/*
ldb database library
Copyright (C) Andrew Tridgell 2004
** NOTE! The following LGPL license applies to the ldb
** library. This does NOT imply that all of Samba is released
** under the LGPL
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see .
*/
/*
* Name: ldb
*
* Component: ldb pack/unpack
*
* Description: pack/unpack routines for ldb messages as key/value blobs
*
* Author: Andrew Tridgell
*/
#include "ldb_private.h"
/*
* These macros are from byte_array.h via libssh
* TODO: This will be replaced with use of the byte_array.h header when it
* becomes available.
*
* Macros for handling integer types in byte arrays
*
* This file is originally from the libssh.org project
*
* Copyright (c) 2018 Andreas Schneider
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define _DATA_BYTE_CONST(data, pos) \
((uint8_t)(((const uint8_t *)(data))[(pos)]))
#define PULL_LE_U8(data, pos) \
(_DATA_BYTE_CONST(data, pos))
#define PULL_LE_U16(data, pos) \
((uint16_t)PULL_LE_U8(data, pos) |\
((uint16_t)(PULL_LE_U8(data, (pos) + 1))) << 8)
#define PULL_LE_U32(data, pos) \
((uint32_t)(PULL_LE_U16(data, pos) |\
((uint32_t)PULL_LE_U16(data, (pos) + 2)) << 16))
#define _DATA_BYTE(data, pos) \
(((uint8_t *)(data))[(pos)])
#define PUSH_LE_U8(data, pos, val) \
(_DATA_BYTE(data, pos) = ((uint8_t)(val)))
#define PUSH_LE_U16(data, pos, val) \
(PUSH_LE_U8((data), (pos), (uint8_t)((uint16_t)(val) & 0xff)),\
PUSH_LE_U8((data), (pos) + 1,\
(uint8_t)((uint16_t)(val) >> 8)))
#define PUSH_LE_U32(data, pos, val) \
(PUSH_LE_U16((data), (pos), (uint16_t)((uint32_t)(val) & 0xffff)),\
PUSH_LE_U16((data), (pos) + 2, (uint16_t)((uint32_t)(val) >> 16)))
#define U32_LEN 4
#define U16_LEN 2
#define U8_LEN 1
#define NULL_PAD_BYTE_LEN 1
static int attribute_storable_values(const struct ldb_message_element *el)
{
if (el->num_values == 0) return 0;
if (ldb_attr_cmp(el->name, "distinguishedName") == 0) return 0;
return el->num_values;
}
static int ldb_pack_data_v1(struct ldb_context *ldb,
const struct ldb_message *message,
struct ldb_val *data)
{
unsigned int i, j, real_elements=0;
size_t size, dn_len, attr_len, value_len;
const char *dn;
uint8_t *p;
size_t len;
dn = ldb_dn_get_linearized(message->dn);
if (dn == NULL) {
errno = ENOMEM;
return -1;
}
/* work out how big it needs to be */
size = U32_LEN * 2 + NULL_PAD_BYTE_LEN;
dn_len = strlen(dn);
if (size + dn_len < size) {
errno = ENOMEM;
return -1;
}
size += dn_len;
/*
* First calcuate the buffer size we need, and check for
* overflows
*/
for (i=0;inum_elements;i++) {
if (attribute_storable_values(&message->elements[i]) == 0) {
continue;
}
real_elements++;
if (size + U32_LEN + NULL_PAD_BYTE_LEN < size) {
errno = ENOMEM;
return -1;
}
size += U32_LEN + NULL_PAD_BYTE_LEN;
attr_len = strlen(message->elements[i].name);
if (size + attr_len < size) {
errno = ENOMEM;
return -1;
}
size += attr_len;
for (j=0;jelements[i].num_values;j++) {
if (size + U32_LEN + NULL_PAD_BYTE_LEN < size) {
errno = ENOMEM;
return -1;
}
size += U32_LEN + NULL_PAD_BYTE_LEN;
value_len = message->elements[i].values[j].length;
if (size + value_len < size) {
errno = ENOMEM;
return -1;
}
size += value_len;
}
}
/* allocate it */
data->data = talloc_array(ldb, uint8_t, size);
if (!data->data) {
errno = ENOMEM;
return -1;
}
data->length = size;
p = data->data;
PUSH_LE_U32(p, 0, LDB_PACKING_FORMAT);
p += U32_LEN;
PUSH_LE_U32(p, 0, real_elements);
p += U32_LEN;
/* the dn needs to be packed so we can be case preserving
while hashing on a case folded dn */
len = dn_len;
memcpy(p, dn, len+NULL_PAD_BYTE_LEN);
p += len + NULL_PAD_BYTE_LEN;
for (i=0;inum_elements;i++) {
if (attribute_storable_values(&message->elements[i]) == 0) {
continue;
}
len = strlen(message->elements[i].name);
memcpy(p, message->elements[i].name, len+NULL_PAD_BYTE_LEN);
p += len + NULL_PAD_BYTE_LEN;
PUSH_LE_U32(p, 0, message->elements[i].num_values);
p += U32_LEN;
for (j=0;jelements[i].num_values;j++) {
PUSH_LE_U32(p, 0,
message->elements[i].values[j].length);
p += U32_LEN;
memcpy(p, message->elements[i].values[j].data,
message->elements[i].values[j].length);
p[message->elements[i].values[j].length] = 0;
p += message->elements[i].values[j].length +
NULL_PAD_BYTE_LEN;
}
}
return 0;
}
/*
* New pack version designed based on performance profiling of version 1.
