summaryrefslogtreecommitdiffstats
path: root/docs/basic/from_pg2.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 17:41:08 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-04 17:41:08 +0000
commit506ed8899b3a97e512be3fd6d44d5b11463bf9bf (patch)
tree808913770c5e6935d3714058c2a066c57b4632ec /docs/basic/from_pg2.rst
parentInitial commit. (diff)
downloadpsycopg3-506ed8899b3a97e512be3fd6d44d5b11463bf9bf.tar.xz
psycopg3-506ed8899b3a97e512be3fd6d44d5b11463bf9bf.zip
Adding upstream version 3.1.7.upstream/3.1.7upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'docs/basic/from_pg2.rst')
-rw-r--r--docs/basic/from_pg2.rst359
1 files changed, 359 insertions, 0 deletions
diff --git a/docs/basic/from_pg2.rst b/docs/basic/from_pg2.rst
new file mode 100644
index 0000000..0692049
--- /dev/null
+++ b/docs/basic/from_pg2.rst
@@ -0,0 +1,359 @@
+.. index::
+ pair: psycopg2; Differences
+
+.. currentmodule:: psycopg
+
+.. _from-psycopg2:
+
+
+Differences from `!psycopg2`
+============================
+
+Psycopg 3 uses the common DBAPI structure of many other database adapters and
+tries to behave as close as possible to `!psycopg2`. There are however a few
+differences to be aware of.
+
+.. tip::
+ Most of the times, the workarounds suggested here will work with both
+ Psycopg 2 and 3, which could be useful if you are porting a program or
+ writing a program that should work with both Psycopg 2 and 3.
+
+
+.. _server-side-binding:
+
+Server-side binding
+-------------------
+
+Psycopg 3 sends the query and the parameters to the server separately, instead
+of merging them on the client side. Server-side binding works for normal
+:sql:`SELECT` and data manipulation statements (:sql:`INSERT`, :sql:`UPDATE`,
+:sql:`DELETE`), but it doesn't work with many other statements. For instance,
+it doesn't work with :sql:`SET` or with :sql:`NOTIFY`::
+
+ >>> conn.execute("SET TimeZone TO %s", ["UTC"])
+ Traceback (most recent call last):
+ ...
+ psycopg.errors.SyntaxError: syntax error at or near "$1"
+ LINE 1: SET TimeZone TO $1
+ ^
+
+ >>> conn.execute("NOTIFY %s, %s", ["chan", 42])
+ Traceback (most recent call last):
+ ...
+ psycopg.errors.SyntaxError: syntax error at or near "$1"
+ LINE 1: NOTIFY $1, $2
+ ^
+
+and with any data definition statement::
+
+ >>> conn.execute("CREATE TABLE foo (id int DEFAULT %s)", [42])
+ Traceback (most recent call last):
+ ...
+ psycopg.errors.UndefinedParameter: there is no parameter $1
+ LINE 1: CREATE TABLE foo (id int DEFAULT $1)
+ ^
+
+Sometimes, PostgreSQL offers an alternative: for instance the `set_config()`__
+function can be used instead of the :sql:`SET` statement, the `pg_notify()`__
+function can be used instead of :sql:`NOTIFY`::
+
+ >>> conn.execute("SELECT set_config('TimeZone', %s, false)", ["UTC"])
+
+ >>> conn.execute("SELECT pg_notify(%s, %s)", ["chan", "42"])
+
+.. __: https://www.postgresql.org/docs/current/functions-admin.html
+ #FUNCTIONS-ADMIN-SET
+
+.. __: https://www.postgresql.org/docs/current/sql-notify.html
+ #id-1.9.3.157.7.5
+
+If this is not possible, you must merge the query and the parameter on the
+client side. You can do so using the `psycopg.sql` objects::
+
+ >>> from psycopg import sql
+
+ >>> cur.execute(sql.SQL("CREATE TABLE foo (id int DEFAULT {})").format(42))
+
+or creating a :ref:`client-side binding cursor <client-side-binding-cursors>`
+such as `ClientCursor`::
+
+ >>> cur = ClientCursor(conn)
+ >>> cur.execute("CREATE TABLE foo (id int DEFAULT %s)", [42])
+
+If you need `!ClientCursor` often, you can set the `Connection.cursor_factory`
+to have them created by default by `Connection.cursor()`. This way, Psycopg 3
+will behave largely the same way of Psycopg 2.
