/* * Copyright (c) 2006 - 2016 Kungliga Tekniska Högskolan * (Royal Institute of Technology, Stockholm, Sweden). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include #endif #include #define HC_DEPRECATED #define HC_DEPRECATED_CRYPTO #include #include #include #include #if defined(_WIN32) #include #endif #include #include #include #ifndef HCRYPTO_DEF_PROVIDER # ifdef __APPLE__ # define HCRYPTO_DEF_PROVIDER cc # elif __sun # define HCRYPTO_DEF_PROVIDER pkcs11_hcrypto # elif HAVE_HCRYPTO_W_OPENSSL # define HCRYPTO_DEF_PROVIDER ossl # else # define HCRYPTO_DEF_PROVIDER hcrypto # endif #endif #define HC_CONCAT4(x,y,z,aa) x ## y ## z ## aa #define EVP_DEF_OP(_prov,_op) HC_CONCAT4(EVP_,_prov,_,_op)() /** * @page page_evp EVP - generic crypto interface * * See the library functions here: @ref hcrypto_evp * * @section evp_cipher EVP Cipher * * The use of EVP_CipherInit_ex() and EVP_Cipher() is pretty easy to * understand forward, then EVP_CipherUpdate() and * EVP_CipherFinal_ex() really needs an example to explain @ref * example_evp_cipher.c . * * @example example_evp_cipher.c * * This is an example how to use EVP_CipherInit_ex(), * EVP_CipherUpdate() and EVP_CipherFinal_ex(). */ struct hc_EVP_MD_CTX { const EVP_MD *md; ENGINE *engine; void *ptr; }; /** * Return the output size of the message digest function. * * @param md the evp message * * @return size output size of the message digest function. * * @ingroup hcrypto_evp */ size_t EVP_MD_size(const EVP_MD *md) { return md->hash_size; } /** * Return the blocksize of the message digest function. * * @param md the evp message * * @return size size of the message digest block size * * @ingroup hcrypto_evp */ size_t EVP_MD_block_size(const EVP_MD *md) { return md->block_size; } /** * Allocate a messsage digest context object. Free with * EVP_MD_CTX_destroy(). * * @return a newly allocated message digest context object. * * @ingroup hcrypto_evp */ EVP_MD_CTX * EVP_MD_CTX_create(void) { return calloc(1, sizeof(EVP_MD_CTX)); } /** * Initiate a messsage digest context object. Deallocate with * EVP_MD_CTX_cleanup(). Please use EVP_MD_CTX_create() instead. * * @param ctx variable to initiate. * * @ingroup hcrypto_evp */ void EVP_MD_CTX_init(EVP_MD_CTX *ctx) HC_DEPRECATED { memset(ctx, 0, sizeof(*ctx)); } /** * Free a messsage digest context object. * * @param ctx context to free. * * @ingroup hcrypto_evp */ void EVP_MD_CTX_destroy(EVP_MD_CTX *ctx) { EVP_MD_CTX_cleanup(ctx); free(ctx); } /** * Free the resources used by the EVP_MD context. * * @param ctx the context to free the resources from. * * @return 1 on success. * * @ingroup hcrypto_evp */ int EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx) HC_DEPRECATED { if (ctx->md && ctx->md->cleanup) { int ret = (ctx->md->cleanup)(ctx->ptr); if (!ret) return ret; } else if (ctx->md) { memset(ctx->ptr, 0, ctx->md->ctx_size); } ctx->md = NULL; ctx->engine = NULL; free(ctx->ptr); memset(ctx, 0, sizeof(*ctx)); return 1; } /** * Get the EVP_MD use for a specified context. * * @param ctx the EVP_MD context to get the EVP_MD for. * * @return the EVP_MD used for the context. * * @ingroup hcrypto_evp */ const EVP_MD * EVP_MD_CTX_md(EVP_MD_CTX *ctx) { return ctx->md; } /** * Return the output size of the message digest function. * * @param ctx the evp message digest context * * @return size output size of the message digest function. * * @ingroup hcrypto_evp */ size_t EVP_MD_CTX_size(EVP_MD_CTX *ctx) { return EVP_MD_size(ctx->md); } /** * Return the blocksize of the message digest function. * * @param ctx the evp message digest context * * @return size size of the message digest block size * * @ingroup hcrypto_evp */ size_t EVP_MD_CTX_block_size(EVP_MD_CTX *ctx) { return EVP_MD_block_size(ctx->md); } /** * Init a EVP_MD_CTX for use a specific message digest and engine. * * @param ctx the message digest context to init. * @param md the message digest to use. * @param engine the engine to use, NULL to use the default engine. * * @return 1 on success. * * @ingroup hcrypto_evp */ int EVP_DigestInit_ex(EVP_MD_CTX *ctx, const EVP_MD *md, ENGINE *engine) { if (ctx->md != md || ctx->engine != engine) { EVP_MD_CTX_cleanup(ctx); ctx->md = md; ctx->engine = engine; if (md == NULL) return 0; ctx->ptr = calloc(1, md->ctx_size); if (ctx->ptr == NULL) return 0; } if (ctx->md == 0) return 0; return (ctx->md->init)(ctx->ptr); } /** * Update the digest with some data. * * @param ctx the context to update * @param data the data to update the context with * @param size length of data * * @return 1 on success. * * @ingroup hcrypto_evp */ int EVP_DigestUpdate(EVP_MD_CTX *ctx, const void *data, size_t size) { (ctx->md->update)(ctx->ptr, data, size); return 1; } /** * Complete the message digest. * * @param ctx the context to complete. * @param hash the output of the message digest function. At least * EVP_MD_size(). * @param size the output size of hash. * * @return 1 on success. * * @ingroup hcrypto_evp */ int EVP_DigestFinal_ex(EVP_MD_CTX *ctx, void *hash, unsigned int *size) { (ctx->md->final)(hash, ctx->ptr); if (size) *size = ctx->md->hash_size; return 1; } /** * Do the whole EVP_MD_CTX_create(), EVP_DigestInit_ex(), * EVP_DigestUpdate(), EVP_DigestFinal_ex(), EVP_MD_CTX_destroy() * dance in one call. * * @param data the data to update the context with * @param dsize length of data * @param hash output data of at least EVP_MD_size() length. * @param hsize output length of hash. * @param md message digest to use * @param engine engine to use, NULL for default engine. * * @return 1 on success. * * @ingroup hcrypto_evp */ int EVP_Digest(const void *data, size_t dsize, void *hash, unsigned int *hsize, const EVP_MD *md, ENGINE *engine) { EVP_MD_CTX *ctx; int ret; ctx = EVP_MD_CTX_create(); if (ctx == NULL) return 0; ret = EVP_DigestInit_ex(ctx, md, engine); if (ret != 1) { EVP_MD_CTX_destroy(ctx); return ret; } ret = EVP_DigestUpdate(ctx, data, dsize); if (ret != 1) { EVP_MD_CTX_destroy(ctx); return ret; } ret = EVP_DigestFinal_ex(ctx, hash, hsize); EVP_MD_CTX_destroy(ctx); return ret; } /** * The message digest SHA256 * * @return the message digest type. * * @ingroup hcrypto_evp */ const EVP_MD * EVP_sha256(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, sha256); } /** * The message digest SHA384 * * @return the message digest type. * * @ingroup hcrypto_evp */ const EVP_MD * EVP_sha384(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, sha384); } /** * The message digest SHA512 * * @return the message digest type. * * @ingroup hcrypto_evp */ const EVP_MD * EVP_sha512(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, sha512); } /** * The message digest SHA1 * * @return the message digest type. * * @ingroup hcrypto_evp */ const EVP_MD * EVP_sha1(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, sha1); } /** * The message digest SHA1 * * @return the message digest type. * * @ingroup hcrypto_evp */ const EVP_MD * EVP_sha(void) HC_DEPRECATED { hcrypto_validate(); return EVP_sha1(); } /** * The message digest MD5 * * @return the message digest type. * * @ingroup hcrypto_evp */ const EVP_MD * EVP_md5(void) HC_DEPRECATED_CRYPTO { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, md5); } /** * The message digest MD4 * * @return the message digest type. * * @ingroup hcrypto_evp */ const EVP_MD * EVP_md4(void) HC_DEPRECATED_CRYPTO { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, md4); } /** * The message digest MD2 * * @return the message digest type. * * @ingroup hcrypto_evp */ const EVP_MD * EVP_md2(void) HC_DEPRECATED_CRYPTO { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, md2); } /* * */ static int null_Init (void *m) { return 1; } static int null_Update (void *m, const void * data, size_t size) { return 1; } static int null_Final(void *res, void *m) { return 1; } /** * The null message digest * * @return the message digest type. * * @ingroup hcrypto_evp */ const EVP_MD * EVP_md_null(void) { static const struct hc_evp_md null = { 0, 0, 0, (hc_evp_md_init)null_Init, (hc_evp_md_update)null_Update, (hc_evp_md_final)null_Final, NULL }; return &null; } /** * Return the block size of the cipher. * * @param c cipher to get the block size from. * * @return the block size of the cipher. * * @ingroup hcrypto_evp */ size_t EVP_CIPHER_block_size(const EVP_CIPHER *c) { return c->block_size; } /** * Return the key size of the cipher. * * @param c cipher