/*------------------------------------------------------------------------- * * FILE * fe-misc.c * * DESCRIPTION * miscellaneous useful functions * * The communication routines here are analogous to the ones in * backend/libpq/pqcomm.c and backend/libpq/pqformat.c, but operate * in the considerably different environment of the frontend libpq. * In particular, we work with a bare nonblock-mode socket, rather than * a stdio stream, so that we can avoid unwanted blocking of the application. * * XXX: MOVE DEBUG PRINTOUT TO HIGHER LEVEL. As is, block and restart * will cause repeat printouts. * * We must speak the same transmitted data representations as the backend * routines. * * * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * IDENTIFICATION * src/interfaces/libpq/fe-misc.c * *------------------------------------------------------------------------- */ #include "postgres_fe.h" #include #include #ifdef WIN32 #include "win32.h" #else #include #include #endif #ifdef HAVE_POLL_H #include #endif #ifdef HAVE_SYS_SELECT_H #include #endif #include "libpq-fe.h" #include "libpq-int.h" #include "mb/pg_wchar.h" #include "pg_config_paths.h" #include "port/pg_bswap.h" static int pqPutMsgBytes(const void *buf, size_t len, PGconn *conn); static int pqSendSome(PGconn *conn, int len); static int pqSocketCheck(PGconn *conn, int forRead, int forWrite, time_t end_time); static int pqSocketPoll(int sock, int forRead, int forWrite, time_t end_time); /* * PQlibVersion: return the libpq version number */ int PQlibVersion(void) { return PG_VERSION_NUM; } /* * pqGetc: get 1 character from the connection * * All these routines return 0 on success, EOF on error. * Note that for the Get routines, EOF only means there is not enough * data in the buffer, not that there is necessarily a hard error. */ int pqGetc(char *result, PGconn *conn) { if (conn->inCursor >= conn->inEnd) return EOF; *result = conn->inBuffer[conn->inCursor++]; return 0; } /* * pqPutc: write 1 char to the current message */ int pqPutc(char c, PGconn *conn) { if (pqPutMsgBytes(&c, 1, conn)) return EOF; return 0; } /* * pqGets[_append]: * get a null-terminated string from the connection, * and store it in an expansible PQExpBuffer. * If we run out of memory, all of the string is still read, * but the excess characters are silently discarded. */ static int pqGets_internal(PQExpBuffer buf, PGconn *conn, bool resetbuffer) { /* Copy conn data to locals for faster search loop */ char *inBuffer = conn->inBuffer; int inCursor = conn->inCursor; int inEnd = conn->inEnd; int slen; while (inCursor < inEnd && inBuffer[inCursor]) inCursor++; if (inCursor >= inEnd) return EOF; slen = inCursor - conn->inCursor; if (resetbuffer) resetPQExpBuffer(buf); appendBinaryPQExpBuffer(buf, inBuffer + conn->inCursor, slen); conn->inCursor = ++inCursor; return 0; } int pqGets(PQExpBuffer buf, PGconn *conn) { return pqGets_internal(buf, conn, true); } int pqGets_append(PQExpBuffer buf, PGconn *conn) { return pqGets_internal(buf, conn, false); } /* * pqPuts: write a null-terminated string to the current message */ int pqPuts(const char *s, PGconn *conn) { if (pqPutMsgBytes(s, strlen(s) + 1, conn)) return EOF; return 0; } /* * pqGetnchar: * get a string of exactly len bytes in buffer s, no null termination */ int pqGetnchar(char *s, size_t len, PGconn *conn) { if (len > (size_t) (conn->inEnd - conn->inCursor)) return EOF; memcpy(s, conn->inBuffer + conn->inCursor, len); /* no terminating null */ conn->inCursor += len; return 0; } /* * pqSkipnchar: * skip over len bytes in input buffer. * * Note: this is primarily useful for its debug output, which should * be exactly the same as for pqGetnchar. We assume the data in question * will actually be used, but