.. currentmodule:: psycopg .. index:: single: Adaptation pair: Objects; Adaptation single: Data types; Adaptation .. _types-adaptation: Adapting basic Python types =========================== Many standard Python types are adapted into SQL and returned as Python objects when a query is executed. Converting the following data types between Python and PostgreSQL works out-of-the-box and doesn't require any configuration. In case you need to customise the conversion you should take a look at :ref:`adaptation`. .. index:: pair: Boolean; Adaptation .. _adapt-bool: Booleans adaptation ------------------- Python `bool` values `!True` and `!False` are converted to the equivalent `PostgreSQL boolean type`__:: >>> cur.execute("SELECT %s, %s", (True, False)) # equivalent to "SELECT true, false" .. __: https://www.postgresql.org/docs/current/datatype-boolean.html .. index:: single: Adaptation; numbers single: Integer; Adaptation single: Float; Adaptation single: Decimal; Adaptation .. _adapt-numbers: Numbers adaptation ------------------ .. seealso:: - `PostgreSQL numeric types `__ - Python `int` values can be converted to PostgreSQL :sql:`smallint`, :sql:`integer`, :sql:`bigint`, or :sql:`numeric`, according to their numeric value. Psycopg will choose the smallest data type available, because PostgreSQL can automatically cast a type up (e.g. passing a `smallint` where PostgreSQL expect an `integer` is gladly accepted) but will not cast down automatically (e.g. if a function has an :sql:`integer` argument, passing it a :sql:`bigint` value will fail, even if the value is 1). - Python `float` values are converted to PostgreSQL :sql:`float8`. - Python `~decimal.Decimal` values are converted to PostgreSQL :sql:`numeric`. On the way back, smaller types (:sql:`int2`, :sql:`int4`, :sql:`float4`) are promoted to the larger Python counterpart. .. note:: Sometimes you may prefer to receive :sql:`numeric` data as `!float` instead, for performance reason or ease of manipulation: you can configure an adapter to :ref:`cast PostgreSQL numeric to Python float `. This of course may imply a loss of precision. .. index:: pair: Strings; Adaptation single: Unicode; Adaptation pair: Encoding; SQL_ASCII .. _adapt-string: Strings adaptation ------------------ .. seealso:: - `PostgreSQL character types `__ Python `str` are converted to PostgreSQL string syntax, and PostgreSQL types such as :sql:`text` and :sql:`varchar` are converted back to Python `!str`: .. code:: python conn = psycopg.connect() conn.execute( "INSERT INTO menu (id, entry) VALUES (%s, %s)", (1, "Crème Brûlée at 4.99€")) conn.execute("SELECT entry FROM menu WHERE id = 1").fetchone()[0] 'Crème Brûlée at 4.99€' PostgreSQL databases `have an encoding`__, and `the session has an encoding`__ too, exposed in the `!Connection.info.`\ `~ConnectionInfo.encoding` attribute. If your database and connection are in UTF-8 encoding you will likely have no problem, otherwise you will have to make sure that your application only deals with the non-ASCII chars that the database can handle; failing to do so may result in encoding/decoding errors: .. __: https://www.postgresql.org/docs/current/sql-createdatabase.html .. __: https://www.postgresql.org/docs/current/multibyte.html .. code:: python # The encoding is set at connection time according to the db configuration conn.info.encoding 'utf-8' # The Latin-9 encoding can manage some European accented letters # and the Euro symbol conn.execute("SET client_encoding TO LATIN9") conn.execute("SELECT entry FROM menu WHERE id = 1").fetchone()[0] 'Crème Brûlée at 4.99€' # The Latin-1 encoding doesn't have a representation for the Euro symbol conn.execute("SET client_encoding TO LATIN1") conn.execute("SELECT entry FROM menu WHERE id = 1").fetchone()[0] # Traceback (most recent call last) # ... # UntranslatableCharacter: character with byte sequence 0xe2 0x82 0xac # in encoding "UTF8" has no equivalent in encoding "LATIN1" In rare cases you may have strings with unexpected encodings in the database. Using the ``SQL_ASCII`` client encoding will disable decoding of the data coming from the database, which will be returned as `bytes`: .. code:: python conn.execute("SET client_encoding TO SQL_ASCII") conn.execute("SELECT entry FROM menu WHERE id = 1").fetchone()[0] b'Cr\xc3\xa8me Br\xc3\xbbl\xc3\xa9e at 4.99\xe2\x82\xac' Alternatively you can cast the unknown encoding data to :sql:`bytea` to retrieve it as bytes, leaving other strings unaltered: see :ref:`adapt-binary` Note that PostgreSQL text cannot contain the ``0x00`` byte. If you need to store Python strings that may contain binary zeros you should use a :sql:`bytea` field. .. index:: single: bytea; Adaptation single: bytes; Adaptation single: bytearray; Adaptation single: memoryview; Adaptation single: Binary string .. _adapt-binary: Binary adaptation ----------------- Python types representing binary objects (`bytes`, `bytearray`, `memoryview`) are converted by default to :sql:`bytea` fields. By default data received is returned as `!bytes`. If you are storing large binary data in bytea fields (such as binary documents or images) you should probably use the binary format to pass and return values, otherwise binary data will undergo `ASCII escaping`__, taking some CPU time and more bandwidth. See :ref:`binary-data` for details. .. __: https://www.postgresql.org/docs/current/datatype-binary.html .. _adapt-date: Date/time types adaptation -------------------------- .. seealso:: - `PostgreSQL date/time types `__ - Python `~datetime.date` objects are converted to PostgreSQL :sql:`date`. - Python `~datetime.datetime` objects are converted to PostgreSQL :sql:`timestamp` (if they don't have a `!tzinfo` set) or :sql:`timestamptz` (if they do). - Python `~datetime.time` objects are converted to PostgreSQL :sql:`time` (if they don't have a `!tzinfo` set) or :sql:`timetz` (if they do). - Python `~datetime.timedelta` objects are converted to PostgreSQL :sql:`interval`. PostgreSQL :sql:`timestamptz` values are returned with a timezone set to the `connection TimeZone setting`__, which is available as a Python `~zoneinfo.ZoneInfo` object in the `!Connection.info`.\ `~ConnectionInfo.timezone` attribute:: >>> conn.info.timezone zoneinfo.ZoneInfo(key='Europe/London') >>> conn.execute("select '2048-07-08 12:00'::timestamptz").fetchone()[0] datetime.datetime(2048, 7, 8, 12, 0, tzinfo=zoneinfo.ZoneInfo(key='Europe/London')) .. note:: PostgreSQL :sql:`timestamptz` doesn't store "a timestamp with a timezone attached": it stores a timestamp always in UTC, which is converted, on output, to the connection TimeZone setting:: >>> conn.execute("SET TIMEZONE to 'Europe/Rome'") # UTC+2 in summer >>> conn.execute("SELECT '2042-07-01 12:00Z'::timestamptz").fetchone()[0] # UTC input datetime.datetime(2042, 7, 1, 14, 0, tzinfo=zoneinfo.ZoneInfo(key='Europe/Rome')) Check out the `PostgreSQL documentation about timezones`__ for all the details. .. __: https://www.postgresql.org/docs/current/datatype-datetime.html #DATATYPE-TIMEZONES .. __: https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-TIMEZONE .. _adapt-json: JSON adaptation --------------- Psycopg can map between Python objects and PostgreSQL `json/jsonb types`__, allowing to customise the load and dump function used. .. __: https://www.postgresql.org/docs/current/datatype-json.html Because several Python objects could be considered JSON (dicts, lists, scalars, even date/time if using a dumps function customised to use them), Psycopg requires you to wrap the object to dump as JSON into a wrapper: either `psycopg.types.json.Json` or `~psycopg.types.json.Jsonb`. .. code:: python from psycopg.types.json import Jsonb thing = {"foo": ["bar", 42]} conn.execute("INSERT INTO mytable VALUES (%s)", [Jsonb(thing)]) By default Psycopg uses the standard library `json.dumps` and `json.loads` functions to serialize and de-serialize Python objects to JSON. If you want to customise how serialization happens, for instance changing serialization parameters or using a different JSON library, you can specify your own functions using the `psycopg.types.json.set_json_dumps()` and `~psycopg.types.json.set_json_loads()` functions, to apply either globally or to a specific context (connection or cursor). .. code:: python from functools import partial from