+
+Note that, both server-side and client-side, you can only specify **values**
+as parameters (i.e. *the strings that go in single quotes*). If you need to
+parametrize different parts of a statement (such as a table name), you must
+use the `psycopg.sql` module::
+
+ >>> from psycopg import sql
+
+ # This will quote the user and the password using the right quotes
+ # e.g.: ALTER USER "foo" SET PASSWORD 'bar'
+ >>> conn.execute(
+ ... sql.SQL("ALTER USER {} SET PASSWORD {}")
+ ... .format(sql.Identifier(username), password))
+
+
+.. _multi-statements:
+
+Multiple statements in the same query
+-------------------------------------
+
+As a consequence of using :ref:`server-side bindings <server-side-binding>`,
+when parameters are used, it is not possible to execute several statements in
+the same `!execute()` call, separating them by semicolon::
+
+ >>> conn.execute(
+ ... "INSERT INTO foo VALUES (%s); INSERT INTO foo VALUES (%s)",
+ ... (10, 20))
+ Traceback (most recent call last):
+ ...
+ psycopg.errors.SyntaxError: cannot insert multiple commands into a prepared statement
+
+One obvious way to work around the problem is to use several `!execute()`
+calls.
+
+**There is no such limitation if no parameters are used**. As a consequence, you
+can compose a multiple query on the client side and run them all in the same
+`!execute()` call, using the `psycopg.sql` objects::
+
+ >>> from psycopg import sql
+ >>> conn.execute(
+ ... sql.SQL("INSERT INTO foo VALUES ({}); INSERT INTO foo values ({})"
+ ... .format(10, 20))
+
+or a :ref:`client-side binding cursor <client-side-binding-cursors>`::
+
+ >>> cur = psycopg.ClientCursor(conn)
+ >>> cur.execute(
+ ... "INSERT INTO foo VALUES (%s); INSERT INTO foo VALUES (%s)",
+ ... (10, 20))
+
+.. warning::
+
+ If a statements must be executed outside a transaction (such as
+ :sql:`CREATE DATABASE`), it cannot be executed in batch with other
+ statements, even if the connection is in autocommit mode::
+
+ >>> conn.autocommit = True
+ >>> conn.execute("CREATE DATABASE foo; SELECT 1")
+ Traceback (most recent call last):
+ ...
+ psycopg.errors.ActiveSqlTransaction: CREATE DATABASE cannot run inside a transaction block
+
+ This happens because PostgreSQL itself will wrap multiple statements in a
+ transaction. Note that your will experience a different behaviour in
+ :program:`psql` (:program:`psql` will split the queries on semicolons and
+ send them to the server separately).
+
+ This is not new in Psycopg 3: the same limitation is present in
+ `!psycopg2` too.
+
+
+.. _multi-results:
+
+Multiple results returned from multiple statements
+--------------------------------------------------
+
+If more than one statement returning results is executed in psycopg2, only the
+result of the last statement is returned::
+
+ >>> cur_pg2.execute("SELECT 1; SELECT 2")
+ >>> cur_pg2.fetchone()
+ (2,)
+
+In Psycopg 3 instead, all the results are available. After running the query,
+the first result will be readily available in the cursor and can be consumed
+using the usual `!fetch*()` methods. In order to access the following
+results, you can use the `Cursor.nextset()` method::
+
+ >>> cur_pg3.execute("SELECT 1; SELECT 2")
+ >>> cur_pg3.fetchone()
+ (1,)
+
+ >>> cur_pg3.nextset()
+ True
+ >>> cur_pg3.fetchone()
+ (2,)
+
+ >>> cur_pg3.nextset()
+ None # no more results
+
+Remember though that you cannot use server-side bindings to :ref:`execute more
+than one statement in the same query <multi-statements>`.
+
+
+.. _difference-cast-rules:
+
+Different cast rules
+--------------------
+
+In rare cases, especially around variadic functions, PostgreSQL might fail to
+find a function candidate for the given data types::
+
+ >>> conn.execute("SELECT json_build_array(%s, %s)", ["foo", "bar"])
+ Traceback (most recent call last):
+ ...
+ psycopg.errors.IndeterminateDatatype: could not determine data type of parameter $1
+
+This can be worked around specifying the argument types explicitly via a cast::
+
+ >>> conn.execute("SELECT json_build_array(%s::text, %s::text)", ["foo", "bar"])
+
+
+.. _in-and-tuple:
+
+You cannot use ``IN %s`` with a tuple
+-------------------------------------
+
+``IN`` cannot be used with a tuple as single parameter, as was possible with
+``psycopg2``::
+
+ >>> conn.execute("SELECT * FROM foo WHERE id IN %s", [(10,20,30)])
+ Traceback (most recent call last):
+ ...
+ psycopg.errors.SyntaxError: syntax error at or near "$1"
+ LINE 1: SELECT * FROM foo WHERE id IN $1
+ ^
+
+What you can do is to use the `= ANY()`__ construct and pass the candidate
+values as a list instead of a tuple, which will be adapted to a PostgreSQL
+array::
+
+ >>> conn.execute("SELECT * FROM foo WHERE id = ANY(%s)", [[10,20,30]])
+
+Note that `ANY()` can be used with `!psycopg2` too, and has the advantage of
+accepting an empty list of values too as argument, which is not supported by
+the :sql:`IN` operator instead.