to get the key size from. * * @return the key size of the cipher. * * @ingroup hcrypto_evp */ size_t EVP_CIPHER_key_length(const EVP_CIPHER *c) { return c->key_len; } /** * Return the IV size of the cipher. * * @param c cipher to get the IV size from. * * @return the IV size of the cipher. * * @ingroup hcrypto_evp */ size_t EVP_CIPHER_iv_length(const EVP_CIPHER *c) { return c->iv_len; } /** * Initiate a EVP_CIPHER_CTX context. Clean up with * EVP_CIPHER_CTX_cleanup(). * * @param c the cipher initiate. * * @ingroup hcrypto_evp */ void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *c) { memset(c, 0, sizeof(*c)); } /** * Clean up the EVP_CIPHER_CTX context. * * @param c the cipher to clean up. * * @return 1 on success. * * @ingroup hcrypto_evp */ int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c) { if (c->cipher && c->cipher->cleanup) { int ret = c->cipher->cleanup(c); if (!ret) return ret; } if (c->cipher_data) { if (c->cipher) memset(c->cipher_data, 0, c->cipher->ctx_size); free(c->cipher_data); c->cipher_data = NULL; } return 1; } /** * If the cipher type supports it, change the key length * * @param c the cipher context to change the key length for * @param length new key length * * @return 1 on success. * * @ingroup hcrypto_evp */ int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, int length) { if ((c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH) && length > 0) { c->key_len = length; return 1; } return 0; } #if 0 int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *c, int pad) { return 0; } #endif /** * Return the EVP_CIPHER for a EVP_CIPHER_CTX context. * * @param ctx the context to get the cipher type from. * * @return the EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_CIPHER_CTX_cipher(EVP_CIPHER_CTX *ctx) { return ctx->cipher; } /** * Return the block size of the cipher context. * * @param ctx cipher context to get the block size from. * * @return the block size of the cipher context. * * @ingroup hcrypto_evp */ size_t EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx) { return EVP_CIPHER_block_size(ctx->cipher); } /** * Return the key size of the cipher context. * * @param ctx cipher context to get the key size from. * * @return the key size of the cipher context. * * @ingroup hcrypto_evp */ size_t EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx) { return EVP_CIPHER_key_length(ctx->cipher); } /** * Return the IV size of the cipher context. * * @param ctx cipher context to get the IV size from. * * @return the IV size of the cipher context. * * @ingroup hcrypto_evp */ size_t EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx) { return EVP_CIPHER_iv_length(ctx->cipher); } /** * Get the flags for an EVP_CIPHER_CTX context. * * @param ctx the EVP_CIPHER_CTX to get the flags from * * @return the flags for an EVP_CIPHER_CTX. * * @ingroup hcrypto_evp */ unsigned long EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx) { return ctx->cipher->flags; } /** * Get the mode for an EVP_CIPHER_CTX context. * * @param ctx the EVP_CIPHER_CTX to get the mode from * * @return the mode for an EVP_CIPHER_CTX. * * @ingroup hcrypto_evp */ int EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx) { return EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_MODE; } /** * Get the app data for an EVP_CIPHER_CTX context. * * @param ctx the EVP_CIPHER_CTX to get the app data from * * @return the app data for an EVP_CIPHER_CTX. * * @ingroup hcrypto_evp */ void * EVP_CIPHER_CTX_get_app_data(EVP_CIPHER_CTX *ctx) { return ctx->app_data; } /** * Set the app data for an EVP_CIPHER_CTX context. * * @param ctx the EVP_CIPHER_CTX to set the app data for * @param data the app data to set for an EVP_CIPHER_CTX. * * @ingroup hcrypto_evp */ void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data) { ctx->app_data = data; } /** * Initiate the EVP_CIPHER_CTX context to encrypt or decrypt data. * Clean up with EVP_CIPHER_CTX_cleanup(). * * @param ctx context to initiate * @param c cipher to use. * @param engine crypto engine to use, NULL to select default. * @param key the crypto key to use, NULL will use the previous value. * @param iv the IV to use, NULL will use the previous value. * @param encp non zero will encrypt, -1 use the previous value. * * @return 1 on success. * * @ingroup hcrypto_evp */ int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *c, ENGINE *engine, const void *key, const void *iv, int encp) { ctx->buf_len = 0; if (encp == -1) encp = ctx->encrypt; else ctx->encrypt = (encp ? 