summaryrefslogtreecommitdiffstats
path: root/src/backend/access/nbtree/nbtsplitloc.c
blob: 241e26d3385f5c6db7af33f57b3071cd85a24a85 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
/*-------------------------------------------------------------------------
 *
 * nbtsplitloc.c
 *	  Choose split point code for Postgres btree implementation.
 *
 * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/access/nbtree/nbtsplitloc.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/nbtree.h"
#include "storage/lmgr.h"

typedef enum
{
	/* strategy for searching through materialized list of split points */
	SPLIT_DEFAULT,				/* give some weight to truncation */
	SPLIT_MANY_DUPLICATES,		/* find minimally distinguishing point */
	SPLIT_SINGLE_VALUE			/* leave left page almost full */
} FindSplitStrat;

typedef struct
{
	/* details of free space left by split */
	int16		curdelta;		/* current leftfree/rightfree delta */
	int16		leftfree;		/* space left on left page post-split */
	int16		rightfree;		/* space left on right page post-split */

	/* split point identifying fields (returned by _bt_findsplitloc) */
	OffsetNumber firstrightoff; /* first origpage item on rightpage */
	bool		newitemonleft;	/* new item goes on left, or right? */
} SplitPoint;

typedef struct
{
	/* context data for _bt_recsplitloc */
	Relation	rel;			/* index relation */
	Page		origpage;		/* page undergoing split */
	IndexTuple	newitem;		/* new item (cause of page split) */
	Size		newitemsz;		/* size of newitem (includes line pointer) */
	bool		is_leaf;		/* T if splitting a leaf page */
	bool		is_rightmost;	/* T if splitting rightmost page on level */
	OffsetNumber newitemoff;	/* where the new item is to be inserted */
	int			leftspace;		/* space available for items on left page */
	int			rightspace;		/* space available for items on right page */
	int			olddataitemstotal;	/* space taken by old items */
	Size		minfirstrightsz;	/* smallest firstright size */

	/* candidate split point data */
	int			maxsplits;		/* maximum number of splits */
	int			nsplits;		/* current number of splits */
	SplitPoint *splits;			/* all candidate split points for page */
	int			interval;		/* current range of acceptable split points */
} FindSplitData;

static void _bt_recsplitloc(FindSplitData *state,
							OffsetNumber firstrightoff, bool newitemonleft,
							int olddataitemstoleft,
							Size firstrightofforigpagetuplesz);
static void _bt_deltasortsplits(FindSplitData *state, double fillfactormult,
								bool usemult);
static int	_bt_splitcmp(const void *arg1, const void *arg2);
static bool _bt_afternewitemoff(FindSplitData *state, OffsetNumber maxoff,
								int leaffillfactor, bool *usemult);
static bool _bt_adjacenthtid(ItemPointer lowhtid, ItemPointer highhtid);
static OffsetNumber _bt_bestsplitloc(FindSplitData *state, int perfectpenalty,
									 bool *newitemonleft, FindSplitStrat strategy);
static int	_bt_defaultinterval(FindSplitData *state);
static int	_bt_strategy(FindSplitData *state, SplitPoint *leftpage,
						 SplitPoint *rightpage, FindSplitStrat *strategy);
static void _bt_interval_edges(FindSplitData *state,
							   SplitPoint **leftinterval, SplitPoint **rightinterval);
static inline int _bt_split_penalty(FindSplitData *state, SplitPoint *split);
static inline IndexTuple _bt_split_lastleft(FindSplitData *state,
											SplitPoint *split);
static inline IndexTuple _bt_split_firstright(FindSplitData *state,
											  SplitPoint *split);


/*
 *	_bt_findsplitloc() -- find an appropriate place to split a page.
 *
 * The main goal here is to equalize the free space that will be on each
 * split page, *after accounting for the inserted tuple*.  (If we fail to
 * account for it, we might find ourselves with too little room on the page
 * that it needs to go into!)
 *
 * If the page is the rightmost page on its level, we instead try to arrange
 * to leave the left split page fillfactor% full.  In this way, when we are
 * inserting successively increasing keys (consider sequences, timestamps,
 * etc) we will end up with a tree whose pages are about fillfactor% full,
 * instead of the 50% full result that we'd get without this special case.
 * This is the same as nbtsort.c produces for a newly-created tree.  Note
 * that leaf and nonleaf pages use different fillfactors.  Note also that
 * there are a number of further special cases where fillfactor is not
 * applied in the standard way.
 *
 * We are passed the intended insert position of the new tuple, expressed as
 * the offsetnumber of the tuple it must go in front of (this could be
 * maxoff+1 if the tuple is to go at the end).  The new tuple itself is also
 * passed, since it's needed to give some weight to how effective suffix
 * truncation will be.  The implementation picks the split point that
 * maximizes the effectiveness of suffix truncation from a small list of
 * alternative candidate split points that leave each side of the split with
 * about the same share of free space.  Suffix truncation is secondary to
 * equalizing free space, except in cases with large numbers of duplicates.
 * Note that it is always assumed that caller goes on to perform truncation,
 * even with pg_upgrade'd indexes where that isn't actually the case
 * (!heapkeyspace indexes).  See nbtree/README for more information about
 * suffix truncation.
 *
 * We return the index of the first existing tuple that should go on the
 * righthand page (which is called firstrightoff), plus a boolean
 * indicating whether the new tuple goes on the left or right page.  You
 * can think of the returned state as a point _between_ two adjacent data
 * items (laftleft and firstright data items) on an imaginary version of
 * origpage that already includes newitem.  The bool is necessary to
 * disambiguate the case where firstrightoff == newitemoff (i.e. it is
 * sometimes needed to determine if the firstright tuple for the split is
 * newitem rather than the tuple from origpage at offset firstrightoff).
 */
OffsetNumber
_bt_findsplitloc(Relation rel,
				 Page origpage,
				 OffsetNumber newitemoff,
				 Size newitemsz,
				 IndexTuple newitem,
				 bool *newitemonleft)
{
	BTPageOpaque opaque;
	int			leftspace,
				rightspace,
				olddataitemstotal,
				olddataitemstoleft,
				perfectpenalty,
				leaffillfactor;
	FindSplitData state;
	FindSplitStrat strategy;
	ItemId		itemid;
	OffsetNumber offnum,
				maxoff,
				firstrightoff;
	double		fillfactormult;
	bool		usemult;
	SplitPoint	leftpage,
				rightpage;