just isn't getting copied anywhere as yet. */ int pqSkipnchar(size_t len, PGconn *conn) { if (len > (size_t) (conn->inEnd - conn->inCursor)) return EOF; conn->inCursor += len; return 0; } /* * pqPutnchar: * write exactly len bytes to the current message */ int pqPutnchar(const char *s, size_t len, PGconn *conn) { if (pqPutMsgBytes(s, len, conn)) return EOF; return 0; } /* * pqGetInt * read a 2 or 4 byte integer and convert from network byte order * to local byte order */ int pqGetInt(int *result, size_t bytes, PGconn *conn) { uint16 tmp2; uint32 tmp4; switch (bytes) { case 2: if (conn->inCursor + 2 > conn->inEnd) return EOF; memcpy(&tmp2, conn->inBuffer + conn->inCursor, 2); conn->inCursor += 2; *result = (int) pg_ntoh16(tmp2); break; case 4: if (conn->inCursor + 4 > conn->inEnd) return EOF; memcpy(&tmp4, conn->inBuffer + conn->inCursor, 4); conn->inCursor += 4; *result = (int) pg_ntoh32(tmp4); break; default: pqInternalNotice(&conn->noticeHooks, "integer of size %lu not supported by pqGetInt", (unsigned long) bytes); return EOF; } return 0; } /* * pqPutInt * write an integer of 2 or 4 bytes, converting from host byte order * to network byte order. */ int pqPutInt(int value, size_t bytes, PGconn *conn) { uint16 tmp2; uint32 tmp4; switch (bytes) { case 2: tmp2 = pg_hton16((uint16) value); if (pqPutMsgBytes((const char *) &tmp2, 2, conn)) return EOF; break; case 4: tmp4 = pg_hton32((uint32) value); if (pqPutMsgBytes((const char *) &tmp4, 4, conn)) return EOF; break; default: pqInternalNotice(&conn->noticeHooks, "integer of size %lu not supported by pqPutInt", (unsigned long) bytes); return EOF; } return 0; } /* * Make sure conn's output buffer can hold bytes_needed bytes (caller must * include already-stored data into the value!) * * Returns 0 on success, EOF if failed to enlarge buffer */ int pqCheckOutBufferSpace(size_t bytes_needed, PGconn *conn) { int newsize = conn->outBufSize; char *newbuf; /* Quick exit if we have enough space */ if (bytes_needed <= (size_t) newsize) return 0; /* * If we need to enlarge the buffer, we first try to double it in size; if * that doesn't work, enlarge in multiples of 8K. This avoids thrashing * the malloc pool by repeated small enlargements. * * Note: tests for newsize > 0 are to catch integer overflow. */ do { newsize *= 2; } while (newsize > 0 && bytes_needed > (size_t) newsize); if (newsize > 0 && bytes_needed <= (size_t) newsize) { newbuf = realloc(conn->outBuffer, newsize); if (newbuf) { /* realloc succeeded */ conn->outBuffer = newbuf; conn->outBufSize = newsize; return 0; } } newsize = conn->outBufSize; do { newsize += 8192; } while (newsize > 0 && bytes_needed > (size_t) newsize); if (newsize > 0 && bytes_needed <= (size_t) newsize) { newbuf = realloc(conn->outBuffer, newsize); if (newbuf) { /* realloc succeeded */ conn->outBuffer = newbuf; conn->outBufSize = newsize; return 0; } } /* realloc failed. Probably out of memory */ appendPQExpBufferStr(&conn->errorMessage, "cannot allocate memory for output buffer\n"); return EOF; } /* * Make sure conn's input buffer can hold bytes_needed bytes (caller must * include already-stored data into the value!) * * Returns 0 on success, EOF if failed to enlarge buffer */ int pqCheckInBufferSpace(size_t bytes_needed, PGconn *conn) { int newsize = conn->inBufSize; char *newbuf; /* Quick exit if we have enough space */ if (bytes_needed <= (size_t) newsize) return 0; /* * Before concluding that we need to enlarge the buffer, left-justify * whatever is in it and recheck. The caller's value of bytes_needed * includes any data to the left of inStart, but we can delete that in * preference to enlarging the buffer. It's slightly ugly to have this * function do this, but it's better than making