* The approach is to separate value data from the rest of the record's data.
* This improves performance because value data is not needed during unpacking
* or filtering of the message's attribute list. During filtering we only copy
* attributes which are present in the attribute list, however at the parse
* stage we need to point to all attributes as they may be referenced in the
* search expression.
* With this new format, we don't lose time loading data (eg via
* talloc_memdup()) that is never needed (for the vast majority of attributes
* are are never found in either the search expression or attribute list).
* Additional changes include adding a canonicalized DN (for later
* optimizations) and variable width length fields for faster unpacking.
* The pack and unpack performance improvement is tested in the torture
* test torture_ldb_pack_format_perf.
*
* Layout:
*
* Version (4 bytes)
* Number of Elements (4 bytes)
* DN length (4 bytes)
* DN with null terminator (DN length + 1 bytes)
* Canonicalized DN length (4 bytes)
* Canonicalized DN with null terminator (Canonicalized DN length + 1 bytes)
* Number of bytes from here to value data section (4 bytes)
* # For each element:
* Element name length (4 bytes)
* Element name with null terminator (Element name length + 1 bytes)
* Number of values (4 bytes)
* Width of value lengths
* # For each value:
* Value data length (#bytes given by width field above)
* # For each element:
* # For each value:
* Value data (#bytes given by corresponding length above)
*/
static int ldb_pack_data_v2(struct ldb_context *ldb,
const struct ldb_message *message,
struct ldb_val *data)
{
unsigned int i, j, real_elements=0;
size_t size, dn_len, dn_canon_len, attr_len, value_len;
const char *dn, *dn_canon;
uint8_t *p, *q;
size_t len;
size_t max_val_len;
uint8_t val_len_width;
/*
* First half of this function will calculate required size for
* packed data. Initial size is 20 = 5 * 4. 5 fixed fields are:
* version, num elements, dn len, canon dn len, attr section len
*/
size = U32_LEN * 5;
/*
* Get linearized and canonicalized form of the DN and add the lengths
* of each to size, plus 1 for null terminator.
*/
dn = ldb_dn_get_linearized(message->dn);
if (dn == NULL) {
errno = ENOMEM;
return -1;
}
dn_len = strlen(dn) + NULL_PAD_BYTE_LEN;
if (size + dn_len < size) {
errno = ENOMEM;
return -1;
}
size += dn_len;
if (ldb_dn_is_special(message->dn)) {
dn_canon_len = NULL_PAD_BYTE_LEN;
dn_canon = discard_const_p(char, "\0");
} else {
dn_canon = ldb_dn_canonical_string(message->dn, message->dn);
if (dn_canon == NULL) {
errno = ENOMEM;
return -1;
}
dn_canon_len = strlen(dn_canon) + NULL_PAD_BYTE_LEN;
if (size + dn_canon_len < size) {
errno = ENOMEM;
return -1;
}
}
size += dn_canon_len;
/* Add the size required by each element */
for (i=0;inum_elements;i++) {
if (attribute_storable_values(&message->elements[i]) == 0) {
continue;
}
real_elements++;
/*
* Add length of element name + 9 for:
* 1 for null terminator
* 4 for element name length field
* 4 for number of values field
*/
attr_len = strlen(message->elements[i].name);
if (size + attr_len + U32_LEN * 2 + NULL_PAD_BYTE_LEN < size) {
errno = ENOMEM;
return -1;
}
size += attr_len + U32_LEN * 2 + NULL_PAD_BYTE_LEN;
/*
* Find the max value length, so we can calculate the width
* required for the value length fields.
