diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-05 17:28:19 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-05 17:28:19 +0000 |
commit | 18657a960e125336f704ea058e25c27bd3900dcb (patch) | |
tree | 17b438b680ed45a996d7b59951e6aa34023783f2 /ext/fts5/fts5_expr.c | |
parent | Initial commit. (diff) | |
download | sqlite3-18657a960e125336f704ea058e25c27bd3900dcb.tar.xz sqlite3-18657a960e125336f704ea058e25c27bd3900dcb.zip |
Adding upstream version 3.40.1.upstream/3.40.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ext/fts5/fts5_expr.c')
-rw-r--r-- | ext/fts5/fts5_expr.c | 3071 |
1 files changed, 3071 insertions, 0 deletions
diff --git a/ext/fts5/fts5_expr.c b/ext/fts5/fts5_expr.c new file mode 100644 index 0000000..66bd304 --- /dev/null +++ b/ext/fts5/fts5_expr.c @@ -0,0 +1,3071 @@ +/* +** 2014 May 31 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +*/ + + + +#include "fts5Int.h" +#include "fts5parse.h" + +/* +** All token types in the generated fts5parse.h file are greater than 0. +*/ +#define FTS5_EOF 0 + +#define FTS5_LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) + +typedef struct Fts5ExprTerm Fts5ExprTerm; + +/* +** Functions generated by lemon from fts5parse.y. +*/ +void *sqlite3Fts5ParserAlloc(void *(*mallocProc)(u64)); +void sqlite3Fts5ParserFree(void*, void (*freeProc)(void*)); +void sqlite3Fts5Parser(void*, int, Fts5Token, Fts5Parse*); +#ifndef NDEBUG +#include <stdio.h> +void sqlite3Fts5ParserTrace(FILE*, char*); +#endif +int sqlite3Fts5ParserFallback(int); + + +struct Fts5Expr { + Fts5Index *pIndex; + Fts5Config *pConfig; + Fts5ExprNode *pRoot; + int bDesc; /* Iterate in descending rowid order */ + int nPhrase; /* Number of phrases in expression */ + Fts5ExprPhrase **apExprPhrase; /* Pointers to phrase objects */ +}; + +/* +** eType: +** Expression node type. Always one of: +** +** FTS5_AND (nChild, apChild valid) +** FTS5_OR (nChild, apChild valid) +** FTS5_NOT (nChild, apChild valid) +** FTS5_STRING (pNear valid) +** FTS5_TERM (pNear valid) +*/ +struct Fts5ExprNode { + int eType; /* Node type */ + int bEof; /* True at EOF */ + int bNomatch; /* True if entry is not a match */ + + /* Next method for this node. */ + int (*xNext)(Fts5Expr*, Fts5ExprNode*, int, i64); + + i64 iRowid; /* Current rowid */ + Fts5ExprNearset *pNear; /* For FTS5_STRING - cluster of phrases */ + + /* Child nodes. For a NOT node, this array always contains 2 entries. For + ** AND or OR nodes, it contains 2 or more entries. */ + int nChild; /* Number of child nodes */ + Fts5ExprNode *apChild[1]; /* Array of child nodes */ +}; + +#define Fts5NodeIsString(p) ((p)->eType==FTS5_TERM || (p)->eType==FTS5_STRING) + +/* +** Invoke the xNext method of an Fts5ExprNode object. This macro should be +** used as if it has the same signature as the xNext() methods themselves. +*/ +#define fts5ExprNodeNext(a,b,c,d) (b)->xNext((a), (b), (c), (d)) + +/* +** An instance of the following structure represents a single search term +** or term prefix. +*/ +struct Fts5ExprTerm { + u8 bPrefix; /* True for a prefix term */ + u8 bFirst; /* True if token must be first in column */ + char *zTerm; /* nul-terminated term */ + Fts5IndexIter *pIter; /* Iterator for this term */ + Fts5ExprTerm *pSynonym; /* Pointer to first in list of synonyms */ +}; + +/* +** A phrase. One or more terms that must appear in a contiguous sequence +** within a document for it to match. +*/ +struct Fts5ExprPhrase { + Fts5ExprNode *pNode; /* FTS5_STRING node this phrase is part of */ + Fts5Buffer poslist; /* Current position list */ + int nTerm; /* Number of entries in aTerm[] */ + Fts5ExprTerm aTerm[1]; /* Terms that make up this phrase */ +}; + +/* +** One or more phrases that must appear within a certain token distance of +** each other within each matching document. +*/ +struct Fts5ExprNearset { + int nNear; /* NEAR parameter */ + Fts5Colset *pColset; /* Columns to search (NULL -> all columns) */ + int nPhrase; /* Number of entries in aPhrase[] array */ + Fts5ExprPhrase *apPhrase[1]; /* Array of phrase pointers */ +}; + + +/* +** Parse context. +*/ +struct Fts5Parse { + Fts5Config *pConfig; + char *zErr; + int rc; + int nPhrase; /* Size of apPhrase array */ + Fts5ExprPhrase **apPhrase; /* Array of all phrases */ + Fts5ExprNode *pExpr; /* Result of a successful parse */ + int bPhraseToAnd; /* Convert "a+b" to "a AND b" */ +}; + +void sqlite3Fts5ParseError(Fts5Parse *pParse, const char *zFmt, ...){ + va_list ap; + va_start(ap, zFmt); + if( pParse->rc==SQLITE_OK ){ + assert( pParse->zErr==0 ); + pParse->zErr = sqlite3_vmprintf(zFmt, ap); + pParse->rc = SQLITE_ERROR; + } + va_end(ap); +} + +static int fts5ExprIsspace(char t){ + return t==' ' || t=='\t' || t=='\n' || t=='\r'; +} + +/* +** Read the first token from the nul-terminated string at *pz. +*/ +static int fts5ExprGetToken( + Fts5Parse *pParse, + const char **pz, /* IN/OUT: Pointer into buffer */ + Fts5Token *pToken +){ + const char *z = *pz; + int tok; + + /* Skip past any whitespace */ + while( fts5ExprIsspace(*z) ) z++; + + pToken->p = z; + pToken->n = 1; + switch( *z ){ + case '(': tok = FTS5_LP; break; + case ')': tok = FTS5_RP; break; + case '{': tok = FTS5_LCP; break; + case '}': tok = FTS5_RCP; break; + case ':': tok = FTS5_COLON; break; + case ',': tok = FTS5_COMMA; break; + case '+': tok = FTS5_PLUS; break; + case '*': tok = FTS5_STAR; break; + case '-': tok = FTS5_MINUS; break; + case '^': tok = FTS5_CARET; break; + case '\0': tok = FTS5_EOF; break; + + case '"': { + const char *z2; + tok = FTS5_STRING; + + for(z2=&z[1]; 1; z2++){ + if( z2[0]=='"' ){ + z2++; + if( z2[0]!