/*
Unix SMB/CIFS implementation.
DNS Server
Copyright (C) Amitay Isaacs 2011
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "includes.h"
#include "dnsserver.h"
#include "dns_server/dnsserver_common.h"
#include "lib/replace/system/network.h"
#include "librpc/gen_ndr/ndr_dnsp.h"
#include "librpc/gen_ndr/ndr_dnsserver.h"
#undef strcasecmp
struct IP4_ARRAY *ip4_array_copy(TALLOC_CTX *mem_ctx, struct IP4_ARRAY *ip4)
{
struct IP4_ARRAY *ret;
if (!ip4) {
return NULL;
}
ret = talloc_zero(mem_ctx, struct IP4_ARRAY);
if (!ret) {
return ret;
}
ret->AddrCount = ip4->AddrCount;
if (ip4->AddrCount > 0) {
ret->AddrArray = talloc_zero_array(mem_ctx, unsigned int, ip4->AddrCount);
if (ret->AddrArray) {
memcpy(ret->AddrArray, ip4->AddrArray,
sizeof(unsigned int) * ip4->AddrCount);
} else {
talloc_free(ret);
return NULL;
}
}
return ret;
}
struct DNS_ADDR_ARRAY *ip4_array_to_dns_addr_array(TALLOC_CTX *mem_ctx,
struct IP4_ARRAY *ip4)
{
struct DNS_ADDR_ARRAY *ret;
int i;
if (!ip4) {
return NULL;
}
ret = talloc_zero(mem_ctx, struct DNS_ADDR_ARRAY);
if (!ret) {
return ret;
}
ret->MaxCount = ip4->AddrCount;
ret->AddrCount = ip4->AddrCount;
ret->Family = AF_INET;
if (ip4->AddrCount > 0) {
ret->AddrArray = talloc_zero_array(mem_ctx, struct DNS_ADDR, ip4->AddrCount);
if (ret->AddrArray) {
for (i=0; iAddrCount; i++) {
ret->AddrArray[i].MaxSa[0] = 0x02;
ret->AddrArray[i].MaxSa[3] = 53;
memcpy(&ret->AddrArray[i].MaxSa[4], ip4->AddrArray,
sizeof(unsigned int));
ret->AddrArray[i].DnsAddrUserDword[0] = 6;
}
} else {
talloc_free(ret);
return NULL;
}
}
return ret;
}
struct IP4_ARRAY *dns_addr_array_to_ip4_array(TALLOC_CTX *mem_ctx,
struct DNS_ADDR_ARRAY *ip)
{
struct IP4_ARRAY *ret;
size_t i, count, curr;
if (ip == NULL) {
return NULL;
}
/* We must only return IPv4 addresses.
The passed DNS_ADDR_ARRAY may contain:
- only ipv4 addresses
- only ipv6 addresses
- a mixture of both
- an empty array
*/
ret = talloc_zero(mem_ctx, struct IP4_ARRAY);
if (!ret) {
return ret;
}
if (ip->AddrCount == 0 || ip->Family == AF_INET6) {
ret->AddrCount = 0;
return ret;
}
/* Now only ipv4 addresses or a mixture are left */
count = 0;
for (i = 0; i < ip->AddrCount; i++) {
if (ip->AddrArray[i].MaxSa[0] == 0x02) {
/* Is ipv4 */
count++;
}
}
if (count == 0) {
/* should not happen */
ret->AddrCount = 0;
return ret;
}
ret->AddrArray = talloc_zero_array(mem_ctx, uint32_t, count);
if (ret->AddrArray) {
curr = 0;
for (i = 0; i < ip->AddrCount; i++) {
if (ip->AddrArray[i].MaxSa[0] == 0x02) {
/* Is ipv4 */
memcpy(&ret->AddrArray[curr],
&ip->AddrArray[i].MaxSa[4],
sizeof(uint32_t));
curr++;
}
}
} else {
talloc_free(ret);
return NULL;
}
ret->AddrCount = curr;
return ret;
}
struct DNS_ADDR_ARRAY *dns_addr_array_copy(TALLOC_CTX *mem_ctx,
struct DNS_ADDR_ARRAY *addr)
{
struct DNS_ADDR_ARRAY *ret;
if (!addr) {
return NULL;
}
ret = talloc_zero(mem_ctx, struct DNS_ADDR_ARRAY);