*/
max_val_len = 0;
for (j=0;jelements[i].num_values;j++) {
value_len = message->elements[i].values[j].length;
if (value_len > max_val_len) {
max_val_len = value_len;
}
if (size + value_len + NULL_PAD_BYTE_LEN < size) {
errno = ENOMEM;
return -1;
}
size += value_len + NULL_PAD_BYTE_LEN;
}
if (max_val_len <= UCHAR_MAX) {
val_len_width = U8_LEN;
} else if (max_val_len <= USHRT_MAX) {
val_len_width = U16_LEN;
} else if (max_val_len <= UINT_MAX) {
val_len_width = U32_LEN;
} else {
errno = EMSGSIZE;
return -1;
}
/* Total size required for val lengths (re-using variable) */
max_val_len = (val_len_width*message->elements[i].num_values);
/* Add one for storing the width */
max_val_len += U8_LEN;
if (size + max_val_len < size) {
errno = ENOMEM;
return -1;
}
size += max_val_len;
}
/* Allocate */
data->data = talloc_array(ldb, uint8_t, size);
if (!data->data) {
errno = ENOMEM;
return -1;
}
data->length = size;
/* Packing format version and number of element */
p = data->data;
PUSH_LE_U32(p, 0, LDB_PACKING_FORMAT_V2);
p += U32_LEN;
PUSH_LE_U32(p, 0, real_elements);
p += U32_LEN;
/* Pack DN and Canonicalized DN */
PUSH_LE_U32(p, 0, dn_len-NULL_PAD_BYTE_LEN);
p += U32_LEN;
memcpy(p, dn, dn_len);
p += dn_len;
PUSH_LE_U32(p, 0, dn_canon_len-NULL_PAD_BYTE_LEN);
p += U32_LEN;
memcpy(p, dn_canon, dn_canon_len);
p += dn_canon_len;
/*
* Save pointer at this point and leave a U32_LEN gap for
* storing the size of the attribute names and value lengths
* section
*/
q = p;
p += U32_LEN;
for (i=0;inum_elements;i++) {
if (attribute_storable_values(&message->elements[i]) == 0) {
continue;
}
/* Length of el name */
len = strlen(message->elements[i].name);
PUSH_LE_U32(p, 0, len);
p += U32_LEN;
/*
* Even though we have the element name's length, put a null
* terminator at the end so if any code uses the name
* directly, it'll be safe to do things requiring null
* termination like strlen
*/
memcpy(p, message->elements[i].name, len+NULL_PAD_BYTE_LEN);
p += len + NULL_PAD_BYTE_LEN;
/* Num values */
PUSH_LE_U32(p, 0, message->elements[i].num_values);
p += U32_LEN;
/*
* Calculate value length width again. It's faster to
* calculate it again than do the array management to
* store the result during size calculation.
*/
max_val_len = 0;
for (j=0;jelements[i].num_values;j++) {
value_len = message->elements[i].values[j].length;
if (value_len > max_val_len) {
max_val_len = value_len;
}
}
if (max_val_len <= UCHAR_MAX) {
val_len_width = U8_LEN;
} else if (max_val_len <= USHRT_MAX) {
val_len_width = U16_LEN;
} else if (max_val_len <= UINT_MAX) {
val_len_width = U32_LEN;
} else {
errno = EMSGSIZE;
return -1;
}
/* Pack the width */
*p = val_len_width & 0xFF;
p += U8_LEN;
/*
* Pack each value's length using the minimum number of bytes
* required, which we just calculated. We repeat the loop
* for each case here so the compiler can inline code.
*/
if (val_len_width == U8_LEN) {
for (j=0;jelements[i].num_values;j++) {
PUSH_LE_U8(p, 0,
message->elements[i].values[j].length);
p += U8_LEN;
}
} else if (val_len_width == U16_LEN) {
for (j=0;jelements[i].num_values;j++) {
PUSH_LE_U16(p, 0,
message->elements[i].values[j].length);
p += U16_LEN;
}
} else if (val_len_width == U32_LEN) {
for (j=0;jelements[i].num_values;j++) {
PUSH_LE_U32(p, 0,
message->elements[i].values[j].length);
p += U32_LEN;
}
}
}
/*
* We've finished packing the attr names and value lengths
* section, so store the size in the U32_LEN gap we left
* earlier
*/
PUSH_LE_U32(q, 0, p-q);
/* Now pack the values */
for (i=0;inum_elements;i++) {
if (attribute_storable_values(&message->elements[i]) == 0) {
continue;
}
for (j=0;jelements[i].num_values;j++) {
memcpy(p, message->elements[i].values[j].data,
message->elements[i].values[j].length);
/*
* Even though we have the data length, put a null
* terminator at the end of each value's data so if
* any code uses the data directly, it'll be safe to
* do things requiring null termination like strlen.