='"' ) break; + } + if( z2[0]=='\0' ){ + sqlite3Fts5ParseError(pParse, "unterminated string"); + return FTS5_EOF; + } + } + pToken->n = (z2 - z); + break; + } + + default: { + const char *z2; + if( sqlite3Fts5IsBareword(z[0])==0 ){ + sqlite3Fts5ParseError(pParse, "fts5: syntax error near \"%.1s\"", z); + return FTS5_EOF; + } + tok = FTS5_STRING; + for(z2=&z[1]; sqlite3Fts5IsBareword(*z2); z2++); + pToken->n = (z2 - z); + if( pToken->n==2 && memcmp(pToken->p, "OR", 2)==0 ) tok = FTS5_OR; + if( pToken->n==3 && memcmp(pToken->p, "NOT", 3)==0 ) tok = FTS5_NOT; + if( pToken->n==3 && memcmp(pToken->p, "AND", 3)==0 ) tok = FTS5_AND; + break; + } + } + + *pz = &pToken->p[pToken->n]; + return tok; +} + +static void *fts5ParseAlloc(u64 t){ return sqlite3_malloc64((sqlite3_int64)t);} +static void fts5ParseFree(void *p){ sqlite3_free(p); } + +int sqlite3Fts5ExprNew( + Fts5Config *pConfig, /* FTS5 Configuration */ + int bPhraseToAnd, + int iCol, + const char *zExpr, /* Expression text */ + Fts5Expr **ppNew, + char **pzErr +){ + Fts5Parse sParse; + Fts5Token token; + const char *z = zExpr; + int t; /* Next token type */ + void *pEngine; + Fts5Expr *pNew; + + *ppNew = 0; + *pzErr = 0; + memset(&sParse, 0, sizeof(sParse)); + sParse.bPhraseToAnd = bPhraseToAnd; + pEngine = sqlite3Fts5ParserAlloc(fts5ParseAlloc); + if( pEngine==0 ){ return SQLITE_NOMEM; } + sParse.pConfig = pConfig; + + do { + t = fts5ExprGetToken(&sParse, &z, &token); + sqlite3Fts5Parser(pEngine, t, token, &sParse); + }while( sParse.rc==SQLITE_OK && t!=FTS5_EOF ); + sqlite3Fts5ParserFree(pEngine, fts5ParseFree); + + /* If the LHS of the MATCH expression was a user column, apply the + ** implicit column-filter. */ + if( iCol<pConfig->nCol && sParse.pExpr && sParse.rc==SQLITE_OK ){ + int n = sizeof(Fts5Colset); + Fts5Colset *pColset = (Fts5Colset*)sqlite3Fts5MallocZero(&sParse.rc, n); + if( pColset ){ + pColset->nCol = 1; + pColset->aiCol[0] = iCol; + sqlite3Fts5ParseSetColset(&sParse, sParse.pExpr, pColset); + } + } + + assert( sParse.rc!=SQLITE_OK || sParse.zErr==0 ); + if( sParse.rc==SQLITE_OK ){ + *ppNew = pNew = sqlite3_malloc(sizeof(Fts5Expr)); + if( pNew==0 ){ + sParse.rc = SQLITE_NOMEM; + sqlite3Fts5ParseNodeFree(sParse.pExpr); + }else{ + if( !sParse.pExpr ){ + const int nByte = sizeof(Fts5ExprNode); + pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&sParse.rc, nByte); + if( pNew->pRoot ){ + pNew->pRoot->bEof = 1; + } + }else{ + pNew->pRoot = sParse.pExpr; + } + pNew->pIndex = 0; + pNew->pConfig = pConfig; + pNew->apExprPhrase = sParse.apPhrase; + pNew->nPhrase = sParse.nPhrase; + pNew->bDesc = 0; + sParse.apPhrase = 0; + } + }else{ + sqlite3Fts5ParseNodeFree(sParse.pExpr); + } + + sqlite3_free(sParse.apPhrase); + *pzErr = sParse.zErr; + return sParse.rc; +} + +/* +** This function is only called when using the special 'trigram' tokenizer. +** Argument zText contains the text of a LIKE or GLOB pattern matched +** against column iCol. This function creates and compiles an FTS5 MATCH +** expression that will match a superset of the rows matched by the LIKE or +** GLOB. If successful, SQLITE_OK is returned. Otherwise, an SQLite error +** code. +*/ +int sqlite3Fts5ExprPattern( + Fts5Config *pConfig, int bGlob, int iCol, const char *zText, Fts5Expr **pp +){ + i64 nText = strlen(zText); + char *zExpr = (char*)sqlite3_malloc64(nText*4 + 1); + int rc = SQLITE_OK; + + if( zExpr==0 ){ + rc = SQLITE_NOMEM; + }else{ + char aSpec[3]; + int iOut = 0; + int i = 0; + int iFirst = 0; + + if( bGlob==0 ){ + aSpec[0] = '_'; + aSpec[1] = '%'; + aSpec[2] = 0; + }else{ + aSpec[0] = '*'; + aSpec[1] = '?'; + aSpec[2] = '['; + } + + while( i<=nText ){ + if( i==nText + || zText[i]==aSpec[0] || zText[i]==aSpec[1] || zText[i]==aSpec[2] + ){ + if( i-iFirst>=3 ){ + int jj; + zExpr[iOut++] = '"'; + for(jj=iFirst; jj<i; jj++){ + zExpr[iOut++] = zText[jj]; + if( zText[jj]=='"' ) zExpr[iOut++] = '"'; + } + zExpr[iOut++] = '"'; + zExpr[iOut++] = ' '; + } + if( zText[i]==aSpec[2] ){ + i += 2; + if( zText[i-1]=='^' ) i++; + while( i<nText && zText[i]!=']' ) i++; + } + iFirst = i+1; + } + i++; + } + if( iOut>0 ){ + int bAnd = 0; + if( pConfig->eDetail!