, zone) + strlen(abbr->zone) + 1; tbl_size += MAXALIGN(dsize); } } /* Alloc the result ... */ tbl = malloc(tbl_size); if (!tbl) return NULL; /* ... and fill it in */ tbl->tblsize = tbl_size; tbl->numabbrevs = n; /* in this loop, tbl_size reprises the space calculation above */ tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) + n * sizeof(datetkn); tbl_size = MAXALIGN(tbl_size); for (i = 0; i < n; i++) { struct tzEntry *abbr = abbrevs + i; datetkn *dtoken = tbl->abbrevs + i; /* use strlcpy to truncate name if necessary */ strlcpy(dtoken->token, abbr->abbrev, TOKMAXLEN + 1); if (abbr->zone != NULL) { /* Allocate a DynamicZoneAbbrev for this abbreviation */ DynamicZoneAbbrev *dtza; Size dsize; dtza = (DynamicZoneAbbrev *) ((char *) tbl + tbl_size); dtza->tz = NULL; strcpy(dtza->zone, abbr->zone); dtoken->type = DYNTZ; /* value is offset from table start to DynamicZoneAbbrev */ dtoken->value = (int32) tbl_size; dsize = offsetof(DynamicZoneAbbrev, zone) + strlen(abbr->zone) + 1; tbl_size += MAXALIGN(dsize); } else { dtoken->type = abbr->is_dst ? DTZ : TZ; dtoken->value = abbr->offset; } } /* Assert the two loops above agreed on size calculations */ Assert(tbl->tblsize == tbl_size); /* Check the ordering, if testing */ Assert(CheckDateTokenTable("timezone abbreviations", tbl->abbrevs, n)); return tbl; } /* * Install a TimeZoneAbbrevTable as the active table. * * Caller is responsible that the passed table doesn't go away while in use. */ void InstallTimeZoneAbbrevs(TimeZoneAbbrevTable *tbl) { zoneabbrevtbl = tbl; /* reset abbrevcache, which may contain pointers into old table */ memset(abbrevcache, 0, sizeof(abbrevcache)); } /* * Helper subroutine to locate pg_tz timezone for a dynamic abbreviation. */ static pg_tz * FetchDynamicTimeZone(TimeZoneAbbrevTable *tbl, const datetkn *tp) { DynamicZoneAbbrev *dtza; /* Just some sanity checks to prevent indexing off into nowhere */ Assert(tp->type == DYNTZ); Assert(tp->value > 0 && tp->value < tbl->tblsize); dtza = (DynamicZoneAbbrev *) ((char *) tbl + tp->value); /* Look up the underlying zone if we haven't already */ if (dtza->tz == NULL) { dtza->tz = pg_tzset(dtza->zone); /* * Ideally we'd let the caller ereport instead of doing it here, but * then there is no way to report the bad time zone name. */ if (dtza->tz == NULL) ereport(ERROR, (errcode(ERRCODE_CONFIG_FILE_ERROR), errmsg("time zone \"%s\" not recognized", dtza->zone), errdetail("This time zone name appears in the configuration file for time zone abbreviation \"%s\".", tp->token))); } return dtza->tz; } /* * This set-returning function reads all the available time zone abbreviations * and returns a set of (abbrev, utc_offset, is_dst). */ Datum pg_timezone_abbrevs(PG_FUNCTION_ARGS) { FuncCallContext *funcctx; int *pindex; Datum result; HeapTuple tuple; Datum values[3]; bool nulls[3]; const datetkn *tp; char buffer[TOKMAXLEN + 1]; int gmtoffset; bool is_dst; unsigned char *p; struct pg_itm_in itm_in; Interval *resInterval; /* stuff done only on the first call of the function */ if (SRF_IS_FIRSTCALL()) { TupleDesc tupdesc; MemoryContext oldcontext; /* create a function context for cross-call persistence */ funcctx = SRF_FIRSTCALL_INIT(); /* * switch to memory context appropriate for multiple function calls */ oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); /* allocate memory for user context */ pindex = (int *) palloc(sizeof(int)); *pindex = 0; funcctx->user_fctx = (void *) pindex; /* * build tupdesc for result tuples. This must match this function's * pg_proc entry! */ tupdesc = CreateTemplateTupleDesc(3); TupleDescInitEntry(tupdesc, (AttrNumber) 1, "abbrev", TEXTOID, -1, 0); TupleDescInitEntry(tupdesc, (AttrNumber) 