1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
|
/*-------------------------------------------------------------------------
*
* nbtutils.c
* Utility code for Postgres btree implementation.
*
* Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/access/nbtree/nbtutils.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <time.h>
#include "access/nbtree.h"
#include "access/reloptions.h"
#include "access/relscan.h"
#include "catalog/catalog.h"
#include "commands/progress.h"
#include "lib/qunique.h"
#include "miscadmin.h"
#include "utils/array.h"
#include "utils/datum.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/rel.h"
typedef struct BTSortArrayContext
{
FmgrInfo flinfo;
Oid collation;
bool reverse;
} BTSortArrayContext;
static Datum _bt_find_extreme_element(IndexScanDesc scan, ScanKey skey,
StrategyNumber strat,
Datum *elems, int nelems);
static int _bt_sort_array_elements(IndexScanDesc scan, ScanKey skey,
bool reverse,
Datum *elems, int nelems);
static int _bt_compare_array_elements(const void *a, const void *b, void *arg);
static bool _bt_compare_scankey_args(IndexScanDesc scan, ScanKey op,
ScanKey leftarg, ScanKey rightarg,
bool *result);
static bool _bt_fix_scankey_strategy(ScanKey skey, int16 *indoption);
static void _bt_mark_scankey_required(ScanKey skey);
static bool _bt_check_rowcompare(ScanKey skey,
IndexTuple tuple, int tupnatts, TupleDesc tupdesc,
ScanDirection dir, bool *continuescan);
static int _bt_keep_natts(Relation rel, IndexTuple lastleft,
IndexTuple firstright, BTScanInsert itup_key);
/*
* _bt_mkscankey
* Build an insertion scan key that contains comparison data from itup
* as well as comparator routines appropriate to the key datatypes.
*
* When itup is a non-pivot tuple, the returned insertion scan key is
* suitable for finding a place for it to go on the leaf level. Pivot
* tuples can be used to re-find leaf page with matching high key, but
* then caller needs to set scan key's pivotsearch field to true. This
* allows caller to search for a leaf page with a matching high key,
* which is usually to the left of the first leaf page a non-pivot match
* might appear on.
*
* The result is intended for use with _bt_compare() and _bt_truncate().
* Callers that don't need to fill out the insertion scankey arguments
* (e.g. they use an ad-hoc comparison routine, or only need a scankey
* for _bt_truncate()) can pass a NULL index tuple. The scankey will
* be initialized as if an "all truncated" pivot tuple was passed
* instead.
*
* Note that we may occasionally have to share lock the metapage to
* determine whether or not the keys in the index are expected to be
* unique (i.e. if this is a "heapkeyspace" index). We assume a
* heapkeyspace index when caller passes a NULL tuple, allowing index
* build callers to avoid accessing the non-existent metapage. We
* also assume that the index is _not_ allequalimage when a NULL tuple
* is passed; CREATE INDEX callers call _bt_allequalimage() to set the
* field themselves.
*/
BTScanInsert
_bt_mkscankey(Relation rel, IndexTuple itup)
{
BTScanInsert key;
ScanKey skey;
TupleDesc itupdesc;
int indnkeyatts;
int16 *indoption;
int tupnatts;
int i;
itupdesc = RelationGetDescr(rel);
indnkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
indoption = rel->rd_indoption;
tupnatts = itup ? BTreeTupleGetNAtts(itup, rel) : 0;
Assert(tupnatts <= IndexRelationGetNumberOfAttributes(rel));
/*
* We'll execute search using scan key constructed on key columns.
* Truncated attributes and non-key attributes are omitted from the final
* scan key.
*/
key = palloc(offsetof(BTScanInsertData, scankeys) +
sizeof(ScanKeyData) * indnkeyatts);
if (itup)
_bt_metaversion(rel, &key->heapkeyspace, &key->allequalimage);
else
{
/* Utility statement callers can set these fields themselves */
key->heapkeyspace = true;
key->allequalimage = false;
}
key->anynullkeys = false; /* initial assumption */
key->nextkey = false;
key->pivotsearch = false;
key->keysz = Min(indnkeyatts, tupnatts);
key->scantid = key->heapkeyspace && itup ?
BTreeTupleGetHeapTID(itup) : NULL;
skey = key->scankeys;
for (i = 0; i < indnkeyatts; i++)
{
FmgrInfo *procinfo;
Datum arg;
bool null;
int flags;
/*
* We can use the cached (default) support procs since no cross-type
* comparison can be needed.
*/
procinfo = index_getprocinfo(rel, i + 1, BTORDER_PROC);
/*
* Key arguments built from truncated attributes (or when caller
* provides no tuple) are defensively represented as NULL values. They
* should never be used.
*/
if (i < tupnatts)
arg = index_getattr(itup, i + 1, itupdesc, &null);
else
{
arg = (Datum) 0;
null = true;
}
flags = (null ? SK_ISNULL : 0) | (indoption[i] << SK_BT_INDOPTION_SHIFT);
ScanKeyEntryInitializeWithInfo(&skey[i],
flags,
(AttrNumber) (i + 1),
InvalidStrategy,
InvalidOid,
rel->rd_indcollation[i],
procinfo,
arg);
/* Record if any key attribute is NULL (or truncated) */
if (null)
key->anynullkeys = true;
}
/*
* In NULLS NOT DISTINCT mode, we pretend that there are no null keys, so
* that full uniqueness check is done.
*/
if (rel->rd_index->indnullsnotdistinct)
key->anynullkeys = false;
return key;
}
/*
* free a retracement stack made by _bt_search.
*/
void
_bt_freestack(BTStack stack)
{
BTStack ostack;
while (stack != NULL)
{
ostack = stack;
stack = stack->bts_parent;
pfree(ostack);
}
}
/*
* _bt_preprocess_array_keys() -- Preprocess SK_SEARCHARRAY scan keys
*
* If there are any SK_SEARCHARRAY scan keys, deconstruct the array(s) and
* set up BTArrayKeyInfo info for each one that is an equality-type key.
* Prepare modified scan keys in so->arrayKeyData, which will hold the current
* array elements during each primitive indexscan operation. For inequality
* array keys, it's sufficient to find the extreme element value and replace
* the whole array with that scalar value.
*
* Note: the reason we need so->arrayKeyData, rather than just scribbling
* on scan->keyData, is that callers are permitted to call btrescan without
* supplying a new set of scankey data.
*/
void
_bt_preprocess_array_keys(IndexScanDesc scan)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
int numberOfKeys = scan->numberOfKeys;
int16 *indoption = scan->indexRelation->rd_indoption;
int numArrayKeys;
ScanKey cur;
int i;
MemoryContext oldContext;
/* Quick check to see if there are any array keys */
numArrayKeys = 0;
for (i = 0; i < numberOfKeys; i++)
{
cur = &scan->keyData[i];
if (cur->sk_flags & SK_SEARCHARRAY)
{
numArrayKeys++;
Assert(!(cur->sk_flags & (SK_ROW_HEADER | SK_SEARCHNULL | SK_SEARCHNOTNULL)));
/* If any arrays are null as a whole, we can quit right now. */
if (cur->sk_flags & SK_ISNULL)
{
so->numArrayKeys = -1;
so->arrayKeyData = NULL;
return;
}
}
}
/* Quit if nothing to do. */
if (numArrayKeys == 0)
{
so->numArrayKeys = 0;
so->arrayKeyData = NULL;
return;
}
/*
* Make a scan-lifespan context to hold array-associated data, or reset it
* if we already have one from a previous rescan cycle.
*/
if (so->arrayContext == NULL)
so->arrayContext = AllocSetContextCreate(CurrentMemoryContext,
"BTree array context",
ALLOCSET_SMALL_SIZES);
else
MemoryContextReset(so->arrayContext);
oldContext = MemoryContextSwitchTo(so->arrayContext);
/* Create modifiable copy of scan->keyData in the workspace context */
so->arrayKeyData = (ScanKey) palloc(scan->numberOfKeys * sizeof(ScanKeyData));
memcpy(so->arrayKeyData,
scan->keyData,
scan->numberOfKeys * sizeof(ScanKeyData));
/* Allocate space for per-array data in the workspace context */
so->arrayKeys = (BTArrayKeyInfo *) palloc0(numArrayKeys * sizeof(BTArrayKeyInfo));
/* Now process each array key */
numArrayKeys = 0;
for (i = 0; i < numberOfKeys; i++)
{
ArrayType *arrayval;
int16 elmlen;
bool elmbyval;
char elmalign;
int num_elems;
Datum *elem_values;
bool *elem_nulls;
int num_nonnulls;
int j;
cur = &so->arrayKeyData[i];
if (!(cur->sk_flags & SK_SEARCHARRAY))
continue;
/*
* First, deconstruct the array into elements. Anything allocated
* here (including a possibly detoasted array value) is in the
* workspace context.
*/
arrayval = DatumGetArrayTypeP(cur->sk_argument);
/* We could cache this data, but not clear it's worth it */
get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
&elmlen, &elmbyval, &elmalign);
deconstruct_array(arrayval,
ARR_ELEMTYPE(arrayval),
elmlen, elmbyval, elmalign,
&elem_values, &elem_nulls, &num_elems);
/*
* Compress out any null elements. We can ignore them since we assume
* all btree operators are strict.
*/
num_nonnulls = 0;
for (j = 0; j < num_elems; j++)
{
if (!elem_nulls[j])
elem_values[num_nonnulls++] = elem_values[j];
}
/* We could pfree(elem_nulls) now, but not worth the cycles */
/* If there's no non-nulls, the scan qual is unsatisfiable */
if (num_nonnulls == 0)
{
numArrayKeys = -1;
break;
}
/*
* If the comparison operator is not equality, then the array qual
* degenerates to a simple comparison against the smallest or largest
* non-null array element, as appropriate.
*/
switch (cur->sk_strategy)
{
case BTLessStrategyNumber:
case BTLessEqualStrategyNumber:
cur->sk_argument =
_bt_find_extreme_element(scan, cur,
BTGreaterStrategyNumber,
elem_values, num_nonnulls);
continue;
case BTEqualStrategyNumber:
/* proceed with rest of loop */
break;
case BTGreaterEqualStrategyNumber:
case BTGreaterStrategyNumber:
cur->sk_argument =
_bt_find_extreme_element(scan, cur,
BTLessStrategyNumber,
elem_values, num_nonnulls);
continue;
default:
elog(ERROR, "unrecognized StrategyNumber: %d",
(int) cur->sk_strategy);
break;
}
/*
* Sort the non-null elements and eliminate any duplicates. We must
* sort in the same ordering used by the index column, so that the
* successive primitive indexscans produce data in index order.
*/
num_elems = _bt_sort_array_elements(scan, cur,
(indoption[cur->sk_attno - 1] & INDOPTION_DESC) != 0,
elem_values, num_nonnulls);
/*
* And set up the BTArrayKeyInfo data.