=FTS5_DETAIL_FULL ){ + bAnd = 1; + if( pConfig->eDetail==FTS5_DETAIL_NONE ){ + iCol = pConfig->nCol; + } + } + zExpr[iOut] = '\0'; + rc = sqlite3Fts5ExprNew(pConfig, bAnd, iCol, zExpr, pp,pConfig->pzErrmsg); + }else{ + *pp = 0; + } + sqlite3_free(zExpr); + } + + return rc; +} + +/* +** Free the expression node object passed as the only argument. +*/ +void sqlite3Fts5ParseNodeFree(Fts5ExprNode *p){ + if( p ){ + int i; + for(i=0; i<p->nChild; i++){ + sqlite3Fts5ParseNodeFree(p->apChild[i]); + } + sqlite3Fts5ParseNearsetFree(p->pNear); + sqlite3_free(p); + } +} + +/* +** Free the expression object passed as the only argument. +*/ +void sqlite3Fts5ExprFree(Fts5Expr *p){ + if( p ){ + sqlite3Fts5ParseNodeFree(p->pRoot); + sqlite3_free(p->apExprPhrase); + sqlite3_free(p); + } +} + +int sqlite3Fts5ExprAnd(Fts5Expr **pp1, Fts5Expr *p2){ + Fts5Parse sParse; + memset(&sParse, 0, sizeof(sParse)); + + if( *pp1 ){ + Fts5Expr *p1 = *pp1; + int nPhrase = p1->nPhrase + p2->nPhrase; + + p1->pRoot = sqlite3Fts5ParseNode(&sParse, FTS5_AND, p1->pRoot, p2->pRoot,0); + p2->pRoot = 0; + + if( sParse.rc==SQLITE_OK ){ + Fts5ExprPhrase **ap = (Fts5ExprPhrase**)sqlite3_realloc( + p1->apExprPhrase, nPhrase * sizeof(Fts5ExprPhrase*) + ); + if( ap==0 ){ + sParse.rc = SQLITE_NOMEM; + }else{ + int i; + memmove(&ap[p2->nPhrase], ap, p1->nPhrase*sizeof(Fts5ExprPhrase*)); + for(i=0; i<p2->nPhrase; i++){ + ap[i] = p2->apExprPhrase[i]; + } + p1->nPhrase = nPhrase; + p1->apExprPhrase = ap; + } + } + sqlite3_free(p2->apExprPhrase); + sqlite3_free(p2); + }else{ + *pp1 = p2; + } + + return sParse.rc; +} + +/* +** Argument pTerm must be a synonym iterator. Return the current rowid +** that it points to. +*/ +static i64 fts5ExprSynonymRowid(Fts5ExprTerm *pTerm, int bDesc, int *pbEof){ + i64 iRet = 0; + int bRetValid = 0; + Fts5ExprTerm *p; + + assert( pTerm ); + assert( pTerm->pSynonym ); + assert( bDesc==0 || bDesc==1 ); + for(p=pTerm; p; p=p->pSynonym){ + if( 0==sqlite3Fts5IterEof(p->pIter) ){ + i64 iRowid = p->pIter->iRowid; + if( bRetValid==0 || (bDesc!=(iRowid<iRet)) ){ + iRet = iRowid; + bRetValid = 1; + } + } + } + + if( pbEof && bRetValid==0 ) *pbEof = 1; + return iRet; +} + +/* +** Argument pTerm must be a synonym iterator. +*/ +static int fts5ExprSynonymList( + Fts5ExprTerm *pTerm, + i64 iRowid, + Fts5Buffer *pBuf, /* Use this buffer for space if required */ + u8 **pa, int *pn +){ + Fts5PoslistReader aStatic[4]; + Fts5PoslistReader *aIter = aStatic; + int nIter = 0; + int nAlloc = 4; + int rc = SQLITE_OK; + Fts5ExprTerm *p; + + assert( pTerm->pSynonym ); + for(p=pTerm; p; p=p->pSynonym){ + Fts5IndexIter *pIter = p->pIter; + if( sqlite3Fts5IterEof(pIter)==0 && pIter->iRowid==iRowid ){ + if( pIter->nData==0 ) continue; + if( nIter==nAlloc ){ + sqlite3_int64 nByte = sizeof(Fts5PoslistReader) * nAlloc * 2; + Fts5PoslistReader *aNew = (Fts5PoslistReader*)sqlite3_malloc64(nByte); + if( aNew==0 ){ + rc = SQLITE_NOMEM; + goto synonym_poslist_out; + } + memcpy(aNew, aIter, sizeof(Fts5PoslistReader) * nIter); + nAlloc = nAlloc*2; + if( aIter!=aStatic ) sqlite3_free(aIter); + aIter = aNew; + } + sqlite3Fts5PoslistReaderInit(pIter->pData, pIter->nData, &aIter[nIter]); + assert( aIter[nIter].bEof==0 ); + nIter++; + } + } + + if( nIter==1 ){ + *pa = (u8*)aIter[0].a; + *pn = aIter[0].n; + }else{ + Fts5PoslistWriter writer = {0}; + i64 iPrev = -1; + fts5BufferZero(pBuf); + while( 1 ){ + int i; + i64 iMin = FTS5_LARGEST_INT64; + for(i=0; i<nIter; i++){ + if( aIter[i].bEof==0 ){ + if( aIter[i].iPos==iPrev ){ + if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) continue; + } + if( aIter[i].iPos<iMin ){ + iMin = aIter[i].iPos; + } + } + } + if( iMin==FTS5_LARGEST_INT64 || rc!=SQLITE_OK ) break; + rc = sqlite3Fts5PoslistWriterAppend(pBuf, &writer, iMin); + iPrev = iMin; + } + if( rc==SQLITE_OK ){ + *pa = pBuf->p; + *pn = pBuf->n; + } + } + + synonym_poslist_out: + if( aIter!=aStatic ) sqlite3_free(aIter); + return rc; +} + + +/* +** All individual term iterators in pPhrase are guaranteed to be valid and +** pointing to the same rowid when this function is called. This function +** checks if the current rowid really is a match, and if so populates +** the pPhrase->poslist buffer accordingly. Output parameter *pbMatch +** is set to true if this is really a match, or false otherwise. +** +** SQLITE_OK is returned if an error occurs, or an SQLite error code +** otherwise. It is not considered an error code if the current rowid is +** not a match. +*/ +static int fts5ExprPhraseIsMatch( + Fts5ExprNode *pNode, /* Node pPhrase belongs to */ + Fts5ExprPhrase *pPhrase, /* Phrase object to initialize */ + int *pbMatch /* OUT: Set to true if really a match */ +){ + Fts5PoslistWriter writer = {0}; + Fts5PoslistReader aStatic[4]; + Fts5PoslistReader *aIter = aStatic; + int i; + int rc = SQLITE_OK; + int bFirst = pPhrase->aTerm[0].bFirst; + + fts5BufferZero(&pPhrase->poslist); + + /* If the aStatic[] array is not