summaryrefslogtreecommitdiffstats
path: root/src/backend/nodes/list.c
blob: 90f93e893cfdce5c467443f7a2db2f18bcb80892 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
/*-------------------------------------------------------------------------
 *
 * list.c
 *	  implementation for PostgreSQL generic list package
 *
 * See comments in pg_list.h.
 *
 *
 * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/nodes/list.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "nodes/pg_list.h"
#include "port/pg_bitutils.h"
#include "utils/memdebug.h"
#include "utils/memutils.h"


/*
 * The previous List implementation, since it used a separate palloc chunk
 * for each cons cell, had the property that adding or deleting list cells
 * did not move the storage of other existing cells in the list.  Quite a
 * bit of existing code depended on that, by retaining ListCell pointers
 * across such operations on a list.  There is no such guarantee in this
 * implementation, so instead we have debugging support that is meant to
 * help flush out now-broken assumptions.  Defining DEBUG_LIST_MEMORY_USAGE
 * while building this file causes the List operations to forcibly move
 * all cells in a list whenever a cell is added or deleted.  In combination
 * with MEMORY_CONTEXT_CHECKING and/or Valgrind, this can usually expose
 * broken code.  It's a bit expensive though, as there's many more palloc
 * cycles and a lot more data-copying than in a default build.
 *
 * By default, we enable this when building for Valgrind.
 */
#ifdef USE_VALGRIND
#define DEBUG_LIST_MEMORY_USAGE
#endif

/* Overhead for the fixed part of a List header, measured in ListCells */
#define LIST_HEADER_OVERHEAD  \
	((int) ((offsetof(List, initial_elements) - 1) / sizeof(ListCell) + 1))

/*
 * Macros to simplify writing assertions about the type of a list; a
 * NIL list is considered to be an empty list of any type.
 */
#define IsPointerList(l)		((l) == NIL || IsA((l), List))
#define IsIntegerList(l)		((l) == NIL || IsA((l), IntList))
#define IsOidList(l)			((l) == NIL || IsA((l), OidList))

#ifdef USE_ASSERT_CHECKING
/*
 * Check that the specified List is valid (so far as we can tell).
 */
static void
check_list_invariants(const List *list)
{
	if (list == NIL)
		return;

	Assert(list->length > 0);
	Assert(list->length <= list->max_length);
	Assert(list->elements != NULL);

	Assert(list->type == T_List ||
		   list->type == T_IntList ||
		   list->type == T_OidList);
}
#else
#define check_list_invariants(l)  ((void) 0)
#endif							/* USE_ASSERT_CHECKING */

/*
 * Return a freshly allocated List with room for at least min_size cells.
 *
 * Since empty non-NIL lists are invalid, new_list() sets the initial length
 * to min_size, effectively marking that number of cells as valid; the caller
 * is responsible for filling in their data.
 */
static List *
new_list(NodeTag type, int min_size)
{
	List	   *newlist;
	int			max_size;

	Assert(min_size > 0);

	/*
	 * We allocate all the requested cells, and possibly some more, as part of
	 * the same palloc request as the List header.  This is a big win for the
	 * typical case of short fixed-length lists.  It can lose if we allocate a
	 * moderately long list and then it gets extended; we'll be wasting more
	 * initial_elements[] space than if we'd made the header small.  However,
	 * rounding up the request as we do in the normal code path provides some
	 * defense against small extensions.
	 */

#ifndef DEBUG_LIST_MEMORY_USAGE

	/*
	 * Normally, we set up a list with some extra cells, to allow it to grow
	 * without a repalloc.  Prefer cell counts chosen to make the total
	 * allocation a power-of-2, since palloc would round it up to that anyway.
	 * (That stops being true for very large allocations, but very long lists
	 * are infrequent, so it doesn't seem worth special logic for such cases.)
	 *
	 * The minimum allocation is 8 ListCell units, providing either 4 or 5
	 * available ListCells depending on the machine's word width.  Counting
	 * palloc's overhead, this uses the same amount of space as a one-cell
	 * list did in the old implementation, and less space for any longer list.
	 *
	 * We needn't worry about integer overflow; no caller passes min_size
	 * that's more than twice the size of an existing list, so the size limits
	 * within palloc will ensure that we don't overflow here.
	 */
	max_size = pg_nextpower2_32(Max(8, min_size + LIST_HEADER_OVERHEAD));
	max_size -= LIST_HEADER_OVERHEAD;
#else

	/*
	 * For debugging, don't allow any extra space.  This forces any cell
	 * addition to go through enlarge_list() and thus move the existing data.
	 */
	max_size = min_size;
#endif

	newlist = (List *) palloc(offsetof(List, initial_elements) +
							  max_size * sizeof(ListCell));
	newlist->type = type;
	newlist->length = min_size;
	newlist->max_length = max_size;
	newlist->elements = newlist->initial_elements;

	return newlist;
}

/*
 * Enlarge an existing non-NIL List to have room for at least min_size cells.
 *
 * This does *not* update list->length, as some callers would find that
 * inconvenient.  (list->length had better be the correct number of existing
 * valid cells, though.)
 */
static void
enlarge_list(List *list, int min_size)
{
	int			new_max_len;

	Assert(min_size > list->max_length);	/* else we shouldn't be here */

#ifndef DEBUG_LIST_MEMORY_USAGE

	/*
	 * As above, we prefer power-of-two total allocations; but here we need
	 * not account for list header overhead.
	 */