if (!ret) {
return ret;
}
ret->MaxCount = addr->MaxCount;
ret->AddrCount = addr->AddrCount;
ret->Family = addr->Family;
if (addr->AddrCount > 0) {
ret->AddrArray = talloc_zero_array(mem_ctx, struct DNS_ADDR, addr->AddrCount);
if (ret->AddrArray) {
memcpy(ret->AddrArray, addr->AddrArray,
sizeof(struct DNS_ADDR) * addr->AddrCount);
} else {
talloc_free(ret);
return NULL;
}
}
return ret;
}
int dns_split_name_components(TALLOC_CTX *tmp_ctx, const char *name, char ***components)
{
char *str = NULL, *ptr, **list;
int count = 0;
if (name == NULL) {
return 0;
}
str = talloc_strdup(tmp_ctx, name);
if (!str) {
goto failed;
}
list = talloc_zero_array(tmp_ctx, char *, 0);
if (!list) {
goto failed;
}
ptr = strtok(str, ".");
while (ptr != NULL) {
count++;
list = talloc_realloc(tmp_ctx, list, char *, count);
if (!list) {
goto failed;
}
list[count-1] = talloc_strdup(tmp_ctx, ptr);
if (list[count-1] == NULL) {
goto failed;
}
ptr = strtok(NULL, ".");
}
talloc_free(str);
*components = list;
return count;
failed:
TALLOC_FREE(str);
return -1;
}
char *dns_split_node_name(TALLOC_CTX *tmp_ctx, const char *node_name, const char *zone_name)
{
char **nlist, **zlist;
char *prefix;
int ncount, zcount, i, match;
/*
* If node_name is "@", return the zone_name
* If node_name is ".", return NULL
* If there is no '.' in node_name, return the node_name as is.
*
* If node_name does not have zone_name in it, return the node_name as is.
*
* If node_name has additional components as compared to zone_name
* return only the additional components as a prefix.
*
*/
if (strcmp(node_name, "@") == 0) {
prefix = talloc_strdup(tmp_ctx, zone_name);
} else if (strcmp(node_name, ".") == 0) {
prefix = NULL;
} else if (strchr(node_name, '.') == NULL) {
prefix = talloc_strdup(tmp_ctx, node_name);
} else {
zcount = dns_split_name_components(tmp_ctx, zone_name, &zlist);
ncount = dns_split_name_components(tmp_ctx, node_name, &nlist);
if (zcount < 0 || ncount < 0) {
return NULL;
}
if (ncount < zcount) {
prefix = talloc_strdup(tmp_ctx, node_name);
} else {
match = 0;
for (i=1; i<=zcount; i++) {
if (strcasecmp(nlist[ncount-i], zlist[zcount-i]) != 0) {
break;
}
match++;
}
if (match == ncount) {
prefix = talloc_strdup(tmp_ctx, zone_name);
} else {
prefix = talloc_strdup(tmp_ctx, nlist[0]);
if (prefix != NULL) {
for (i=1; iwDataLength = dnsp->wDataLength;
dns->wType = dnsp->wType;
dns->dwFlags = dnsp->rank;
dns->dwSerial = dnsp->dwSerial;
dns->dwTtlSeconds = dnsp->dwTtlSeconds;
dns->dwTimeStamp = dnsp->dwTimeStamp;
switch (dnsp->wType) {
case DNS_TYPE_TOMBSTONE:
dns->data.EntombedTime = dnsp->data.EntombedTime;
break;
case DNS_TYPE_A:
dns->data.ipv4 = talloc_strdup(mem_ctx, dnsp->data.ipv4);
break;
case DNS_TYPE_NS:
len = strlen(dnsp->data.ns);
if (dnsp->data.ns[len-1] == '.') {
dns->data.name.len = len;
dns->data.name.str = talloc_strdup(mem_ctx, dnsp->data.ns);