psycopg.types.json import Jsonb, set_json_dumps, set_json_loads import ujson # Use a faster dump function set_json_dumps(ujson.dumps) # Return floating point values as Decimal, just in one connection set_json_loads(partial(json.loads, parse_float=Decimal), conn) conn.execute("SELECT %s", [Jsonb({"value": 123.45})]).fetchone()[0] # {'value': Decimal('123.45')} If you need an even more specific dump customisation only for certain objects (including different configurations in the same query) you can specify a `!dumps` parameter in the `~psycopg.types.json.Json`/`~psycopg.types.json.Jsonb` wrapper, which will take precedence over what is specified by `!set_json_dumps()`. .. code:: python from uuid import UUID, uuid4 class UUIDEncoder(json.JSONEncoder): """A JSON encoder which can dump UUID.""" def default(self, obj): if isinstance(obj, UUID): return str(obj) return json.JSONEncoder.default(self, obj) uuid_dumps = partial(json.dumps, cls=UUIDEncoder) obj = {"uuid": uuid4()} cnn.execute("INSERT INTO objs VALUES %s", [Json(obj, dumps=uuid_dumps)]) # will insert: {'uuid': '0a40799d-3980-4c65-8315-2956b18ab0e1'} .. _adapt-list: Lists adaptation ---------------- Python `list` objects are adapted to `PostgreSQL arrays`__ and back. Only lists containing objects of the same type can be dumped to PostgreSQL (but the list may contain `!None` elements). .. __: https://www.postgresql.org/docs/current/arrays.html .. note:: If you have a list of values which you want to use with the :sql:`IN` operator... don't. It won't work (neither with a list nor with a tuple):: >>> conn.execute("SELECT * FROM mytable WHERE id IN %s", [[10,20,30]]) Traceback (most recent call last): File "", line 1, in psycopg.errors.SyntaxError: syntax error at or near "$1" LINE 1: SELECT * FROM mytable WHERE id IN $1 ^ What you want to do instead is to use the `'= ANY()' expression`__ and pass the values as a list (not a tuple). >>> conn.execute("SELECT * FROM mytable WHERE id = ANY(%s)", [[10,20,30]]) This has also the advantage of working with an empty list, whereas ``IN ()`` is not valid SQL. .. __: https://www.postgresql.org/docs/current/functions-comparisons.html #id-1.5.8.30.16 .. _adapt-uuid: UUID adaptation --------------- Python `uuid.UUID` objects are adapted to PostgreSQL `UUID type`__ and back:: >>> conn.execute("select gen_random_uuid()").fetchone()[0] UUID('97f0dd62-3bd2-459e-89b8-a5e36ea3c16c') >>> from uuid import uuid4 >>> conn.execute("select gen_random_uuid() = %s", [uuid4()]).fetchone()[0] False # long shot .. __: https://www.postgresql.org/docs/current/datatype-uuid.html .. _adapt-network: Network data types adaptation ----------------------------- Objects from the `ipaddress` module are converted to PostgreSQL `network address types`__: - `~ipaddress.IPv4Address`, `~ipaddress.IPv4Interface` objects are converted to the PostgreSQL :sql:`inet` type. On the way back, :sql:`inet` values indicating a single address are converted to `!IPv4Address`, otherwise they are converted to `!IPv4Interface` - `~ipaddress.IPv4Network` objects are converted to the :sql:`cidr` type and back. - `~ipaddress.IPv6Address`, `~ipaddress.IPv6Interface`, `~ipaddress.IPv6Network` objects follow the same rules, with IPv6 :sql:`inet` and :sql:`cidr` values. .. __: https://www.postgresql.org/docs/current/datatype-net-types.html#DATATYPE-CIDR .. code:: python >>> conn.execute("select '192.168.0.1'::inet, '192.168.0.1/24'::inet").fetchone() (IPv4Address('192.168.0.1'), IPv4Interface('192.168.0.1/24')) >>> conn.execute("select '::ffff:1.2.3.0/120'::cidr").fetchone()[0] IPv6Network('::ffff:102:300/120') .. _adapt-enum: Enum adaptation --------------- .. versionadded:: 3.1 Psycopg can adapt Python `~enum.Enum` subclasses into PostgreSQL enum types (created with the |CREATE TYPE AS ENUM|_ command). .. |CREATE TYPE AS ENUM| replace:: :sql:`CREATE TYPE ... AS ENUM (...)