	/* clamp the minimum value to 16, a semi-arbitrary small power of 2 */
	new_max_len = pg_nextpower2_32(Max(16, min_size));

#else
	/* As above, don't allocate anything extra */
	new_max_len = min_size;
#endif

	if (list->elements == list->initial_elements)
	{
		/*
		 * Replace original in-line allocation with a separate palloc block.
		 * Ensure it is in the same memory context as the List header.  (The
		 * previous List implementation did not offer any guarantees about
		 * keeping all list cells in the same context, but it seems reasonable
		 * to create such a guarantee now.)
		 */
		list->elements = (ListCell *)
			MemoryContextAlloc(GetMemoryChunkContext(list),
							   new_max_len * sizeof(ListCell));
		memcpy(list->elements, list->initial_elements,
			   list->length * sizeof(ListCell));

		/*
		 * We must not move the list header, so it's unsafe to try to reclaim
		 * the initial_elements[] space via repalloc.  In debugging builds,
		 * however, we can clear that space and/or mark it inaccessible.
		 * (wipe_mem includes VALGRIND_MAKE_MEM_NOACCESS.)
		 */
#ifdef CLOBBER_FREED_MEMORY
		wipe_mem(list->initial_elements,
				 list->max_length * sizeof(ListCell));
#else
		VALGRIND_MAKE_MEM_NOACCESS(list->initial_elements,
								   list->max_length * sizeof(ListCell));
#endif
	}
	else
	{
#ifndef DEBUG_LIST_MEMORY_USAGE
		/* Normally, let repalloc deal with enlargement */
		list->elements = (ListCell *) repalloc(list->elements,
											   new_max_len * sizeof(ListCell));
#else
		/*
		 * repalloc() might enlarge the space in-place, which we don't want
		 * for debugging purposes, so forcibly move the data somewhere else.
		 */
		ListCell   *newelements;

		newelements = (ListCell *)
			MemoryContextAlloc(GetMemoryChunkContext(list),
							   new_max_len * sizeof(ListCell));
		memcpy(newelements, list->elements,
			   list->length * sizeof(ListCell));
		pfree(list->elements);
		list->elements = newelements;
#endif
	}

	list->max_length = new_max_len;
}

/*
 * Convenience functions to construct short Lists from given values.
 * (These are normally invoked via the list_makeN macros.)
 */
List *
list_make1_impl(NodeTag t, ListCell datum1)
{
	List	   *list = new_list(t, 1);

	list->elements[0] = datum1;
	check_list_invariants(list);
	return list;
}

List *
list_make2_impl(NodeTag t, ListCell datum1, ListCell datum2)
{
	List	   *list = new_list(t, 2);

	list->elements[0] = datum1;
	list->elements[1] = datum2;
	check_list_invariants(list);
	return list;
}

List *
list_make3_impl(NodeTag t, ListCell datum1, ListCell datum2,
				ListCell datum3)
{
	List	   *list = new_list(t, 3);

	list->elements[0] = datum1;
	list->elements[1] = datum2;
	list->elements[2] = datum3;
	check_list_invariants(list);
	return list;
}

List *
list_make4_impl(NodeTag t, ListCell datum1, ListCell datum2,
				ListCell datum3, ListCell datum4)
{
	List	   *list = new_list(t, 4);

	list->elements[0] = datum1;
	list->elements[1] = datum2;
	list->elements[2] = datum3;
	list->elements[3] = datum4;
	check_list_invariants(list);
	return list;
}

List *
list_make5_impl(NodeTag t, ListCell datum1, ListCell datum2,
				ListCell datum3, ListCell datum4, ListCell datum5)
{
	List	   *list = new_list(t, 5);

	list->elements[0] = datum1;
	list->elements[1] = datum2;
	list->elements[2] = datum3;
	list->elements[3] = datum4;
	list->elements[4] = datum5;
	check_list_invariants(list);
	return list;
}

/*
 * Make room for a new head cell in the given (non-NIL) list.
 *
 * The data in the new head cell is undefined; the caller should be
 * sure to fill it in
 */
static void
new_head_cell(List *list)
{
	/* Enlarge array if necessary */
	if (list->length >= list->max_length)
		enlarge_list(list, list->length + 1);
	/* Now shove the existing data over */
	memmove(&list->elements[1], &list->elements[0],
			list->length * sizeof(ListCell));
	list->length++;
}

/*
 * Make room for a new tail cell in the given (non-NIL) list.
 *
 * The data in the new tail cell is undefined; the caller should be
 * sure to fill it in
 */
static void
new_tail_cell(List *list)
{
	/* Enlarge array if necessary */
	if (list->length >= list->max_length)
		enlarge_list(list, list->length + 1);
	list->length++;
}