callers worry about it. */ bytes_needed -= conn->inStart; if (conn->inStart < conn->inEnd) { if (conn->inStart > 0) { memmove(conn->inBuffer, conn->inBuffer + conn->inStart, conn->inEnd - conn->inStart); conn->inEnd -= conn->inStart; conn->inCursor -= conn->inStart; conn->inStart = 0; } } else { /* buffer is logically empty, reset it */ conn->inStart = conn->inCursor = conn->inEnd = 0; } /* Recheck whether we have enough space */ if (bytes_needed <= (size_t) newsize) return 0; /* * If we need to enlarge the buffer, we first try to double it in size; if * that doesn't work, enlarge in multiples of 8K. This avoids thrashing * the malloc pool by repeated small enlargements. * * Note: tests for newsize > 0 are to catch integer overflow. */ do { newsize *= 2; } while (newsize > 0 && bytes_needed > (size_t) newsize); if (newsize > 0 && bytes_needed <= (size_t) newsize) { newbuf = realloc(conn->inBuffer, newsize); if (newbuf) { /* realloc succeeded */ conn->inBuffer = newbuf; conn->inBufSize = newsize; return 0; } } newsize = conn->inBufSize; do { newsize += 8192; } while (newsize > 0 && bytes_needed > (size_t) newsize); if (newsize > 0 && bytes_needed <= (size_t) newsize) { newbuf = realloc(conn->inBuffer, newsize); if (newbuf) { /* realloc succeeded */ conn->inBuffer = newbuf; conn->inBufSize = newsize; return 0; } } /* realloc failed. Probably out of memory */ appendPQExpBufferStr(&conn->errorMessage, "cannot allocate memory for input buffer\n"); return EOF; } /* * pqPutMsgStart: begin construction of a message to the server * * msg_type is the message type byte, or 0 for a message without type byte * (only startup messages have no type byte) * * Returns 0 on success, EOF on error * * The idea here is that we construct the message in conn->outBuffer, * beginning just past any data already in outBuffer (ie, at * outBuffer+outCount). We enlarge the buffer as needed to hold the message. * When the message is complete, we fill in the length word (if needed) and * then advance outCount past the message, making it eligible to send. * * The state variable conn->outMsgStart points to the incomplete message's * length word: it is either outCount or outCount+1 depending on whether * there is a type byte. The state variable conn->outMsgEnd is the end of * the data collected so far. */ int pqPutMsgStart(char msg_type, PGconn *conn) { int lenPos; int endPos; /* allow room for message type byte */ if (msg_type) endPos = conn->outCount + 1; else endPos = conn->outCount; /* do we want a length word? */ lenPos = endPos; /* allow room for message length */ endPos += 4; /* make sure there is room for message header */ if (pqCheckOutBufferSpace(endPos, conn)) return EOF; /* okay, save the message type byte if any */ if (msg_type) conn->outBuffer[conn->outCount] = msg_type; /* set up the message pointers */ conn->outMsgStart = lenPos; conn->outMsgEnd = endPos; /* length word, if needed, will be filled in by pqPutMsgEnd */ return 0; } /* * pqPutMsgBytes: add bytes to a partially-constructed message * * Returns 0 on success, EOF on error */ static int pqPutMsgBytes(const void *buf, size_t len, PGconn *conn) { /* make sure there is room for it */ if (pqCheckOutBufferSpace(conn->outMsgEnd + len, conn)) return EOF; /* okay, save the data */ memcpy(conn->outBuffer + conn->outMsgEnd, buf, len); conn->outMsgEnd += len; /* no Pfdebug call here, caller should do it */ return 0; } /* * pqPutMsgEnd: finish constructing a message and possibly send it * * Returns 0 on success, EOF on error * * We don't actually send anything here unless we've accumulated at least * 8K worth of data (the typical size of a pipe buffer on Unix systems). * This avoids sending small partial packets. The caller must use