	opaque = BTPageGetOpaque(origpage);
	maxoff = PageGetMaxOffsetNumber(origpage);

	/* Total free space available on a btree page, after fixed overhead */
	leftspace = rightspace =
		PageGetPageSize(origpage) - SizeOfPageHeaderData -
		MAXALIGN(sizeof(BTPageOpaqueData));

	/* The right page will have the same high key as the old page */
	if (!P_RIGHTMOST(opaque))
	{
		itemid = PageGetItemId(origpage, P_HIKEY);
		rightspace -= (int) (MAXALIGN(ItemIdGetLength(itemid)) +
							 sizeof(ItemIdData));
	}

	/* Count up total space in data items before actually scanning 'em */
	olddataitemstotal = rightspace - (int) PageGetExactFreeSpace(origpage);
	leaffillfactor = BTGetFillFactor(rel);

	/* Passed-in newitemsz is MAXALIGNED but does not include line pointer */
	newitemsz += sizeof(ItemIdData);
	state.rel = rel;
	state.origpage = origpage;
	state.newitem = newitem;
	state.newitemsz = newitemsz;
	state.is_leaf = P_ISLEAF(opaque);
	state.is_rightmost = P_RIGHTMOST(opaque);
	state.leftspace = leftspace;
	state.rightspace = rightspace;
	state.olddataitemstotal = olddataitemstotal;
	state.minfirstrightsz = SIZE_MAX;
	state.newitemoff = newitemoff;

	/* newitem cannot be a posting list item */
	Assert(!BTreeTupleIsPosting(newitem));

	/*
	 * nsplits should never exceed maxoff because there will be at most as
	 * many candidate split points as there are points _between_ tuples, once
	 * you imagine that the new item is already on the original page (the
	 * final number of splits may be slightly lower because not all points
	 * between tuples will be legal).
	 */
	state.maxsplits = maxoff;
	state.splits = palloc(sizeof(SplitPoint) * state.maxsplits);
	state.nsplits = 0;

	/*
	 * Scan through the data items and calculate space usage for a split at
	 * each possible position
	 */
	olddataitemstoleft = 0;

	for (offnum = P_FIRSTDATAKEY(opaque);
		 offnum <= maxoff;
		 offnum = OffsetNumberNext(offnum))
	{
		Size		itemsz;

		itemid = PageGetItemId(origpage, offnum);
		itemsz = MAXALIGN(ItemIdGetLength(itemid)) + sizeof(ItemIdData);

		/*
		 * When item offset number is not newitemoff, neither side of the
		 * split can be newitem.  Record a split after the previous data item
		 * from original page, but before the current data item from original
		 * page. (_bt_recsplitloc() will reject the split when there are no
		 * previous items, which we rely on.)
		 */
		if (offnum < newitemoff)
			_bt_recsplitloc(&state, offnum, false, olddataitemstoleft, itemsz);
		else if (offnum > newitemoff)
			_bt_recsplitloc(&state, offnum, true, olddataitemstoleft, itemsz);
		else
		{
			/*
			 * Record a split after all "offnum < newitemoff" original page
			 * data items, but before newitem
			 */
			_bt_recsplitloc(&state, offnum, false, olddataitemstoleft, itemsz);

			/*
			 * Record a split after newitem, but before data item from
			 * original page at offset newitemoff/current offset
			 */
			_bt_recsplitloc(&state, offnum, true, olddataitemstoleft, itemsz);
		}

		olddataitemstoleft += itemsz;
	}

	/*
	 * Record a split after all original page data items, but before newitem.
	 * (Though only when it's possible that newitem will end up alone on new
	 * right page.)
	 */
	Assert(olddataitemstoleft == olddataitemstotal);
	if (newitemoff > maxoff)
		_bt_recsplitloc(&state, newitemoff, false, olddataitemstotal, 0);

	/*
	 * I believe it is not possible to fail to find a feasible split, but just
	 * in case ...
	 */
	if (state.nsplits == 0)
		elog(ERROR, "could not find a feasible split point for index \"%s\"",
			 RelationGetRelationName(rel));