/*
 * Append a pointer to the list. A pointer to the modified list is
 * returned. Note that this function may or may not destructively
 * modify the list; callers should always use this function's return
 * value, rather than continuing to use the pointer passed as the
 * first argument.
 */
List *
lappend(List *list, void *datum)
{
	Assert(IsPointerList(list));

	if (list == NIL)
		list = new_list(T_List, 1);
	else
		new_tail_cell(list);

	llast(list) = datum;
	check_list_invariants(list);
	return list;
}

/*
 * Append an integer to the specified list. See lappend()
 */
List *
lappend_int(List *list, int datum)
{
	Assert(IsIntegerList(list));

	if (list == NIL)
		list = new_list(T_IntList, 1);
	else
		new_tail_cell(list);

	llast_int(list) = datum;
	check_list_invariants(list);
	return list;
}

/*
 * Append an OID to the specified list. See lappend()
 */
List *
lappend_oid(List *list, Oid datum)
{
	Assert(IsOidList(list));

	if (list == NIL)
		list = new_list(T_OidList, 1);
	else
		new_tail_cell(list);

	llast_oid(list) = datum;
	check_list_invariants(list);
	return list;
}

/*
 * Make room for a new cell at position 'pos' (measured from 0).
 * The data in the cell is left undefined, and must be filled in by the
 * caller. 'list' is assumed to be non-NIL, and 'pos' must be a valid
 * list position, ie, 0 <= pos <= list's length.
 * Returns address of the new cell.
 */
static ListCell *
insert_new_cell(List *list, int pos)
{
	Assert(pos >= 0 && pos <= list->length);

	/* Enlarge array if necessary */
	if (list->length >= list->max_length)
		enlarge_list(list, list->length + 1);
	/* Now shove the existing data over */
	if (pos < list->length)
		memmove(&list->elements[pos + 1], &list->elements[pos],
				(list->length - pos) * sizeof(ListCell));
	list->length++;

	return &list->elements[pos];
}

/*
 * Insert the given datum at position 'pos' (measured from 0) in the list.
 * 'pos' must be valid, ie, 0 <= pos <= list's length.
 *
 * Note that this takes time proportional to the distance to the end of the
 * list, since the following entries must be moved.
 */
List *
list_insert_nth(List *list, int pos, void *datum)
{
	if (list == NIL)
	{
		Assert(pos == 0);
		return list_make1(datum);
	}
	Assert(IsPointerList(list));
	lfirst(insert_new_cell(list, pos)) = datum;
	check_list_invariants(list);
	return list;
}

List *
list_insert_nth_int(List *list, int pos, int datum)
{
	if (list == NIL)
	{
		Assert(pos == 0);
		return list_make1_int(datum);
	}
	Assert(IsIntegerList(list));
	lfirst_int(insert_new_cell(list, pos)) = datum;
	check_list_invariants(list);
	return list;
}

List *
list_insert_nth_oid(List *list, int pos, Oid datum)
{
	if (list == NIL)
	{
		Assert(pos == 0);
		return list_make1_oid(datum);
	}
	Assert(IsOidList(list));
	lfirst_oid(insert_new_cell(list, pos)) = datum;
	check_list_invariants(list);
	return list;
}

/*
 * Prepend a new element to the list. A pointer to the modified list
 * is returned. Note that this function may or may not destructively
 * modify the list; callers should always use this function's return
 * value, rather than continuing to use the pointer passed as the
 * second argument.
 *
 * Note that this takes time proportional to the length of the list,
 * since the existing entries must be moved.
 *
 * Caution: before Postgres 8.0, the original List was unmodified and
 * could be considered to retain its separate identity.  This is no longer
 * the case.
 */
List *
lcons(void *datum, List *list)
{
	Assert(IsPointerList(list));

	if (list == NIL)
		list = new_list(T_List, 1);
	else
		new_head_cell(list);

	linitial(list) = datum;
	check_list_invariants(list);
	return list;
}

/*
 * Prepend an integer to the list. See lcons()
 */
List *
lcons_int(int datum, List *list)
{
	Assert(IsIntegerList(list));

	if (list == NIL)
		list = new_list(T_IntList, 1);
	else
		new_head_cell(list);

	linitial_int(list) = datum;
	check_list_invariants(list);
	return list;
}

/*
 * Prepend an OID to the list. See lcons()
 */
List *
lcons_oid(Oid datum, List *list)
{
	Assert(IsOidList(list));

	if (list == NIL)
		list = new_list(T_OidList, 1);
	else
		new_head_cell(list);

	linitial_oid(list) = datum;
	check_list_invariants(list);
	return list;
}

/*
 * Concatenate list2 to the end of list1, and return list1.
 *
 * This is equivalent to lappend'ing each element of list2, in order, to list1.
 * list1 is destructively changed, list2 is not.  (However, in the case of
 * pointer lists, list1 and list2 will point to the same structures.)
 *
 * Callers should be sure to use the return value as the new pointer to the
 * concatenated list: the 'list1' input pointer may or may not be the same
 * as the returned pointer.
 *
 * Note that this takes at least time proportional to the length of list2.
 * It'd typically be the case that we have to enlarge list1's storage,
 * probably adding time proportional to the length of list1.
 */
List *
list_concat(List *list1, const List *list2)
{
	int			new_len;

	if (list1 == NIL)
		return list_copy(list2);
	if (list2 == NIL)
		return list1;

	Assert(list1->type == list2->type);

	new_len = list1->length + list2->length;
	/* Enlarge array if necessary */
	if (new_len > list1->max_length)
		enlarge_list(list1, new_len);

	/* Even if list1 == list2, using memcpy should be safe here */
	memcpy(&list1->elements[list1->length], &list2->elements[0],
		   list2->length * sizeof(ListCell));
	list1->length = new_len;

	check_list_invariants(list1);
	return list1;
}

/*
 * Form a new list by concatenating the elements of list1 and list2.
 *
 * Neither input list is modified.  (However, if they are pointer lists,
 * the output list will point to the same structures.)
 *
 * This is equivalent to, but more efficient than,
 * list_concat(list_copy(list1), list2).
 * Note that some pre-v13 code might list_copy list2 as well, but that's
 * pointless now.
 */
List *
list_concat_copy(const List *list1, const List *list2)
{
	List	   *result;
	int			new_len;

	if (list1 == NIL)
		return list_copy(list2);
	if (list2 == NIL)
		return list_copy(list1);