*/
p[message->elements[i].values[j].length] = 0;
p += message->elements[i].values[j].length +
NULL_PAD_BYTE_LEN;
}
}
/*
* If we didn't end up at the end of the data here, something has
* gone very wrong.
*/
if (p != data->data + size) {
errno = ENOMEM;
return -1;
}
return 0;
}
/*
pack a ldb message into a linear buffer in a ldb_val
note that this routine avoids saving elements with zero values,
as these are equivalent to having no element
caller frees the data buffer after use
*/
int ldb_pack_data(struct ldb_context *ldb,
const struct ldb_message *message,
struct ldb_val *data,
uint32_t pack_format_version) {
if (pack_format_version == LDB_PACKING_FORMAT) {
return ldb_pack_data_v1(ldb, message, data);
} else if (pack_format_version == LDB_PACKING_FORMAT_V2) {
return ldb_pack_data_v2(ldb, message, data);
} else {
errno = EINVAL;
return -1;
}
}
/*
* Unpack a ldb message from a linear buffer in ldb_val
*/
static int ldb_unpack_data_flags_v1(struct ldb_context *ldb,
const struct ldb_val *data,
struct ldb_message *message,
unsigned int flags,
unsigned format)
{
uint8_t *p;
size_t remaining;
size_t dn_len;
unsigned int i, j;
unsigned int nelem = 0;
size_t len;
struct ldb_val *ldb_val_single_array = NULL;
message->elements = NULL;
p = data->data;
/* Format (U32, already read) + U32 for num_elements */
if (data->length < U32_LEN * 2) {
errno = EIO;
goto failed;
}
/* Skip first 4 bytes, format already read */
p += U32_LEN;
message->num_elements = PULL_LE_U32(p, 0);
p += U32_LEN;
remaining = data->length - U32_LEN * 2;
switch (format) {
case LDB_PACKING_FORMAT_NODN:
message->dn = NULL;
break;
case LDB_PACKING_FORMAT:
/*
* With this check, we know that the DN at p is \0
* terminated.
*/
dn_len = strnlen((char *)p, remaining);
if (dn_len == remaining) {
errno = EIO;
goto failed;
}
if (flags & LDB_UNPACK_DATA_FLAG_NO_DN) {
message->dn = NULL;
} else {
struct ldb_val blob;
blob.data = discard_const_p(uint8_t, p);
blob.length = dn_len;
message->dn = ldb_dn_from_ldb_val(message, ldb, &blob);
if (message->dn == NULL) {
errno = ENOMEM;
goto failed;
}
}
/*
* Redundant: by definition, remaining must be more
* than one less than dn_len, as otherwise it would be
* == dn_len
*/
if (remaining < dn_len + NULL_PAD_BYTE_LEN) {
errno = EIO;
goto failed;
}
remaining -= dn_len + NULL_PAD_BYTE_LEN;
p += dn_len + NULL_PAD_BYTE_LEN;
break;
default:
errno = EIO;
goto failed;
}
if (flags & LDB_UNPACK_DATA_FLAG_NO_ATTRS) {
return 0;
}
if (message->num_elements == 0) {
return 0;
}
if (message->num_elements > remaining / 6) {
errno = EIO;
goto failed;
}
message->elements = talloc_zero_array(message, struct ldb_message_element,
message->num_elements);
if (!message->elements) {
errno = ENOMEM;
goto failed;
}
/*
* In typical use, most values are single-valued. This makes
* it quite expensive to allocate an array of ldb_val for each
* of these, just to then hold the pointer to the data buffer
* So with LDB_UNPACK_DATA_FLAG_NO_VALUES_ALLOC we allocate this
* ahead of time and use it for the single values where possible.
* (This is used the the normal search case, but not in the
* index case because of caller requirements).
*/
if (flags & LDB_UNPACK_DATA_FLAG_NO_VALUES_ALLOC) {
ldb_val_single_array = talloc_array(message->elements, struct ldb_val,
message->num_elements);
if (ldb_val_single_array == NULL) {
errno = ENOMEM;
goto failed;
}
}
for (i=0;inum_elements;i++) {
const char *attr = NULL;
size_t attr_len;
struct ldb_message_element *element = NULL;
/*
* Sanity check: Element must be at least the size of empty
* attr name and value and NULL terms for each.