1 : 0); if (c && (c != ctx->cipher)) { EVP_CIPHER_CTX_cleanup(ctx); ctx->cipher = c; ctx->key_len = c->key_len; ctx->cipher_data = calloc(1, c->ctx_size); if (ctx->cipher_data == NULL && c->ctx_size != 0) return 0; /* assume block size is a multiple of 2 */ ctx->block_mask = EVP_CIPHER_block_size(c) - 1; if ((ctx->cipher->flags & EVP_CIPH_CTRL_INIT) && !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) return 0; } else if (ctx->cipher == NULL) { /* reuse of cipher, but not any cipher ever set! */ return 0; } switch (EVP_CIPHER_CTX_mode(ctx)) { case EVP_CIPH_CBC_MODE: assert(EVP_CIPHER_CTX_iv_length(ctx) <= sizeof(ctx->iv)); if (iv) memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx)); memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx)); break; case EVP_CIPH_STREAM_CIPHER: break; case EVP_CIPH_CFB8_MODE: if (iv) memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx)); break; default: return 0; } if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) return ctx->cipher->init(ctx, key, iv, encp); return 1; } /** * Encipher/decipher partial data * * @param ctx the cipher context. * @param out output data from the operation. * @param outlen output length * @param in input data to the operation. * @param inlen length of data. * * The output buffer length should at least be EVP_CIPHER_block_size() * byte longer then the input length. * * See @ref evp_cipher for an example how to use this function. * * @return 1 on success. * * @ingroup hcrypto_evp */ int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, void *out, int *outlen, void *in, size_t inlen) { int ret, left, blocksize; *outlen = 0; /** * If there in no spare bytes in the left from last Update and the * input length is on the block boundery, the EVP_CipherUpdate() * function can take a shortcut (and preformance gain) and * directly encrypt the data, otherwise we hav to fix it up and * store extra it the EVP_CIPHER_CTX. */ if (ctx->buf_len == 0 && (inlen & ctx->block_mask) == 0) { ret = (*ctx->cipher->do_cipher)(ctx, out, in, inlen); if (ret == 1) *outlen = inlen; else *outlen = 0; return ret; } blocksize = EVP_CIPHER_CTX_block_size(ctx); left = blocksize - ctx->buf_len; assert(left > 0); if (ctx->buf_len) { /* if total buffer is smaller then input, store locally */ if (inlen < left) { memcpy(ctx->buf + ctx->buf_len, in, inlen); ctx->buf_len += inlen; return 1; } /* fill in local buffer and encrypt */ memcpy(ctx->buf + ctx->buf_len, in, left); ret = (*ctx->cipher->do_cipher)(ctx, out, ctx->buf, blocksize); memset(ctx->buf, 0, blocksize); if (ret != 1) return ret; *outlen += blocksize; inlen -= left; in = ((unsigned char *)in) + left; out = ((unsigned char *)out) + blocksize; ctx->buf_len = 0; } if (inlen) { ctx->buf_len = (inlen & ctx->block_mask); inlen &= ~ctx->block_mask; ret = (*ctx->cipher->do_cipher)(ctx, out, in, inlen); if (ret != 1) return ret; *outlen += inlen; in = ((unsigned char *)in) + inlen; memcpy(ctx->buf, in, ctx->buf_len); } return 1; } /** * Encipher/decipher final data * * @param ctx the cipher context. * @param out output data from the operation. * @param outlen output length * * The input length needs to be at least EVP_CIPHER_block_size() bytes * long. * * See @ref evp_cipher for an example how to use this function. * * @return 1 on success. * * @ingroup hcrypto_evp */ int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, void *out, int *outlen) { *outlen = 0; if (ctx->buf_len) { int ret, left, blocksize; blocksize = EVP_CIPHER_CTX_block_size(ctx); left = blocksize - ctx->buf_len; assert(left > 0); /* zero fill local buffer */ memset(ctx->buf + ctx->buf_len, 0, left); ret = (*ctx->cipher->do_cipher)(ctx, out, ctx->buf, blocksize); memset(ctx->buf, 0, blocksize); if (ret != 1) return ret; *outlen += blocksize; } return 1; } /** * Encipher/decipher data * * @param ctx the cipher context. * @param