} else {
dns->data.name.len = len+1;
dns->data.name.str = talloc_asprintf(mem_ctx, "%s.", dnsp->data.ns);
}
break;
case DNS_TYPE_CNAME:
len = strlen(dnsp->data.cname);
if (dnsp->data.cname[len-1] == '.') {
dns->data.name.len = len;
dns->data.name.str = talloc_strdup(mem_ctx, dnsp->data.cname);
} else {
dns->data.name.len = len+1;
dns->data.name.str = talloc_asprintf(mem_ctx, "%s.", dnsp->data.cname);
}
break;
case DNS_TYPE_SOA:
dns->data.soa.dwSerialNo = dnsp->data.soa.serial;
dns->data.soa.dwRefresh = dnsp->data.soa.refresh;
dns->data.soa.dwRetry = dnsp->data.soa.retry;
dns->data.soa.dwExpire = dnsp->data.soa.expire;
dns->data.soa.dwMinimumTtl = dnsp->data.soa.minimum;
len = strlen(dnsp->data.soa.mname);
if (dnsp->data.soa.mname[len-1] == '.') {
dns->data.soa.NamePrimaryServer.len = len;
dns->data.soa.NamePrimaryServer.str = talloc_strdup(mem_ctx, dnsp->data.soa.mname);
} else {
dns->data.soa.NamePrimaryServer.len = len+1;
dns->data.soa.NamePrimaryServer.str = talloc_asprintf(mem_ctx, "%s.", dnsp->data.soa.mname);
}
len = strlen(dnsp->data.soa.rname);
if (dnsp->data.soa.rname[len-1] == '.') {
dns->data.soa.ZoneAdministratorEmail.len = len;
dns->data.soa.ZoneAdministratorEmail.str = talloc_strdup(mem_ctx, dnsp->data.soa.rname);
} else {
dns->data.soa.ZoneAdministratorEmail.len = len+1;
dns->data.soa.ZoneAdministratorEmail.str = talloc_asprintf(mem_ctx, "%s.", dnsp->data.soa.rname);
}
break;
case DNS_TYPE_PTR:
dns->data.ptr.len = strlen(dnsp->data.ptr);
dns->data.ptr.str = talloc_strdup(mem_ctx, dnsp->data.ptr);
break;
case DNS_TYPE_MX:
dns->data.mx.wPreference = dnsp->data.mx.wPriority;
len = strlen(dnsp->data.mx.nameTarget);
if (dnsp->data.mx.nameTarget[len-1] == '.') {
dns->data.mx.nameExchange.len = len;
dns->data.mx.nameExchange.str = talloc_strdup(mem_ctx, dnsp->data.mx.nameTarget);
} else {
dns->data.mx.nameExchange.len = len+1;
dns->data.mx.nameExchange.str = talloc_asprintf(mem_ctx, "%s.", dnsp->data.mx.nameTarget);
}
break;
case DNS_TYPE_TXT:
dns->data.txt.count = dnsp->data.txt.count;
dns->data.txt.str = talloc_array(mem_ctx, struct DNS_RPC_NAME, dnsp->data.txt.count);
for (i=0; idata.txt.count; i++) {
dns->data.txt.str[i].str = talloc_strdup(mem_ctx, dnsp->data.txt.str[i]);
dns->data.txt.str[i].len = strlen(dnsp->data.txt.str[i]);
}
break;
case DNS_TYPE_AAAA:
dns->data.ipv6 = talloc_strdup(mem_ctx, dnsp->data.ipv6);
break;
case DNS_TYPE_SRV:
dns->data.srv.wPriority = dnsp->data.srv.wPriority;
dns->data.srv.wWeight = dnsp->data.srv.wWeight;
dns->data.srv.wPort = dnsp->data.srv.wPort;
len = strlen(dnsp->data.srv.nameTarget);
if (dnsp->data.srv.nameTarget[len-1] == '.') {
dns->data.srv.nameTarget.len = len;
dns->data.srv.nameTarget.str = talloc_strdup(mem_ctx, dnsp->data.srv.nameTarget);
} else {
dns->data.srv.nameTarget.len = len+1;