` .. _CREATE TYPE AS ENUM: https://www.postgresql.org/docs/current/static/datatype-enum.html In order to set up a bidirectional enum mapping, you should get information about the PostgreSQL enum using the `~types.enum.EnumInfo` class and register it using `~types.enum.register_enum()`. The behaviour of unregistered and registered enums is different. - If the enum is not registered with `register_enum()`: - Pure `!Enum` classes are dumped as normal strings, using their member names as value. The unknown oid is used, so PostgreSQL should be able to use this string in most contexts (such as an enum or a text field). .. versionchanged:: 3.1 In previous version dumping pure enums is not supported and raise a "cannot adapt" error. - Mix-in enums are dumped according to their mix-in type (because a `class MyIntEnum(int, Enum)` is more specifically an `!int` than an `!Enum`, so it's dumped by default according to `!int` rules). - PostgreSQL enums are loaded as Python strings. If you want to load arrays of such enums you will have to find their OIDs using `types.TypeInfo.fetch()` and register them using `~types.TypeInfo.register()`. - If the enum is registered (using `~types.enum.EnumInfo`\ `!.fetch()` and `~types.enum.register_enum()`): - Enums classes, both pure and mixed-in, are dumped by name. - The registered PostgreSQL enum is loaded back as the registered Python enum members. .. autoclass:: psycopg.types.enum.EnumInfo `!EnumInfo` is a subclass of `~psycopg.types.TypeInfo`: refer to the latter's documentation for generic usage, especially the `~psycopg.types.TypeInfo.fetch()` method. .. attribute:: labels After `~psycopg.types.TypeInfo.fetch()`, it contains the labels defined in the PostgreSQL enum type. .. attribute:: enum After `register_enum()` is called, it will contain the Python type mapping to the registered enum. .. autofunction:: psycopg.types.enum.register_enum After registering, fetching data of the registered enum will cast PostgreSQL enum labels into corresponding Python enum members. If no `!enum` is specified, a new `Enum` is created based on PostgreSQL enum labels. Example:: >>> from enum import Enum, auto >>> from psycopg.types.enum import EnumInfo, register_enum >>> class UserRole(Enum): ... ADMIN = auto() ... EDITOR = auto() ... GUEST = auto() >>> conn.execute("CREATE TYPE user_role AS ENUM ('ADMIN', 'EDITOR', 'GUEST')") >>> info = EnumInfo.fetch(conn, "user_role") >>> register_enum(info, conn, UserRole) >>> some_editor = info.enum.EDITOR >>> some_editor >>> conn.execute( ... "SELECT pg_typeof(%(editor)s), %(editor)s", ... {"editor": some_editor} ... ).fetchone() ('user_role', ) >>> conn.execute( ... "SELECT ARRAY[%s, %s]", ... [UserRole.ADMIN, UserRole.GUEST] ... ).fetchone() [, ] If the Python and the PostgreSQL enum don't match 1:1 (for instance if members have a different name, or if more than one Python enum should map to the same PostgreSQL enum, or vice versa), you can specify the exceptions using the `!mapping` parameter. `!mapping` should be a dictionary with Python enum members as keys and the matching PostgreSQL enum labels as values, or a list of `(member, label)` pairs with the same meaning (useful when some members are repeated). Order matters: if an element on either side is specified more than once, the last pair in the sequence will take precedence:: # Legacy roles, defined in medieval times. >>> conn.execute( ... "CREATE TYPE abbey_role AS ENUM ('ABBOT', 'SCRIBE', 'MONK', 'GUEST')") >>> info = EnumInfo.fetch(conn, "abbey_role") >>> register_enum(info, conn, UserRole, mapping=[ ... (UserRole.ADMIN, "ABBOT"), ... (UserRole.EDITOR, "SCRIBE"), ... (UserRole.EDITOR, "MONK")]) >>> conn.execute("SELECT '{ABBOT,SCRIBE,MONK,GUEST}'::abbey_role[]").fetchone()[0] [, , , ] >>> conn.execute("SELECT %s::text[]", [list(UserRole)]).fetchone()[0] ['ABBOT', 'MONK', 'GUEST'] A particularly useful case is when the PostgreSQL labels match the *values* of a `!str`\-based Enum. In this case it is possible to use something like ``{m: m.value for m in enum}`` as mapping:: >>> class LowercaseRole(str, Enum): ... ADMIN = "admin" ... EDITOR = "editor" ... GUEST = "guest" >>> conn.execute( ... "CREATE TYPE lowercase_role AS ENUM ('admin', 'editor', 'guest')") >>> info = EnumInfo.fetch(conn, "lowercase_role") >>> register_enum( ... info, conn, LowercaseRole, mapping={m: m.value for m in LowercaseRole}) >>> conn.execute("SELECT 'editor'::lowercase_role").fetchone()[0]