	Assert(list1->type == list2->type);

	new_len = list1->length + list2->length;
	result = new_list(list1->type, new_len);
	memcpy(result->elements, list1->elements,
		   list1->length * sizeof(ListCell));
	memcpy(result->elements + list1->length, list2->elements,
		   list2->length * sizeof(ListCell));

	check_list_invariants(result);
	return result;
}

/*
 * Truncate 'list' to contain no more than 'new_size' elements. This
 * modifies the list in-place! Despite this, callers should use the
 * pointer returned by this function to refer to the newly truncated
 * list -- it may or may not be the same as the pointer that was
 * passed.
 *
 * Note that any cells removed by list_truncate() are NOT pfree'd.
 */
List *
list_truncate(List *list, int new_size)
{
	if (new_size <= 0)
		return NIL;				/* truncate to zero length */

	/* If asked to effectively extend the list, do nothing */
	if (new_size < list_length(list))
		list->length = new_size;

	/*
	 * Note: unlike the individual-list-cell deletion functions, we don't move
	 * the list cells to new storage, even in DEBUG_LIST_MEMORY_USAGE mode.
	 * This is because none of them can move in this operation, so just like
	 * in the old cons-cell-based implementation, this function doesn't
	 * invalidate any pointers to cells of the list.  This is also the reason
	 * for not wiping the memory of the deleted cells: the old code didn't
	 * free them either.  Perhaps later we'll tighten this up.
	 */

	return list;
}

/*
 * Return true iff 'datum' is a member of the list. Equality is
 * determined via equal(), so callers should ensure that they pass a
 * Node as 'datum'.
 *
 * This does a simple linear search --- avoid using it on long lists.
 */
bool
list_member(const List *list, const void *datum)
{
	const ListCell *cell;

	Assert(IsPointerList(list));
	check_list_invariants(list);

	foreach(cell, list)
	{
		if (equal(lfirst(cell), datum))
			return true;
	}

	return false;
}

/*
 * Return true iff 'datum' is a member of the list. Equality is
 * determined by using simple pointer comparison.
 */
bool
list_member_ptr(const List *list, const void *datum)
{
	const ListCell *cell;

	Assert(IsPointerList(list));
	check_list_invariants(list);

	foreach(cell, list)
	{
		if (lfirst(cell) == datum)
			return true;
	}

	return false;
}

/*
 * Return true iff the integer 'datum' is a member of the list.
 */
bool
list_member_int(const List *list, int datum)
{
	const ListCell *cell;

	Assert(IsIntegerList(list));
	check_list_invariants(list);

	foreach(cell, list)
	{
		if (lfirst_int(cell) == datum)
			return true;
	}

	return false;
}

/*
 * Return true iff the OID 'datum' is a member of the list.
 */
bool
list_member_oid(const List *list, Oid datum)
{
	const ListCell *cell;

	Assert(IsOidList(list));
	check_list_invariants(list);

	foreach(cell, list)
	{
		if (lfirst_oid(cell) == datum)
			return true;
	}

	return false;
}

/*
 * Delete the n'th cell (counting from 0) in list.
 *
 * The List is pfree'd if this was the last member.
 *
 * Note that this takes time proportional to the distance to the end of the
 * list, since the following entries must be moved.
 */
List *
list_delete_nth_cell(List *list, int n)
{
	check_list_invariants(list);

	Assert(n >= 0 && n < list->length);

	/*
	 * If we're about to delete the last node from the list, free the whole
	 * list instead and return NIL, which is the only valid representation of
	 * a zero-length list.
	 */
	if (list->length == 1)
	{
		list_free(list);
		return NIL;
	}

	/*
	 * Otherwise, we normally just collapse out the removed element.  But for
	 * debugging purposes, move the whole list contents someplace else.
	 *
	 * (Note that we *must* keep the contents in the same memory context.)
	 */
#ifndef DEBUG_LIST_MEMORY_USAGE
	memmove(&list->elements[n], &list->elements[n + 1],
			(list->length - 1 - n) * sizeof(ListCell));
	list->length--;
#else
	{
		ListCell   *newelems;
		int			newmaxlen = list->length - 1;

		newelems = (ListCell *)
			MemoryContextAlloc(GetMemoryChunkContext(list),
							   newmaxlen * sizeof(ListCell));
		memcpy(newelems, list->elements, n * sizeof(ListCell));
		memcpy(&newelems[n], &list->elements[n + 1],
			   (list->length - 1 - n) * sizeof(ListCell));
		if (list->elements != list->initial_elements)
			pfree(list->elements);
		else
		{
			/*
			 * As in enlarge_list(), clear the initial_elements[] space and/or
			 * mark it inaccessible.
			 */
#ifdef CLOBBER_FREED_MEMORY
			wipe_mem(list->initial_elements,
					 list->max_length * sizeof(ListCell));
#else
			VALGRIND_MAKE_MEM_NOACCESS(list->initial_elements,
									   list->max_length * sizeof(ListCell));
#endif
		}
		list->elements = newelems;
		list->max_length = newmaxlen;
		list->length--;
		check_list_invariants(list);
	}
#endif

	return list;
}

/*
 * Delete 'cell' from 'list'.
 *
 * The List is pfree'd if this was the last member.  However, we do not
 * touch any data the cell might've been pointing to.
 *
 * Note that this takes time proportional to the distance to the end of the
 * list, since the following entries must be moved.
 */
List *
list_delete_cell(List *list, ListCell *cell)
{
	return list_delete_nth_cell(list, cell - list->elements);
}