+
+.. __: https://www.postgresql.org/docs/current/functions-comparisons.html
+ #id-1.5.8.30.16
+
+
+.. _diff-adapt:
+
+Different adaptation system
+---------------------------
+
+The adaptation system has been completely rewritten, in order to address
+server-side parameters adaptation, but also to consider performance,
+flexibility, ease of customization.
+
+The default behaviour with builtin data should be :ref:`what you would expect
+<types-adaptation>`. If you have customised the way to adapt data, or if you
+are managing your own extension types, you should look at the :ref:`new
+adaptation system <adaptation>`.
+
+.. seealso::
+
+ - :ref:`types-adaptation` for the basic behaviour.
+ - :ref:`adaptation` for more advanced use.
+
+
+.. _diff-copy:
+
+Copy is no longer file-based
+----------------------------
+
+`!psycopg2` exposes :ref:`a few copy methods <pg2:copy>` to interact with
+PostgreSQL :sql:`COPY`. Their file-based interface doesn't make it easy to load
+dynamically-generated data into a database.
+
+There is now a single `~Cursor.copy()` method, which is similar to
+`!psycopg2` `!copy_expert()` in accepting a free-form :sql:`COPY` command and
+returns an object to read/write data, block-wise or record-wise. The different
+usage pattern also enables :sql:`COPY` to be used in async interactions.
+
+.. seealso:: See :ref:`copy` for the details.
+
+
+.. _diff-with:
+
+`!with` connection
+------------------
+
+In `!psycopg2`, using the syntax :ref:`with connection <pg2:with>`,
+only the transaction is closed, not the connection. This behaviour is
+surprising for people used to several other Python classes wrapping resources,
+such as files.
+
+In Psycopg 3, using :ref:`with connection <with-connection>` will close the
+connection at the end of the `!with` block, making handling the connection
+resources more familiar.
+
+In order to manage transactions as blocks you can use the
+`Connection.transaction()` method, which allows for finer control, for
+instance to use nested transactions.
+
+.. seealso:: See :ref:`transaction-context` for details.
+
+
+.. _diff-callproc:
+
+`!callproc()` is gone
+---------------------
+
+`cursor.callproc()` is not implemented. The method has a simplistic semantic
+which doesn't account for PostgreSQL positional parameters, procedures,
+set-returning functions... Use a normal `~Cursor.execute()` with :sql:`SELECT
+function_name(...)` or :sql:`CALL procedure_name(...)` instead.
+
+
+.. _diff-client-encoding:
+
+`!client_encoding` is gone
+--------------------------
+
+Psycopg automatically uses the database client encoding to decode data to
+Unicode strings. Use `ConnectionInfo.encoding` if you need to read the
+encoding. You can select an encoding at connection time using the
+`!client_encoding` connection parameter and you can change the encoding of a
+connection by running a :sql:`SET client_encoding` statement... But why would
+you?
+
+
+.. _infinity-datetime:
+
+No default infinity dates handling
+----------------------------------
+
+PostgreSQL can represent a much wider range of dates and timestamps than
+Python. While Python dates are limited to the years between 1 and 9999
+(represented by constants such as `datetime.date.min` and
+`~datetime.date.max`), PostgreSQL dates extend to BC dates and past the year
+10K. Furthermore PostgreSQL can also represent symbolic dates "infinity", in
+both directions.
+
+In psycopg2, by default, `infinity dates and timestamps map to 'date.max'`__
+and similar constants. This has the problem of creating a non-bijective
+mapping (two Postgres dates, infinity and 9999-12-31, both map to the same
+Python date). There is also the perversity that valid Postgres dates, greater
+than Python `!date.max` but arguably lesser than infinity, will still
+overflow.
+
+In Psycopg 3, every date greater than year 9999 will overflow, including
+infinity. If you would like to customize this mapping (for instance flattening
+every date past Y10K on `!date.max`) you can subclass and adapt the
+appropriate loaders: take a look at :ref:`this example
+<adapt-example-inf-date>` to see how.
+
+.. __: https://www.psycopg.org/docs/usage.html#infinite-dates-handling
+
+
+.. _whats-new:
+
+What's new in Psycopg 3
+-----------------------
+
+- :ref:`Asynchronous support <async>`
+- :ref:`Server-side parameters binding <server-side-binding>`
+- :ref:`Prepared statements <prepared-statements>`
+- :ref:`Binary communication <binary-data>`
+- :ref:`Python-based COPY support <copy>`
+- :ref:`Support for static typing <static-typing>`
+- :ref:`A redesigned connection pool <connection-pools>`
+- :ref:`Direct access to the libpq functionalities <psycopg.pq>`