*/
if (remaining < U32_LEN * 2 + NULL_PAD_BYTE_LEN * 2) {
errno = EIO;
goto failed;
}
/*
* With this check, we know that the attribute name at
* p is \0 terminated.
*/
attr_len = strnlen((char *)p, remaining-6);
if (attr_len == remaining-6) {
errno = EIO;
goto failed;
}
if (attr_len == 0) {
errno = EIO;
goto failed;
}
attr = (char *)p;
element = &message->elements[nelem];
element->name = attr;
element->flags = 0;
if (remaining < (attr_len + NULL_PAD_BYTE_LEN)) {
errno = EIO;
goto failed;
}
remaining -= attr_len + NULL_PAD_BYTE_LEN;
p += attr_len + NULL_PAD_BYTE_LEN;
element->num_values = PULL_LE_U32(p, 0);
element->values = NULL;
if ((flags & LDB_UNPACK_DATA_FLAG_NO_VALUES_ALLOC) && element->num_values == 1) {
element->values = &ldb_val_single_array[nelem];
element->flags |= LDB_FLAG_INTERNAL_SHARED_VALUES;
} else if (element->num_values != 0) {
element->values = talloc_array(message->elements,
struct ldb_val,
element->num_values);
if (!element->values) {
errno = ENOMEM;
goto failed;
}
}
p += U32_LEN;
if (remaining < U32_LEN) {
errno = EIO;
goto failed;
}
remaining -= U32_LEN;
for (j = 0; j < element->num_values; j++) {
/*
* Sanity check: Value must be at least the size of
* empty val and NULL terminator.
*/
if (remaining < U32_LEN + NULL_PAD_BYTE_LEN) {
errno = EIO;
goto failed;
}
remaining -= U32_LEN + NULL_PAD_BYTE_LEN;
len = PULL_LE_U32(p, 0);
if (remaining < len) {
errno = EIO;
goto failed;
}
if (len + NULL_PAD_BYTE_LEN < len) {
errno = EIO;
goto failed;
}
element->values[j].length = len;
element->values[j].data = p + U32_LEN;
remaining -= len;
p += len + U32_LEN + NULL_PAD_BYTE_LEN;
}
nelem++;
}
/*
* Adapt the number of elements to the real number of unpacked elements,
* it means that we overallocated elements array.
*/
message->num_elements = nelem;
/*
* Shrink the allocated size. On current talloc behaviour
* this will help if we skipped 32 or more attributes.
*/
message->elements = talloc_realloc(message, message->elements,
struct ldb_message_element,
message->num_elements);
if (remaining != 0) {
ldb_debug(ldb, LDB_DEBUG_ERROR,
"Error: %zu bytes unread in ldb_unpack_data_flags",
remaining);
}
return 0;
failed:
talloc_free(message->elements);
return -1;
}
/*
* Unpack a ldb message from a linear buffer in ldb_val
*/
static int ldb_unpack_data_flags_v2(struct ldb_context *ldb,
const struct ldb_val *data,
struct ldb_message *message,
unsigned int flags)
{
uint8_t *p, *q, *end_p, *value_section_p;
unsigned int i, j;
unsigned int nelem = 0;
size_t len;
struct ldb_val *ldb_val_single_array = NULL;
uint8_t val_len_width;
message->elements = NULL;
p = data->data;
end_p = p + data->length;
/* Skip first 4 bytes, format already read */
p += U32_LEN;
/* First fields are fixed: num_elements, DN length */
if (p + U32_LEN * 2 > end_p) {
errno = EIO;
goto failed;
}
message->num_elements = PULL_LE_U32(p, 0);
p += U32_LEN;
len = PULL_LE_U32(p, 0);
p += U32_LEN;
if (p + len + NULL_PAD_BYTE_LEN > end_p) {
errno = EIO;
goto failed;
}
if (flags & LDB_UNPACK_DATA_FLAG_NO_DN) {
message->dn = NULL;
} else {
struct ldb_val blob;
blob.data = discard_const_p(uint8_t, p);
blob.length = len;
message->dn = ldb_dn_from_ldb_val(message, ldb, &blob);
if (message->dn == NULL) {
errno = ENOMEM;
goto failed;
}
}
p += len + NULL_PAD_BYTE_LEN;
if (*(p-NULL_PAD_BYTE_LEN) != '\0') {
errno = EINVAL;
goto failed;
}
/* Now skip the canonicalized DN and its length */
len = PULL_LE_U32(p, 0) + NULL_PAD_BYTE_LEN;
p += U32_LEN;
if (p + len > end_p) {
errno = EIO;
goto failed;
}
p += len;
if (*(p-NULL_PAD_BYTE_LEN) != '\0') {
errno = EINVAL;
goto failed;
}
if (flags & LDB_UNPACK_DATA_FLAG_NO_ATTRS) {
return 0;
}
if (message->num_elements == 0) {
return 0;
}
/*
* Sanity check (17 bytes is the minimum element size)
*/
if (message->num_elements > (end_p - p) / 17) {
errno = EIO;
goto failed;
}
message->elements = talloc_zero_array(message,
struct ldb_message_element,
message->num_elements);
if (!message->elements) {
errno = ENOMEM;
goto failed;
}
/*
* In typical use, most values are single-valued. This makes
* it quite expensive to allocate an array of ldb_val for each
* of these, just to then hold the pointer to the data buffer.