*/
so->arrayKeys[numArrayKeys].scan_key = i;
so->arrayKeys[numArrayKeys].num_elems = num_elems;
so->arrayKeys[numArrayKeys].elem_values = elem_values;
numArrayKeys++;
}
so->numArrayKeys = numArrayKeys;
MemoryContextSwitchTo(oldContext);
}
/*
* _bt_find_extreme_element() -- get least or greatest array element
*
* scan and skey identify the index column, whose opfamily determines the
* comparison semantics. strat should be BTLessStrategyNumber to get the
* least element, or BTGreaterStrategyNumber to get the greatest.
*/
static Datum
_bt_find_extreme_element(IndexScanDesc scan, ScanKey skey,
StrategyNumber strat,
Datum *elems, int nelems)
{
Relation rel = scan->indexRelation;
Oid elemtype,
cmp_op;
RegProcedure cmp_proc;
FmgrInfo flinfo;
Datum result;
int i;
/*
* Determine the nominal datatype of the array elements. We have to
* support the convention that sk_subtype == InvalidOid means the opclass
* input type; this is a hack to simplify life for ScanKeyInit().
*/
elemtype = skey->sk_subtype;
if (elemtype == InvalidOid)
elemtype = rel->rd_opcintype[skey->sk_attno - 1];
/*
* Look up the appropriate comparison operator in the opfamily.
*
* Note: it's possible that this would fail, if the opfamily is
* incomplete, but it seems quite unlikely that an opfamily would omit
* non-cross-type comparison operators for any datatype that it supports
* at all.
*/
cmp_op = get_opfamily_member(rel->rd_opfamily[skey->sk_attno - 1],
elemtype,
elemtype,
strat);
if (!OidIsValid(cmp_op))
elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
strat, elemtype, elemtype,
rel->rd_opfamily[skey->sk_attno - 1]);
cmp_proc = get_opcode(cmp_op);
if (!RegProcedureIsValid(cmp_proc))
elog(ERROR, "missing oprcode for operator %u", cmp_op);
fmgr_info(cmp_proc, &flinfo);
Assert(nelems > 0);
result = elems[0];
for (i = 1; i < nelems; i++)
{
if (DatumGetBool(FunctionCall2Coll(&flinfo,
skey->sk_collation,
elems[i],
result)))
result = elems[i];
}
return result;
}
/*
* _bt_sort_array_elements() -- sort and de-dup array elements
*
* The array elements are sorted in-place, and the new number of elements
* after duplicate removal is returned.
*
* scan and skey identify the index column, whose opfamily determines the
* comparison semantics. If reverse is true, we sort in descending order.
*/
static int
_bt_sort_array_elements(IndexScanDesc scan, ScanKey skey,
bool reverse,
Datum *elems, int nelems)
{
Relation rel = scan->indexRelation;
Oid elemtype;
RegProcedure cmp_proc;
BTSortArrayContext cxt;
if (nelems <= 1)
return nelems; /* no work to do */
/*
* Determine the nominal datatype of the array elements. We have to
* support the convention that sk_subtype == InvalidOid means the opclass
* input type; this is a hack to simplify life for ScanKeyInit().
*/
elemtype = skey->sk_subtype;
if (elemtype == InvalidOid)
elemtype = rel->rd_opcintype[skey->sk_attno - 1];
/*
* Look up the appropriate comparison function in the opfamily.
*
* Note: it's possible that this would fail, if the opfamily is
* incomplete, but it seems quite unlikely that an opfamily would omit
* non-cross-type support functions for any datatype that it supports at
* all.
*/
cmp_proc = get_opfamily_proc(rel->rd_opfamily[skey->sk_attno - 1],
elemtype,
elemtype,
BTORDER_PROC);
if (!RegProcedureIsValid(cmp_proc))
elog(ERROR, "missing support function %d(%u,%u) in opfamily %u",
BTORDER_PROC, elemtype, elemtype,
rel->rd_opfamily[skey->sk_attno - 1]);
/* Sort the array elements */
fmgr_info(cmp_proc, &cxt.flinfo);
cxt.collation = skey->sk_collation;
cxt.reverse = reverse;
qsort_arg((void *) elems, nelems, sizeof(Datum),
_bt_compare_array_elements, (void *) &cxt);
/* Now scan the sorted elements and remove duplicates */
return qunique_arg(elems, nelems, sizeof(Datum),
_bt_compare_array_elements, &cxt);
}
/*
* qsort_arg comparator for sorting array elements
*/
static int
_bt_compare_array_elements(const void *a, const void *b, void *arg)
{
Datum da = *((const Datum *) a);
Datum db = *((const Datum *) b);
BTSortArrayContext *cxt = (BTSortArrayContext *) arg;
int32 compare;
compare = DatumGetInt32(FunctionCall2Coll(&cxt->flinfo,
cxt->collation,
da, db));
if (cxt->reverse)
INVERT_COMPARE_RESULT(compare);
return compare;
}
/*
* _bt_start_array_keys() -- Initialize array keys at start of a scan
*
* Set up the cur_elem counters and fill in the first sk_argument value for
* each array scankey. We can't do this until we know the scan direction.
*/
void
_bt_start_array_keys(IndexScanDesc scan, ScanDirection dir)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
int i;
for (i = 0; i < so->numArrayKeys; i++)
{
BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i];
ScanKey skey = &so->arrayKeyData[curArrayKey->scan_key];
Assert(curArrayKey->num_elems > 0);
if (ScanDirectionIsBackward(dir))
curArrayKey->cur_elem = curArrayKey->num_elems - 1;
else
curArrayKey->cur_elem = 0;
skey->sk_argument = curArrayKey->elem_values[curArrayKey->cur_elem];
}
so->arraysStarted = true;
}
/*
* _bt_advance_array_keys() -- Advance to next set of array elements
*
* Returns true if there is another set of values to consider, false if not.
* On true result, the scankeys are initialized with the next set of values.
*/
bool
_bt_advance_array_keys(IndexScanDesc scan, ScanDirection dir)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
bool found = false;
int i;
/*
* We must advance the last array key most quickly, since it will
* correspond to the lowest-order index column among the available
* qualifications. This is necessary to ensure correct ordering of output
* when there are multiple array keys.
*/
for (i = so->numArrayKeys - 1; i >= 0; i--)
{
BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i];
ScanKey skey = &so->arrayKeyData[curArrayKey->scan_key];
int cur_elem = curArrayKey->cur_elem;
int num_elems = curArrayKey->num_elems;
if (ScanDirectionIsBackward(dir))
{
if (--cur_elem < 0)
{
cur_elem = num_elems - 1;
found = false; /* need to advance next array key */
}
else
found = true;
}
else
{
if (++cur_elem >= num_elems)
{
cur_elem = 0;
found = false; /* need to advance next array key */
}
else
found = true;
}
curArrayKey->cur_elem = cur_elem;
skey->sk_argument = curArrayKey->elem_values[cur_elem];
if (found)
break;
}
/* advance parallel scan */
if (scan->parallel_scan != NULL)
_bt_parallel_advance_array_keys(scan);
/*
* When no new array keys were found, the scan is "past the end" of the
* array keys. _bt_start_array_keys can still "restart" the array keys if
* a rescan is required.
*/
if (!found)
so->arraysStarted = false;
return found;
}
/*
* _bt_mark_array_keys() -- Handle array keys during btmarkpos
*
* Save the current state of the array keys as the "mark" position.
*/
void
_bt_mark_array_keys(IndexScanDesc scan)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
int i;
for (i = 0; i < so->numArrayKeys; i++)
{
BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i];
curArrayKey->mark_elem = curArrayKey->cur_elem;
}
}
/*
* _bt_restore_array_keys() -- Handle array keys during btrestrpos
*
* Restore the array keys to where they were when the mark was set.
*/
void
_bt_restore_array_keys(IndexScanDesc scan)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
bool changed = false;
int i;
/* Restore each array key to its position when the mark was set */
for (i = 0; i < so->numArrayKeys; i++)
{
BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i];
ScanKey skey = &so->arrayKeyData[curArrayKey->scan_key];
int mark_elem = curArrayKey->mark_elem;
if (curArrayKey->cur_elem != mark_elem)
{
curArrayKey->cur_elem = mark_elem;
skey->sk_argument = curArrayKey->elem_values[mark_elem];
changed = true;
}
}
/*
* If we changed any keys, we must redo _bt_preprocess_keys. That might
* sound like overkill, but in cases with multiple keys per index column
* it seems necessary to do the full set of pushups.
*
* Also do this whenever the scan's set of array keys "wrapped around" at
* the end of the last primitive index scan. There won't have been a call
* to _bt_preprocess_keys from some other place following wrap around, so
* we do it for ourselves.
*/
if (changed || !so->arraysStarted)
{
_bt_preprocess_keys(scan);
/* The mark should have been set on a consistent set of keys... */
Assert(so->qual_ok);
}
}
/*
* _bt_preprocess_keys() -- Preprocess scan keys
*
* The given search-type keys (in scan->keyData[] or so->arrayKeyData[])
* are copied to so->keyData[] with possible transformation.
* scan->numberOfKeys is the number of input keys, so->numberOfKeys gets
* the number of output keys (possibly less, never greater).
*
* The output keys are marked with additional sk_flags bits beyond the
* system-standard bits supplied by the caller. The DESC and NULLS_FIRST
* indoption bits for the relevant index attribute are copied into the flags.
* Also, for a DESC column, we commute (flip) all the sk_strategy numbers
* so that the index sorts in the desired direction.
*
* One key purpose of this routine is to discover which scan keys must be
* satisfied to continue the scan. It also attempts to eliminate redundant
* keys and detect contradictory keys. (If the index opfamily provides
* incomplete sets of cross-type operators, we may fail to detect redundant
* or contradictory keys, but we can survive that.)
*
* The output keys must be sorted by index attribute. Presently we expect
* (but verify) that the input keys are already so sorted --- this is done
* by match_clauses_to_index() in indxpath.c. Some reordering of the keys
* within each attribute may be done as a byproduct of the processing here,
* but no other code depends on that.
*
* The output keys are marked with flags SK_BT_REQFWD and/or SK_BT_REQBKWD
* if they must be satisfied in order to continue the scan forward or backward
* respectively. _bt_checkkeys uses these flags. For example, if the quals
* are "x = 1 AND y < 4 AND z < 5", then _bt_checkkeys will reject a tuple
* (1,2,7), but we must continue the scan in case there are tuples (1,3,z).
* But once we reach tuples like (1,4,z) we can stop scanning because no
* later tuples could match. This is reflected by marking the x and y keys,
* but not the z key, with SK_BT_REQFWD. In general, the keys for leading
* attributes with "=" keys are marked both SK_BT_REQFWD and SK_BT_REQBKWD.
