summaryrefslogtreecommitdiffstats
path: root/src/backend/lib/binaryheap.c
blob: 999c23e5c85f1d7809323736c68d4195efb33f54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
/*-------------------------------------------------------------------------
 *
 * binaryheap.c
 *	  A simple binary heap implementation
 *
 * Portions Copyright (c) 2012-2022, PostgreSQL Global Development Group
 *
 * IDENTIFICATION
 *	  src/backend/lib/binaryheap.c
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include <math.h>

#include "lib/binaryheap.h"

static void sift_down(binaryheap *heap, int node_off);
static void sift_up(binaryheap *heap, int node_off);

/*
 * binaryheap_allocate
 *
 * Returns a pointer to a newly-allocated heap that has the capacity to
 * store the given number of nodes, with the heap property defined by
 * the given comparator function, which will be invoked with the additional
 * argument specified by 'arg'.
 */
binaryheap *
binaryheap_allocate(int capacity, binaryheap_comparator compare, void *arg)
{
	int			sz;
	binaryheap *heap;

	sz = offsetof(binaryheap, bh_nodes) + sizeof(Datum) * capacity;
	heap = (binaryheap *) palloc(sz);
	heap->bh_space = capacity;
	heap->bh_compare = compare;
	heap->bh_arg = arg;

	heap->bh_size = 0;
	heap->bh_has_heap_property = true;

	return heap;
}

/*
 * binaryheap_reset
 *
 * Resets the heap to an empty state, losing its data content but not the
 * parameters passed at allocation.
 */
void
binaryheap_reset(binaryheap *heap)
{
	heap->bh_size = 0;
	heap->bh_has_heap_property = true;
}

/*
 * binaryheap_free
 *
 * Releases memory used by the given binaryheap.
 */
void
binaryheap_free(binaryheap *heap)
{
	pfree(heap);
}

/*
 * These utility functions return the offset of the left child, right
 * child, and parent of the node at the given index, respectively.
 *
 * The heap is represented as an array of nodes, with the root node
 * stored at index 0. The left child of node i is at index 2*i+1, and
 * the right child at 2*i+2. The parent of node i is at index (i-1)/2.
 */

static inline int
left_offset(int i)
{
	return 2 * i + 1;
}

static inline int
right_offset(int i)
{
	return 2 * i + 2;
}

static inline int
parent_offset(int i)
{
	return (i - 1) / 2;
}

/*
 * binaryheap_add_unordered
 *
 * Adds the given datum to the end of the heap's list of nodes in O(1) without
 * preserving the heap property. This is a convenience to add elements quickly
 * to a new heap. To obtain a valid heap, one must call binaryheap_build()
 * afterwards.
 */
void
binaryheap_add_unordered(binaryheap *heap, Datum d)
{
	if (heap->bh_size >= heap->bh_space)
		elog(ERROR, "out of binary heap slots");
	heap->bh_has_heap_property = false;
	heap->bh_nodes[heap->bh_size] = d;
	heap->bh_size++;
}

/*
 * binaryheap_build
 *
 * Assembles a valid heap in O(n) from the nodes added by
 * binaryheap_add_unordered(). Not needed otherwise.
 */
void
binaryheap_build(binaryheap *heap)
{
	int			i;

	for (i = parent_offset(heap->bh_size - 1); i >= 0; i--)
		sift_down(heap, i);
	heap->bh_has_heap_property = true;
}

/*
 * binaryheap_add
 *
 * Adds the given datum to the heap in O(log n) time, while preserving
 * the heap property.
 */
void
binaryheap_add(binaryheap *heap, Datum d)
{
	if (heap->bh_size >= heap->bh_space)
		elog(ERROR, "out of binary heap slots");
	heap->bh_nodes[heap->bh_size] = d;
	heap->bh_size++;
	sift_up(heap, heap->bh_size - 1);
}

/*
 * binaryheap_first
 *
 * Returns a pointer to the first (root, topmost) node in the heap
 * without modifying the heap. The caller must ensure that this
 * routine is not used on an empty heap. Always O(1).
 */
Datum
binaryheap_first(binaryheap *heap)
{
	Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property);
	return heap->bh_nodes[0];
}