2, "utc_offset", INTERVALOID, -1, 0); TupleDescInitEntry(tupdesc, (AttrNumber) 3, "is_dst", BOOLOID, -1, 0); funcctx->tuple_desc = BlessTupleDesc(tupdesc); MemoryContextSwitchTo(oldcontext); } /* stuff done on every call of the function */ funcctx = SRF_PERCALL_SETUP(); pindex = (int *) funcctx->user_fctx; if (zoneabbrevtbl == NULL || *pindex >= zoneabbrevtbl->numabbrevs) SRF_RETURN_DONE(funcctx); tp = zoneabbrevtbl->abbrevs + *pindex; switch (tp->type) { case TZ: gmtoffset = tp->value; is_dst = false; break; case DTZ: gmtoffset = tp->value; is_dst = true; break; case DYNTZ: { /* Determine the current meaning of the abbrev */ pg_tz *tzp; TimestampTz now; int isdst; tzp = FetchDynamicTimeZone(zoneabbrevtbl, tp); now = GetCurrentTransactionStartTimestamp(); gmtoffset = -DetermineTimeZoneAbbrevOffsetTS(now, tp->token, tzp, &isdst); is_dst = (bool) isdst; break; } default: elog(ERROR, "unrecognized timezone type %d", (int) tp->type); gmtoffset = 0; /* keep compiler quiet */ is_dst = false; break; } MemSet(nulls, 0, sizeof(nulls)); /* * Convert name to text, using upcasing conversion that is the inverse of * what ParseDateTime() uses. */ strlcpy(buffer, tp->token, sizeof(buffer)); for (p = (unsigned char *) buffer; *p; p++) *p = pg_toupper(*p); values[0] = CStringGetTextDatum(buffer); /* Convert offset (in seconds) to an interval; can't overflow */ MemSet(&itm_in, 0, sizeof(struct pg_itm_in)); itm_in.tm_usec = (int64) gmtoffset * USECS_PER_SEC; resInterval = (Interval *) palloc(sizeof(Interval)); (void) itmin2interval(&itm_in, resInterval); values[1] = IntervalPGetDatum(resInterval); values[2] = BoolGetDatum(is_dst); (*pindex)++; tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls); result = HeapTupleGetDatum(tuple); SRF_RETURN_NEXT(funcctx, result); } /* * This set-returning function reads all the available full time zones * and returns a set of (name, abbrev, utc_offset, is_dst). */ Datum pg_timezone_names(PG_FUNCTION_ARGS) { ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo; pg_tzenum *tzenum; pg_tz *tz; Datum values[4]; bool nulls[4]; int tzoff; struct pg_tm tm; fsec_t fsec; const char *tzn; Interval *resInterval; struct pg_itm_in itm_in; InitMaterializedSRF(fcinfo, 0); /* initialize timezone scanning code */ tzenum = pg_tzenumerate_start(); /* search for another zone to display */ for (;;) { tz = pg_tzenumerate_next(tzenum); if (!tz) break; /* Convert now() to local time in this zone */ if (timestamp2tm(GetCurrentTransactionStartTimestamp(), &tzoff, &tm, &fsec, &tzn, tz) != 0) continue; /* ignore if conversion fails */ /* * IANA's rather silly "Factory" time zone used to emit ridiculously * long "abbreviations" such as "Local time zone must be set--see zic * manual page" or "Local time zone must be set--use tzsetup". While * modern versions of tzdb emit the much saner "-00", it seems some * benighted packagers are hacking the IANA data so that it continues * to produce these strings. To prevent producing a weirdly wide * abbrev column, reject ridiculously long abbreviations. */ if (tzn && strlen(tzn) > 31) continue; MemSet(nulls, 0, sizeof(nulls)); values[0] = CStringGetTextDatum(pg_get_timezone_name(tz)); values[1] = CStringGetTextDatum(tzn ? tzn : ""); /* Convert tzoff to an interval; can't overflow */ MemSet(&itm_in, 0, sizeof(struct pg_itm_in)); itm_in.tm_usec = (int64) -tzoff * USECS_PER_SEC; resInterval = (Interval *) palloc(sizeof(Interval)); (void) itmin2interval(&itm_in, resInterval); values[2] = IntervalPGetDatum(resInterval); values[3] = BoolGetDatum(tm.tm_isdst > 0); tuplestore_putvalues(rsinfo->setResult, rsinfo->setDesc, values, nulls); } pg_tzenumerate_end(tzenum); return (Datum) 0; }