	/*
	 * Start search for a split point among list of legal split points.  Give
	 * primary consideration to equalizing available free space in each half
	 * of the split initially (start with default strategy), while applying
	 * rightmost and split-after-new-item optimizations where appropriate.
	 * Either of the two other fallback strategies may be required for cases
	 * with a large number of duplicates around the original/space-optimal
	 * split point.
	 *
	 * Default strategy gives some weight to suffix truncation in deciding a
	 * split point on leaf pages.  It attempts to select a split point where a
	 * distinguishing attribute appears earlier in the new high key for the
	 * left side of the split, in order to maximize the number of trailing
	 * attributes that can be truncated away.  Only candidate split points
	 * that imply an acceptable balance of free space on each side are
	 * considered.  See _bt_defaultinterval().
	 */
	if (!state.is_leaf)
	{
		/* fillfactormult only used on rightmost page */
		usemult = state.is_rightmost;
		fillfactormult = BTREE_NONLEAF_FILLFACTOR / 100.0;
	}
	else if (state.is_rightmost)
	{
		/* Rightmost leaf page --  fillfactormult always used */
		usemult = true;
		fillfactormult = leaffillfactor / 100.0;
	}
	else if (_bt_afternewitemoff(&state, maxoff, leaffillfactor, &usemult))
	{
		/*
		 * New item inserted at rightmost point among a localized grouping on
		 * a leaf page -- apply "split after new item" optimization, either by
		 * applying leaf fillfactor multiplier, or by choosing the exact split
		 * point that leaves newitem as lastleft. (usemult is set for us.)
		 */
		if (usemult)
		{
			/* fillfactormult should be set based on leaf fillfactor */
			fillfactormult = leaffillfactor / 100.0;
		}
		else
		{
			/* find precise split point after newitemoff */
			for (int i = 0; i < state.nsplits; i++)
			{
				SplitPoint *split = state.splits + i;

				if (split->newitemonleft &&
					newitemoff == split->firstrightoff)
				{
					pfree(state.splits);
					*newitemonleft = true;
					return newitemoff;
				}
			}

			/*
			 * Cannot legally split after newitemoff; proceed with split
			 * without using fillfactor multiplier.  This is defensive, and
			 * should never be needed in practice.
			 */
			fillfactormult = 0.50;
		}
	}
	else
	{
		/* Other leaf page.  50:50 page split. */
		usemult = false;
		/* fillfactormult not used, but be tidy */
		fillfactormult = 0.50;
	}

	/*
	 * Save leftmost and rightmost splits for page before original ordinal
	 * sort order is lost by delta/fillfactormult sort
	 */
	leftpage = state.splits[0];
	rightpage = state.splits[state.nsplits - 1];

	/* Give split points a fillfactormult-wise delta, and sort on deltas */
	_bt_deltasortsplits(&state, fillfactormult, usemult);

	/* Determine split interval for default strategy */
	state.interval = _bt_defaultinterval(&state);

	/*
	 * Determine if default strategy/split interval will produce a
	 * sufficiently distinguishing split, or if we should change strategies.
	 * Alternative strategies change the range of split points that are
	 * considered acceptable (split interval), and possibly change
	 * fillfactormult, in order to deal with pages with a large number of
	 * duplicates gracefully.
	 *
	 * Pass low and high splits for the entire page (actually, they're for an
	 * imaginary version of the page that includes newitem).  These are used
	 * when the initial split interval encloses split points that are full of
	 * duplicates, and we need to consider if it's even possible to avoid
	 * appending a heap TID.
	 */
	perfectpenalty = _bt_strategy(&state, &leftpage, &rightpage, &strategy);

	if (strategy == SPLIT_DEFAULT)
	{
		/*
		 * Default strategy worked out (always works out with internal page).
		 * Original split interval still stands.
		 */
	}

	/*
	 * Many duplicates strategy is used when a heap TID would otherwise be
	 * appended, but the page isn't completely full of logical duplicates.
	 *
	 * The split interval is widened to include all legal candidate split
	 * points.  There might be a few as two distinct values in the whole-page
	 * split interval, though it's also possible that most of the values on
	 * the page are unique.  The final split point will either be to the
	 * immediate left or to the immediate right of the group of duplicate
	 * tuples that enclose the first/delta-optimal split point (perfect
	 * penalty was set so that the lowest delta split point that avoids
	 * appending a heap TID will be chosen).  Maximizing the number of
	 * attributes that can be truncated away is not a goal of the many
	 * duplicates strategy.
	 *
	 * Single value strategy is used when it is impossible to avoid appending
	 * a heap TID.  It arranges to leave the left page very full.  This
	 * maximizes space utilization in cases where tuples with the same
	 * attribute values span many pages.  Newly inserted duplicates will tend
	 * to have higher heap TID values, so we'll end up splitting to the right
	 * consistently.  (Single value strategy is harmless though not
	 * particularly useful with !heapkeyspace indexes.)
	 */
	else if (strategy == SPLIT_MANY_DUPLICATES)
	{
		Assert(state.is_leaf);
		/* Shouldn't try to truncate away extra user attributes */
		Assert(perfectpenalty ==
			   IndexRelationGetNumberOfKeyAttributes(state.rel));
		/* No need to resort splits -- no change in fillfactormult/deltas */
		state.interval = state.nsplits;
	}
	else if (strategy == SPLIT_SINGLE_VALUE)
	{
		Assert(state.is_leaf);
		/* Split near the end of the page */
		usemult = true;
		fillfactormult = BTREE_SINGLEVAL_FILLFACTOR / 100.0;
		/* Resort split points with new delta */
		_bt_deltasortsplits(&state, fillfactormult, usemult);
		/* Appending a heap TID is unavoidable, so interval of 1 is fine */
		state.interval = 1;
	}