pqFlush * when it's important to flush all the data out to the server. */ int pqPutMsgEnd(PGconn *conn) { /* Fill in length word if needed */ if (conn->outMsgStart >= 0) { uint32 msgLen = conn->outMsgEnd - conn->outMsgStart; msgLen = pg_hton32(msgLen); memcpy(conn->outBuffer + conn->outMsgStart, &msgLen, 4); } /* trace client-to-server message */ if (conn->Pfdebug) { if (conn->outCount < conn->outMsgStart) pqTraceOutputMessage(conn, conn->outBuffer + conn->outCount, true); else pqTraceOutputNoTypeByteMessage(conn, conn->outBuffer + conn->outMsgStart); } /* Make message eligible to send */ conn->outCount = conn->outMsgEnd; if (conn->outCount >= 8192) { int toSend = conn->outCount - (conn->outCount % 8192); if (pqSendSome(conn, toSend) < 0) return EOF; /* in nonblock mode, don't complain if unable to send it all */ } return 0; } /* ---------- * pqReadData: read more data, if any is available * Possible return values: * 1: successfully loaded at least one more byte * 0: no data is presently available, but no error detected * -1: error detected (including EOF = connection closure); * conn->errorMessage set * NOTE: callers must not assume that pointers or indexes into conn->inBuffer * remain valid across this call! * ---------- */ int pqReadData(PGconn *conn) { int someread = 0; int nread; if (conn->sock == PGINVALID_SOCKET) { appendPQExpBufferStr(&conn->errorMessage, libpq_gettext("connection not open\n")); return -1; } /* Left-justify any data in the buffer to make room */ if (conn->inStart < conn->inEnd) { if (conn->inStart > 0) { memmove(conn->inBuffer, conn->inBuffer + conn->inStart, conn->inEnd - conn->inStart); conn->inEnd -= conn->inStart; conn->inCursor -= conn->inStart; conn->inStart = 0; } } else { /* buffer is logically empty, reset it */ conn->inStart = conn->inCursor = conn->inEnd = 0; } /* * If the buffer is fairly full, enlarge it. We need to be able to enlarge * the buffer in case a single message exceeds the initial buffer size. We * enlarge before filling the buffer entirely so as to avoid asking the * kernel for a partial packet. The magic constant here should be large * enough for a TCP packet or Unix pipe bufferload. 8K is the usual pipe * buffer size, so... */ if (conn->inBufSize - conn->inEnd < 8192) { if (pqCheckInBufferSpace(conn->inEnd + (size_t) 8192, conn)) { /* * We don't insist that the enlarge worked, but we need some room */ if (conn->inBufSize - conn->inEnd < 100) return -1; /* errorMessage already set */ } } /* OK, try to read some data */ retry3: nread = pqsecure_read(conn, conn->inBuffer + conn->inEnd, conn->inBufSize - conn->inEnd); if (nread < 0) { switch (SOCK_ERRNO) { case EINTR: goto retry3; /* Some systems return EAGAIN/EWOULDBLOCK for no data */ #ifdef EAGAIN case EAGAIN: return someread; #endif #if defined(EWOULDBLOCK) && (!defined(EAGAIN) || (EWOULDBLOCK != EAGAIN)) case EWOULDBLOCK: return someread; #endif /* We might get ECONNRESET etc here if connection failed */ case ALL_CONNECTION_FAILURE_ERRNOS: goto definitelyFailed; default: /* pqsecure_read set the error message for us */ return -1; } } if (nread > 0) { conn->inEnd += nread; /* * Hack to deal with the fact that some kernels will only give us back * 1 packet per recv() call, even if we asked for more and there is * more available. If it looks like we are reading a long message, * loop back to recv() again immediately, until we run out of data or * buffer space. Without this, the block-and-restart behavior of * libpq's higher levels leads to O(N^2) performance on long messages. * * Since we left-justified the data above, conn->inEnd gives the * amount of data already read in the current message. We consider * the message "long" once we have acquired 32k ... */ if (conn->inEnd > 32768 && (conn->inBufSize - conn->inEnd) >= 8192) { someread = 1; goto retry3; } return 1; } if (someread) return 1; /* got a zero read after successful tries */ /* * A return value of 0 could mean just that no data is now available, or * it could mean EOF --- that is, the server has closed the connection. * Since we have the socket in nonblock mode, the only way to tell the * difference is to see if select() is saying that the file is ready. * Grumble. Fortunately, we don't expect this path to be taken much, * since in normal practice we should not be trying to read data unless * the file selected for reading already. * * In SSL mode it's even worse: SSL_read() could say WANT_READ and then * data could arrive before we make the pqReadReady() test, but the second * SSL_read() could still say WANT_READ because the data received was not * a complete SSL record. So we must play dumb and assume there is more * data, relying on the SSL layer to detect true EOF. */ #ifdef USE_SSL if (conn->ssl_in_use) return 0; #endif switch (pqReadReady(conn)) { case 0: /* definitely no data available */ return 0; case 1: /* ready for read */ break; default: /* we override pqReadReady's message with something more useful */ goto definitelyEOF; } /* * Still not sure that it's EOF, because some data could have just * arrived. */ retry4: nread = pqsecure_read(conn, conn->inBuffer + conn->inEnd, conn->inBufSize - conn->inEnd); if (nread < 0) { switch (SOCK_ERRNO) { case EINTR: goto retry4; /* Some systems return EAGAIN/EWOULDBLOCK for no data */ #ifdef EAGAIN case EAGAIN: return 0; #endif #if defined(EWOULDBLOCK) && (!defined(EAGAIN) || (EWOULDBLOCK != EAGAIN)) case EWOULDBLOCK: return 0; #endif /* We might get ECONNRESET etc here if connection failed */ case ALL_CONNECTION_FAILURE_ERRNOS: goto definitelyFailed; default: /* pqsecure_read set the error message for us */ return -1; } } if (nread > 0) { conn->inEnd += nread; return 1; } /* * OK, we are getting a zero read even though select() says ready. This * means the connection has been closed. Cope. */ definitelyEOF: appendPQExpBufferStr(&conn->errorMessage, libpq_gettext("server closed the connection unexpectedly\n" "\tThis probably means the server terminated abnormally\n" "\tbefore or while processing the request.\n")); /* Come here if lower-level code already set a suitable errorMessage */ definitelyFailed: /* Do *not* drop any already-read data; caller still wants it */ pqDropConnection(conn, false); conn->status = CONNECTION_BAD; /* No more connection to backend */ return -1; } /* * pqSendSome: send data waiting in the output buffer. * * len is how much to try to send (typically equal to outCount, but may * be less). * * Return 0 on success, -1 on failure and 1 when not all data could be sent * because the socket would block and the connection is non-blocking. * * Note that this is also responsible for consuming data from the socket * (putting it in conn->inBuffer) in any situation where we can't send * all the specified data immediately. * * If a socket-level write failure occurs, conn->write_failed is set and the * error message is saved in conn->write_err_msg, but we clear the output * buffer and return zero anyway; this is because callers should soldier on * until we have read what we can from the server and checked for an error * message. write_err_msg should be reported only when we are unable to * obtain a server error first. Much of that behavior is implemented at * lower levels, but this function deals with some edge cases. */ static int pqSendSome(PGconn *conn, int len) { char *ptr = conn->outBuffer; int remaining = conn->outCount; int result = 0; /* * If we already had a write failure, we will never again try