large enough, allocate a large array + ** using sqlite3_malloc(). This approach could be improved upon. */ + if( pPhrase->nTerm>ArraySize(aStatic) ){ + sqlite3_int64 nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm; + aIter = (Fts5PoslistReader*)sqlite3_malloc64(nByte); + if( !aIter ) return SQLITE_NOMEM; + } + memset(aIter, 0, sizeof(Fts5PoslistReader) * pPhrase->nTerm); + + /* Initialize a term iterator for each term in the phrase */ + for(i=0; i<pPhrase->nTerm; i++){ + Fts5ExprTerm *pTerm = &pPhrase->aTerm[i]; + int n = 0; + int bFlag = 0; + u8 *a = 0; + if( pTerm->pSynonym ){ + Fts5Buffer buf = {0, 0, 0}; + rc = fts5ExprSynonymList(pTerm, pNode->iRowid, &buf, &a, &n); + if( rc ){ + sqlite3_free(a); + goto ismatch_out; + } + if( a==buf.p ) bFlag = 1; + }else{ + a = (u8*)pTerm->pIter->pData; + n = pTerm->pIter->nData; + } + sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]); + aIter[i].bFlag = (u8)bFlag; + if( aIter[i].bEof ) goto ismatch_out; + } + + while( 1 ){ + int bMatch; + i64 iPos = aIter[0].iPos; + do { + bMatch = 1; + for(i=0; i<pPhrase->nTerm; i++){ + Fts5PoslistReader *pPos = &aIter[i]; + i64 iAdj = iPos + i; + if( pPos->iPos!=iAdj ){ + bMatch = 0; + while( pPos->iPos<iAdj ){ + if( sqlite3Fts5PoslistReaderNext(pPos) ) goto ismatch_out; + } + if( pPos->iPos>iAdj ) iPos = pPos->iPos-i; + } + } + }while( bMatch==0 ); + + /* Append position iPos to the output */ + if( bFirst==0 || FTS5_POS2OFFSET(iPos)==0 ){ + rc = sqlite3Fts5PoslistWriterAppend(&pPhrase->poslist, &writer, iPos); + if( rc!=SQLITE_OK ) goto ismatch_out; + } + + for(i=0; i<pPhrase->nTerm; i++){ + if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) goto ismatch_out; + } + } + + ismatch_out: + *pbMatch = (pPhrase->poslist.n>0); + for(i=0; i<pPhrase->nTerm; i++){ + if( aIter[i].bFlag ) sqlite3_free((u8*)aIter[i].a); + } + if( aIter!=aStatic ) sqlite3_free(aIter); + return rc; +} + +typedef struct Fts5LookaheadReader Fts5LookaheadReader; +struct Fts5LookaheadReader { + const u8 *a; /* Buffer containing position list */ + int n; /* Size of buffer a[] in bytes */ + int i; /* Current offset in position list */ + i64 iPos; /* Current position */ + i64 iLookahead; /* Next position */ +}; + +#define FTS5_LOOKAHEAD_EOF (((i64)1) << 62) + +static int fts5LookaheadReaderNext(Fts5LookaheadReader *p){ + p->iPos = p->iLookahead; + if( sqlite3Fts5PoslistNext64(p->a, p->n, &p->i, &p->iLookahead) ){ + p->iLookahead = FTS5_LOOKAHEAD_EOF; + } + return (p->iPos==FTS5_LOOKAHEAD_EOF); +} + +static int fts5LookaheadReaderInit( + const u8 *a, int n, /* Buffer to read position list from */ + Fts5LookaheadReader *p /* Iterator object to initialize */ +){ + memset(p, 0, sizeof(Fts5LookaheadReader)); + p->a = a; + p->n = n; + fts5LookaheadReaderNext(p); + return fts5LookaheadReaderNext(p); +} + +typedef struct Fts5NearTrimmer Fts5NearTrimmer; +struct Fts5NearTrimmer { + Fts5LookaheadReader reader; /* Input iterator */ + Fts5PoslistWriter writer; /* Writer context */ + Fts5Buffer *pOut; /* Output poslist */ +}; + +/* +** The near-set object passed as the first argument contains more than +** one phrase. All phrases currently point to the same row. The +** Fts5ExprPhrase.poslist buffers are populated accordingly. This function +** tests if the current row contains instances of each phrase sufficiently +** close together to meet the NEAR constraint. Non-zero is returned if it +** does, or zero otherwise. +** +** If in/out parameter (*pRc) is set to other than SQLITE_OK when this +** function is called, it is a no-op. Or, if an error (e.g. SQLITE_NOMEM) +** occurs within this function (*pRc) is set accordingly before returning. +** The return value is undefined in both these cases. +** +** If no error occurs and non-zero (a match) is returned, the position-list +** of each phrase object is edited to contain only those entries that +** meet the constraint before returning. +*/ +static int fts5ExprNearIsMatch(int *pRc, Fts5ExprNearset *pNear){ + Fts5NearTrimmer aStatic[4]; + Fts5NearTrimmer *a = aStatic; + Fts5ExprPhrase **apPhrase = pNear->apPhrase; + + int i; + int rc = *pRc; + int bMatch; + + assert( pNear->nPhrase>1 ); + + /* If the aStatic[] array is not large enough, allocate a large array + ** using sqlite3_malloc(). This approach could be improved upon. */ + if( pNear->nPhrase>ArraySize(aStatic) ){ + sqlite3_int64 nByte = sizeof(Fts5NearTrimmer) * pNear->nPhrase; + a = (Fts5NearTrimmer*)sqlite3Fts5MallocZero(&rc, nByte); + }else{ + memset(aStatic, 0, sizeof(aStatic)); + } + if( rc!