dns->data.srv.nameTarget.str = talloc_asprintf(mem_ctx, "%s.", dnsp->data.srv.nameTarget);
}
break;
default:
memcpy(&dns->data, &dnsp->data, sizeof(union DNS_RPC_RECORD_DATA));
DEBUG(0, ("dnsserver: Found Unhandled DNS record type=%d", dnsp->wType));
}
}
WERROR dns_to_dnsp_convert(TALLOC_CTX *mem_ctx, struct DNS_RPC_RECORD *dns,
struct dnsp_DnssrvRpcRecord **out_dnsp, bool check_name)
{
WERROR res;
int i, len;
const char *name;
char *talloc_res = NULL;
struct dnsp_DnssrvRpcRecord *dnsp = NULL;
dnsp = talloc_zero(mem_ctx, struct dnsp_DnssrvRpcRecord);
if (dnsp == NULL) {
return WERR_NOT_ENOUGH_MEMORY;
}
dnsp->wDataLength = dns->wDataLength;
dnsp->wType = dns->wType;
dnsp->version = 5;
dnsp->rank = dns->dwFlags & 0x000000FF;
dnsp->dwSerial = dns->dwSerial;
dnsp->dwTtlSeconds = dns->dwTtlSeconds;
dnsp->dwTimeStamp = dns->dwTimeStamp;
switch (dns->wType) {
case DNS_TYPE_TOMBSTONE:
dnsp->data.EntombedTime = dns->data.EntombedTime;
break;
case DNS_TYPE_A:
talloc_res = talloc_strdup(mem_ctx, dns->data.ipv4);
if (talloc_res == NULL) {
goto fail_nomemory;
}
dnsp->data.ipv4 = talloc_res;
break;
case DNS_TYPE_NS:
name = dns->data.name.str;
len = dns->data.name.len;
if (check_name) {
res = dns_name_check(mem_ctx, len, name);
if (!W_ERROR_IS_OK(res)) {
return res;
}
}
if (len > 0 && name[len-1] == '.') {
talloc_res = talloc_strndup(mem_ctx, name, len-1);
if (talloc_res == NULL) {
goto fail_nomemory;
}
dnsp->data.ns = talloc_res;
} else {
talloc_res = talloc_strdup(mem_ctx, name);
if (talloc_res == NULL) {
goto fail_nomemory;
}
dnsp->data.ns = talloc_res;
}
break;
case DNS_TYPE_CNAME:
name = dns->data.name.str;
len = dns->data.name.len;
if (check_name) {
res = dns_name_check(mem_ctx, len, name);
if (!W_ERROR_IS_OK(res)) {
return res;
}
}
if (len > 0 && name[len-1] == '.') {
talloc_res = talloc_strndup(mem_ctx, name, len-1);
if (talloc_res == NULL) {
goto fail_nomemory;
}
dnsp->data.cname = talloc_res;
} else {
talloc_res = talloc_strdup(mem_ctx, name);
if (talloc_res == NULL) {
goto fail_nomemory;
}
dnsp->data.cname = talloc_res;
}
break;
case DNS_TYPE_SOA:
dnsp->data.soa.serial = dns->data.soa.dwSerialNo;
dnsp->data.soa.refresh = dns->data.soa.dwRefresh;
dnsp->data.soa.retry = dns->data.soa.dwRetry;
dnsp->data.soa.expire = dns->data.soa.dwExpire;
dnsp->data.soa.minimum = dns->data.soa.dwMinimumTtl;
name = dns->data.soa.NamePrimaryServer.str;
len = dns->data.soa.NamePrimaryServer.len;
if (check_name) {
res = dns_name_check(mem_ctx, len, name);
if (!W_ERROR_IS_OK(res)) {
return res;
}
}
if (len > 0 && name[len-1] == '.') {
talloc_res = talloc_strndup(mem_ctx, name, len-1);
if (talloc_res == NULL) {
goto fail_nomemory;
}
dnsp->data.soa.mname = talloc_res;
} else {
talloc_res = talloc_strdup(mem_ctx, name);
if (talloc_res == NULL) {
goto fail_nomemory;
}
dnsp->data.soa.mname = talloc_res;
}
name = dns->data.soa.ZoneAdministratorEmail.str;