	/*
	 * Search among acceptable split points (using final split interval) for
	 * the entry that has the lowest penalty, and is therefore expected to
	 * maximize fan-out.  Sets *newitemonleft for us.
	 */
	firstrightoff = _bt_bestsplitloc(&state, perfectpenalty, newitemonleft,
									 strategy);
	pfree(state.splits);

	return firstrightoff;
}

/*
 * Subroutine to record a particular point between two tuples (possibly the
 * new item) on page (ie, combination of firstrightoff and newitemonleft
 * settings) in *state for later analysis.  This is also a convenient point to
 * check if the split is legal (if it isn't, it won't be recorded).
 *
 * firstrightoff is the offset of the first item on the original page that
 * goes to the right page, and firstrightofforigpagetuplesz is the size of
 * that tuple.  firstrightoff can be > max offset, which means that all the
 * old items go to the left page and only the new item goes to the right page.
 * We don't actually use firstrightofforigpagetuplesz in that case (actually,
 * we don't use it for _any_ split where the firstright tuple happens to be
 * newitem).
 *
 * olddataitemstoleft is the total size of all old items to the left of the
 * split point that is recorded here when legal.  Should not include
 * newitemsz, since that is handled here.
 */
static void
_bt_recsplitloc(FindSplitData *state,
				OffsetNumber firstrightoff,
				bool newitemonleft,
				int olddataitemstoleft,
				Size firstrightofforigpagetuplesz)
{
	int16		leftfree,
				rightfree;
	Size		firstrightsz;
	Size		postingsz = 0;
	bool		newitemisfirstright;

	/* Is the new item going to be split point's firstright tuple? */
	newitemisfirstright = (firstrightoff == state->newitemoff &&
						   !newitemonleft);

	if (newitemisfirstright)
		firstrightsz = state->newitemsz;
	else
	{
		firstrightsz = firstrightofforigpagetuplesz;

		/*
		 * Calculate suffix truncation space saving when firstright tuple is a
		 * posting list tuple, though only when the tuple is over 64 bytes
		 * including line pointer overhead (arbitrary).  This avoids accessing
		 * the tuple in cases where its posting list must be very small (if
		 * tuple has one at all).
		 *
		 * Note: We don't do this in the case where firstright tuple is
		 * newitem, since newitem cannot have a posting list.
		 */
		if (state->is_leaf && firstrightsz > 64)
		{
			ItemId		itemid;
			IndexTuple	newhighkey;

			itemid = PageGetItemId(state->origpage, firstrightoff);
			newhighkey = (IndexTuple) PageGetItem(state->origpage, itemid);

			if (BTreeTupleIsPosting(newhighkey))
				postingsz = IndexTupleSize(newhighkey) -
					BTreeTupleGetPostingOffset(newhighkey);
		}
	}

	/* Account for all the old tuples */
	leftfree = state->leftspace - olddataitemstoleft;
	rightfree = state->rightspace -
		(state->olddataitemstotal - olddataitemstoleft);

	/*
	 * The first item on the right page becomes the high key of the left page;
	 * therefore it counts against left space as well as right space (we
	 * cannot assume that suffix truncation will make it any smaller).  When
	 * index has included attributes, then those attributes of left page high
	 * key will be truncated leaving that page with slightly more free space.
	 * However, that shouldn't affect our ability to find valid split
	 * location, since we err in the direction of being pessimistic about free
	 * space on the left half.  Besides, even when suffix truncation of
	 * non-TID attributes occurs, the new high key often won't even be a
	 * single MAXALIGN() quantum smaller than the firstright tuple it's based
	 * on.
	 *
	 * If we are on the leaf level, assume that suffix truncation cannot avoid
	 * adding a heap TID to the left half's new high key when splitting at the
	 * leaf level.  In practice the new high key will often be smaller and
	 * will rarely be larger, but conservatively assume the worst case.  We do
	 * go to the trouble of subtracting away posting list overhead, though
	 * only when it looks like it will make an appreciable difference.
	 * (Posting lists are the only case where truncation will typically make
	 * the final high key far smaller than firstright, so being a bit more
	 * precise there noticeably improves the balance of free space.)
	 */
	if (state->is_leaf)
		leftfree -= (int16) (firstrightsz +
							 MAXALIGN(sizeof(ItemPointerData)) -
							 postingsz);
	else
		leftfree -= (int16) firstrightsz;

	/* account for the new item */
	if (newitemonleft)
		leftfree -= (int16) state->newitemsz;
	else
		rightfree -= (int16) state->newitemsz;

	/*
	 * If we are not on the leaf level, we will be able to discard the key
	 * data from the first item that winds up on the right page.
	 */
	if (!state->is_leaf)
		rightfree += (int16) firstrightsz -
			(int16) (MAXALIGN(sizeof(IndexTupleData)) + sizeof(ItemIdData));

	/* Record split if legal */
	if (leftfree >= 0 && rightfree >= 0)
	{
		Assert(state->nsplits < state->maxsplits);

		/* Determine smallest firstright tuple size among legal splits */
		state->minfirstrightsz = Min(state->minfirstrightsz, firstrightsz);

		state->splits[state->nsplits].curdelta = 0;
		state->splits[state->nsplits].leftfree = leftfree;
		state->splits[state->nsplits].rightfree = rightfree;
		state->splits[state->nsplits].firstrightoff = firstrightoff;
		state->splits[state->nsplits].newitemonleft = newitemonleft;
		state->nsplits++;
	}
}