=SQLITE_OK ){ + *pRc = rc; + return 0; + } + + /* Initialize a lookahead iterator for each phrase. After passing the + ** buffer and buffer size to the lookaside-reader init function, zero + ** the phrase poslist buffer. The new poslist for the phrase (containing + ** the same entries as the original with some entries removed on account + ** of the NEAR constraint) is written over the original even as it is + ** being read. This is safe as the entries for the new poslist are a + ** subset of the old, so it is not possible for data yet to be read to + ** be overwritten. */ + for(i=0; i<pNear->nPhrase; i++){ + Fts5Buffer *pPoslist = &apPhrase[i]->poslist; + fts5LookaheadReaderInit(pPoslist->p, pPoslist->n, &a[i].reader); + pPoslist->n = 0; + a[i].pOut = pPoslist; + } + + while( 1 ){ + int iAdv; + i64 iMin; + i64 iMax; + + /* This block advances the phrase iterators until they point to a set of + ** entries that together comprise a match. */ + iMax = a[0].reader.iPos; + do { + bMatch = 1; + for(i=0; i<pNear->nPhrase; i++){ + Fts5LookaheadReader *pPos = &a[i].reader; + iMin = iMax - pNear->apPhrase[i]->nTerm - pNear->nNear; + if( pPos->iPos<iMin || pPos->iPos>iMax ){ + bMatch = 0; + while( pPos->iPos<iMin ){ + if( fts5LookaheadReaderNext(pPos) ) goto ismatch_out; + } + if( pPos->iPos>iMax ) iMax = pPos->iPos; + } + } + }while( bMatch==0 ); + + /* Add an entry to each output position list */ + for(i=0; i<pNear->nPhrase; i++){ + i64 iPos = a[i].reader.iPos; + Fts5PoslistWriter *pWriter = &a[i].writer; + if( a[i].pOut->n==0 || iPos!=pWriter->iPrev ){ + sqlite3Fts5PoslistWriterAppend(a[i].pOut, pWriter, iPos); + } + } + + iAdv = 0; + iMin = a[0].reader.iLookahead; + for(i=0; i<pNear->nPhrase; i++){ + if( a[i].reader.iLookahead < iMin ){ + iMin = a[i].reader.iLookahead; + iAdv = i; + } + } + if( fts5LookaheadReaderNext(&a[iAdv].reader) ) goto ismatch_out; + } + + ismatch_out: { + int bRet = a[0].pOut->n>0; + *pRc = rc; + if( a!=aStatic ) sqlite3_free(a); + return bRet; + } +} + +/* +** Advance iterator pIter until it points to a value equal to or laster +** than the initial value of *piLast. If this means the iterator points +** to a value laster than *piLast, update *piLast to the new lastest value. +** +** If the iterator reaches EOF, set *pbEof to true before returning. If +** an error occurs, set *pRc to an error code. If either *pbEof or *pRc +** are set, return a non-zero value. Otherwise, return zero. +*/ +static int fts5ExprAdvanceto( + Fts5IndexIter *pIter, /* Iterator to advance */ + int bDesc, /* True if iterator is "rowid DESC" */ + i64 *piLast, /* IN/OUT: Lastest rowid seen so far */ + int *pRc, /* OUT: Error code */ + int *pbEof /* OUT: Set to true if EOF */ +){ + i64 iLast = *piLast; + i64 iRowid; + + iRowid = pIter->iRowid; + if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){ + int rc = sqlite3Fts5IterNextFrom(pIter, iLast); + if( rc || sqlite3Fts5IterEof(pIter) ){ + *pRc = rc; + *pbEof = 1; + return 1; + } + iRowid = pIter->iRowid; + assert( (bDesc==0 && iRowid>=iLast) || (bDesc==1 && iRowid<=iLast) ); + } + *piLast = iRowid; + + return 0; +} + +static int fts5ExprSynonymAdvanceto( + Fts5ExprTerm *pTerm, /* Term iterator to advance */ + int bDesc, /* True if iterator is "rowid DESC" */ + i64 *piLast, /* IN/OUT: Lastest rowid seen so far */ + int *pRc /* OUT: Error code */ +){ + int rc = SQLITE_OK; + i64 iLast = *piLast; + Fts5ExprTerm *p; + int bEof = 0; + + for(p=pTerm; rc==SQLITE_OK && p; p=p->pSynonym){ + if( sqlite3Fts5IterEof(p->pIter)==0 ){ + i64 iRowid = p->pIter->iRowid; + if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){ + rc = sqlite3Fts5IterNextFrom(p->pIter, iLast); + } + } + } + + if( rc!=SQLITE_OK ){ + *pRc = rc; + bEof = 1; + }else{ + *piLast = fts5ExprSynonymRowid(pTerm, bDesc, &bEof); + } + return bEof; +} + + +static int fts5ExprNearTest( + int *pRc, + Fts5Expr *pExpr, /* Expression that pNear is a part of */ + Fts5ExprNode *pNode /* The "NEAR" node (FTS5_STRING) */ +){ + Fts5ExprNearset *pNear = pNode->pNear; + int rc = *pRc; + + if( pExpr->pConfig->eDetail!=FTS5_DETAIL_FULL ){ + Fts5ExprTerm *pTerm; + Fts5ExprPhrase *pPhrase = pNear->apPhrase[0]; + pPhrase->poslist.n = 0; + for(pTerm=&pPhrase->aTerm[0]; pTerm; pTerm=pTerm->pSynonym){ + Fts5IndexIter *pIter = pTerm->pIter; + if( sqlite3Fts5IterEof(pIter)==0 ){ + if( pIter->iRowid==pNode->iRowid && pIter->nData>0 ){ + pPhrase->poslist.n = 1; + } + } + } + return pPhrase->poslist.n; + }else{ + int i; + + /* Check that each phrase in the nearset matches the current row. + ** Populate the pPhrase->poslist buffers at the same time. If any + ** phrase is not a match, break out of the loop early. */ + for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){ + Fts5ExprPhrase *pPhrase = pNear->apPhrase[i]; + if( pPhrase->nTerm>1 || pPhrase->aTerm[0].pSynonym + || pNear->pColset || pPhrase->aTerm[0].bFirst + ){ + int bMatch = 0; + rc = fts5ExprPhraseIsMatch(pNode, pPhrase, &bMatch); + if( bMatch==0 ) break; + }else{ + Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter; + fts5BufferSet(&rc, &pPhrase->poslist, pIter->nData, pIter->pData); + } + } + + *pRc = rc; + if( i==pNear->nPhrase && (i==1 || fts5ExprNearIsMatch(pRc, pNear)) ){ + return 1; + } + return 0; + } +} + + +/* +** Initialize