* For the first attribute without an "=" key, any "<" and "<=" keys are
* marked SK_BT_REQFWD while any ">" and ">=" keys are marked SK_BT_REQBKWD.
* This can be seen to be correct by considering the above example. Note
* in particular that if there are no keys for a given attribute, the keys for
* subsequent attributes can never be required; for instance "WHERE y = 4"
* requires a full-index scan.
*
* If possible, redundant keys are eliminated: we keep only the tightest
* >/>= bound and the tightest </<= bound, and if there's an = key then
* that's the only one returned. (So, we return either a single = key,
* or one or two boundary-condition keys for each attr.) However, if we
* cannot compare two keys for lack of a suitable cross-type operator,
* we cannot eliminate either. If there are two such keys of the same
* operator strategy, the second one is just pushed into the output array
* without further processing here. We may also emit both >/>= or both
* </<= keys if we can't compare them. The logic about required keys still
* works if we don't eliminate redundant keys.
*
* Note that one reason we need direction-sensitive required-key flags is
* precisely that we may not be able to eliminate redundant keys. Suppose
* we have "x > 4::int AND x > 10::bigint", and we are unable to determine
* which key is more restrictive for lack of a suitable cross-type operator.
* _bt_first will arbitrarily pick one of the keys to do the initial
* positioning with. If it picks x > 4, then the x > 10 condition will fail
* until we reach index entries > 10; but we can't stop the scan just because
* x > 10 is failing. On the other hand, if we are scanning backwards, then
* failure of either key is indeed enough to stop the scan. (In general, when
* inequality keys are present, the initial-positioning code only promises to
* position before the first possible match, not exactly at the first match,
* for a forward scan; or after the last match for a backward scan.)
*
* As a byproduct of this work, we can detect contradictory quals such
* as "x = 1 AND x > 2". If we see that, we return so->qual_ok = false,
* indicating the scan need not be run at all since no tuples can match.
* (In this case we do not bother completing the output key array!)
* Again, missing cross-type operators might cause us to fail to prove the
* quals contradictory when they really are, but the scan will work correctly.
*
* Row comparison keys are currently also treated without any smarts:
* we just transfer them into the preprocessed array without any
* editorialization. We can treat them the same as an ordinary inequality
* comparison on the row's first index column, for the purposes of the logic
* about required keys.
*
* Note: the reason we have to copy the preprocessed scan keys into private
* storage is that we are modifying the array based on comparisons of the
* key argument values, which could change on a rescan or after moving to
* new elements of array keys. Therefore we can't overwrite the source data.
*/
void
_bt_preprocess_keys(IndexScanDesc scan)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
int numberOfKeys = scan->numberOfKeys;
int16 *indoption = scan->indexRelation->rd_indoption;
int new_numberOfKeys;
int numberOfEqualCols;
ScanKey inkeys;
ScanKey outkeys;
ScanKey cur;
ScanKey xform[BTMaxStrategyNumber];
bool test_result;
int i,
j;
AttrNumber attno;
/* initialize result variables */
so->qual_ok = true;
so->numberOfKeys = 0;
if (numberOfKeys < 1)
return; /* done if qual-less scan */
/*
* Read so->arrayKeyData if array keys are present, else scan->keyData
*/
if (so->arrayKeyData != NULL)
inkeys = so->arrayKeyData;
else
inkeys = scan->keyData;
outkeys = so->keyData;
cur = &inkeys[0];
/* we check that input keys are correctly ordered */
if (cur->sk_attno < 1)
elog(ERROR, "btree index keys must be ordered by attribute");
/* We can short-circuit most of the work if there's just one key */
if (numberOfKeys == 1)
{
/* Apply indoption to scankey (might change sk_strategy!) */
if (!_bt_fix_scankey_strategy(cur, indoption))
so->qual_ok = false;
memcpy(outkeys, cur, sizeof(ScanKeyData));
so->numberOfKeys = 1;
/* We can mark the qual as required if it's for first index col */
if (cur->sk_attno == 1)
_bt_mark_scankey_required(outkeys);
return;
}
/*
* Otherwise, do the full set of pushups.
*/
new_numberOfKeys = 0;
numberOfEqualCols = 0;
/*
* Initialize for processing of keys for attr 1.
*
* xform[i] points to the currently best scan key of strategy type i+1; it
* is NULL if we haven't yet found such a key for this attr.
*/
attno = 1;
memset(xform, 0, sizeof(xform));
/*
* Loop iterates from 0 to numberOfKeys inclusive; we use the last pass to
* handle after-last-key processing. Actual exit from the loop is at the
* "break" statement below.
*/
for (i = 0;; cur++, i++)
{
if (i < numberOfKeys)
{
/* Apply indoption to scankey (might change sk_strategy!) */
if (!_bt_fix_scankey_strategy(cur, indoption))
{
/* NULL can't be matched, so give up */
so->qual_ok = false;
return;
}
}
/*
* If we are at the end of the keys for a particular attr, finish up
* processing and emit the cleaned-up keys.
*/
if (i == numberOfKeys || cur->sk_attno != attno)
{
int priorNumberOfEqualCols = numberOfEqualCols;
/* check input keys are correctly ordered */
if (i < numberOfKeys && cur->sk_attno < attno)
elog(ERROR, "btree index keys must be ordered by attribute");
/*
* If = has been specified, all other keys can be eliminated as
* redundant. If we have a case like key = 1 AND key > 2, we can
* set qual_ok to false and abandon further processing.
*
* We also have to deal with the case of "key IS NULL", which is
* unsatisfiable in combination with any other index condition. By
* the time we get here, that's been classified as an equality
* check, and we've rejected any combination of it with a regular
* equality condition; but not with other types of conditions.
*/
if (xform[BTEqualStrategyNumber - 1])
{
ScanKey eq = xform[BTEqualStrategyNumber - 1];
for (j = BTMaxStrategyNumber; --j >= 0;)
{
ScanKey chk = xform[j];
if (!chk || j == (BTEqualStrategyNumber - 1))
continue;
if (eq->sk_flags & SK_SEARCHNULL)
{
/* IS NULL is contradictory to anything else */
so->qual_ok = false;
return;
}
if (_bt_compare_scankey_args(scan, chk, eq, chk,
&test_result))
{
if (!test_result)
{
/* keys proven mutually contradictory */
so->qual_ok = false;
return;
}
/* else discard the redundant non-equality key */
xform[j] = NULL;
}
/* else, cannot determine redundancy, keep both keys */
}
/* track number of attrs for which we have "=" keys */
numberOfEqualCols++;
}
/* try to keep only one of <, <= */
if (xform[BTLessStrategyNumber - 1]
&& xform[BTLessEqualStrategyNumber - 1])
{
ScanKey lt = xform[BTLessStrategyNumber - 1];
ScanKey le = xform[BTLessEqualStrategyNumber - 1];
if (_bt_compare_scankey_args(scan, le, lt, le,
&test_result))
{
if (test_result)
xform[BTLessEqualStrategyNumber - 1] = NULL;
else
xform[BTLessStrategyNumber - 1] = NULL;
}
}
/* try to keep only one of >, >= */
if (xform[BTGreaterStrategyNumber - 1]
&& xform[BTGreaterEqualStrategyNumber - 1])
{
ScanKey gt = xform[BTGreaterStrategyNumber - 1];
ScanKey ge = xform[BTGreaterEqualStrategyNumber - 1];
if (_bt_compare_scankey_args(scan, ge, gt, ge,
&test_result))
{
if (test_result)
xform[BTGreaterEqualStrategyNumber - 1] = NULL;
else
xform[BTGreaterStrategyNumber - 1] = NULL;
}
}
/*
* Emit the cleaned-up keys into the outkeys[] array, and then
* mark them if they are required. They are required (possibly
* only in one direction) if all attrs before this one had "=".
*/
for (j = BTMaxStrategyNumber; --j >= 0;)
{
if (xform[j])
{
ScanKey outkey = &outkeys[new_numberOfKeys++];
memcpy(outkey, xform[j], sizeof(ScanKeyData));
if (priorNumberOfEqualCols == attno - 1)
_bt_mark_scankey_required(outkey);
}
}
/*
* Exit loop here if done.
*/
if (i == numberOfKeys)
break;
/* Re-initialize for new attno */
attno = cur->sk_attno;
memset(xform, 0, sizeof(xform));
}
/* check strategy this key's operator corresponds to */
j = cur->sk_strategy - 1;
/* if row comparison, push it directly to the output array */
if (cur->sk_flags & SK_ROW_HEADER)
{
ScanKey outkey = &outkeys[new_numberOfKeys++];
memcpy(outkey, cur, sizeof(ScanKeyData));
if (numberOfEqualCols == attno - 1)
_bt_mark_scankey_required(outkey);
/*
* We don't support RowCompare using equality; such a qual would
* mess up the numberOfEqualCols tracking.
*/
Assert(j != (BTEqualStrategyNumber - 1));
continue;
}
/* have we seen one of these before? */
if (xform[j] == NULL)
{
/* nope, so remember this scankey */
xform[j] = cur;
}
else
{
/* yup, keep only the more restrictive key */
if (_bt_compare_scankey_args(scan, cur, cur, xform[j],
&test_result))
{
if (test_result)
xform[j] = cur;
else if (j == (BTEqualStrategyNumber - 1))
{
/* key == a && key == b, but a != b */
so->qual_ok = false;
return;
}
/* else old key is more restrictive, keep it */
}
else
{
/*
* We can't determine which key is more restrictive. Keep the
* previous one in xform[j] and push this one directly to the
* output array.
*/
ScanKey outkey = &outkeys[new_numberOfKeys++];
memcpy(outkey, cur, sizeof(ScanKeyData));
if (numberOfEqualCols == attno - 1)
_bt_mark_scankey_required(outkey);
}
}
}
so->numberOfKeys = new_numberOfKeys;
}
/*
* Compare two scankey values using a specified operator.
*
* The test we want to perform is logically "leftarg op rightarg", where
* leftarg and rightarg are the sk_argument values in those ScanKeys, and
* the comparison operator is the one in the op ScanKey. However, in
* cross-data-type situations we may need to look up the correct operator in
* the index's opfamily: it is the one having amopstrategy = op->sk_strategy
* and amoplefttype/amoprighttype equal to the two argument datatypes.
*
* If the opfamily doesn't supply a complete set of cross-type operators we
* may not be able to make the comparison. If we can make the comparison
* we store the operator result in *result and return true. We return false
* if the comparison could not be made.
*
* Note: op always points at the same ScanKey as either leftarg or rightarg.
* Since we don't scribble on the scankeys, this aliasing should cause no
* trouble.