* So with LDB_UNPACK_DATA_FLAG_NO_VALUES_ALLOC we allocate this
* ahead of time and use it for the single values where possible.
* (This is used the the normal search case, but not in the
* index case because of caller requirements).
*/
if (flags & LDB_UNPACK_DATA_FLAG_NO_VALUES_ALLOC) {
ldb_val_single_array = talloc_array(message->elements,
struct ldb_val,
message->num_elements);
if (ldb_val_single_array == NULL) {
errno = ENOMEM;
goto failed;
}
}
q = p + PULL_LE_U32(p, 0);
value_section_p = q;
p += U32_LEN;
for (i=0;inum_elements;i++) {
const char *attr = NULL;
size_t attr_len;
struct ldb_message_element *element = NULL;
/* Sanity check: minimum element size */
if (p + (U32_LEN * 2) + /* attr name len, num values */
(U8_LEN * 2) + /* value length width, one val length */
(NULL_PAD_BYTE_LEN * 2) /* null for attr name + val */
> value_section_p) {
errno = EIO;
goto failed;
}
attr_len = PULL_LE_U32(p, 0);
p += U32_LEN;
if (attr_len == 0) {
errno = EIO;
goto failed;
}
attr = (char *)p;
p += attr_len + NULL_PAD_BYTE_LEN;
/*
* num_values, val_len_width
*
* val_len_width is the width specifier
* for the variable length encoding
*/
if (p + U32_LEN + U8_LEN > value_section_p) {
errno = EIO;
goto failed;
}
if (*(p-NULL_PAD_BYTE_LEN) != '\0') {
errno = EINVAL;
goto failed;
}
element = &message->elements[nelem];
element->name = attr;
element->flags = 0;
element->num_values = PULL_LE_U32(p, 0);
element->values = NULL;
if ((flags & LDB_UNPACK_DATA_FLAG_NO_VALUES_ALLOC) &&
element->num_values == 1) {
element->values = &ldb_val_single_array[nelem];
element->flags |= LDB_FLAG_INTERNAL_SHARED_VALUES;
} else if (element->num_values != 0) {
element->values = talloc_array(message->elements,
struct ldb_val,
element->num_values);
if (!element->values) {
errno = ENOMEM;
goto failed;
}
}
p += U32_LEN;
/*
* Here we read how wide the remaining lengths are
* which avoids storing and parsing a lot of leading
* 0s
*/
val_len_width = *p;
p += U8_LEN;
if (p + val_len_width * element->num_values >
value_section_p) {
errno = EIO;
goto failed;
}
/*
* This is structured weird for compiler optimization
* purposes, but we need to pull the array of widths
* with different macros depending on how wide the
* biggest one is (specified by val_len_width)
*/
if (val_len_width == U8_LEN) {
for (j = 0; j < element->num_values; j++) {
element->values[j].length = PULL_LE_U8(p, 0);
p += U8_LEN;
}
} else if (val_len_width == U16_LEN) {
for (j = 0; j < element->num_values; j++) {
element->values[j].length = PULL_LE_U16(p, 0);
p += U16_LEN;
}
} else if (val_len_width == U32_LEN) {
for (j = 0; j < element->num_values; j++) {
element->values[j].length = PULL_LE_U32(p, 0);
p += U32_LEN;
}
} else {
errno = ERANGE;
goto failed;
}
for (j = 0; j < element->num_values; j++) {
len = element->values[j].length;
if (len + NULL_PAD_BYTE_LEN < len) {
errno = EIO;
goto failed;
}
if (q + len + NULL_PAD_BYTE_LEN > end_p) {
errno = EIO;
goto failed;
}
element->values[j].data = q;
q += len + NULL_PAD_BYTE_LEN;
}
nelem++;
}
/*
* If p isn't now pointing at the beginning of the value section,
* something went very wrong.