len = dns->data.soa.ZoneAdministratorEmail.len;
res = dns_name_check(mem_ctx, len, name);
if (!W_ERROR_IS_OK(res)) {
return res;
}
if (len > 0 && name[len-1] == '.') {
talloc_res = talloc_strndup(mem_ctx, name, len-1);
if (talloc_res == NULL) {
goto fail_nomemory;
}
dnsp->data.soa.rname = talloc_res;
} else {
talloc_res = talloc_strdup(mem_ctx, name);
if (talloc_res == NULL) {
goto fail_nomemory;
}
dnsp->data.soa.rname = talloc_res;
}
break;
case DNS_TYPE_PTR:
name = dns->data.ptr.str;
len = dns->data.ptr.len;
if (check_name) {
res = dns_name_check(mem_ctx, len, name);
if (!W_ERROR_IS_OK(res)) {
return res;
}
}
talloc_res = talloc_strdup(mem_ctx, name);
if (talloc_res == NULL) {
goto fail_nomemory;
}
dnsp->data.ptr = talloc_res;
break;
case DNS_TYPE_MX:
dnsp->data.mx.wPriority = dns->data.mx.wPreference;
name = dns->data.mx.nameExchange.str;
len = dns->data.mx.nameExchange.len;
if (check_name) {
res = dns_name_check(mem_ctx, len, name);
if (!W_ERROR_IS_OK(res)) {
return res;
}
}
if (len > 0 && name[len-1] == '.') {
talloc_res = talloc_strndup(mem_ctx, name, len-1);
if (talloc_res == NULL) {
goto fail_nomemory;
}
dnsp->data.mx.nameTarget = talloc_res;
} else {
talloc_res = talloc_strdup(mem_ctx, name);
if (talloc_res == NULL) {
goto fail_nomemory;
}
dnsp->data.mx.nameTarget = talloc_res;
}
break;
case DNS_TYPE_TXT:
dnsp->data.txt.count = dns->data.txt.count;
dnsp->data.txt.str = talloc_array(mem_ctx, const char *, dns->data.txt.count);
for (i=0; idata.txt.count; i++) {
talloc_res = talloc_strdup(mem_ctx, dns->data.txt.str[i].str);
if (talloc_res == NULL) {
goto fail_nomemory;
}
dnsp->data.txt.str[i] = talloc_res;
}
break;
case DNS_TYPE_AAAA:
dnsp->data.ipv6 = talloc_strdup(mem_ctx, dns->data.ipv6);
break;
case DNS_TYPE_SRV:
dnsp->data.srv.wPriority = dns->data.srv.wPriority;
dnsp->data.srv.wWeight = dns->data.srv.wWeight;
dnsp->data.srv.wPort = dns->data.srv.wPort;
name = dns->data.srv.nameTarget.str;
len = dns->data.srv.nameTarget.len;
if (check_name) {
res = dns_name_check(mem_ctx, len, name);
if (!W_ERROR_IS_OK(res)) {
return res;
}
}
if (len > 0 && name[len-1] == '.') {
talloc_res = talloc_strndup(mem_ctx, name, len-1);
if (talloc_res == NULL) {
goto fail_nomemory;
}
dnsp->data.srv.nameTarget = talloc_res;
} else {
talloc_res = talloc_strdup(mem_ctx, name);
if (talloc_res == NULL) {
goto fail_nomemory;
}
dnsp->data.srv.nameTarget = talloc_res;
}
break;
default:
memcpy(&dnsp->data, &dns->data, sizeof(union dnsRecordData));
DEBUG(0, ("dnsserver: Found Unhandled DNS record type=%d", dns->wType));
}
*out_dnsp = dnsp;
return WERR_OK;
fail_nomemory:
return WERR_NOT_ENOUGH_MEMORY;
}
/* Intialize tree with given name as the root */
static struct dns_tree *dns_tree_init(TALLOC_CTX *mem_ctx, const char *name, void *data)
{
struct dns_tree *tree;
tree = talloc_zero(mem_ctx, struct dns_tree);
if (tree == NULL) {