all term iterators in the pNear object. If any term is found +** to match no documents at all, return immediately without initializing any +** further iterators. +** +** If an error occurs, return an SQLite error code. Otherwise, return +** SQLITE_OK. It is not considered an error if some term matches zero +** documents. +*/ +static int fts5ExprNearInitAll( + Fts5Expr *pExpr, + Fts5ExprNode *pNode +){ + Fts5ExprNearset *pNear = pNode->pNear; + int i; + + assert( pNode->bNomatch==0 ); + for(i=0; i<pNear->nPhrase; i++){ + Fts5ExprPhrase *pPhrase = pNear->apPhrase[i]; + if( pPhrase->nTerm==0 ){ + pNode->bEof = 1; + return SQLITE_OK; + }else{ + int j; + for(j=0; j<pPhrase->nTerm; j++){ + Fts5ExprTerm *pTerm = &pPhrase->aTerm[j]; + Fts5ExprTerm *p; + int bHit = 0; + + for(p=pTerm; p; p=p->pSynonym){ + int rc; + if( p->pIter ){ + sqlite3Fts5IterClose(p->pIter); + p->pIter = 0; + } + rc = sqlite3Fts5IndexQuery( + pExpr->pIndex, p->zTerm, (int)strlen(p->zTerm), + (pTerm->bPrefix ? FTS5INDEX_QUERY_PREFIX : 0) | + (pExpr->bDesc ? FTS5INDEX_QUERY_DESC : 0), + pNear->pColset, + &p->pIter + ); + assert( (rc==SQLITE_OK)==(p->pIter!=0) ); + if( rc!=SQLITE_OK ) return rc; + if( 0==sqlite3Fts5IterEof(p->pIter) ){ + bHit = 1; + } + } + + if( bHit==0 ){ + pNode->bEof = 1; + return SQLITE_OK; + } + } + } + } + + pNode->bEof = 0; + return SQLITE_OK; +} + +/* +** If pExpr is an ASC iterator, this function returns a value with the +** same sign as: +** +** (iLhs - iRhs) +** +** Otherwise, if this is a DESC iterator, the opposite is returned: +** +** (iRhs - iLhs) +*/ +static int fts5RowidCmp( + Fts5Expr *pExpr, + i64 iLhs, + i64 iRhs +){ + assert( pExpr->bDesc==0 || pExpr->bDesc==1 ); + if( pExpr->bDesc==0 ){ + if( iLhs<iRhs ) return -1; + return (iLhs > iRhs); + }else{ + if( iLhs>iRhs ) return -1; + return (iLhs < iRhs); + } +} + +static void fts5ExprSetEof(Fts5ExprNode *pNode){ + int i; + pNode->bEof = 1; + pNode->bNomatch = 0; + for(i=0; i<pNode->nChild; i++){ + fts5ExprSetEof(pNode->apChild[i]); + } +} + +static void fts5ExprNodeZeroPoslist(Fts5ExprNode *pNode){ + if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){ + Fts5ExprNearset *pNear = pNode->pNear; + int i; + for(i=0; i<pNear->nPhrase; i++){ + Fts5ExprPhrase *pPhrase = pNear->apPhrase[i]; + pPhrase->poslist.n = 0; + } + }else{ + int i; + for(i=0; i<pNode->nChild; i++){ + fts5ExprNodeZeroPoslist(pNode->apChild[i]); + } + } +} + + + +/* +** Compare the values currently indicated by the two nodes as follows: +** +** res = (*p1) - (*p2) +** +** Nodes that point to values that come later in the iteration order are +** considered to be larger. Nodes at EOF are the largest of all. +** +** This means that if the iteration order is ASC, then numerically larger +** rowids are considered larger. Or if it is the default DESC, numerically +** smaller rowids are larger. +*/ +static int fts5NodeCompare( + Fts5Expr *pExpr, + Fts5ExprNode *p1, + Fts5ExprNode *p2 +){ + if( p2->bEof ) return -1; + if( p1->bEof ) return +1; + return fts5RowidCmp(pExpr, p1->iRowid, p2->iRowid); +} + +/* +** All individual term iterators in pNear are guaranteed to be valid when +** this function is called. This function checks if all term iterators +** point to the same rowid, and if not, advances them until they do. +** If an EOF is reached before this happens, *pbEof is set to true before +** returning. +** +** SQLITE_OK is returned if an error occurs, or an SQLite error code +** otherwise. It is not considered an error code if an iterator reaches +** EOF. +*/ +static int fts5ExprNodeTest_STRING( + Fts5Expr *pExpr, /* Expression pPhrase belongs to */ + Fts5ExprNode *pNode +){ + Fts5ExprNearset *pNear = pNode->pNear; + Fts5ExprPhrase *pLeft = pNear->apPhrase[0]; + int rc = SQLITE_OK; + i64 iLast; /* Lastest rowid any iterator points to */ + int i, j; /* Phrase and token index, respectively */ + int bMatch; /* True if all terms are at the same rowid */ + const int bDesc = pExpr->bDesc; + + /* Check that this node should not be FTS5_TERM */ + assert( pNear->nPhrase>1 + || pNear->apPhrase[0]->nTerm>1 + || pNear->apPhrase[0]->aTerm[0].pSynonym + || pNear->apPhrase[0]->aTerm[0].bFirst + ); + + /* Initialize iLast, the "lastest" rowid any iterator points to. If the + ** iterator skips through rowids in the default ascending order, this means + ** the maximum rowid. Or, if the iterator is "ORDER BY rowid DESC", then it + ** means the minimum rowid. */ + if( pLeft->aTerm[0].pSynonym ){ + iLast = fts5ExprSynonymRowid(&pLeft->aTerm[0], bDesc, 0); + }else{ + iLast = pLeft->aTerm[0].pIter->iRowid; + } + + do { + bMatch = 1; + for(i=0; i<pNear->nPhrase; i++){ + Fts5ExprPhrase *pPhrase = pNear->apPhrase[i]; + for(j=0; j<pPhrase->nTerm; j++){ + Fts5ExprTerm *pTerm = &pPhrase->aTerm[j]; + if( pTerm->pSynonym ){ + i64 iRowid = fts5ExprSynonymRowid(pTerm, bDesc, 0); + if( iRowid==iLast ) continue; + bMatch = 