/*
 * Delete the first cell in list that matches datum, if any.
 * Equality is determined via equal().
 *
 * This does a simple linear search --- avoid using it on long lists.
 */
List *
list_delete(List *list, void *datum)
{
	ListCell   *cell;

	Assert(IsPointerList(list));
	check_list_invariants(list);

	foreach(cell, list)
	{
		if (equal(lfirst(cell), datum))
			return list_delete_cell(list, cell);
	}

	/* Didn't find a match: return the list unmodified */
	return list;
}

/* As above, but use simple pointer equality */
List *
list_delete_ptr(List *list, void *datum)
{
	ListCell   *cell;

	Assert(IsPointerList(list));
	check_list_invariants(list);

	foreach(cell, list)
	{
		if (lfirst(cell) == datum)
			return list_delete_cell(list, cell);
	}

	/* Didn't find a match: return the list unmodified */
	return list;
}

/* As above, but for integers */
List *
list_delete_int(List *list, int datum)
{
	ListCell   *cell;

	Assert(IsIntegerList(list));
	check_list_invariants(list);

	foreach(cell, list)
	{
		if (lfirst_int(cell) == datum)
			return list_delete_cell(list, cell);
	}

	/* Didn't find a match: return the list unmodified */
	return list;
}

/* As above, but for OIDs */
List *
list_delete_oid(List *list, Oid datum)
{
	ListCell   *cell;

	Assert(IsOidList(list));
	check_list_invariants(list);

	foreach(cell, list)
	{
		if (lfirst_oid(cell) == datum)
			return list_delete_cell(list, cell);
	}

	/* Didn't find a match: return the list unmodified */
	return list;
}

/*
 * Delete the first element of the list.
 *
 * This is useful to replace the Lisp-y code "list = lnext(list);" in cases
 * where the intent is to alter the list rather than just traverse it.
 * Beware that the list is modified, whereas the Lisp-y coding leaves
 * the original list head intact in case there's another pointer to it.
 *
 * Note that this takes time proportional to the length of the list,
 * since the remaining entries must be moved.  Consider reversing the
 * list order so that you can use list_delete_last() instead.  However,
 * if that causes you to replace lappend() with lcons(), you haven't
 * improved matters.  (In short, you can make an efficient stack from
 * a List, but not an efficient FIFO queue.)
 */
List *
list_delete_first(List *list)
{
	check_list_invariants(list);

	if (list == NIL)
		return NIL;				/* would an error be better? */

	return list_delete_nth_cell(list, 0);
}

/*
 * Delete the last element of the list.
 */
List *
list_delete_last(List *list)
{
	check_list_invariants(list);

	if (list == NIL)
		return NIL;				/* would an error be better? */

	/* list_truncate won't free list if it goes to empty, but this should */
	if (list_length(list) <= 1)
	{
		list_free(list);
		return NIL;
	}

	return list_truncate(list, list_length(list) - 1);
}

/*
 * Delete the first N cells of the list.
 *
 * The List is pfree'd if the request causes all cells to be deleted.
 *
 * Note that this takes time proportional to the distance to the end of the
 * list, since the following entries must be moved.
 */
List *
list_delete_first_n(List *list, int n)
{
	check_list_invariants(list);

	/* No-op request? */
	if (n <= 0)
		return list;

	/* Delete whole list? */
	if (n >= list_length(list))
	{
		list_free(list);
		return NIL;
	}

	/*
	 * Otherwise, we normally just collapse out the removed elements.  But for
	 * debugging purposes, move the whole list contents someplace else.
	 *
	 * (Note that we *must* keep the contents in the same memory context.)
	 */
#ifndef DEBUG_LIST_MEMORY_USAGE
	memmove(&list->elements[0], &list->elements[n],
			(list->length - n) * sizeof(ListCell));
	list->length -= n;
#else
	{
		ListCell   *newelems;
		int			newmaxlen = list->length - n;

		newelems = (ListCell *)
			MemoryContextAlloc(GetMemoryChunkContext(list),
							   newmaxlen * sizeof(ListCell));
		memcpy(newelems, &list->elements[n], newmaxlen * sizeof(ListCell));
		if (list->elements != list->initial_elements)
			pfree(list->elements);
		else
		{
			/*
			 * As in enlarge_list(), clear the initial_elements[] space and/or
			 * mark it inaccessible.
			 */
#ifdef CLOBBER_FREED_MEMORY
			wipe_mem(list->initial_elements,
					 list->max_length * sizeof(ListCell));
#else
			VALGRIND_MAKE_MEM_NOACCESS(list->initial_elements,
									   list->max_length * sizeof(ListCell));
#endif
		}
		list->elements = newelems;
		list->max_length = newmaxlen;
		list->length = newmaxlen;
		check_list_invariants(list);
	}
#endif