return NULL;
}
tree->name = talloc_strdup(tree, name);
if (tree->name == NULL) {
talloc_free(tree);
return NULL;
}
tree->data = data;
return tree;
}
/* Add a child one level below */
static struct dns_tree *dns_tree_add(struct dns_tree *tree, const char *name, void *data)
{
struct dns_tree *node;
node = talloc_zero(tree, struct dns_tree);
if (node == NULL) {
return NULL;
}
node->name = talloc_strdup(tree, name);
if (node->name == NULL) {
talloc_free(node);
return NULL;
}
node->level = tree->level + 1;
node->num_children = 0;
node->children = NULL;
node->data = data;
if (tree->num_children == 0) {
tree->children = talloc_zero(tree, struct dns_tree *);
} else {
tree->children = talloc_realloc(tree, tree->children, struct dns_tree *,
tree->num_children+1);
}
if (tree->children == NULL) {
talloc_free(node);
return NULL;
}
tree->children[tree->num_children] = node;
tree->num_children++;
return node;
}
/* Find a node that matches the name components */
static struct dns_tree *dns_tree_find(struct dns_tree *tree, int ncount, char **nlist, int *match_count)
{
struct dns_tree *node, *next;
int i, j, start;
*match_count = -1;
if (strcmp(tree->name, "@") == 0) {
start = 0;
} else {
if (strcasecmp(tree->name, nlist[ncount-1]) != 0) {
return NULL;
}
start = 1;
*match_count = 0;
}
node = tree;
for (i=start; inum_children == 0) {
break;
}
next = NULL;
for (j=0; jnum_children; j++) {
if (strcasecmp(nlist[(ncount-1)-i], node->children[j]->name) == 0) {
next = node->children[j];
*match_count = i;
break;
}
}
if (next == NULL) {
break;
} else {
node = next;
}
}
return node;
}
/* Build a 2-level tree for resulting dns names */
struct dns_tree *dns_build_tree(TALLOC_CTX *mem_ctx, const char *name, struct ldb_result *res)
{
struct dns_tree *root, *base, *tree, *node;
const char *ptr;
int rootcount, ncount;
char **nlist;
int i, level, match_count;
rootcount = dns_split_name_components(mem_ctx, name, &nlist);
if (rootcount <= 0) {
return NULL;
}
root = dns_tree_init(mem_ctx, nlist[rootcount-1], NULL);
if (root == NULL) {
talloc_free(nlist);
return NULL;
}
tree = root;
for (i=rootcount-2; i>=0; i--) {
tree = dns_tree_add(tree, nlist[i], NULL);
if (tree == NULL) {
goto failed;
}
}
base = tree;
/* Add all names in the result in a tree */
for (i=0; icount; i++) {
ptr = ldb_msg_find_attr_as_string(res->msgs[i], "name", NULL);
if (ptr == NULL) {
DBG_ERR("dnsserver: dns record has no name (%s)",
ldb_dn_get_linearized(res->msgs[i]->dn));
goto failed;
}
/*
* This might be the sub-domain in the zone being
* requested, or @ for the root of the zone
*/
if (strcasecmp(ptr, name) == 0) {
base->data = res->msgs[i];
continue;
}
ncount = dns_split_name_components(root, ptr, &nlist);
if (ncount < 0) {
goto failed;
}
/* Find matching node */
tree = dns_tree_find(root, ncount, nlist, &match_count);
if (tree == NULL) {
goto failed;
}