0; + if( fts5ExprSynonymAdvanceto(pTerm, bDesc, &iLast, &rc) ){ + pNode->bNomatch = 0; + pNode->bEof = 1; + return rc; + } + }else{ + Fts5IndexIter *pIter = pPhrase->aTerm[j].pIter; + if( pIter->iRowid==iLast || pIter->bEof ) continue; + bMatch = 0; + if( fts5ExprAdvanceto(pIter, bDesc, &iLast, &rc, &pNode->bEof) ){ + return rc; + } + } + } + } + }while( bMatch==0 ); + + pNode->iRowid = iLast; + pNode->bNomatch = ((0==fts5ExprNearTest(&rc, pExpr, pNode)) && rc==SQLITE_OK); + assert( pNode->bEof==0 || pNode->bNomatch==0 ); + + return rc; +} + +/* +** Advance the first term iterator in the first phrase of pNear. Set output +** variable *pbEof to true if it reaches EOF or if an error occurs. +** +** Return SQLITE_OK if successful, or an SQLite error code if an error +** occurs. +*/ +static int fts5ExprNodeNext_STRING( + Fts5Expr *pExpr, /* Expression pPhrase belongs to */ + Fts5ExprNode *pNode, /* FTS5_STRING or FTS5_TERM node */ + int bFromValid, + i64 iFrom +){ + Fts5ExprTerm *pTerm = &pNode->pNear->apPhrase[0]->aTerm[0]; + int rc = SQLITE_OK; + + pNode->bNomatch = 0; + if( pTerm->pSynonym ){ + int bEof = 1; + Fts5ExprTerm *p; + + /* Find the firstest rowid any synonym points to. */ + i64 iRowid = fts5ExprSynonymRowid(pTerm, pExpr->bDesc, 0); + + /* Advance each iterator that currently points to iRowid. Or, if iFrom + ** is valid - each iterator that points to a rowid before iFrom. */ + for(p=pTerm; p; p=p->pSynonym){ + if( sqlite3Fts5IterEof(p->pIter)==0 ){ + i64 ii = p->pIter->iRowid; + if( ii==iRowid + || (bFromValid && ii!=iFrom && (ii>iFrom)==pExpr->bDesc) + ){ + if( bFromValid ){ + rc = sqlite3Fts5IterNextFrom(p->pIter, iFrom); + }else{ + rc = sqlite3Fts5IterNext(p->pIter); + } + if( rc!=SQLITE_OK ) break; + if( sqlite3Fts5IterEof(p->pIter)==0 ){ + bEof = 0; + } + }else{ + bEof = 0; + } + } + } + + /* Set the EOF flag if either all synonym iterators are at EOF or an + ** error has occurred. */ + pNode->bEof = (rc || bEof); + }else{ + Fts5IndexIter *pIter = pTerm->pIter; + + assert( Fts5NodeIsString(pNode) ); + if( bFromValid ){ + rc = sqlite3Fts5IterNextFrom(pIter, iFrom); + }else{ + rc = sqlite3Fts5IterNext(pIter); + } + + pNode->bEof = (rc || sqlite3Fts5IterEof(pIter)); + } + + if( pNode->bEof==0 ){ + assert( rc==SQLITE_OK ); + rc = fts5ExprNodeTest_STRING(pExpr, pNode); + } + + return rc; +} + + +static int fts5ExprNodeTest_TERM( + Fts5Expr *pExpr, /* Expression that pNear is a part of */ + Fts5ExprNode *pNode /* The "NEAR" node (FTS5_TERM) */ +){ + /* As this "NEAR" object is actually a single phrase that consists + ** of a single term only, grab pointers into the poslist managed by the + ** fts5_index.c iterator object. This is much faster than synthesizing + ** a new poslist the way we have to for more complicated phrase or NEAR + ** expressions. */ + Fts5ExprPhrase *pPhrase = pNode->pNear->apPhrase[0]; + Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter; + + assert( pNode->eType==FTS5_TERM ); + assert( pNode->pNear->nPhrase==1 && pPhrase->nTerm==1 ); + assert( pPhrase->aTerm[0].pSynonym==0 ); + + pPhrase->poslist.n = pIter->nData; + if( pExpr->pConfig->eDetail==FTS5_DETAIL_FULL ){ + pPhrase->poslist.p = (u8*)pIter->pData; + } + pNode->iRowid = pIter->iRowid; + pNode->bNomatch = (pPhrase->poslist.n==0); + return SQLITE_OK; +} + +/* +** xNext() method for a node of type FTS5_TERM. +*/ +static int fts5ExprNodeNext_TERM( + Fts5Expr *pExpr, + Fts5ExprNode *pNode, + int bFromValid, + i64 iFrom +){ + int rc; + Fts5IndexIter *pIter = pNode->pNear->apPhrase[0]->aTerm[0].pIter; + + assert( pNode->bEof==0 ); + if( bFromValid ){ + rc = sqlite3Fts5IterNextFrom(pIter, iFrom); + }else{ + rc = sqlite3Fts5IterNext(pIter); + } + if( rc==SQLITE_OK && sqlite3Fts5IterEof(pIter)==0 ){ + rc = fts5ExprNodeTest_TERM(pExpr, pNode); + }else{ + pNode->bEof = 1; + pNode->bNomatch = 0; + } + return rc; +} + +static void fts5ExprNodeTest_OR( + Fts5Expr *pExpr, /* Expression of which pNode is a part */ + Fts5ExprNode *pNode /* Expression node to test */ +){ + Fts5ExprNode *pNext = pNode->apChild[0]; + int i; + + for(i=1; i<pNode->nChild; i++){ + Fts5ExprNode *pChild = pNode->apChild[i]; + int cmp = fts5NodeCompare(pExpr, pNext, pChild); + if( cmp>0 || (cmp==0 && pChild->bNomatch==0) ){ + pNext = pChild; + } + } + pNode->iRowid = pNext->iRowid; + pNode->bEof = pNext->bEof; + pNode->bNomatch = pNext->bNomatch; +} + +static int fts5ExprNodeNext_OR( + Fts5Expr *pExpr, + Fts5ExprNode *pNode, + int bFromValid, + i64 iFrom +){ + int i; + i64 iLast = pNode->iRowid; + + for(i=0; i<pNode->nChild; i++){ + Fts5ExprNode *p1 = pNode->apChild[i]; + assert( p1->bEof || fts5RowidCmp(pExpr, p1->iRowid, iLast)>=0 ); + if( p1->bEof==0 ){ + if( (p1->iRowid==iLast) + || (bFromValid && fts5RowidCmp(pExpr, p1->iRowid, iFrom)<0) + ){ + int rc = fts5ExprNodeNext(pExpr, p1, bFromValid, iFrom); + if( rc!