/*
 * Subroutine to assign space deltas to materialized array of candidate split
 * points based on current fillfactor, and to sort array using that fillfactor
 */
static void
_bt_deltasortsplits(FindSplitData *state, double fillfactormult,
					bool usemult)
{
	for (int i = 0; i < state->nsplits; i++)
	{
		SplitPoint *split = state->splits + i;
		int16		delta;

		if (usemult)
			delta = fillfactormult * split->leftfree -
				(1.0 - fillfactormult) * split->rightfree;
		else
			delta = split->leftfree - split->rightfree;

		if (delta < 0)
			delta = -delta;

		/* Save delta */
		split->curdelta = delta;
	}

	qsort(state->splits, state->nsplits, sizeof(SplitPoint), _bt_splitcmp);
}

/*
 * qsort-style comparator used by _bt_deltasortsplits()
 */
static int
_bt_splitcmp(const void *arg1, const void *arg2)
{
	SplitPoint *split1 = (SplitPoint *) arg1;
	SplitPoint *split2 = (SplitPoint *) arg2;

	if (split1->curdelta > split2->curdelta)
		return 1;
	if (split1->curdelta < split2->curdelta)
		return -1;

	return 0;
}

/*
 * Subroutine to determine whether or not a non-rightmost leaf page should be
 * split immediately after the would-be original page offset for the
 * new/incoming tuple (or should have leaf fillfactor applied when new item is
 * to the right on original page).  This is appropriate when there is a
 * pattern of localized monotonically increasing insertions into a composite
 * index, where leading attribute values form local groupings, and we
 * anticipate further insertions of the same/current grouping (new item's
 * grouping) in the near future.  This can be thought of as a variation on
 * applying leaf fillfactor during rightmost leaf page splits, since cases
 * that benefit will converge on packing leaf pages leaffillfactor% full over
 * time.
 *
 * We may leave extra free space remaining on the rightmost page of a "most
 * significant column" grouping of tuples if that grouping never ends up
 * having future insertions that use the free space.  That effect is
 * self-limiting; a future grouping that becomes the "nearest on the right"
 * grouping of the affected grouping usually puts the extra free space to good
 * use.
 *
 * Caller uses optimization when routine returns true, though the exact action
 * taken by caller varies.  Caller uses original leaf page fillfactor in
 * standard way rather than using the new item offset directly when *usemult
 * was also set to true here.  Otherwise, caller applies optimization by
 * locating the legal split point that makes the new tuple the lastleft tuple
 * for the split.
 */
static bool
_bt_afternewitemoff(FindSplitData *state, OffsetNumber maxoff,
					int leaffillfactor, bool *usemult)
{
	int16		nkeyatts;
	ItemId		itemid;
	IndexTuple	tup;
	int			keepnatts;

	Assert(state->is_leaf && !state->is_rightmost);

	nkeyatts = IndexRelationGetNumberOfKeyAttributes(state->rel);

	/* Single key indexes not considered here */
	if (nkeyatts == 1)
		return false;

	/* Ascending insertion pattern never inferred when new item is first */
	if (state->newitemoff == P_FIRSTKEY)
		return false;

	/*
	 * Only apply optimization on pages with equisized tuples, since ordinal
	 * keys are likely to be fixed-width.  Testing if the new tuple is
	 * variable width directly might also work, but that fails to apply the
	 * optimization to indexes with a numeric_ops attribute.
	 *
	 * Conclude that page has equisized tuples when the new item is the same
	 * width as the smallest item observed during pass over page, and other
	 * non-pivot tuples must be the same width as well.  (Note that the
	 * possibly-truncated existing high key isn't counted in
	 * olddataitemstotal, and must be subtracted from maxoff.)
	 */
	if (state->newitemsz != state->minfirstrightsz)
		return false;
	if (state->newitemsz * (maxoff - 1) != state->olddataitemstotal)
		return false;

	/*
	 * Avoid applying optimization when tuples are wider than a tuple
	 * consisting of two non-NULL int8/int64 attributes (or four non-NULL
	 * int4/int32 attributes)
	 */
	if (state->newitemsz >
		MAXALIGN(sizeof(IndexTupleData) + sizeof(int64) * 2) +
		sizeof(ItemIdData))
		return false;

	/*
	 * At least the first attribute's value must be equal to the corresponding
	 * value in previous tuple to apply optimization.  New item cannot be a
	 * duplicate, either.
	 *
	 * Handle case where new item is to the right of all items on the existing
	 * page.  This is suggestive of monotonically increasing insertions in
	 * itself, so the "heap TID adjacency" test is not applied here.
	 */
	if (state->newitemoff > maxoff)
	{
		itemid = PageGetItemId(state->origpage, maxoff);
		tup = (IndexTuple) PageGetItem(state->origpage, itemid);
		keepnatts = _bt_keep_natts_fast(state->rel, tup, state->newitem);

		if (keepnatts > 1 && keepnatts <= nkeyatts)
		{
			*usemult = true;
			return true;
		}

		return false;
	}

	/*
	 * "Low cardinality leading column, high cardinality suffix column"
	 * indexes with a random insertion pattern (e.g., an index with a boolean
	 * column, such as an index on '(book_is_in_print, book_isbn)') present us
	 * with a risk of consistently misapplying the optimization.  We're
	 * willing to accept very occasional misapplication of the optimization,
	 * provided the cases where we get it wrong are rare and self-limiting.
	 *
	 * Heap TID adjacency strongly suggests that the item just to the left was
	 * inserted very recently, which limits overapplication of the
	 * optimization.  Besides, all inappropriate cases triggered here will
	 * still split in the middle of the page on average.
	 */
	itemid = PageGetItemId(state->origpage, OffsetNumberPrev(state->newitemoff));
	tup = (IndexTuple) PageGetItem(state->origpage, itemid);
	/* Do cheaper test first */
	if (BTreeTupleIsPosting(tup) ||
		!_bt_adjacenthtid(&tup->t_tid, &state->newitem->t_tid))
		return false;
	/* Check same conditions as rightmost item case, too */
	keepnatts = _bt_keep_natts_fast(state->rel, tup, state->newitem);

	if (keepnatts > 1 && keepnatts <= nkeyatts)
	{
		double		interp = (double) state->newitemoff / ((double) maxoff + 1);
		double		leaffillfactormult = (double) leaffillfactor / 100.0;