	return list;
}

/*
 * Generate the union of two lists. This is calculated by copying
 * list1 via list_copy(), then adding to it all the members of list2
 * that aren't already in list1.
 *
 * Whether an element is already a member of the list is determined
 * via equal().
 *
 * The returned list is newly-allocated, although the content of the
 * cells is the same (i.e. any pointed-to objects are not copied).
 *
 * NB: this function will NOT remove any duplicates that are present
 * in list1 (so it only performs a "union" if list1 is known unique to
 * start with).  Also, if you are about to write "x = list_union(x, y)"
 * you probably want to use list_concat_unique() instead to avoid wasting
 * the storage of the old x list.
 *
 * Note that this takes time proportional to the product of the list
 * lengths, so beware of using it on long lists.  (We could probably
 * improve that, but really you should be using some other data structure
 * if this'd be a performance bottleneck.)
 */
List *
list_union(const List *list1, const List *list2)
{
	List	   *result;
	const ListCell *cell;

	Assert(IsPointerList(list1));
	Assert(IsPointerList(list2));

	result = list_copy(list1);
	foreach(cell, list2)
	{
		if (!list_member(result, lfirst(cell)))
			result = lappend(result, lfirst(cell));
	}

	check_list_invariants(result);
	return result;
}

/*
 * This variant of list_union() determines duplicates via simple
 * pointer comparison.
 */
List *
list_union_ptr(const List *list1, const List *list2)
{
	List	   *result;
	const ListCell *cell;

	Assert(IsPointerList(list1));
	Assert(IsPointerList(list2));

	result = list_copy(list1);
	foreach(cell, list2)
	{
		if (!list_member_ptr(result, lfirst(cell)))
			result = lappend(result, lfirst(cell));
	}

	check_list_invariants(result);
	return result;
}

/*
 * This variant of list_union() operates upon lists of integers.
 */
List *
list_union_int(const List *list1, const List *list2)
{
	List	   *result;
	const ListCell *cell;

	Assert(IsIntegerList(list1));
	Assert(IsIntegerList(list2));

	result = list_copy(list1);
	foreach(cell, list2)
	{
		if (!list_member_int(result, lfirst_int(cell)))
			result = lappend_int(result, lfirst_int(cell));
	}

	check_list_invariants(result);
	return result;
}

/*
 * This variant of list_union() operates upon lists of OIDs.
 */
List *
list_union_oid(const List *list1, const List *list2)
{
	List	   *result;
	const ListCell *cell;

	Assert(IsOidList(list1));
	Assert(IsOidList(list2));

	result = list_copy(list1);
	foreach(cell, list2)
	{
		if (!list_member_oid(result, lfirst_oid(cell)))
			result = lappend_oid(result, lfirst_oid(cell));
	}

	check_list_invariants(result);
	return result;
}

/*
 * Return a list that contains all the cells that are in both list1 and
 * list2.  The returned list is freshly allocated via palloc(), but the
 * cells themselves point to the same objects as the cells of the
 * input lists.
 *
 * Duplicate entries in list1 will not be suppressed, so it's only a true
 * "intersection" if list1 is known unique beforehand.
 *
 * This variant works on lists of pointers, and determines list
 * membership via equal().  Note that the list1 member will be pointed
 * to in the result.
 *
 * Note that this takes time proportional to the product of the list
 * lengths, so beware of using it on long lists.  (We could probably
 * improve that, but really you should be using some other data structure
 * if this'd be a performance bottleneck.)
 */
List *
list_intersection(const List *list1, const List *list2)
{
	List	   *result;
	const ListCell *cell;

	if (list1 == NIL || list2 == NIL)
		return NIL;

	Assert(IsPointerList(list1));
	Assert(IsPointerList(list2));

	result = NIL;
	foreach(cell, list1)
	{
		if (list_member(list2, lfirst(cell)))
			result = lappend(result, lfirst(cell));
	}

	check_list_invariants(result);
	return result;
}

/*
 * As list_intersection but operates on lists of integers.
 */
List *
list_intersection_int(const List *list1, const List *list2)
{
	List	   *result;
	const ListCell *cell;

	if (list1 == NIL || list2 == NIL)
		return NIL;

	Assert(IsIntegerList(list1));
	Assert(IsIntegerList(list2));

	result = NIL;
	foreach(cell, list1)
	{
		if (list_member_int(list2, lfirst_int(cell)))
			result = lappend_int(result, lfirst_int(cell));
	}

	check_list_invariants(result);
	return result;
}

/*
 * Return a list that contains all the cells in list1 that are not in
 * list2. The returned list is freshly allocated via palloc(), but the
 * cells themselves point to the same objects as the cells of the
 * input lists.
 *
 * This variant works on lists of pointers, and determines list
 * membership via equal()
 *
 * Note that this takes time proportional to the product of the list
 * lengths, so beware of using it on long lists.  (We could probably
 * improve that, but really you should be using some other data structure
 * if this'd be a performance bottleneck.)
 */
List *
list_difference(const List *list1, const List *list2)
{
	const ListCell *cell;
	List	   *result = NIL;

	Assert(IsPointerList(list1));
	Assert(IsPointerList(list2));

	if (list2 == NIL)
		return list_copy(list1);

	foreach(cell, list1)
	{
		if (!list_member(list2, lfirst(cell)))
			result = lappend(result, lfirst(cell));
	}

	check_list_invariants(result);
	return result;
}

/*
 * This variant of list_difference() determines list membership via
 * simple pointer equality.
 */
List *
list_difference_ptr(const List *list1, const List *list2)
{
	const ListCell *cell;
	List	   *result = NIL;