/* If the node is on leaf, then add record data */
if (match_count+1 == ncount) {
tree->data = res->msgs[i];
}
/* Add missing name components */
for (level=match_count+1; levellevel == rootcount+1) {
break;
}
if (level == ncount-1) {
node = dns_tree_add(tree, nlist[(ncount-1)-level], res->msgs[i]);
} else {
node = dns_tree_add(tree, nlist[(ncount-1)-level], NULL);
}
if (node == NULL) {
goto failed;
}
tree = node;
}
talloc_free(nlist);
}
/* Mark the base record, so it can be found easily */
base->level = -1;
return root;
failed:
talloc_free(nlist);
talloc_free(root);
return NULL;
}
static void _dns_add_name(TALLOC_CTX *mem_ctx, const char *name, char ***add_names, int *add_count)
{
int i;
char **ptr = *add_names;
int count = *add_count;
for (i=0; iwType) {
case DNS_TYPE_NS:
_dns_add_name(mem_ctx, rec->data.ns, add_names, add_count);
break;
case DNS_TYPE_CNAME:
_dns_add_name(mem_ctx, rec->data.cname, add_names, add_count);
break;
case DNS_TYPE_SOA:
_dns_add_name(mem_ctx, rec->data.soa.mname, add_names, add_count);
break;
case DNS_TYPE_MX:
_dns_add_name(mem_ctx, rec->data.mx.nameTarget, add_names, add_count);
break;
case DNS_TYPE_SRV:
_dns_add_name(mem_ctx, rec->data.srv.nameTarget, add_names, add_count);
break;
default:
break;
}
}
WERROR dns_fill_records_array(TALLOC_CTX *mem_ctx,
struct dnsserver_zone *z,
enum dns_record_type record_type,
unsigned int select_flag,
const char *branch_name,
struct ldb_message *msg,
int num_children,
struct DNS_RPC_RECORDS_ARRAY *recs,
char ***add_names,
int *add_count)
{
struct ldb_message_element *el;
const char *ptr;
int i, j;
bool found;
if (recs->count == 0) {
recs->rec = talloc_zero(recs, struct DNS_RPC_RECORDS);
} else {
recs->rec = talloc_realloc(recs, recs->rec, struct DNS_RPC_RECORDS, recs->count+1);
}
if (recs->rec == NULL) {
return WERR_NOT_ENOUGH_MEMORY;
}
i = recs->count;
recs->rec[i].wLength = 0;
recs->rec[i].wRecordCount = 0;
recs->rec[i].dwChildCount = num_children;
recs->rec[i].dwFlags = 0;
/* The base records returned with empty name */
/* Children records returned with names */
if (branch_name == NULL) {
recs->rec[i].dnsNodeName.str = talloc_strdup(recs, "");
recs->rec[i].dnsNodeName.len = 0;
} else {
recs->rec[i].dnsNodeName.str = talloc_strdup(recs, branch_name);
recs->rec[i].dnsNodeName.len = strlen(branch_name);
}
recs->rec[i].records = talloc_zero_array(recs, struct DNS_RPC_RECORD, 0);
recs->count++;
/* Allow empty records */
if (msg == NULL) {
return WERR_OK;
}
/* Do not return RR records, if the node has children */
if (branch_name != NULL && num_children > 0) {
return WERR_OK;
}
ptr = ldb_msg_find_attr_as_string(msg, "name", NULL);
if (ptr == NULL) {
DBG_ERR("dnsserver: dns record has no name (%s)",
ldb_dn_get_linearized(msg->dn));
return WERR_INTERNAL_DB_ERROR;
}
el = ldb_msg_find_element(msg, "dnsRecord");
if (el == NULL || el->values == 0) {
return WERR_OK;