		/*
		 * Don't allow caller to split after a new item when it will result in
		 * a split point to the right of the point that a leaf fillfactor
		 * split would use -- have caller apply leaf fillfactor instead
		 */
		*usemult = interp > leaffillfactormult;

		return true;
	}

	return false;
}

/*
 * Subroutine for determining if two heap TIDS are "adjacent".
 *
 * Adjacent means that the high TID is very likely to have been inserted into
 * heap relation immediately after the low TID, probably during the current
 * transaction.
 */
static bool
_bt_adjacenthtid(ItemPointer lowhtid, ItemPointer highhtid)
{
	BlockNumber lowblk,
				highblk;

	lowblk = ItemPointerGetBlockNumber(lowhtid);
	highblk = ItemPointerGetBlockNumber(highhtid);

	/* Make optimistic assumption of adjacency when heap blocks match */
	if (lowblk == highblk)
		return true;

	/* When heap block one up, second offset should be FirstOffsetNumber */
	if (lowblk + 1 == highblk &&
		ItemPointerGetOffsetNumber(highhtid) == FirstOffsetNumber)
		return true;

	return false;
}

/*
 * Subroutine to find the "best" split point among candidate split points.
 * The best split point is the split point with the lowest penalty among split
 * points that fall within current/final split interval.  Penalty is an
 * abstract score, with a definition that varies depending on whether we're
 * splitting a leaf page or an internal page.  See _bt_split_penalty() for
 * details.
 *
 * "perfectpenalty" is assumed to be the lowest possible penalty among
 * candidate split points.  This allows us to return early without wasting
 * cycles on calculating the first differing attribute for all candidate
 * splits when that clearly cannot improve our choice (or when we only want a
 * minimally distinguishing split point, and don't want to make the split any
 * more unbalanced than is necessary).
 *
 * We return the index of the first existing tuple that should go on the right
 * page, plus a boolean indicating if new item is on left of split point.
 */
static OffsetNumber
_bt_bestsplitloc(FindSplitData *state, int perfectpenalty,
				 bool *newitemonleft, FindSplitStrat strategy)
{
	int			bestpenalty,
				lowsplit;
	int			highsplit = Min(state->interval, state->nsplits);
	SplitPoint *final;

	bestpenalty = INT_MAX;
	lowsplit = 0;
	for (int i = lowsplit; i < highsplit; i++)
	{
		int			penalty;

		penalty = _bt_split_penalty(state, state->splits + i);

		if (penalty < bestpenalty)
		{
			bestpenalty = penalty;
			lowsplit = i;
		}

		if (penalty <= perfectpenalty)
			break;
	}

	final = &state->splits[lowsplit];

	/*
	 * There is a risk that the "many duplicates" strategy will repeatedly do
	 * the wrong thing when there are monotonically decreasing insertions to
	 * the right of a large group of duplicates.   Repeated splits could leave
	 * a succession of right half pages with free space that can never be
	 * used.  This must be avoided.
	 *
	 * Consider the example of the leftmost page in a single integer attribute
	 * NULLS FIRST index which is almost filled with NULLs.  Monotonically
	 * decreasing integer insertions might cause the same leftmost page to
	 * split repeatedly at the same point.  Each split derives its new high
	 * key from the lowest current value to the immediate right of the large
	 * group of NULLs, which will always be higher than all future integer
	 * insertions, directing all future integer insertions to the same
	 * leftmost page.
	 */
	if (strategy == SPLIT_MANY_DUPLICATES && !state->is_rightmost &&
		!final->newitemonleft && final->firstrightoff >= state->newitemoff &&
		final->firstrightoff < state->newitemoff + 9)
	{
		/*
		 * Avoid the problem by performing a 50:50 split when the new item is
		 * just to the right of the would-be "many duplicates" split point.
		 * (Note that the test used for an insert that is "just to the right"
		 * of the split point is conservative.)
		 */
		final = &state->splits[0];
	}

	*newitemonleft = final->newitemonleft;
	return final->firstrightoff;
}

#define LEAF_SPLIT_DISTANCE			0.050
#define INTERNAL_SPLIT_DISTANCE		0.075

/*
 * Return a split interval to use for the default strategy.  This is a limit
 * on the number of candidate split points to give further consideration to.
 * Only a fraction of all candidate splits points (those located at the start
 * of the now-sorted splits array) fall within the split interval.  Split
 * interval is applied within _bt_bestsplitloc().
 *
 * Split interval represents an acceptable range of split points -- those that
 * have leftfree and rightfree values that are acceptably balanced.  The final
 * split point chosen is the split point with the lowest "penalty" among split
 * points in this split interval (unless we change our entire strategy, in
 * which case the interval also changes -- see _bt_strategy()).
 *
 * The "Prefix B-Trees" paper calls split interval sigma l for leaf splits,
 * and sigma b for internal ("branch") splits.  It's hard to provide a
 * theoretical justification for the size of the split interval, though it's
 * clear that a small split interval can make tuples on level L+1 much smaller
 * on average, without noticeably affecting space utilization on level L.
 * (Note that the way that we calculate split interval might need to change if
 * suffix truncation is taught to truncate tuples "within" the last
 * attribute/datum for data types like text, which is more or less how it is
 * assumed to work in the paper.)
 */
static int
_bt_defaultinterval(FindSplitData *state)
{
	SplitPoint *spaceoptimal;
	int16		tolerance,
				lowleftfree,
				lowrightfree,
				highleftfree,
				highrightfree;