*/
if (p != value_section_p) {
ldb_debug(ldb, LDB_DEBUG_ERROR,
"Error: Data corruption in ldb_unpack_data_flags");
errno = EIO;
goto failed;
}
/*
* Adapt the number of elements to the real number of unpacked
* elements it means that we overallocated elements array.
*/
message->num_elements = nelem;
/*
* Shrink the allocated size. On current talloc behaviour
* this will help if we skipped 32 or more attributes.
*/
message->elements = talloc_realloc(message, message->elements,
struct ldb_message_element,
message->num_elements);
if (q != end_p) {
ldb_debug(ldb, LDB_DEBUG_ERROR,
"Error: %zu bytes unread in ldb_unpack_data_flags",
end_p - q);
errno = EIO;
goto failed;
}
return 0;
failed:
talloc_free(message->elements);
return -1;
}
int ldb_unpack_get_format(const struct ldb_val *data,
uint32_t *pack_format_version)
{
if (data->length < U32_LEN) {
return LDB_ERR_OPERATIONS_ERROR;
}
*pack_format_version = PULL_LE_U32(data->data, 0);
return LDB_SUCCESS;
}
/*
* Unpack a ldb message from a linear buffer in ldb_val
*/
int ldb_unpack_data_flags(struct ldb_context *ldb,
const struct ldb_val *data,
struct ldb_message *message,
unsigned int flags)
{
unsigned format;
if (data->length < U32_LEN) {
errno = EIO;
return -1;
}
format = PULL_LE_U32(data->data, 0);
if (format == LDB_PACKING_FORMAT_V2) {
return ldb_unpack_data_flags_v2(ldb, data, message, flags);
}
/*
* The v1 function we're about to call takes either LDB_PACKING_FORMAT
* or LDB_PACKING_FORMAT_NODN packing format versions, and will error
* if given some other version, so we don't need to do any further
* checks on 'format'.
*/
return ldb_unpack_data_flags_v1(ldb, data, message, flags, format);
}
/*
* Unpack a ldb message from a linear buffer in ldb_val
*
* Free with ldb_unpack_data_free()
*/
int ldb_unpack_data(struct ldb_context *ldb,
const struct ldb_val *data,
struct ldb_message *message)
{
return ldb_unpack_data_flags(ldb, data, message, 0);
}
/*
add the special distinguishedName element
*/
int ldb_msg_add_distinguished_name(struct ldb_message *msg)
{
const char *dn_attr = "distinguishedName";
char *dn = NULL;
if (ldb_msg_find_element(msg, dn_attr)) {
/*
* This should not happen, but this is
* existing behaviour...
*/
return LDB_SUCCESS;
}
dn = ldb_dn_alloc_linearized(msg, msg->dn);
if (dn == NULL) {
return LDB_ERR_OPERATIONS_ERROR;
}
return ldb_msg_add_steal_string(msg, dn_attr, dn);
}
/*
* filter the specified list of attributes from msg,
* adding requested attributes, and perhaps all for *,
* but not the DN to filtered_msg.
*/
int ldb_filter_attrs(struct ldb_context *ldb,
const struct ldb_message *msg,
const char *const *attrs,
struct ldb_message *filtered_msg)
{
unsigned int i;
bool keep_all = false;
bool add_dn = false;
uint32_t num_elements;
uint32_t elements_size;
if (attrs) {
/* check for special attrs */
for (i = 0; attrs[i]; i++) {
int cmp = strcmp(attrs[i], "*");
if (cmp == 0) {
keep_all = true;
break;
}
cmp = ldb_attr_cmp(attrs[i], "distinguishedName");
if (cmp == 0) {
add_dn = true;
}
}
} else {
keep_all = true;
}
if (keep_all) {
add_dn = true;
elements_size = msg->num_elements + 1;
/* Shortcuts for the simple cases */
} else if (add_dn && i == 1) {
if (ldb_msg_add_distinguished_name(filtered_msg) != 0) {
goto failed;
}
return 0;
} else if (i == 0) {
return 0;
/*
* Otherwise we are copying at most as many elements as we
* have attributes
*/
} else {
elements_size = i;
}
filtered_msg->elements = talloc_array(filtered_msg,
struct ldb_message_element,
elements_size);
if (filtered_msg->elements == NULL) goto failed;
num_elements = 0;
for (i = 0; i < msg->num_elements; i++) {
struct ldb_message_element *el = &msg->elements[i];
/*
* el2 is assigned after the Pigeonhole principle
* check below for clarity
*/
struct ldb_message_element *el2 = NULL;
unsigned int j;
if (keep_all == false) {
bool found = false;
for (j = 0; attrs[j]; j++) {
int cmp = ldb_attr_cmp(el->name, attrs[j]);
if (cmp == 0) {
found = true;
break;
}
}
if (found == false) {
continue;
}
}
/*
* Pigeonhole principle: we can't have more elements
* than the number of attributes if they are unique in
* the DB.