}
/* Add RR records */
for (j=0; jnum_values; j++) {
struct dnsp_DnssrvRpcRecord dnsp_rec;
struct DNS_RPC_RECORD *dns_rec;
enum ndr_err_code ndr_err;
ndr_err = ndr_pull_struct_blob(&el->values[j], mem_ctx, &dnsp_rec,
(ndr_pull_flags_fn_t)ndr_pull_dnsp_DnssrvRpcRecord);
if (!NDR_ERR_CODE_IS_SUCCESS(ndr_err)) {
DEBUG(0, ("dnsserver: Unable to parse dns record (%s)", ldb_dn_get_linearized(msg->dn)));
return WERR_INTERNAL_DB_ERROR;
}
/* Match the records based on search criteria */
if (record_type == DNS_TYPE_ALL || dnsp_rec.wType == record_type) {
found = false;
if (select_flag & DNS_RPC_VIEW_AUTHORITY_DATA) {
if (dnsp_rec.rank == DNS_RANK_ZONE) {
found = true;
} else if (dnsp_rec.rank == DNS_RANK_NS_GLUE) {
/*
* If branch_name is NULL, we're
* explicitly asked to also return
* DNS_RANK_NS_GLUE records
*/
if (branch_name == NULL) {
found = true;
}
}
}
if (select_flag & DNS_RPC_VIEW_CACHE_DATA) {
if (dnsp_rec.rank == DNS_RANK_ZONE) {
found = true;
}
}
if (select_flag & DNS_RPC_VIEW_GLUE_DATA) {
if (dnsp_rec.rank == DNS_RANK_GLUE) {
found = true;
}
}
if (select_flag & DNS_RPC_VIEW_ROOT_HINT_DATA) {
if (dnsp_rec.rank == DNS_RANK_ROOT_HINT) {
found = true;
}
}
if (found) {
recs->rec[i].records = talloc_realloc(recs,
recs->rec[i].records,
struct DNS_RPC_RECORD,
recs->rec[i].wRecordCount+1);
if (recs->rec[i].records == NULL) {
return WERR_NOT_ENOUGH_MEMORY;
}
dns_rec = &recs->rec[i].records[recs->rec[i].wRecordCount];
dnsp_to_dns_copy(recs, &dnsp_rec, dns_rec);
/* Fix record flags */
if (strcmp(ptr, "@") == 0) {
dns_rec->dwFlags |= DNS_RPC_FLAG_ZONE_ROOT;
if (dnsp_rec.rank == DNS_RANK_ZONE) {
dns_rec->dwFlags |= DNS_RPC_FLAG_AUTH_ZONE_ROOT;
}
}
if (dns_rec->dwFlags == DNS_RANK_NS_GLUE) {
dns_rec->dwFlags |= DNS_RPC_FLAG_ZONE_ROOT;
}
recs->rec[i].wRecordCount++;
dns_find_additional_names(mem_ctx, &dnsp_rec, add_names, add_count);
}
}
}
return WERR_OK;
}
int dns_name_compare(struct ldb_message * const *m1, struct ldb_message * const *m2,
const char *search_name)
{
const char *name1, *name2;
const char *ptr1, *ptr2;
name1 = ldb_msg_find_attr_as_string(*m1, "name", NULL);
name2 = ldb_msg_find_attr_as_string(*m2, "name", NULL);
if (name1 == NULL || name2 == NULL) {
return 0;
}
/* Compare the last components of names.
* If search_name is not NULL, compare the second last components of names */
ptr1 = strrchr(name1, '.');
if (ptr1 == NULL) {
ptr1 = name1;
} else {
if (search_name && strcasecmp(ptr1+1, search_name) == 0) {
ptr1--;
while (ptr1 != name1) {
ptr1--;
if (*ptr1 == '.') {
break;
}
}
}
if (*ptr1 == '.') {
ptr1 = &ptr1[1];
}
}
ptr2 = strrchr(name2, '.');
if (ptr2 == NULL) {
ptr2 = name2;
} else {
if (search_name && strcasecmp(ptr2+1, search_name) == 0) {
ptr2--;
while (ptr2 != name2) {
ptr2--;
if (*ptr2 == '.') {
break;
}
}
}
if (*ptr2 == '.') {
ptr2 = &ptr2[1];
}
}
return strcasecmp(ptr1, ptr2);
}