	/*
	 * Determine leftfree and rightfree values that are higher and lower than
	 * we're willing to tolerate.  Note that the final split interval will be
	 * about 10% of nsplits in the common case where all non-pivot tuples
	 * (data items) from a leaf page are uniformly sized.  We're a bit more
	 * aggressive when splitting internal pages.
	 */
	if (state->is_leaf)
		tolerance = state->olddataitemstotal * LEAF_SPLIT_DISTANCE;
	else
		tolerance = state->olddataitemstotal * INTERNAL_SPLIT_DISTANCE;

	/* First candidate split point is the most evenly balanced */
	spaceoptimal = state->splits;
	lowleftfree = spaceoptimal->leftfree - tolerance;
	lowrightfree = spaceoptimal->rightfree - tolerance;
	highleftfree = spaceoptimal->leftfree + tolerance;
	highrightfree = spaceoptimal->rightfree + tolerance;

	/*
	 * Iterate through split points, starting from the split immediately after
	 * 'spaceoptimal'.  Find the first split point that divides free space so
	 * unevenly that including it in the split interval would be unacceptable.
	 */
	for (int i = 1; i < state->nsplits; i++)
	{
		SplitPoint *split = state->splits + i;

		/* Cannot use curdelta here, since its value is often weighted */
		if (split->leftfree < lowleftfree || split->rightfree < lowrightfree ||
			split->leftfree > highleftfree || split->rightfree > highrightfree)
			return i;
	}

	return state->nsplits;
}

/*
 * Subroutine to decide whether split should use default strategy/initial
 * split interval, or whether it should finish splitting the page using
 * alternative strategies (this is only possible with leaf pages).
 *
 * Caller uses alternative strategy (or sticks with default strategy) based
 * on how *strategy is set here.  Return value is "perfect penalty", which is
 * passed to _bt_bestsplitloc() as a final constraint on how far caller is
 * willing to go to avoid appending a heap TID when using the many duplicates
 * strategy (it also saves _bt_bestsplitloc() useless cycles).
 */
static int
_bt_strategy(FindSplitData *state, SplitPoint *leftpage,
			 SplitPoint *rightpage, FindSplitStrat *strategy)
{
	IndexTuple	leftmost,
				rightmost;
	SplitPoint *leftinterval,
			   *rightinterval;
	int			perfectpenalty;
	int			indnkeyatts = IndexRelationGetNumberOfKeyAttributes(state->rel);

	/* Assume that alternative strategy won't be used for now */
	*strategy = SPLIT_DEFAULT;

	/*
	 * Use smallest observed firstright item size for entire page (actually,
	 * entire imaginary version of page that includes newitem) as perfect
	 * penalty on internal pages.  This can save cycles in the common case
	 * where most or all splits (not just splits within interval) have
	 * firstright tuples that are the same size.
	 */
	if (!state->is_leaf)
		return state->minfirstrightsz;

	/*
	 * Use leftmost and rightmost tuples from leftmost and rightmost splits in
	 * current split interval
	 */
	_bt_interval_edges(state, &leftinterval, &rightinterval);
	leftmost = _bt_split_lastleft(state, leftinterval);
	rightmost = _bt_split_firstright(state, rightinterval);

	/*
	 * If initial split interval can produce a split point that will at least
	 * avoid appending a heap TID in new high key, we're done.  Finish split
	 * with default strategy and initial split interval.
	 */
	perfectpenalty = _bt_keep_natts_fast(state->rel, leftmost, rightmost);
	if (perfectpenalty <= indnkeyatts)
		return perfectpenalty;

	/*
	 * Work out how caller should finish split when even their "perfect"
	 * penalty for initial/default split interval indicates that the interval
	 * does not contain even a single split that avoids appending a heap TID.
	 *
	 * Use the leftmost split's lastleft tuple and the rightmost split's
	 * firstright tuple to assess every possible split.
	 */
	leftmost = _bt_split_lastleft(state, leftpage);
	rightmost = _bt_split_firstright(state, rightpage);

	/*
	 * If page (including new item) has many duplicates but is not entirely
	 * full of duplicates, a many duplicates strategy split will be performed.
	 * If page is entirely full of duplicates, a single value strategy split
	 * will be performed.
	 */
	perfectpenalty = _bt_keep_natts_fast(state->rel, leftmost, rightmost);
	if (perfectpenalty <= indnkeyatts)
	{
		*strategy = SPLIT_MANY_DUPLICATES;

		/*
		 * Many duplicates strategy should split at either side the group of
		 * duplicates that enclose the delta-optimal split point.  Return
		 * indnkeyatts rather than the true perfect penalty to make that
		 * happen.  (If perfectpenalty was returned here then low cardinality
		 * composite indexes could have continual unbalanced splits.)
		 *
		 * Note that caller won't go through with a many duplicates split in
		 * rare cases where it looks like there are ever-decreasing insertions
		 * to the immediate right of the split point.  This must happen just
		 * before a final decision is made, within _bt_bestsplitloc().
		 */
		return indnkeyatts;
	}