out out data from the operation. * @param in in data to the operation. * @param size length of data. * * @return 1 on success. */ int EVP_Cipher(EVP_CIPHER_CTX *ctx, void *out, const void *in,size_t size) { return ctx->cipher->do_cipher(ctx, out, in, size); } /* * */ static int enc_null_init(EVP_CIPHER_CTX *ctx, const unsigned char * key, const unsigned char * iv, int encp) { return 1; } static int enc_null_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, unsigned int size) { memmove(out, in, size); return 1; } static int enc_null_cleanup(EVP_CIPHER_CTX *ctx) { return 1; } /** * The NULL cipher type, does no encryption/decryption. * * @return the null EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_enc_null(void) { static const EVP_CIPHER enc_null = { 0, 0, 0, 0, EVP_CIPH_CBC_MODE, enc_null_init, enc_null_do_cipher, enc_null_cleanup, 0, NULL, NULL, NULL, NULL }; return &enc_null; } /** * The RC2 cipher type * * @return the RC2 EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_rc2_cbc(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, rc2_cbc); } /** * The RC2 cipher type * * @return the RC2 EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_rc2_40_cbc(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, rc2_40_cbc); } /** * The RC2 cipher type * * @return the RC2 EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_rc2_64_cbc(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, rc2_64_cbc); } /** * The RC4 cipher type * * @return the RC4 EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_rc4(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, rc4); } /** * The RC4-40 cipher type * * @return the RC4-40 EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_rc4_40(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, rc4_40); } /** * The DES cipher type * * @return the DES-CBC EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_des_cbc(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, des_cbc); } /** * The triple DES cipher type * * @return the DES-EDE3-CBC EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_des_ede3_cbc(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, des_ede3_cbc); } /** * The AES-128 cipher type * * @return the AES-128 EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_aes_128_cbc(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_128_cbc); } /** * The AES-192 cipher type * * @return the AES-192 EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_aes_192_cbc(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_192_cbc); } /** * The AES-256 cipher type * * @return the AES-256 EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_aes_256_cbc(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_256_cbc); } /** * The AES-128 cipher type * * @return the AES-128 EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_aes_128_cfb8(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_128_cfb8); } /** * The AES-192 cipher type * * @return the AES-192 EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_aes_192_cfb8(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_192_cfb8); } /** * The AES-256 cipher type * * @return the AES-256 EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_aes_256_cfb8(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_256_cfb8); } /** * The Camellia-128 cipher type * * @return the Camellia-128 EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_camellia_128_cbc(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, camellia_128_cbc); } /** * The Camellia-198 cipher type * * @return the Camellia-198 EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_camellia_192_cbc(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, camellia_192_cbc); } /** * The Camellia-256 cipher type * * @return the Camellia-256 EVP_CIPHER pointer. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_camellia_256_cbc(void) { hcrypto_validate(); return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, camellia_256_cbc); } /* * */ static const struct cipher_name { const char *name; const EVP_CIPHER *(*func)(void); } cipher_name[] = { { "des-ede3-cbc", EVP_des_ede3_cbc }, { "aes-128-cbc", EVP_aes_128_cbc }, { "aes-192-cbc", EVP_aes_192_cbc }, { "aes-256-cbc", EVP_aes_256_cbc }, { "aes-128-cfb8", EVP_aes_128_cfb8 }, { "aes-192-cfb8", EVP_aes_192_cfb8 }, { "aes-256-cfb8", EVP_aes_256_cfb8 }, { "camellia-128-cbc", EVP_camellia_128_cbc }, { "camellia-192-cbc", EVP_camellia_192_cbc }, { "camellia-256-cbc", EVP_camellia_256_cbc } }; /** * Get the cipher type using their name. * * @param name the name of the cipher. * * @return the selected EVP_CIPHER pointer or NULL if not found. * * @ingroup hcrypto_evp */ const EVP_CIPHER * EVP_get_cipherbyname(const char *name) { int i; for (i = 0; i < sizeof(cipher_name)/sizeof(cipher_name[0]); i++) { if (strcasecmp(cipher_name[i].name, name) == 0) return (*cipher_name[i].func)(); } return NULL; } /* * */ #ifndef min #define min(a,b) (((a)>(b))?(b):(a)) #endif /** * Provides a legancy string to key function, used in PEM files. * * New protocols should use new string to key functions like NIST * SP56-800A or PKCS#5 v2.0 (see PKCS5_PBKDF2_HMAC_SHA1()). * * @param type type of cipher to use * @param md message digest to use * @param salt salt salt string, should be an binary 8 byte buffer. * @param data the password/input key string. * @param datalen length of data parameter. * @param count iteration counter. * @param keydata output keydata, needs to of the size EVP_CIPHER_key_length(). * @param ivdata output ivdata, needs to of the size EVP_CIPHER_block_size(). * * @return the size of derived key. * * @ingroup hcrypto_evp */ int EVP_BytesToKey(const EVP_CIPHER *type, const EVP_MD *md, const void *salt, const void *data, size_t datalen, unsigned int count, void *keydata, void *ivdata) { unsigned int ivlen, keylen; int first = 0; unsigned int mds = 0, i; unsigned char *key = keydata; unsigned char *iv = ivdata; unsigned char *buf; EVP_MD_CTX c; keylen = EVP_CIPHER_key_length(type); ivlen = EVP_CIPHER_iv_length(type); if (data == NULL) return keylen; buf = malloc(EVP_MD_size(md)); if (buf == NULL) return -1; EVP_MD_CTX_init(&c); first = 1; while (1) { EVP_DigestInit_ex(&c, md, NULL); if (!first) EVP_DigestUpdate(&c, buf, mds); first = 0; EVP_DigestUpdate(&c,data,datalen); #define PKCS5_SALT_LEN 8 if (salt) EVP_DigestUpdate(&c, salt, PKCS5_SALT_LEN); EVP_DigestFinal_ex(&c, buf, &mds); assert(mds == EVP_MD_size(md)); for (i = 1; i < count; i++) { EVP_DigestInit_ex(&c, md, NULL); EVP_DigestUpdate(&c, buf, mds); EVP_DigestFinal_ex(&c, buf, &mds); assert(mds == EVP_MD_size(md)); } i = 0; if (keylen) { size_t sz = min(keylen, mds); if (key) { memcpy(key, buf, sz); key += sz; } keylen -= sz; i += sz; } if (ivlen && mds > i) { size_t sz = min(ivlen, (mds - i)); if (iv) { memcpy(iv, &buf[i], sz); iv += sz; } ivlen -= sz; } if (keylen == 0 && ivlen == 0) break; } EVP_MD_CTX_cleanup(&c); free(buf); return EVP_CIPHER_key_length(type); } /** * Generate a random key for the specificed EVP_CIPHER. * * @param ctx EVP_CIPHER_CTX type to build the key for. * @param key return key, must be at least EVP_CIPHER_key_length() byte long. * * @return 1 for success, 0 for failure. * * @ingroup hcrypto_core */ int EVP_CIPHER_CTX_rand_key(EVP_CIPHER_CTX *ctx, void *key) { if (ctx->cipher->flags & EVP_CIPH_RAND_KEY) return EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_RAND_KEY, 0, key); if (RAND_bytes(key, ctx->key_len) != 1) return 0; return 1; } /** * Perform a operation on a ctx * * @param ctx context to perform operation on. * @param type type of operation. * @param arg argument to operation. * @param data addition data to operation. * @return 1 for success, 0 for failure. * * @ingroup hcrypto_core */ int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *data) { if (ctx->cipher == NULL || ctx->cipher->ctrl == NULL) return 0; return (*ctx->cipher->ctrl)(ctx, type, arg, data); } /** * Add all algorithms to the crypto core. * * @ingroup hcrypto_core */ void OpenSSL_add_all_algorithms(void) { return; } /** * Add all algorithms to the crypto core using configuration file. * * @ingroup hcrypto_core */ void OpenSSL_add_all_algorithms_conf(void) { return; } /** * Add all algorithms to the crypto core, but don't use the * configuration file. * * @ingroup hcrypto_core */ void OpenSSL_add_all_algorithms_noconf(void) { return; }