*
* Note: this routine needs to be insensitive to any DESC option applied
* to the index column. For example, "x < 4" is a tighter constraint than
* "x < 5" regardless of which way the index is sorted.
*/
static bool
_bt_compare_scankey_args(IndexScanDesc scan, ScanKey op,
ScanKey leftarg, ScanKey rightarg,
bool *result)
{
Relation rel = scan->indexRelation;
Oid lefttype,
righttype,
optype,
opcintype,
cmp_op;
StrategyNumber strat;
/*
* First, deal with cases where one or both args are NULL. This should
* only happen when the scankeys represent IS NULL/NOT NULL conditions.
*/
if ((leftarg->sk_flags | rightarg->sk_flags) & SK_ISNULL)
{
bool leftnull,
rightnull;
if (leftarg->sk_flags & SK_ISNULL)
{
Assert(leftarg->sk_flags & (SK_SEARCHNULL | SK_SEARCHNOTNULL));
leftnull = true;
}
else
leftnull = false;
if (rightarg->sk_flags & SK_ISNULL)
{
Assert(rightarg->sk_flags & (SK_SEARCHNULL | SK_SEARCHNOTNULL));
rightnull = true;
}
else
rightnull = false;
/*
* We treat NULL as either greater than or less than all other values.
* Since true > false, the tests below work correctly for NULLS LAST
* logic. If the index is NULLS FIRST, we need to flip the strategy.
*/
strat = op->sk_strategy;
if (op->sk_flags & SK_BT_NULLS_FIRST)
strat = BTCommuteStrategyNumber(strat);
switch (strat)
{
case BTLessStrategyNumber:
*result = (leftnull < rightnull);
break;
case BTLessEqualStrategyNumber:
*result = (leftnull <= rightnull);
break;
case BTEqualStrategyNumber:
*result = (leftnull == rightnull);
break;
case BTGreaterEqualStrategyNumber:
*result = (leftnull >= rightnull);
break;
case BTGreaterStrategyNumber:
*result = (leftnull > rightnull);
break;
default:
elog(ERROR, "unrecognized StrategyNumber: %d", (int) strat);
*result = false; /* keep compiler quiet */
break;
}
return true;
}
/*
* The opfamily we need to worry about is identified by the index column.
*/
Assert(leftarg->sk_attno == rightarg->sk_attno);
opcintype = rel->rd_opcintype[leftarg->sk_attno - 1];
/*
* Determine the actual datatypes of the ScanKey arguments. We have to
* support the convention that sk_subtype == InvalidOid means the opclass
* input type; this is a hack to simplify life for ScanKeyInit().
*/
lefttype = leftarg->sk_subtype;
if (lefttype == InvalidOid)
lefttype = opcintype;
righttype = rightarg->sk_subtype;
if (righttype == InvalidOid)
righttype = opcintype;
optype = op->sk_subtype;
if (optype == InvalidOid)
optype = opcintype;
/*
* If leftarg and rightarg match the types expected for the "op" scankey,
* we can use its already-looked-up comparison function.
*/
if (lefttype == opcintype && righttype == optype)
{
*result = DatumGetBool(FunctionCall2Coll(&op->sk_func,
op->sk_collation,
leftarg->sk_argument,
rightarg->sk_argument));
return true;
}
/*
* Otherwise, we need to go to the syscache to find the appropriate
* operator. (This cannot result in infinite recursion, since no
* indexscan initiated by syscache lookup will use cross-data-type
* operators.)
*
* If the sk_strategy was flipped by _bt_fix_scankey_strategy, we have to
* un-flip it to get the correct opfamily member.
*/
strat = op->sk_strategy;
if (op->sk_flags & SK_BT_DESC)
strat = BTCommuteStrategyNumber(strat);
cmp_op = get_opfamily_member(rel->rd_opfamily[leftarg->sk_attno - 1],
lefttype,
righttype,
strat);
if (OidIsValid(cmp_op))
{
RegProcedure cmp_proc = get_opcode(cmp_op);
if (RegProcedureIsValid(cmp_proc))
{
*result = DatumGetBool(OidFunctionCall2Coll(cmp_proc,
op->sk_collation,
leftarg->sk_argument,
rightarg->sk_argument));
return true;
}
}
/* Can't make the comparison */
*result = false; /* suppress compiler warnings */
return false;
}
/*
* Adjust a scankey's strategy and flags setting as needed for indoptions.
*
* We copy the appropriate indoption value into the scankey sk_flags
* (shifting to avoid clobbering system-defined flag bits). Also, if
* the DESC option is set, commute (flip) the operator strategy number.
*
* A secondary purpose is to check for IS NULL/NOT NULL scankeys and set up
* the strategy field correctly for them.
*
* Lastly, for ordinary scankeys (not IS NULL/NOT NULL), we check for a
* NULL comparison value. Since all btree operators are assumed strict,
* a NULL means that the qual cannot be satisfied. We return true if the
* comparison value isn't NULL, or false if the scan should be abandoned.
*
* This function is applied to the *input* scankey structure; therefore
* on a rescan we will be looking at already-processed scankeys. Hence
* we have to be careful not to re-commute the strategy if we already did it.
* It's a bit ugly to modify the caller's copy of the scankey but in practice
* there shouldn't be any problem, since the index's indoptions are certainly
* not going to change while the scankey survives.
*/
static bool
_bt_fix_scankey_strategy(ScanKey skey, int16 *indoption)
{
int addflags;
addflags = indoption[skey->sk_attno - 1] << SK_BT_INDOPTION_SHIFT;
/*
* We treat all btree operators as strict (even if they're not so marked
* in pg_proc). This means that it is impossible for an operator condition
* with a NULL comparison constant to succeed, and we can reject it right
* away.
*
* However, we now also support "x IS NULL" clauses as search conditions,
* so in that case keep going. The planner has not filled in any
* particular strategy in this case, so set it to BTEqualStrategyNumber
* --- we can treat IS NULL as an equality operator for purposes of search
* strategy.
*
* Likewise, "x IS NOT NULL" is supported. We treat that as either "less
* than NULL" in a NULLS LAST index, or "greater than NULL" in a NULLS
* FIRST index.
*
* Note: someday we might have to fill in sk_collation from the index
* column's collation. At the moment this is a non-issue because we'll
* never actually call the comparison operator on a NULL.
*/
if (skey->sk_flags & SK_ISNULL)
{
/* SK_ISNULL shouldn't be set in a row header scankey */
Assert(!(skey->sk_flags & SK_ROW_HEADER));
/* Set indoption flags in scankey (might be done already) */
skey->sk_flags |= addflags;
/* Set correct strategy for IS NULL or NOT NULL search */
if (skey->sk_flags & SK_SEARCHNULL)
{
skey->sk_strategy = BTEqualStrategyNumber;
skey->sk_subtype = InvalidOid;
skey->sk_collation = InvalidOid;
}
else if (skey->sk_flags & SK_SEARCHNOTNULL)
{
if (skey->sk_flags & SK_BT_NULLS_FIRST)
skey->sk_strategy = BTGreaterStrategyNumber;
else
skey->sk_strategy = BTLessStrategyNumber;
skey->sk_subtype = InvalidOid;
skey->sk_collation = InvalidOid;
}
else
{
/* regular qual, so it cannot be satisfied */
return false;
}
/* Needn't do the rest */
return true;
}
/* Adjust strategy for DESC, if we didn't already */
if ((addflags & SK_BT_DESC) && !(skey->sk_flags & SK_BT_DESC))
skey->sk_strategy = BTCommuteStrategyNumber(skey->sk_strategy);
skey->sk_flags |= addflags;
/* If it's a row header, fix row member flags and strategies similarly */
if (skey->sk_flags & SK_ROW_HEADER)
{
ScanKey subkey = (ScanKey) DatumGetPointer(skey->sk_argument);
for (;;)
{
Assert(subkey->sk_flags & SK_ROW_MEMBER);
addflags = indoption[subkey->sk_attno - 1] << SK_BT_INDOPTION_SHIFT;
if ((addflags & SK_BT_DESC) && !(subkey->sk_flags & SK_BT_DESC))
subkey->sk_strategy = BTCommuteStrategyNumber(subkey->sk_strategy);
subkey->sk_flags |= addflags;
if (subkey->sk_flags & SK_ROW_END)
break;
subkey++;
}
}
return true;
}
/*
* Mark a scankey as "required to continue the scan".
*
* Depending on the operator type, the key may be required for both scan
* directions or just one. Also, if the key is a row comparison header,
* we have to mark its first subsidiary ScanKey as required. (Subsequent
* subsidiary ScanKeys are normally for lower-order columns, and thus
* cannot be required, since they're after the first non-equality scankey.)
*
* Note: when we set required-key flag bits in a subsidiary scankey, we are
* scribbling on a data structure belonging to the index AM's caller, not on
* our private copy. This should be OK because the marking will not change
* from scan to scan within a query, and so we'd just re-mark the same way
* anyway on a rescan. Something to keep an eye on though.
*/
static void
_bt_mark_scankey_required(ScanKey skey)
{
int addflags;
switch (skey->sk_strategy)
{
case BTLessStrategyNumber:
case BTLessEqualStrategyNumber:
addflags = SK_BT_REQFWD;
break;
case BTEqualStrategyNumber:
addflags = SK_BT_REQFWD | SK_BT_REQBKWD;
break;
case BTGreaterEqualStrategyNumber:
case BTGreaterStrategyNumber:
addflags = SK_BT_REQBKWD;
break;
default:
elog(ERROR, "unrecognized StrategyNumber: %d",
(int) skey->sk_strategy);
addflags = 0; /* keep compiler quiet */
break;
}
skey->sk_flags |= addflags;
if (skey->sk_flags & SK_ROW_HEADER)
{
ScanKey subkey = (ScanKey) DatumGetPointer(skey->sk_argument);
/* First subkey should be same column/operator as the header */
Assert(subkey->sk_flags & SK_ROW_MEMBER);
Assert(subkey->sk_attno == skey->sk_attno);
Assert(subkey->sk_strategy == skey->sk_strategy);
subkey->sk_flags |= addflags;
}
}
/*
* Test whether an indextuple satisfies all the scankey conditions.
*
* Return true if so, false if not. If the tuple fails to pass the qual,
* we also determine whether there's any need to continue the scan beyond
* this tuple, and set *continuescan accordingly. See comments for
* _bt_preprocess_keys(), above, about how this is done.
*
* Forward scan callers can pass a high key tuple in the hopes of having
* us set *continuescan to false, and avoiding an unnecessary visit to
* the page to the right.