*/
if (num_elements >= elements_size) {
goto failed;
}
el2 = &filtered_msg->elements[num_elements];
*el2 = *el;
el2->name = talloc_strdup(filtered_msg->elements,
el->name);
if (el2->name == NULL) {
goto failed;
}
el2->values = talloc_array(filtered_msg->elements,
struct ldb_val, el->num_values);
if (el2->values == NULL) {
goto failed;
}
for (j=0;jnum_values;j++) {
el2->values[j] = ldb_val_dup(el2->values, &el->values[j]);
if (el2->values[j].data == NULL && el->values[j].length != 0) {
goto failed;
}
}
num_elements++;
}
filtered_msg->num_elements = num_elements;
if (add_dn) {
if (ldb_msg_add_distinguished_name(filtered_msg) != 0) {
goto failed;
}
}
if (filtered_msg->num_elements > 0) {
filtered_msg->elements
= talloc_realloc(filtered_msg,
filtered_msg->elements,
struct ldb_message_element,
filtered_msg->num_elements);
if (filtered_msg->elements == NULL) {
goto failed;
}
} else {
TALLOC_FREE(filtered_msg->elements);
}
return 0;
failed:
TALLOC_FREE(filtered_msg->elements);
return -1;
}
/*
* filter the specified list of attributes from msg,
* adding requested attributes, and perhaps all for *.
* Unlike ldb_filter_attrs(), the DN will not be added
* if it is missing.
*/
int ldb_filter_attrs_in_place(struct ldb_message *msg,
const char *const *attrs)
{
unsigned int i = 0;
bool keep_all = false;
unsigned int num_del = 0;
if (attrs) {
/* check for special attrs */
for (i = 0; attrs[i]; i++) {
int cmp = strcmp(attrs[i], "*");
if (cmp == 0) {
keep_all = true;
break;
}
}
if (!keep_all && i == 0) {
msg->num_elements = 0;
return LDB_SUCCESS;
}
} else {
keep_all = true;
}
for (i = 0; i < msg->num_elements; i++) {
bool found = false;
unsigned int j;
if (keep_all) {
found = true;
} else {
for (j = 0; attrs[j]; j++) {
int cmp = ldb_attr_cmp(msg->elements[i].name, attrs[j]);
if (cmp == 0) {
found = true;
break;
}
}
}
if (!found) {
++num_del;
} else if (num_del != 0) {
msg->elements[i - num_del] = msg->elements[i];
}
}
msg->num_elements -= num_del;
return LDB_SUCCESS;
}
/* Have an unpacked ldb message take talloc ownership of its elements. */
int ldb_msg_elements_take_ownership(struct ldb_message *msg)
{
unsigned int i = 0;
for (i = 0; i < msg->num_elements; i++) {
struct ldb_message_element *el = &msg->elements[i];
const char *name;
unsigned int j;
name = talloc_strdup(msg->elements,
el->name);
if (name == NULL) {
return -1;
}
el->name = name;
if (el->flags & LDB_FLAG_INTERNAL_SHARED_VALUES) {
struct ldb_val *values = talloc_memdup(msg->elements, el->values,
sizeof(struct ldb_val) * el->num_values);
if (values == NULL) {
return -1;
}
el->values = values;
el->flags &= ~LDB_FLAG_INTERNAL_SHARED_VALUES;
}
for (j = 0; j < el->num_values; j++) {
struct ldb_val val = ldb_val_dup(el->values, &el->values[j]);
if (val.data == NULL && el->values[j].length != 0) {
return -1;
}
el->values[j] = val;
}
}
return LDB_SUCCESS;
}