	Assert(IsPointerList(list1));
	Assert(IsPointerList(list2));

	if (list2 == NIL)
		return list_copy(list1);

	foreach(cell, list1)
	{
		if (!list_member_ptr(list2, lfirst(cell)))
			result = lappend(result, lfirst(cell));
	}

	check_list_invariants(result);
	return result;
}

/*
 * This variant of list_difference() operates upon lists of integers.
 */
List *
list_difference_int(const List *list1, const List *list2)
{
	const ListCell *cell;
	List	   *result = NIL;

	Assert(IsIntegerList(list1));
	Assert(IsIntegerList(list2));

	if (list2 == NIL)
		return list_copy(list1);

	foreach(cell, list1)
	{
		if (!list_member_int(list2, lfirst_int(cell)))
			result = lappend_int(result, lfirst_int(cell));
	}

	check_list_invariants(result);
	return result;
}

/*
 * This variant of list_difference() operates upon lists of OIDs.
 */
List *
list_difference_oid(const List *list1, const List *list2)
{
	const ListCell *cell;
	List	   *result = NIL;

	Assert(IsOidList(list1));
	Assert(IsOidList(list2));

	if (list2 == NIL)
		return list_copy(list1);

	foreach(cell, list1)
	{
		if (!list_member_oid(list2, lfirst_oid(cell)))
			result = lappend_oid(result, lfirst_oid(cell));
	}

	check_list_invariants(result);
	return result;
}

/*
 * Append datum to list, but only if it isn't already in the list.
 *
 * Whether an element is already a member of the list is determined
 * via equal().
 *
 * This does a simple linear search --- avoid using it on long lists.
 */
List *
list_append_unique(List *list, void *datum)
{
	if (list_member(list, datum))
		return list;
	else
		return lappend(list, datum);
}

/*
 * This variant of list_append_unique() determines list membership via
 * simple pointer equality.
 */
List *
list_append_unique_ptr(List *list, void *datum)
{
	if (list_member_ptr(list, datum))
		return list;
	else
		return lappend(list, datum);
}

/*
 * This variant of list_append_unique() operates upon lists of integers.
 */
List *
list_append_unique_int(List *list, int datum)
{
	if (list_member_int(list, datum))
		return list;
	else
		return lappend_int(list, datum);
}

/*
 * This variant of list_append_unique() operates upon lists of OIDs.
 */
List *
list_append_unique_oid(List *list, Oid datum)
{
	if (list_member_oid(list, datum))
		return list;
	else
		return lappend_oid(list, datum);
}

/*
 * Append to list1 each member of list2 that isn't already in list1.
 *
 * Whether an element is already a member of the list is determined
 * via equal().
 *
 * This is almost the same functionality as list_union(), but list1 is
 * modified in-place rather than being copied. However, callers of this
 * function may have strict ordering expectations -- i.e. that the relative
 * order of those list2 elements that are not duplicates is preserved.
 *
 * Note that this takes time proportional to the product of the list
 * lengths, so beware of using it on long lists.  (We could probably
 * improve that, but really you should be using some other data structure
 * if this'd be a performance bottleneck.)
 */
List *
list_concat_unique(List *list1, const List *list2)
{
	ListCell   *cell;

	Assert(IsPointerList(list1));
	Assert(IsPointerList(list2));

	foreach(cell, list2)
	{
		if (!list_member(list1, lfirst(cell)))
			list1 = lappend(list1, lfirst(cell));
	}

	check_list_invariants(list1);
	return list1;
}

/*
 * This variant of list_concat_unique() determines list membership via
 * simple pointer equality.
 */
List *
list_concat_unique_ptr(List *list1, const List *list2)
{
	ListCell   *cell;

	Assert(IsPointerList(list1));
	Assert(IsPointerList(list2));

	foreach(cell, list2)
	{
		if (!list_member_ptr(list1, lfirst(cell)))
			list1 = lappend(list1, lfirst(cell));
	}

	check_list_invariants(list1);
	return list1;
}

/*
 * This variant of list_concat_unique() operates upon lists of integers.
 */
List *
list_concat_unique_int(List *list1, const List *list2)
{
	ListCell   *cell;

	Assert(IsIntegerList(list1));
	Assert(IsIntegerList(list2));

	foreach(cell, list2)
	{
		if (!list_member_int(list1, lfirst_int(cell)))
			list1 = lappend_int(list1, lfirst_int(cell));
	}

	check_list_invariants(list1);
	return list1;
}

/*
 * This variant of list_concat_unique() operates upon lists of OIDs.
 */
List *
list_concat_unique_oid(List *list1, const List *list2)
{
	ListCell   *cell;

	Assert(IsOidList(list1));
	Assert(IsOidList(list2));

	foreach(cell, list2)
	{
		if (!list_member_oid(list1, lfirst_oid(cell)))
			list1 = lappend_oid(list1, lfirst_oid(cell));
	}

	check_list_invariants(list1);
	return list1;
}

/*
 * Remove adjacent duplicates in a list of OIDs.
 *
 * It is caller's responsibility to have sorted the list to bring duplicates
 * together, perhaps via list_sort(list, list_oid_cmp).
 *
 * Note that this takes time proportional to the length of the list.
 */
void
list_deduplicate_oid(List *list)
{
	int			len;