*
* scan: index scan descriptor (containing a search-type scankey)
* tuple: index tuple to test
* tupnatts: number of attributes in tupnatts (high key may be truncated)
* dir: direction we are scanning in
* continuescan: output parameter (will be set correctly in all cases)
*/
bool
_bt_checkkeys(IndexScanDesc scan, IndexTuple tuple, int tupnatts,
ScanDirection dir, bool *continuescan)
{
TupleDesc tupdesc;
BTScanOpaque so;
int keysz;
int ikey;
ScanKey key;
Assert(BTreeTupleGetNAtts(tuple, scan->indexRelation) == tupnatts);
*continuescan = true; /* default assumption */
tupdesc = RelationGetDescr(scan->indexRelation);
so = (BTScanOpaque) scan->opaque;
keysz = so->numberOfKeys;
for (key = so->keyData, ikey = 0; ikey < keysz; key++, ikey++)
{
Datum datum;
bool isNull;
Datum test;
if (key->sk_attno > tupnatts)
{
/*
* This attribute is truncated (must be high key). The value for
* this attribute in the first non-pivot tuple on the page to the
* right could be any possible value. Assume that truncated
* attribute passes the qual.
*/
Assert(ScanDirectionIsForward(dir));
Assert(BTreeTupleIsPivot(tuple));
continue;
}
/* row-comparison keys need special processing */
if (key->sk_flags & SK_ROW_HEADER)
{
if (_bt_check_rowcompare(key, tuple, tupnatts, tupdesc, dir,
continuescan))
continue;
return false;
}
datum = index_getattr(tuple,
key->sk_attno,
tupdesc,
&isNull);
if (key->sk_flags & SK_ISNULL)
{
/* Handle IS NULL/NOT NULL tests */
if (key->sk_flags & SK_SEARCHNULL)
{
if (isNull)
continue; /* tuple satisfies this qual */
}
else
{
Assert(key->sk_flags & SK_SEARCHNOTNULL);
if (!isNull)
continue; /* tuple satisfies this qual */
}
/*
* Tuple fails this qual. If it's a required qual for the current
* scan direction, then we can conclude no further tuples will
* pass, either.
*/
if ((key->sk_flags & SK_BT_REQFWD) &&
ScanDirectionIsForward(dir))
*continuescan = false;
else if ((key->sk_flags & SK_BT_REQBKWD) &&
ScanDirectionIsBackward(dir))
*continuescan = false;
/*
* In any case, this indextuple doesn't match the qual.
*/
return false;
}
if (isNull)
{
if (key->sk_flags & SK_BT_NULLS_FIRST)
{
/*
* Since NULLs are sorted before non-NULLs, we know we have
* reached the lower limit of the range of values for this
* index attr. On a backward scan, we can stop if this qual
* is one of the "must match" subset. We can stop regardless
* of whether the qual is > or <, so long as it's required,
* because it's not possible for any future tuples to pass. On
* a forward scan, however, we must keep going, because we may
* have initially positioned to the start of the index.
*/
if ((key->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
ScanDirectionIsBackward(dir))
*continuescan = false;
}
else
{
/*
* Since NULLs are sorted after non-NULLs, we know we have
* reached the upper limit of the range of values for this
* index attr. On a forward scan, we can stop if this qual is
* one of the "must match" subset. We can stop regardless of
* whether the qual is > or <, so long as it's required,
* because it's not possible for any future tuples to pass. On
* a backward scan, however, we must keep going, because we
* may have initially positioned to the end of the index.
*/
if ((key->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
ScanDirectionIsForward(dir))
*continuescan = false;
}
/*
* In any case, this indextuple doesn't match the qual.
*/
return false;
}
test = FunctionCall2Coll(&key->sk_func, key->sk_collation,
datum, key->sk_argument);
if (!DatumGetBool(test))
{
/*
* Tuple fails this qual. If it's a required qual for the current
* scan direction, then we can conclude no further tuples will
* pass, either.
*
* Note: because we stop the scan as soon as any required equality
* qual fails, it is critical that equality quals be used for the
* initial positioning in _bt_first() when they are available. See
* comments in _bt_first().
*/
if ((key->sk_flags & SK_BT_REQFWD) &&
ScanDirectionIsForward(dir))
*continuescan = false;
else if ((key->sk_flags & SK_BT_REQBKWD) &&
ScanDirectionIsBackward(dir))
*continuescan = false;
/*
* In any case, this indextuple doesn't match the qual.
*/
return false;
}
}
/* If we get here, the tuple passes all index quals. */
return true;
}
/*
* Test whether an indextuple satisfies a row-comparison scan condition.
*
* Return true if so, false if not. If not, also clear *continuescan if
* it's not possible for any future tuples in the current scan direction
* to pass the qual.
*
* This is a subroutine for _bt_checkkeys, which see for more info.
*/
static bool
_bt_check_rowcompare(ScanKey skey, IndexTuple tuple, int tupnatts,
TupleDesc tupdesc, ScanDirection dir, bool *continuescan)
{
ScanKey subkey = (ScanKey) DatumGetPointer(skey->sk_argument);
int32 cmpresult = 0;
bool result;
/* First subkey should be same as the header says */
Assert(subkey->sk_attno == skey->sk_attno);
/* Loop over columns of the row condition */
for (;;)
{
Datum datum;
bool isNull;
Assert(subkey->sk_flags & SK_ROW_MEMBER);
if (subkey->sk_attno > tupnatts)
{
/*
* This attribute is truncated (must be high key). The value for
* this attribute in the first non-pivot tuple on the page to the
* right could be any possible value. Assume that truncated
* attribute passes the qual.
*/
Assert(ScanDirectionIsForward(dir));
Assert(BTreeTupleIsPivot(tuple));
cmpresult = 0;
if (subkey->sk_flags & SK_ROW_END)
break;
subkey++;
continue;
}
datum = index_getattr(tuple,
subkey->sk_attno,
tupdesc,
&isNull);
if (isNull)
{
if (subkey->sk_flags & SK_BT_NULLS_FIRST)
{
/*
* Since NULLs are sorted before non-NULLs, we know we have
* reached the lower limit of the range of values for this
* index attr. On a backward scan, we can stop if this qual
* is one of the "must match" subset. We can stop regardless
* of whether the qual is > or <, so long as it's required,
* because it's not possible for any future tuples to pass. On
* a forward scan, however, we must keep going, because we may
* have initially positioned to the start of the index.
*/
if ((subkey->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
ScanDirectionIsBackward(dir))
*continuescan = false;
}
else
{
/*
* Since NULLs are sorted after non-NULLs, we know we have
* reached the upper limit of the range of values for this
* index attr. On a forward scan, we can stop if this qual is
* one of the "must match" subset. We can stop regardless of
* whether the qual is > or <, so long as it's required,
* because it's not possible for any future tuples to pass. On
* a backward scan, however, we must keep going, because we
* may have initially positioned to the end of the index.
*/
if ((subkey->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
ScanDirectionIsForward(dir))
*continuescan = false;
}
/*
* In any case, this indextuple doesn't match the qual.
*/
return false;
}
if (subkey->sk_flags & SK_ISNULL)
{
/*
* Unlike the simple-scankey case, this isn't a disallowed case.
* But it can never match. If all the earlier row comparison
* columns are required for the scan direction, we can stop the
* scan, because there can't be another tuple that will succeed.
*/
if (subkey != (ScanKey) DatumGetPointer(skey->sk_argument))
subkey--;
if ((subkey->sk_flags & SK_BT_REQFWD) &&
ScanDirectionIsForward(dir))
*continuescan = false;
else if ((subkey->sk_flags & SK_BT_REQBKWD) &&
ScanDirectionIsBackward(dir))
*continuescan = false;
return false;
}
/* Perform the test --- three-way comparison not bool operator */
cmpresult = DatumGetInt32(FunctionCall2Coll(&subkey->sk_func,
subkey->sk_collation,
datum,
subkey->sk_argument));
if (subkey->sk_flags & SK_BT_DESC)
INVERT_COMPARE_RESULT(cmpresult);
/* Done comparing if unequal, else advance to next column */
if (cmpresult != 0)
break;
if (subkey->sk_flags & SK_ROW_END)
break;
subkey++;
}
/*
* At this point cmpresult indicates the overall result of the row
* comparison, and subkey points to the deciding column (or the last
* column if the result is "=").
*/
switch (subkey->sk_strategy)
{
/* EQ and NE cases aren't allowed here */
case BTLessStrategyNumber:
result = (cmpresult < 0);
break;
case BTLessEqualStrategyNumber:
result = (cmpresult <= 0);
break;
case BTGreaterEqualStrategyNumber:
result = (cmpresult >= 0);
break;
case BTGreaterStrategyNumber:
result = (cmpresult > 0);
break;
default:
elog(ERROR, "unrecognized RowCompareType: %d",
(int) subkey->sk_strategy);
result = 0; /* keep compiler quiet */
break;
}
if (!result)
{
/*
* Tuple fails this qual. If it's a required qual for the current
* scan direction, then we can conclude no further tuples will pass,
* either. Note we have to look at the deciding column, not
* necessarily the first or last column of the row condition.
*/
if ((subkey->sk_flags & SK_BT_REQFWD) &&
ScanDirectionIsForward(dir))
*continuescan = false;
else if ((subkey->sk_flags & SK_BT_REQBKWD) &&
ScanDirectionIsBackward(dir))
*continuescan = false;
}
return result;
}
/*
* _bt_killitems - set LP_DEAD state for items an indexscan caller has
* told us were killed
*
* scan->opaque, referenced locally through so, contains information about the
* current page and killed tuples thereon (generally, this should only be
* called if so->numKilled > 0).
*
* The caller does not have a lock on the page and may or may not have the
* page pinned in a buffer. Note that read-lock is sufficient for setting
* LP_DEAD status (which is only a hint).
*
* We match items by heap TID before assuming they are the right ones to
* delete. We cope with cases where items have moved right due to insertions.
* If an item has moved off the current page due to a split, we'll fail to
* find it and do nothing (this is not an error case --- we assume the item
* will eventually get marked in a future indexscan).
*
* Note that if we hold a pin on the target page continuously from initially
* reading the items until applying this function, VACUUM cannot have deleted
* any items from the page, and so there is no need to search left from the
* recorded offset. (This observation also guarantees that the item is still
* the right one to delete, which might otherwise be questionable since heap
* TIDs can get recycled.) This holds true even if the page has been modified
* by inserts and page splits, so there is no need to consult the LSN.
*
* If the pin was released after reading the page, then we re-read it. If it
* has been modified since we read it (as determined by the LSN), we dare not
* flag any entries because it is possible that the old entry was vacuumed
* away and the TID was re-used by a completely different heap tuple.
*/
void
_bt_killitems(IndexScanDesc scan)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
Page page;
BTPageOpaque opaque;
OffsetNumber minoff;
OffsetNumber maxoff;
int i;
int numKilled = so->numKilled;
bool killedsomething = false;
bool droppedpin PG_USED_FOR_ASSERTS_ONLY;
Assert(BTScanPosIsValid(so->currPos));
/*
* Always reset the scan state, so we don't look for same items on other
* pages.