/*
 * binaryheap_remove_first
 *
 * Removes the first (root, topmost) node in the heap and returns a
 * pointer to it after rebalancing the heap. The caller must ensure
 * that this routine is not used on an empty heap. O(log n) worst
 * case.
 */
Datum
binaryheap_remove_first(binaryheap *heap)
{
	Datum		result;

	Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property);

	/* extract the root node, which will be the result */
	result = heap->bh_nodes[0];

	/* easy if heap contains one element */
	if (heap->bh_size == 1)
	{
		heap->bh_size--;
		return result;
	}

	/*
	 * Remove the last node, placing it in the vacated root entry, and sift
	 * the new root node down to its correct position.
	 */
	heap->bh_nodes[0] = heap->bh_nodes[--heap->bh_size];
	sift_down(heap, 0);

	return result;
}

/*
 * binaryheap_replace_first
 *
 * Replace the topmost element of a non-empty heap, preserving the heap
 * property.  O(1) in the best case, or O(log n) if it must fall back to
 * sifting the new node down.
 */
void
binaryheap_replace_first(binaryheap *heap, Datum d)
{
	Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property);

	heap->bh_nodes[0] = d;

	if (heap->bh_size > 1)
		sift_down(heap, 0);
}

/*
 * Sift a node up to the highest position it can hold according to the
 * comparator.
 */
static void
sift_up(binaryheap *heap, int node_off)
{
	Datum		node_val = heap->bh_nodes[node_off];

	/*
	 * Within the loop, the node_off'th array entry is a "hole" that
	 * notionally holds node_val, but we don't actually store node_val there
	 * till the end, saving some unnecessary data copying steps.
	 */
	while (node_off != 0)
	{
		int			cmp;
		int			parent_off;
		Datum		parent_val;

		/*
		 * If this node is smaller than its parent, the heap condition is
		 * satisfied, and we're done.
		 */
		parent_off = parent_offset(node_off);
		parent_val = heap->bh_nodes[parent_off];
		cmp = heap->bh_compare(node_val,
							   parent_val,
							   heap->bh_arg);
		if (cmp <= 0)
			break;

		/*
		 * Otherwise, swap the parent value with the hole, and go on to check
		 * the node's new parent.
		 */
		heap->bh_nodes[node_off] = parent_val;
		node_off = parent_off;
	}
	/* Re-fill the hole */
	heap->bh_nodes[node_off] = node_val;
}

/*
 * Sift a node down from its current position to satisfy the heap
 * property.
 */
static void
sift_down(binaryheap *heap, int node_off)
{
	Datum		node_val = heap->bh_nodes[node_off];

	/*
	 * Within the loop, the node_off'th array entry is a "hole" that
	 * notionally holds node_val, but we don't actually store node_val there
	 * till the end, saving some unnecessary data copying steps.
	 */
	while (true)
	{
		int			left_off = left_offset(node_off);
		int			right_off = right_offset(node_off);
		int			swap_off = 0;

		/* Is the left child larger than the parent? */
		if (left_off < heap->bh_size &&
			heap->bh_compare(node_val,
							 heap->bh_nodes[left_off],
							 heap->bh_arg) < 0)
			swap_off = left_off;

		/* Is the right child larger than the parent? */
		if (right_off < heap->bh_size &&
			heap->bh_compare(node_val,
							 heap->bh_nodes[right_off],
							 heap->bh_arg) < 0)
		{
			/* swap with the larger child */
			if (!swap_off ||
				heap->bh_compare(heap->bh_nodes[left_off],
								 heap->bh_nodes[right_off],
								 heap->bh_arg) < 0)
				swap_off = right_off;
		}

		/*
		 * If we didn't find anything to swap, the heap condition is
		 * satisfied, and we're done.
		 */
		if (!swap_off)
			break;

		/*
		 * Otherwise, swap the hole with the child that violates the heap
		 * property; then go on to check its children.
		 */
		heap->bh_nodes[node_off] = heap->bh_nodes[swap_off];
		node_off = swap_off;
	}
	/* Re-fill the hole */
	heap->bh_nodes[node_off] = node_val;
}