to send data * on that connection. Even if the kernel would let us, we've probably * lost message boundary sync with the server. conn->write_failed * therefore persists until the connection is reset, and we just discard * all data presented to be written. However, as long as we still have a * valid socket, we should continue to absorb data from the backend, so * that we can collect any final error messages. */ if (conn->write_failed) { /* conn->write_err_msg should be set up already */ conn->outCount = 0; /* Absorb input data if any, and detect socket closure */ if (conn->sock != PGINVALID_SOCKET) { if (pqReadData(conn) < 0) return -1; } return 0; } if (conn->sock == PGINVALID_SOCKET) { conn->write_failed = true; /* Store error message in conn->write_err_msg, if possible */ /* (strdup failure is OK, we'll cope later) */ conn->write_err_msg = strdup(libpq_gettext("connection not open\n")); /* Discard queued data; no chance it'll ever be sent */ conn->outCount = 0; return 0; } /* while there's still data to send */ while (len > 0) { int sent; #ifndef WIN32 sent = pqsecure_write(conn, ptr, len); #else /* * Windows can fail on large sends, per KB article Q201213. The * failure-point appears to be different in different versions of * Windows, but 64k should always be safe. */ sent = pqsecure_write(conn, ptr, Min(len, 65536)); #endif if (sent < 0) { /* Anything except EAGAIN/EWOULDBLOCK/EINTR is trouble */ switch (SOCK_ERRNO) { #ifdef EAGAIN case EAGAIN: break; #endif #if defined(EWOULDBLOCK) && (!defined(EAGAIN) || (EWOULDBLOCK != EAGAIN)) case EWOULDBLOCK: break; #endif case EINTR: continue; default: /* Discard queued data; no chance it'll ever be sent */ conn->outCount = 0; /* Absorb input data if any, and detect socket closure */ if (conn->sock != PGINVALID_SOCKET) { if (pqReadData(conn) < 0) return -1; } /* * Lower-level code should already have filled * conn->write_err_msg (and set conn->write_failed) or * conn->errorMessage. In the former case, we pretend * there's no problem; the write_failed condition will be * dealt with later. Otherwise, report the error now. */ if (conn->write_failed) return 0; else return -1; } } else { ptr += sent; len -= sent; remaining -= sent; } if (len > 0) { /* * We didn't send it all, wait till we can send more. * * There are scenarios in which we can't send data because the * communications channel is full, but we cannot expect the server * to clear the channel eventually because it's blocked trying to * send data to us. (This can happen when we are sending a large * amount of COPY data, and the server has generated lots of * NOTICE responses.) To avoid a deadlock situation, we must be * prepared to accept and buffer incoming data before we try * again. Furthermore, it is possible that such incoming data * might not arrive until after we've gone to sleep. Therefore, * we wait for either read ready or write ready. * * In non-blocking mode, we don't wait here directly, but return 1 * to indicate that data is still pending. The caller should wait * for both read and write ready conditions, and call * PQconsumeInput() on read ready, but just in case it doesn't, we * call pqReadData() ourselves before returning. That's not * enough if the data has not arrived yet, but it's the best we * can do, and works pretty well in practice. (The documentation * used to say that you only need to wait for write-ready, so * there are still plenty of applications like that out there.) * * Note that errors here don't result in write_failed becoming * set. */ if (pqReadData(conn) < 0) { result = -1; /* error message already set up */ break; } if (pqIsnonblocking(conn)) { result = 1; break; } if (pqWait(true, true, conn)) { result = -1; break; } } } /* shift