*/
so->numKilled = 0;
if (BTScanPosIsPinned(so->currPos))
{
/*
* We have held the pin on this page since we read the index tuples,
* so all we need to do is lock it. The pin will have prevented
* re-use of any TID on the page, so there is no need to check the
* LSN.
*/
droppedpin = false;
_bt_lockbuf(scan->indexRelation, so->currPos.buf, BT_READ);
page = BufferGetPage(so->currPos.buf);
}
else
{
Buffer buf;
droppedpin = true;
/* Attempt to re-read the buffer, getting pin and lock. */
buf = _bt_getbuf(scan->indexRelation, so->currPos.currPage, BT_READ);
page = BufferGetPage(buf);
if (BufferGetLSNAtomic(buf) == so->currPos.lsn)
so->currPos.buf = buf;
else
{
/* Modified while not pinned means hinting is not safe. */
_bt_relbuf(scan->indexRelation, buf);
return;
}
}
opaque = BTPageGetOpaque(page);
minoff = P_FIRSTDATAKEY(opaque);
maxoff = PageGetMaxOffsetNumber(page);
for (i = 0; i < numKilled; i++)
{
int itemIndex = so->killedItems[i];
BTScanPosItem *kitem = &so->currPos.items[itemIndex];
OffsetNumber offnum = kitem->indexOffset;
Assert(itemIndex >= so->currPos.firstItem &&
itemIndex <= so->currPos.lastItem);
if (offnum < minoff)
continue; /* pure paranoia */
while (offnum <= maxoff)
{
ItemId iid = PageGetItemId(page, offnum);
IndexTuple ituple = (IndexTuple) PageGetItem(page, iid);
bool killtuple = false;
if (BTreeTupleIsPosting(ituple))
{
int pi = i + 1;
int nposting = BTreeTupleGetNPosting(ituple);
int j;
/*
* We rely on the convention that heap TIDs in the scanpos
* items array are stored in ascending heap TID order for a
* group of TIDs that originally came from a posting list
* tuple. This convention even applies during backwards
* scans, where returning the TIDs in descending order might
* seem more natural. This is about effectiveness, not
* correctness.
*
* Note that the page may have been modified in almost any way
* since we first read it (in the !droppedpin case), so it's
* possible that this posting list tuple wasn't a posting list
* tuple when we first encountered its heap TIDs.
*/
for (j = 0; j < nposting; j++)
{
ItemPointer item = BTreeTupleGetPostingN(ituple, j);
if (!ItemPointerEquals(item, &kitem->heapTid))
break; /* out of posting list loop */
/*
* kitem must have matching offnum when heap TIDs match,
* though only in the common case where the page can't
* have been concurrently modified
*/
Assert(kitem->indexOffset == offnum || !droppedpin);
/*
* Read-ahead to later kitems here.
*
* We rely on the assumption that not advancing kitem here
* will prevent us from considering the posting list tuple
* fully dead by not matching its next heap TID in next
* loop iteration.
*
* If, on the other hand, this is the final heap TID in
* the posting list tuple, then tuple gets killed
* regardless (i.e. we handle the case where the last
* kitem is also the last heap TID in the last index tuple
* correctly -- posting tuple still gets killed).
*/
if (pi < numKilled)
kitem = &so->currPos.items[so->killedItems[pi++]];
}
/*
* Don't bother advancing the outermost loop's int iterator to
* avoid processing killed items that relate to the same
* offnum/posting list tuple. This micro-optimization hardly
* seems worth it. (Further iterations of the outermost loop
* will fail to match on this same posting list's first heap
* TID instead, so we'll advance to the next offnum/index
* tuple pretty quickly.)
*/
if (j == nposting)
killtuple = true;
}
else if (ItemPointerEquals(&ituple->t_tid, &kitem->heapTid))
killtuple = true;
/*
* Mark index item as dead, if it isn't already. Since this
* happens while holding a buffer lock possibly in shared mode,
* it's possible that multiple processes attempt to do this
* simultaneously, leading to multiple full-page images being sent
* to WAL (if wal_log_hints or data checksums are enabled), which
* is undesirable.
*/
if (killtuple && !ItemIdIsDead(iid))
{
/* found the item/all posting list items */
ItemIdMarkDead(iid);
killedsomething = true;
break; /* out of inner search loop */
}
offnum = OffsetNumberNext(offnum);
}
}
/*
* Since this can be redone later if needed, mark as dirty hint.
*
* Whenever we mark anything LP_DEAD, we also set the page's
* BTP_HAS_GARBAGE flag, which is likewise just a hint. (Note that we
* only rely on the page-level flag in !heapkeyspace indexes.)
*/
if (killedsomething)
{
opaque->btpo_flags |= BTP_HAS_GARBAGE;
MarkBufferDirtyHint(so->currPos.buf, true);
}
_bt_unlockbuf(scan->indexRelation, so->currPos.buf);
}
/*
* The following routines manage a shared-memory area in which we track
* assignment of "vacuum cycle IDs" to currently-active btree vacuuming
* operations. There is a single counter which increments each time we
* start a vacuum to assign it a cycle ID. Since multiple vacuums could
* be active concurrently, we have to track the cycle ID for each active
* vacuum; this requires at most MaxBackends entries (usually far fewer).
* We assume at most one vacuum can be active for a given index.
*
* Access to the shared memory area is controlled by BtreeVacuumLock.
* In principle we could use a separate lmgr locktag for each index,
* but a single LWLock is much cheaper, and given the short time that
* the lock is ever held, the concurrency hit should be minimal.
*/
typedef struct BTOneVacInfo
{
LockRelId relid; /* global identifier of an index */
BTCycleId cycleid; /* cycle ID for its active VACUUM */
} BTOneVacInfo;
typedef struct BTVacInfo
{
BTCycleId cycle_ctr; /* cycle ID most recently assigned */
int num_vacuums; /* number of currently active VACUUMs */
int max_vacuums; /* allocated length of vacuums[] array */
BTOneVacInfo vacuums[FLEXIBLE_ARRAY_MEMBER];
} BTVacInfo;
static BTVacInfo *btvacinfo;
/*
* _bt_vacuum_cycleid --- get the active vacuum cycle ID for an index,
* or zero if there is no active VACUUM
*
* Note: for correct interlocking, the caller must already hold pin and
* exclusive lock on each buffer it will store the cycle ID into. This
* ensures that even if a VACUUM starts immediately afterwards, it cannot
* process those pages until the page split is complete.
*/
BTCycleId
_bt_vacuum_cycleid(Relation rel)
{
BTCycleId result = 0;
int i;
/* Share lock is enough since this is a read-only operation */
LWLockAcquire(BtreeVacuumLock, LW_SHARED);
for (i = 0; i < btvacinfo->num_vacuums; i++)
{
BTOneVacInfo *vac = &btvacinfo->vacuums[i];
if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
{
result = vac->cycleid;
break;
}
}
LWLockRelease(BtreeVacuumLock);
return result;
}
/*
* _bt_start_vacuum --- assign a cycle ID to a just-starting VACUUM operation
*
* Note: the caller must guarantee that it will eventually call
* _bt_end_vacuum, else we'll permanently leak an array slot. To ensure
* that this happens even in elog(FATAL) scenarios, the appropriate coding
* is not just a PG_TRY, but
* PG_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel))
*/
BTCycleId
_bt_start_vacuum(Relation rel)
{
BTCycleId result;
int i;
BTOneVacInfo *vac;
LWLockAcquire(BtreeVacuumLock, LW_EXCLUSIVE);
/*
* Assign the next cycle ID, being careful to avoid zero as well as the
* reserved high values.
*/
result = ++(btvacinfo->cycle_ctr);
if (result == 0 || result > MAX_BT_CYCLE_ID)
result = btvacinfo->cycle_ctr = 1;
/* Let's just make sure there's no entry already for this index */
for (i = 0; i < btvacinfo->num_vacuums; i++)
{
vac = &btvacinfo->vacuums[i];
if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
{
/*
* Unlike most places in the backend, we have to explicitly
* release our LWLock before throwing an error. This is because
* we expect _bt_end_vacuum() to be called before transaction
* abort cleanup can run to release LWLocks.
*/
LWLockRelease(BtreeVacuumLock);
elog(ERROR, "multiple active vacuums for index \"%s\"",
RelationGetRelationName(rel));
}
}
/* OK, add an entry */
if (btvacinfo->num_vacuums >= btvacinfo->max_vacuums)
{
LWLockRelease(BtreeVacuumLock);
elog(ERROR, "out of btvacinfo slots");
}
vac = &btvacinfo->vacuums[btvacinfo->num_vacuums];
vac->relid = rel->rd_lockInfo.lockRelId;
vac->cycleid = result;
btvacinfo->num_vacuums++;
LWLockRelease(BtreeVacuumLock);
return result;
}
/*
* _bt_end_vacuum --- mark a btree VACUUM operation as done
*
* Note: this is deliberately coded not to complain if no entry is found;
* this allows the caller to put PG_TRY around the start_vacuum operation.
*/
void
_bt_end_vacuum(Relation rel)
{
int i;
LWLockAcquire(BtreeVacuumLock, LW_EXCLUSIVE);
/* Find the array entry */
for (i = 0; i < btvacinfo->num_vacuums; i++)
{
BTOneVacInfo *vac = &btvacinfo->vacuums[i];
if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
{
/* Remove it by shifting down the last entry */
*vac = btvacinfo->vacuums[btvacinfo->num_vacuums - 1];
btvacinfo->num_vacuums--;
break;
}
}
LWLockRelease(BtreeVacuumLock);
}
/*
* _bt_end_vacuum wrapped as an on_shmem_exit callback function
*/
void
_bt_end_vacuum_callback(int code, Datum arg)
{
_bt_end_vacuum((Relation) DatumGetPointer(arg));
}
/*
* BTreeShmemSize --- report amount of shared memory space needed
*/
Size
BTreeShmemSize(void)
{
Size size;
size = offsetof(BTVacInfo, vacuums);
size = add_size(size, mul_size(MaxBackends, sizeof(BTOneVacInfo)));
return size;
}
/*
* BTreeShmemInit --- initialize this module's shared memory
*/
void
BTreeShmemInit(void)
{
bool found;
btvacinfo = (BTVacInfo *) ShmemInitStruct("BTree Vacuum State",
BTreeShmemSize(),
&found);
if (!IsUnderPostmaster)
{
/* Initialize shared memory area */
Assert(!found);
/*
* It doesn't really matter what the cycle counter starts at, but
* having it always start the same doesn't seem good. Seed with
* low-order bits of time() instead.