	Assert(IsOidList(list));
	len = list_length(list);
	if (len > 1)
	{
		ListCell   *elements = list->elements;
		int			i = 0;

		for (int j = 1; j < len; j++)
		{
			if (elements[i].oid_value != elements[j].oid_value)
				elements[++i].oid_value = elements[j].oid_value;
		}
		list->length = i + 1;
	}
	check_list_invariants(list);
}

/*
 * Free all storage in a list, and optionally the pointed-to elements
 */
static void
list_free_private(List *list, bool deep)
{
	if (list == NIL)
		return;					/* nothing to do */

	check_list_invariants(list);

	if (deep)
	{
		for (int i = 0; i < list->length; i++)
			pfree(lfirst(&list->elements[i]));
	}
	if (list->elements != list->initial_elements)
		pfree(list->elements);
	pfree(list);
}

/*
 * Free all the cells of the list, as well as the list itself. Any
 * objects that are pointed-to by the cells of the list are NOT
 * free'd.
 *
 * On return, the argument to this function has been freed, so the
 * caller would be wise to set it to NIL for safety's sake.
 */
void
list_free(List *list)
{
	list_free_private(list, false);
}

/*
 * Free all the cells of the list, the list itself, and all the
 * objects pointed-to by the cells of the list (each element in the
 * list must contain a pointer to a palloc()'d region of memory!)
 *
 * On return, the argument to this function has been freed, so the
 * caller would be wise to set it to NIL for safety's sake.
 */
void
list_free_deep(List *list)
{
	/*
	 * A "deep" free operation only makes sense on a list of pointers.
	 */
	Assert(IsPointerList(list));
	list_free_private(list, true);
}

/*
 * Return a shallow copy of the specified list.
 */
List *
list_copy(const List *oldlist)
{
	List	   *newlist;

	if (oldlist == NIL)
		return NIL;

	newlist = new_list(oldlist->type, oldlist->length);
	memcpy(newlist->elements, oldlist->elements,
		   newlist->length * sizeof(ListCell));

	check_list_invariants(newlist);
	return newlist;
}

/*
 * Return a shallow copy of the specified list containing only the first 'len'
 * elements.  If oldlist is shorter than 'len' then we copy the entire list.
 */
List *
list_copy_head(const List *oldlist, int len)
{
	List	   *newlist;

	if (oldlist == NIL || len <= 0)
		return NIL;

	len = Min(oldlist->length, len);

	newlist = new_list(oldlist->type, len);
	memcpy(newlist->elements, oldlist->elements, len * sizeof(ListCell));

	check_list_invariants(newlist);
	return newlist;
}

/*
 * Return a shallow copy of the specified list, without the first N elements.
 */
List *
list_copy_tail(const List *oldlist, int nskip)
{
	List	   *newlist;

	if (nskip < 0)
		nskip = 0;				/* would it be better to elog? */

	if (oldlist == NIL || nskip >= oldlist->length)
		return NIL;

	newlist = new_list(oldlist->type, oldlist->length - nskip);
	memcpy(newlist->elements, &oldlist->elements[nskip],
		   newlist->length * sizeof(ListCell));

	check_list_invariants(newlist);
	return newlist;
}

/*
 * Return a deep copy of the specified list.
 *
 * The list elements are copied via copyObject(), so that this function's
 * idea of a "deep" copy is considerably deeper than what list_free_deep()
 * means by the same word.
 */
List *
list_copy_deep(const List *oldlist)
{
	List	   *newlist;

	if (oldlist == NIL)
		return NIL;

	/* This is only sensible for pointer Lists */
	Assert(IsA(oldlist, List));

	newlist = new_list(oldlist->type, oldlist->length);
	for (int i = 0; i < newlist->length; i++)
		lfirst(&newlist->elements[i]) =
			copyObjectImpl(lfirst(&oldlist->elements[i]));

	check_list_invariants(newlist);
	return newlist;
}

/*
 * Sort a list according to the specified comparator function.
 *
 * The list is sorted in-place.
 *
 * The comparator function is declared to receive arguments of type
 * const ListCell *; this allows it to use lfirst() and variants
 * without casting its arguments.  Otherwise it behaves the same as
 * the comparator function for standard qsort().
 *
 * Like qsort(), this provides no guarantees about sort stability
 * for equal keys.
 *
 * This is based on qsort(), so it likewise has O(N log N) runtime.
 */
void
list_sort(List *list, list_sort_comparator cmp)
{
	typedef int (*qsort_comparator) (const void *a, const void *b);
	int			len;

	check_list_invariants(list);

	/* Nothing to do if there's less than two elements */
	len = list_length(list);
	if (len > 1)
		qsort(list->elements, len, sizeof(ListCell), (qsort_comparator) cmp);
}

/*
 * list_sort comparator for sorting a list into ascending int order.
 */
int
list_int_cmp(const ListCell *p1, const ListCell *p2)
{
	int			v1 = lfirst_int(p1);
	int			v2 = lfirst_int(p2);

	if (v1 < v2)
		return -1;
	if (v1 > v2)
		return 1;
	return 0;
}

/*
 * list_sort comparator for sorting a list into ascending OID order.
 */
int
list_oid_cmp(const ListCell *p1, const ListCell *p2)
{
	Oid			v1 = lfirst_oid(p1);
	Oid			v2 = lfirst_oid(p2);

	if (v1 < v2)
		return -1;
	if (v1 > v2)
		return 1;
	return 0;
}