the remaining contents of the buffer */ if (remaining > 0) memmove(conn->outBuffer, ptr, remaining); conn->outCount = remaining; return result; } /* * pqFlush: send any data waiting in the output buffer * * Return 0 on success, -1 on failure and 1 when not all data could be sent * because the socket would block and the connection is non-blocking. * (See pqSendSome comments about how failure should be handled.) */ int pqFlush(PGconn *conn) { if (conn->outCount > 0) { if (conn->Pfdebug) fflush(conn->Pfdebug); return pqSendSome(conn, conn->outCount); } return 0; } /* * pqWait: wait until we can read or write the connection socket * * JAB: If SSL enabled and used and forRead, buffered bytes short-circuit the * call to select(). * * We also stop waiting and return if the kernel flags an exception condition * on the socket. The actual error condition will be detected and reported * when the caller tries to read or write the socket. */ int pqWait(int forRead, int forWrite, PGconn *conn) { return pqWaitTimed(forRead, forWrite, conn, (time_t) -1); } /* * pqWaitTimed: wait, but not past finish_time. * * finish_time = ((time_t) -1) disables the wait limit. * * Returns -1 on failure, 0 if the socket is readable/writable, 1 if it timed out. */ int pqWaitTimed(int forRead, int forWrite, PGconn *conn, time_t finish_time) { int result; result = pqSocketCheck(conn, forRead, forWrite, finish_time); if (result < 0) return -1; /* errorMessage is already set */ if (result == 0) { appendPQExpBufferStr(&conn->errorMessage, libpq_gettext("timeout expired\n")); return 1; } return 0; } /* * pqReadReady: is select() saying the file is ready to read? * Returns -1 on failure, 0 if not ready, 1 if ready. */ int pqReadReady(PGconn *conn) { return pqSocketCheck(conn, 1, 0, (time_t) 0); } /* * pqWriteReady: is select() saying the file is ready to write? * Returns -1 on failure, 0 if not ready, 1 if ready. */ int pqWriteReady(PGconn *conn) { return pqSocketCheck(conn, 0, 1, (time_t) 0); } /* * Checks a socket, using poll or select, for data to be read, written, * or both. Returns >0 if one or more conditions are met, 0 if it timed * out, -1 if an error occurred. * * If SSL is in use, the SSL buffer is checked prior to checking the socket * for read data directly. */ static int pqSocketCheck(PGconn *conn, int forRead, int forWrite, time_t end_time) { int result; if (!conn) return -1; if (conn->sock == PGINVALID_SOCKET) { appendPQExpBufferStr(&conn->errorMessage, libpq_gettext("invalid socket\n")); return -1; } #ifdef USE_SSL /* Check for SSL library buffering read bytes */ if (forRead && conn->ssl_in_use && pgtls_read_pending(conn)) { /* short-circuit the select */ return 1; } #endif /* We will retry as long as we get EINTR */ do result = pqSocketPoll(conn->sock, forRead, forWrite, end_time); while (result < 0 && SOCK_ERRNO == EINTR); if (result < 0) { char sebuf[PG_STRERROR_R_BUFLEN]; appendPQExpBuffer(&conn->errorMessage, libpq_gettext("%s() failed: %s\n"), "select", SOCK_STRERROR(SOCK_ERRNO, sebuf, sizeof(sebuf))); } return result; } /* * Check a file descriptor for read and/or write data, possibly waiting. * If neither forRead nor forWrite are set, immediately return a timeout * condition (without waiting). Return >0 if condition is met, 0 * if a timeout occurred, -1 if an error or interrupt occurred. * * Timeout is infinite if end_time is -1. Timeout is immediate (no blocking) * if end_time is 0 (or indeed, any time before now). */ static int pqSocketPoll(int sock, int forRead, int forWrite, time_t end_time) { /* We use poll(2) if available, otherwise select(2) */ #ifdef HAVE_POLL struct pollfd input_fd; int timeout_ms; if (!forRead && !forWrite) return 0; input_fd.fd = sock; input_fd.events = POLLERR; input_fd.revents = 0; if (forRead) input_fd.events |= POLLIN; if (forWrite) input_fd.events |= POLLOUT; /* Compute appropriate timeout interval */ if (end_time == ((time_t) -1)) timeout_ms = -1; else { time_t now = time(NULL); if (end_time > now) timeout_ms = (end_time - now) * 1000; else timeout_ms = 0; } return poll(&input_fd, 1, timeout_ms); #else /* !HAVE_POLL */ fd_set input_mask; fd_set output_mask; fd_set except_mask; struct timeval timeout; struct timeval *ptr_timeout; if (!forRead && !forWrite) return 0; FD_ZERO(&input_mask); FD_ZERO(&output_mask); FD_ZERO(&except_mask); if (forRead) FD_SET(sock, &input_mask); if (forWrite) FD_SET(sock, &output_mask); FD_SET(sock, &except_mask); /* Compute appropriate timeout interval */ if (end_time == ((time_t) -1)) ptr_timeout = NULL; else { time_t now = time(NULL); if (end_time > now) timeout.tv_sec = end_time - now; else timeout.tv_sec = 0; timeout.tv_usec = 0; ptr_timeout = &timeout; } return select(sock + 1, &input_mask, &output_mask, &except_mask, ptr_timeout); #endif /* HAVE_POLL */ } /* * A couple of "miscellaneous" multibyte related functions. They used * to be in fe-print.c but that file is doomed. */ /* * Returns the byte length of the character beginning at s, using the * specified encoding. * * Caution: when dealing with text that is not certainly valid in the * specified encoding, the result may exceed the actual remaining * string length. Callers that are not prepared to deal with that * should use PQmblenBounded() instead. */ int PQmblen(const char *s, int encoding) { return pg_encoding_mblen(encoding, s); } /* * Returns the byte length of the character beginning at s, using the * specified encoding; but not more than the distance to end of string. */ int PQmblenBounded(const char *s, int encoding) { return strnlen(s, pg_encoding_mblen(encoding, s)); } /* * Returns the display length of the character beginning at s, using the * specified encoding. */ int PQdsplen(const char *s, int encoding) { return pg_encoding_dsplen(encoding, s); } /* * Get encoding id from environment variable PGCLIENTENCODING. */ int PQenv2encoding(void) { char *str; int encoding = PG_SQL_ASCII; str = getenv("PGCLIENTENCODING"); if (str && *str != '\0') { encoding = pg_char_to_encoding(str); if (encoding < 0) encoding = PG_SQL_ASCII; } return encoding; } #ifdef ENABLE_NLS static void libpq_binddomain(void) { /* * At least on Windows, there are gettext implementations that fail if * multiple threads call bindtextdomain() concurrently. Use a mutex and * flag variable to ensure that we call it just once per process. It is * not known that similar bugs exist on non-Windows platforms, but we * might as well do it the same way everywhere. */ static volatile bool already_bound = false; static pthread_mutex_t binddomain_mutex = PTHREAD_MUTEX_INITIALIZER; if (!already_bound) { /* bindtextdomain() does not preserve errno */ #ifdef WIN32 int save_errno = GetLastError(); #else int save_errno = errno; #endif (void) pthread_mutex_lock(&binddomain_mutex); if (!already_bound) { const char *ldir; /* * No relocatable lookup here because the calling executable could * be anywhere */ ldir = getenv("PGLOCALEDIR"); if (!ldir) ldir = LOCALEDIR; bindtextdomain(PG_TEXTDOMAIN("libpq"), ldir); already_bound = true; } (void) pthread_mutex_unlock(&binddomain_mutex); #ifdef WIN32 SetLastError(save_errno); #else errno = save_errno; #endif } } char * libpq_gettext(const char *msgid) { libpq_binddomain(); return dgettext(PG_TEXTDOMAIN("libpq"), msgid); } char * libpq_ngettext(const char *msgid, const char *msgid_plural, unsigned long n) { libpq_binddomain(); return dngettext(PG_TEXTDOMAIN("libpq"), msgid, msgid_plural, n); } #endif /* ENABLE_NLS */