*/
btvacinfo->cycle_ctr = (BTCycleId) time(NULL);
btvacinfo->num_vacuums = 0;
btvacinfo->max_vacuums = MaxBackends;
}
else
Assert(found);
}
bytea *
btoptions(Datum reloptions, bool validate)
{
static const relopt_parse_elt tab[] = {
{"fillfactor", RELOPT_TYPE_INT, offsetof(BTOptions, fillfactor)},
{"vacuum_cleanup_index_scale_factor", RELOPT_TYPE_REAL,
offsetof(BTOptions, vacuum_cleanup_index_scale_factor)},
{"deduplicate_items", RELOPT_TYPE_BOOL,
offsetof(BTOptions, deduplicate_items)}
};
return (bytea *) build_reloptions(reloptions, validate,
RELOPT_KIND_BTREE,
sizeof(BTOptions),
tab, lengthof(tab));
}
/*
* btproperty() -- Check boolean properties of indexes.
*
* This is optional, but handling AMPROP_RETURNABLE here saves opening the rel
* to call btcanreturn.
*/
bool
btproperty(Oid index_oid, int attno,
IndexAMProperty prop, const char *propname,
bool *res, bool *isnull)
{
switch (prop)
{
case AMPROP_RETURNABLE:
/* answer only for columns, not AM or whole index */
if (attno == 0)
return false;
/* otherwise, btree can always return data */
*res = true;
return true;
default:
return false; /* punt to generic code */
}
}
/*
* btbuildphasename() -- Return name of index build phase.
*/
char *
btbuildphasename(int64 phasenum)
{
switch (phasenum)
{
case PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE:
return "initializing";
case PROGRESS_BTREE_PHASE_INDEXBUILD_TABLESCAN:
return "scanning table";
case PROGRESS_BTREE_PHASE_PERFORMSORT_1:
return "sorting live tuples";
case PROGRESS_BTREE_PHASE_PERFORMSORT_2:
return "sorting dead tuples";
case PROGRESS_BTREE_PHASE_LEAF_LOAD:
return "loading tuples in tree";
default:
return NULL;
}
}
/*
* _bt_truncate() -- create tuple without unneeded suffix attributes.
*
* Returns truncated pivot index tuple allocated in caller's memory context,
* with key attributes copied from caller's firstright argument. If rel is
* an INCLUDE index, non-key attributes will definitely be truncated away,
* since they're not part of the key space. More aggressive suffix
* truncation can take place when it's clear that the returned tuple does not
* need one or more suffix key attributes. We only need to keep firstright
* attributes up to and including the first non-lastleft-equal attribute.
* Caller's insertion scankey is used to compare the tuples; the scankey's
* argument values are not considered here.
*
* Note that returned tuple's t_tid offset will hold the number of attributes
* present, so the original item pointer offset is not represented. Caller
* should only change truncated tuple's downlink. Note also that truncated
* key attributes are treated as containing "minus infinity" values by
* _bt_compare().
*
* In the worst case (when a heap TID must be appended to distinguish lastleft
* from firstright), the size of the returned tuple is the size of firstright
* plus the size of an additional MAXALIGN()'d item pointer. This guarantee
* is important, since callers need to stay under the 1/3 of a page
* restriction on tuple size. If this routine is ever taught to truncate
* within an attribute/datum, it will need to avoid returning an enlarged
* tuple to caller when truncation + TOAST compression ends up enlarging the
* final datum.
*/
IndexTuple
_bt_truncate(Relation rel, IndexTuple lastleft, IndexTuple firstright,
BTScanInsert itup_key)
{
TupleDesc itupdesc = RelationGetDescr(rel);
int16 nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
int keepnatts;
IndexTuple pivot;
IndexTuple tidpivot;
ItemPointer pivotheaptid;
Size newsize;
/*
* We should only ever truncate non-pivot tuples from leaf pages. It's
* never okay to truncate when splitting an internal page.
*/
Assert(!BTreeTupleIsPivot(lastleft) && !BTreeTupleIsPivot(firstright));
/* Determine how many attributes must be kept in truncated tuple */
keepnatts = _bt_keep_natts(rel, lastleft, firstright, itup_key);
#ifdef DEBUG_NO_TRUNCATE
/* Force truncation to be ineffective for testing purposes */
keepnatts = nkeyatts + 1;
#endif
pivot = index_truncate_tuple(itupdesc, firstright,
Min(keepnatts, nkeyatts));
if (BTreeTupleIsPosting(pivot))
{
/*
* index_truncate_tuple() just returns a straight copy of firstright
* when it has no attributes to truncate. When that happens, we may
* need to truncate away a posting list here instead.
*/
Assert(keepnatts == nkeyatts || keepnatts == nkeyatts + 1);
Assert(IndexRelationGetNumberOfAttributes(rel) == nkeyatts);
pivot->t_info &= ~INDEX_SIZE_MASK;
pivot->t_info |= MAXALIGN(BTreeTupleGetPostingOffset(firstright));
}
/*
* If there is a distinguishing key attribute within pivot tuple, we're
* done
*/
if (keepnatts <= nkeyatts)
{
BTreeTupleSetNAtts(pivot, keepnatts, false);
return pivot;
}
/*
* We have to store a heap TID in the new pivot tuple, since no non-TID
* key attribute value in firstright distinguishes the right side of the
* split from the left side. nbtree conceptualizes this case as an
* inability to truncate away any key attributes, since heap TID is
* treated as just another key attribute (despite lacking a pg_attribute
* entry).
*
* Use enlarged space that holds a copy of pivot. We need the extra space
* to store a heap TID at the end (using the special pivot tuple
* representation). Note that the original pivot already has firstright's
* possible posting list/non-key attribute values removed at this point.
*/
newsize = MAXALIGN(IndexTupleSize(pivot)) + MAXALIGN(sizeof(ItemPointerData));
tidpivot = palloc0(newsize);
memcpy(tidpivot, pivot, MAXALIGN(IndexTupleSize(pivot)));
/* Cannot leak memory here */
pfree(pivot);
/*
* Store all of firstright's key attribute values plus a tiebreaker heap
* TID value in enlarged pivot tuple
*/
tidpivot->t_info &= ~INDEX_SIZE_MASK;
tidpivot->t_info |= newsize;
BTreeTupleSetNAtts(tidpivot, nkeyatts, true);
pivotheaptid = BTreeTupleGetHeapTID(tidpivot);
/*
* Lehman & Yao use lastleft as the leaf high key in all cases, but don't
* consider suffix truncation. It seems like a good idea to follow that
* example in cases where no truncation takes place -- use lastleft's heap
* TID. (This is also the closest value to negative infinity that's
* legally usable.)
*/
ItemPointerCopy(BTreeTupleGetMaxHeapTID(lastleft), pivotheaptid);
/*
* We're done. Assert() that heap TID invariants hold before returning.
*
* Lehman and Yao require that the downlink to the right page, which is to
* be inserted into the parent page in the second phase of a page split be
* a strict lower bound on items on the right page, and a non-strict upper
* bound for items on the left page. Assert that heap TIDs follow these
* invariants, since a heap TID value is apparently needed as a
* tiebreaker.
*/
#ifndef DEBUG_NO_TRUNCATE
Assert(ItemPointerCompare(BTreeTupleGetMaxHeapTID(lastleft),
BTreeTupleGetHeapTID(firstright)) < 0);
Assert(ItemPointerCompare(pivotheaptid,
BTreeTupleGetHeapTID(lastleft)) >= 0);
Assert(ItemPointerCompare(pivotheaptid,
BTreeTupleGetHeapTID(firstright)) < 0);
#else
/*
* Those invariants aren't guaranteed to hold for lastleft + firstright
* heap TID attribute values when they're considered here only because
* DEBUG_NO_TRUNCATE is defined (a heap TID is probably not actually
* needed as a tiebreaker). DEBUG_NO_TRUNCATE must therefore use a heap
* TID value that always works as a strict lower bound for items to the
* right. In particular, it must avoid using firstright's leading key
* attribute values along with lastleft's heap TID value when lastleft's
* TID happens to be greater than firstright's TID.
*/
ItemPointerCopy(BTreeTupleGetHeapTID(firstright), pivotheaptid);
/*
* Pivot heap TID should never be fully equal to firstright. Note that
* the pivot heap TID will still end up equal to lastleft's heap TID when
* that's the only usable value.
*/
ItemPointerSetOffsetNumber(pivotheaptid,
OffsetNumberPrev(ItemPointerGetOffsetNumber(pivotheaptid)));
Assert(ItemPointerCompare(pivotheaptid,
BTreeTupleGetHeapTID(firstright)) < 0);
#endif
return tidpivot;
}
/*
* _bt_keep_natts - how many key attributes to keep when truncating.
*
* Caller provides two tuples that enclose a split point. Caller's insertion
* scankey is used to compare the tuples; the scankey's argument values are
* not considered here.
*
* This can return a number of attributes that is one greater than the
* number of key attributes for the index relation. This indicates that the
* caller must use a heap TID as a unique-ifier in new pivot tuple.
*/
static int
_bt_keep_natts(Relation rel, IndexTuple lastleft, IndexTuple firstright,
BTScanInsert itup_key)
{
int nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
TupleDesc itupdesc = RelationGetDescr(rel);
int keepnatts;
ScanKey scankey;
/*
* _bt_compare() treats truncated key attributes as having the value minus
* infinity, which would break searches within !heapkeyspace indexes. We
* must still truncate away non-key attribute values, though.
*/
if (!itup_key->heapkeyspace)
return nkeyatts;
scankey = itup_key->scankeys;
keepnatts = 1;
for (int attnum = 1; attnum <= nkeyatts; attnum++, scankey++)
{
Datum datum1,
datum2;
bool isNull1,
isNull2;
datum1 = index_getattr(lastleft, attnum, itupdesc, &isNull1);
datum2 = index_getattr(firstright, attnum, itupdesc, &isNull2);
if (isNull1 != isNull2)
break;
if (!isNull1 &&
DatumGetInt32(FunctionCall2Coll(&scankey->sk_func,
scankey->sk_collation,
datum1,
datum2)) != 0)
break;
keepnatts++;
}
/*
* Assert that _bt_keep_natts_fast() agrees with us in passing. This is
* expected in an allequalimage index.
*/
Assert(!itup_key->allequalimage ||
keepnatts == _bt_keep_natts_fast(rel, lastleft, firstright));
return keepnatts;
}
/*
* _bt_keep_natts_fast - fast bitwise variant of _bt_keep_natts.
*
* This is exported so that a candidate split point can have its effect on
* suffix truncation inexpensively evaluated ahead of time when finding a
* split location. A naive bitwise approach to datum comparisons is used to
* save cycles.