	/*
	 * Single value strategy is only appropriate with ever-increasing heap
	 * TIDs; otherwise, original default strategy split should proceed to
	 * avoid pathological performance.  Use page high key to infer if this is
	 * the rightmost page among pages that store the same duplicate value.
	 * This should not prevent insertions of heap TIDs that are slightly out
	 * of order from using single value strategy, since that's expected with
	 * concurrent inserters of the same duplicate value.
	 */
	else if (state->is_rightmost)
		*strategy = SPLIT_SINGLE_VALUE;
	else
	{
		ItemId		itemid;
		IndexTuple	hikey;

		itemid = PageGetItemId(state->origpage, P_HIKEY);
		hikey = (IndexTuple) PageGetItem(state->origpage, itemid);
		perfectpenalty = _bt_keep_natts_fast(state->rel, hikey,
											 state->newitem);
		if (perfectpenalty <= indnkeyatts)
			*strategy = SPLIT_SINGLE_VALUE;
		else
		{
			/*
			 * Have caller finish split using default strategy, since page
			 * does not appear to be the rightmost page for duplicates of the
			 * value the page is filled with
			 */
		}
	}

	return perfectpenalty;
}

/*
 * Subroutine to locate leftmost and rightmost splits for current/default
 * split interval.  Note that it will be the same split iff there is only one
 * split in interval.
 */
static void
_bt_interval_edges(FindSplitData *state, SplitPoint **leftinterval,
				   SplitPoint **rightinterval)
{
	int			highsplit = Min(state->interval, state->nsplits);
	SplitPoint *deltaoptimal;

	deltaoptimal = state->splits;
	*leftinterval = NULL;
	*rightinterval = NULL;

	/*
	 * Delta is an absolute distance to optimal split point, so both the
	 * leftmost and rightmost split point will usually be at the end of the
	 * array
	 */
	for (int i = highsplit - 1; i >= 0; i--)
	{
		SplitPoint *distant = state->splits + i;

		if (distant->firstrightoff < deltaoptimal->firstrightoff)
		{
			if (*leftinterval == NULL)
				*leftinterval = distant;
		}
		else if (distant->firstrightoff > deltaoptimal->firstrightoff)
		{
			if (*rightinterval == NULL)
				*rightinterval = distant;
		}
		else if (!distant->newitemonleft && deltaoptimal->newitemonleft)
		{
			/*
			 * "incoming tuple will become firstright" (distant) is to the
			 * left of "incoming tuple will become lastleft" (delta-optimal)
			 */
			Assert(distant->firstrightoff == state->newitemoff);
			if (*leftinterval == NULL)
				*leftinterval = distant;
		}
		else if (distant->newitemonleft && !deltaoptimal->newitemonleft)
		{
			/*
			 * "incoming tuple will become lastleft" (distant) is to the right
			 * of "incoming tuple will become firstright" (delta-optimal)
			 */
			Assert(distant->firstrightoff == state->newitemoff);
			if (*rightinterval == NULL)
				*rightinterval = distant;
		}
		else
		{
			/* There was only one or two splits in initial split interval */
			Assert(distant == deltaoptimal);
			if (*leftinterval == NULL)
				*leftinterval = distant;
			if (*rightinterval == NULL)
				*rightinterval = distant;
		}

		if (*leftinterval && *rightinterval)
			return;
	}

	Assert(false);
}

/*
 * Subroutine to find penalty for caller's candidate split point.
 *
 * On leaf pages, penalty is the attribute number that distinguishes each side
 * of a split.  It's the last attribute that needs to be included in new high
 * key for left page.  It can be greater than the number of key attributes in
 * cases where a heap TID will need to be appended during truncation.
 *
 * On internal pages, penalty is simply the size of the firstright tuple for
 * the split (including line pointer overhead).  This tuple will become the
 * new high key for the left page.
 */
static inline int
_bt_split_penalty(FindSplitData *state, SplitPoint *split)
{
	IndexTuple	lastleft;
	IndexTuple	firstright;

	if (!state->is_leaf)
	{
		ItemId		itemid;

		if (!split->newitemonleft &&
			split->firstrightoff == state->newitemoff)
			return state->newitemsz;

		itemid = PageGetItemId(state->origpage, split->firstrightoff);

		return MAXALIGN(ItemIdGetLength(itemid)) + sizeof(ItemIdData);
	}

	lastleft = _bt_split_lastleft(state, split);
	firstright = _bt_split_firstright(state, split);

	return _bt_keep_natts_fast(state->rel, lastleft, firstright);
}

/*
 * Subroutine to get a lastleft IndexTuple for a split point
 */
static inline IndexTuple
_bt_split_lastleft(FindSplitData *state, SplitPoint *split)
{
	ItemId		itemid;

	if (split->newitemonleft && split->firstrightoff == state->newitemoff)
		return state->newitem;

	itemid = PageGetItemId(state->origpage,
						   OffsetNumberPrev(split->firstrightoff));
	return (IndexTuple) PageGetItem(state->origpage, itemid);
}

/*
 * Subroutine to get a firstright IndexTuple for a split point
 */
static inline IndexTuple
_bt_split_firstright(FindSplitData *state, SplitPoint *split)
{
	ItemId		itemid;

	if (!split->newitemonleft && split->firstrightoff == state->newitemoff)
		return state->newitem;

	itemid = PageGetItemId(state->origpage, split->firstrightoff);
	return (IndexTuple) PageGetItem(state->origpage, itemid);
}