*
* The approach taken here usually provides the same answer as _bt_keep_natts
* will (for the same pair of tuples from a heapkeyspace index), since the
* majority of btree opclasses can never indicate that two datums are equal
* unless they're bitwise equal after detoasting. When an index only has
* "equal image" columns, routine is guaranteed to give the same result as
* _bt_keep_natts would.
*
* Callers can rely on the fact that attributes considered equal here are
* definitely also equal according to _bt_keep_natts, even when the index uses
* an opclass or collation that is not "allequalimage"/deduplication-safe.
* This weaker guarantee is good enough for nbtsplitloc.c caller, since false
* negatives generally only have the effect of making leaf page splits use a
* more balanced split point.
*/
int
_bt_keep_natts_fast(Relation rel, IndexTuple lastleft, IndexTuple firstright)
{
TupleDesc itupdesc = RelationGetDescr(rel);
int keysz = IndexRelationGetNumberOfKeyAttributes(rel);
int keepnatts;
keepnatts = 1;
for (int attnum = 1; attnum <= keysz; attnum++)
{
Datum datum1,
datum2;
bool isNull1,
isNull2;
Form_pg_attribute att;
datum1 = index_getattr(lastleft, attnum, itupdesc, &isNull1);
datum2 = index_getattr(firstright, attnum, itupdesc, &isNull2);
att = TupleDescAttr(itupdesc, attnum - 1);
if (isNull1 != isNull2)
break;
if (!isNull1 &&
!datum_image_eq(datum1, datum2, att->attbyval, att->attlen))
break;
keepnatts++;
}
return keepnatts;
}
/*
* _bt_check_natts() -- Verify tuple has expected number of attributes.
*
* Returns value indicating if the expected number of attributes were found
* for a particular offset on page. This can be used as a general purpose
* sanity check.
*
* Testing a tuple directly with BTreeTupleGetNAtts() should generally be
* preferred to calling here. That's usually more convenient, and is always
* more explicit. Call here instead when offnum's tuple may be a negative
* infinity tuple that uses the pre-v11 on-disk representation, or when a low
* context check is appropriate. This routine is as strict as possible about
* what is expected on each version of btree.
*/
bool
_bt_check_natts(Relation rel, bool heapkeyspace, Page page, OffsetNumber offnum)
{
int16 natts = IndexRelationGetNumberOfAttributes(rel);
int16 nkeyatts = IndexRelationGetNumberOfKeyAttributes(rel);
BTPageOpaque opaque = BTPageGetOpaque(page);
IndexTuple itup;
int tupnatts;
/*
* We cannot reliably test a deleted or half-dead page, since they have
* dummy high keys
*/
if (P_IGNORE(opaque))
return true;
Assert(offnum >= FirstOffsetNumber &&
offnum <= PageGetMaxOffsetNumber(page));
/*
* Mask allocated for number of keys in index tuple must be able to fit
* maximum possible number of index attributes
*/
StaticAssertStmt(BT_OFFSET_MASK >= INDEX_MAX_KEYS,
"BT_OFFSET_MASK can't fit INDEX_MAX_KEYS");
itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));
tupnatts = BTreeTupleGetNAtts(itup, rel);
/* !heapkeyspace indexes do not support deduplication */
if (!heapkeyspace && BTreeTupleIsPosting(itup))
return false;
/* Posting list tuples should never have "pivot heap TID" bit set */
if (BTreeTupleIsPosting(itup) &&
(ItemPointerGetOffsetNumberNoCheck(&itup->t_tid) &
BT_PIVOT_HEAP_TID_ATTR) != 0)
return false;
/* INCLUDE indexes do not support deduplication */
if (natts != nkeyatts && BTreeTupleIsPosting(itup))
return false;
if (P_ISLEAF(opaque))
{
if (offnum >= P_FIRSTDATAKEY(opaque))
{
/*
* Non-pivot tuple should never be explicitly marked as a pivot
* tuple
*/
if (BTreeTupleIsPivot(itup))
return false;
/*
* Leaf tuples that are not the page high key (non-pivot tuples)
* should never be truncated. (Note that tupnatts must have been
* inferred, even with a posting list tuple, because only pivot
* tuples store tupnatts directly.)
*/
return tupnatts == natts;
}
else
{
/*
* Rightmost page doesn't contain a page high key, so tuple was
* checked above as ordinary leaf tuple
*/
Assert(!P_RIGHTMOST(opaque));
/*
* !heapkeyspace high key tuple contains only key attributes. Note
* that tupnatts will only have been explicitly represented in
* !heapkeyspace indexes that happen to have non-key attributes.
*/
if (!heapkeyspace)
return tupnatts == nkeyatts;
/* Use generic heapkeyspace pivot tuple handling */
}
}
else /* !P_ISLEAF(opaque) */
{
if (offnum == P_FIRSTDATAKEY(opaque))
{
/*
* The first tuple on any internal page (possibly the first after
* its high key) is its negative infinity tuple. Negative
* infinity tuples are always truncated to zero attributes. They
* are a particular kind of pivot tuple.
*/
if (heapkeyspace)
return tupnatts == 0;
/*
* The number of attributes won't be explicitly represented if the
* negative infinity tuple was generated during a page split that
* occurred with a version of Postgres before v11. There must be
* a problem when there is an explicit representation that is
* non-zero, or when there is no explicit representation and the
* tuple is evidently not a pre-pg_upgrade tuple.
*
* Prior to v11, downlinks always had P_HIKEY as their offset.
* Accept that as an alternative indication of a valid
* !heapkeyspace negative infinity tuple.
*/
return tupnatts == 0 ||
ItemPointerGetOffsetNumber(&(itup->t_tid)) == P_HIKEY;
}
else
{
/*
* !heapkeyspace downlink tuple with separator key contains only
* key attributes. Note that tupnatts will only have been
* explicitly represented in !heapkeyspace indexes that happen to
* have non-key attributes.
*/
if (!heapkeyspace)
return tupnatts == nkeyatts;
/* Use generic heapkeyspace pivot tuple handling */
}
}
/* Handle heapkeyspace pivot tuples (excluding minus infinity items) */
Assert(heapkeyspace);
/*
* Explicit representation of the number of attributes is mandatory with
* heapkeyspace index pivot tuples, regardless of whether or not there are
* non-key attributes.
*/
if (!BTreeTupleIsPivot(itup))
return false;
/* Pivot tuple should not use posting list representation (redundant) */
if (BTreeTupleIsPosting(itup))
return false;
/*
* Heap TID is a tiebreaker key attribute, so it cannot be untruncated
* when any other key attribute is truncated
*/
if (BTreeTupleGetHeapTID(itup) != NULL && tupnatts != nkeyatts)
return false;
/*
* Pivot tuple must have at least one untruncated key attribute (minus
* infinity pivot tuples are the only exception). Pivot tuples can never
* represent that there is a value present for a key attribute that
* exceeds pg_index.indnkeyatts for the index.
*/
return tupnatts > 0 && tupnatts <= nkeyatts;
}
/*
*
* _bt_check_third_page() -- check whether tuple fits on a btree page at all.
*
* We actually need to be able to fit three items on every page, so restrict
* any one item to 1/3 the per-page available space. Note that itemsz should
* not include the ItemId overhead.
*
* It might be useful to apply TOAST methods rather than throw an error here.
* Using out of line storage would break assumptions made by suffix truncation
* and by contrib/amcheck, though.
*/
void
_bt_check_third_page(Relation rel, Relation heap, bool needheaptidspace,
Page page, IndexTuple newtup)
{
Size itemsz;
BTPageOpaque opaque;
itemsz = MAXALIGN(IndexTupleSize(newtup));
/* Double check item size against limit */
if (itemsz <= BTMaxItemSize(page))
return;
/*
* Tuple is probably too large to fit on page, but it's possible that the
* index uses version 2 or version 3, or that page is an internal page, in
* which case a slightly higher limit applies.
*/
if (!needheaptidspace && itemsz <= BTMaxItemSizeNoHeapTid(page))
return;
/*
* Internal page insertions cannot fail here, because that would mean that
* an earlier leaf level insertion that should have failed didn't
*/
opaque = BTPageGetOpaque(page);
if (!P_ISLEAF(opaque))
elog(ERROR, "cannot insert oversized tuple of size %zu on internal page of index \"%s\"",
itemsz, RelationGetRelationName(rel));
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("index row size %zu exceeds btree version %u maximum %zu for index \"%s\"",
itemsz,
needheaptidspace ? BTREE_VERSION : BTREE_NOVAC_VERSION,
needheaptidspace ? BTMaxItemSize(page) :
BTMaxItemSizeNoHeapTid(page),
RelationGetRelationName(rel)),
errdetail("Index row references tuple (%u,%u) in relation \"%s\".",
ItemPointerGetBlockNumber(BTreeTupleGetHeapTID(newtup)),
ItemPointerGetOffsetNumber(BTreeTupleGetHeapTID(newtup)),
RelationGetRelationName(heap)),
errhint("Values larger than 1/3 of a buffer page cannot be indexed.\n"
"Consider a function index of an MD5 hash of the value, "
"or use full text indexing."),
errtableconstraint(heap, RelationGetRelationName(rel))));
}
/*
* Are all attributes in rel "equality is image equality" attributes?
*
* We use each attribute's BTEQUALIMAGE_PROC opclass procedure. If any
* opclass either lacks a BTEQUALIMAGE_PROC procedure or returns false, we
* return false; otherwise we return true.
*
* Returned boolean value is stored in index metapage during index builds.
* Deduplication can only be used when we return true.
*/
bool
_bt_allequalimage(Relation rel, bool debugmessage)
{
bool allequalimage = true;
/* INCLUDE indexes can never support deduplication */
if (IndexRelationGetNumberOfAttributes(rel) !=
IndexRelationGetNumberOfKeyAttributes(rel))
return false;
for (int i = 0; i < IndexRelationGetNumberOfKeyAttributes(rel); i++)
{
Oid opfamily = rel->rd_opfamily[i];
Oid opcintype = rel->rd_opcintype[i];
Oid collation = rel->rd_indcollation[i];
Oid equalimageproc;
equalimageproc = get_opfamily_proc(opfamily, opcintype, opcintype,
BTEQUALIMAGE_PROC);
/*
* If there is no BTEQUALIMAGE_PROC then deduplication is assumed to
* be unsafe. Otherwise, actually call proc and see what it says.
*/
if (!OidIsValid(equalimageproc) ||
!DatumGetBool(OidFunctionCall1Coll(equalimageproc, collation,
ObjectIdGetDatum(opcintype))))
{
allequalimage = false;
break;
}
}
if (debugmessage)
{
if (allequalimage)
elog(DEBUG1, "index \"%s\" can safely use deduplication",
RelationGetRelationName(rel));
else
elog(DEBUG1, "index \"%s\" cannot use deduplication",
RelationGetRelationName(rel));
}
return allequalimage;
}
|