=SQLITE_OK ){ + pNode->bNomatch = 0; + return rc; + } + } + } + } + + fts5ExprNodeTest_OR(pExpr, pNode); + return SQLITE_OK; +} + +/* +** Argument pNode is an FTS5_AND node. +*/ +static int fts5ExprNodeTest_AND( + Fts5Expr *pExpr, /* Expression pPhrase belongs to */ + Fts5ExprNode *pAnd /* FTS5_AND node to advance */ +){ + int iChild; + i64 iLast = pAnd->iRowid; + int rc = SQLITE_OK; + int bMatch; + + assert( pAnd->bEof==0 ); + do { + pAnd->bNomatch = 0; + bMatch = 1; + for(iChild=0; iChild<pAnd->nChild; iChild++){ + Fts5ExprNode *pChild = pAnd->apChild[iChild]; + int cmp = fts5RowidCmp(pExpr, iLast, pChild->iRowid); + if( cmp>0 ){ + /* Advance pChild until it points to iLast or laster */ + rc = fts5ExprNodeNext(pExpr, pChild, 1, iLast); + if( rc!=SQLITE_OK ){ + pAnd->bNomatch = 0; + return rc; + } + } + + /* If the child node is now at EOF, so is the parent AND node. Otherwise, + ** the child node is guaranteed to have advanced at least as far as + ** rowid iLast. So if it is not at exactly iLast, pChild->iRowid is the + ** new lastest rowid seen so far. */ + assert( pChild->bEof || fts5RowidCmp(pExpr, iLast, pChild->iRowid)<=0 ); + if( pChild->bEof ){ + fts5ExprSetEof(pAnd); + bMatch = 1; + break; + }else if( iLast!=pChild->iRowid ){ + bMatch = 0; + iLast = pChild->iRowid; + } + + if( pChild->bNomatch ){ + pAnd->bNomatch = 1; + } + } + }while( bMatch==0 ); + + if( pAnd->bNomatch && pAnd!=pExpr->pRoot ){ + fts5ExprNodeZeroPoslist(pAnd); + } + pAnd->iRowid = iLast; + return SQLITE_OK; +} + +static int fts5ExprNodeNext_AND( + Fts5Expr *pExpr, + Fts5ExprNode *pNode, + int bFromValid, + i64 iFrom +){ + int rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom); + if( rc==SQLITE_OK ){ + rc = fts5ExprNodeTest_AND(pExpr, pNode); + }else{ + pNode->bNomatch = 0; + } + return rc; +} + +static int fts5ExprNodeTest_NOT( + Fts5Expr *pExpr, /* Expression pPhrase belongs to */ + Fts5ExprNode *pNode /* FTS5_NOT node to advance */ +){ + int rc = SQLITE_OK; + Fts5ExprNode *p1 = pNode->apChild[0]; + Fts5ExprNode *p2 = pNode->apChild[1]; + assert( pNode->nChild==2 ); + + while( rc==SQLITE_OK && p1->bEof==0 ){ + int cmp = fts5NodeCompare(pExpr, p1, p2); + if( cmp>0 ){ + rc = fts5ExprNodeNext(pExpr, p2, 1, p1->iRowid); + cmp = fts5NodeCompare(pExpr, p1, p2); + } + assert( rc!=SQLITE_OK || cmp<=0 ); + if( cmp || p2->bNomatch ) break; + rc = fts5ExprNodeNext(pExpr, p1, 0, 0); + } + pNode->bEof = p1->bEof; + pNode->bNomatch = p1->bNomatch; + pNode->iRowid = p1->iRowid; + if( p1->bEof ){ + fts5ExprNodeZeroPoslist(p2); + } + return rc; +} + +static int fts5ExprNodeNext_NOT( + Fts5Expr *pExpr, + Fts5ExprNode *pNode, + int bFromValid, + i64 iFrom +){ + int rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom); + if( rc==SQLITE_OK ){ + rc = fts5ExprNodeTest_NOT(pExpr, pNode); + } + if( rc!=SQLITE_OK ){ + pNode->bNomatch = 0; + } + return rc; +} + +/* +** If pNode currently points to a match, this function returns SQLITE_OK +** without modifying it. Otherwise, pNode is advanced until it does point +** to a match or EOF is reached. +*/ +static int fts5ExprNodeTest( + Fts5Expr *pExpr, /* Expression of which pNode is a part */ + Fts5ExprNode *pNode /* Expression node to test */ +){ + int rc = SQLITE_OK; + if( pNode->bEof==0 ){ + switch( pNode->eType ){ + + case FTS5_STRING: { + rc = fts5ExprNodeTest_STRING(pExpr, pNode); + break; + } + + case FTS5_TERM: { + rc = fts5ExprNodeTest_TERM(pExpr, pNode); + break; + } + + case FTS5_AND: { + rc = fts5ExprNodeTest_AND(pExpr, pNode); + break; + } + + case FTS5_OR: { + fts5ExprNodeTest_OR(pExpr, pNode); + break; + } + + default: assert( pNode->eType==FTS5_NOT ); { + rc = fts5ExprNodeTest_NOT(pExpr, pNode); + break; + } + } + } + return rc; +} + + +/* +** Set node pNode, which is part of expression pExpr, to point to the first +** match. If there are no matches, set the Node.bEof flag to indicate EOF. +** +** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise. +** It is not an error if there are no matches. +*/ +static int fts5ExprNodeFirst(Fts5Expr *pExpr, Fts5ExprNode *pNode){ + int rc = SQLITE_OK; + pNode->bEof = 0; + pNode->bNomatch = 0; + + if( Fts5NodeIsString(pNode) ){ + /* Initialize all term iterators in the NEAR object. */ + rc = fts5ExprNearInitAll(pExpr, pNode); + }else if( pNode->xNext==0 ){ + pNode->bEof = 1; + }else{ + int i; + int nEof = 0; + for(i=0; i<pNode->nChild && rc==SQLITE_OK; i++){ + Fts5ExprNode *pChild = pNode->apChild[i]; + rc = fts5ExprNodeFirst(pExpr, pNode->apChild[i]); + assert( pChild->bEof==0 || pChild->bEof==1 ); + nEof += pChild->bEof; + } + pNode->iRowid = pNode->apChild[0]->iRowid; + + switch( pNode->eType ){ + case FTS5_AND: + if( nEof>0 ) fts5ExprSetEof(pNode); + break; + + case FTS5_OR: + if( pNode->nChild==nEof ) fts5ExprSetEof(pNode); + break; + + default: + assert( pNode->eType==FTS5_NOT ); + pNode->bEof = pNode->apChild[0]->bEof; + break; + } + } + + if( rc==SQLITE_OK ){ + rc = fts5ExprNodeTest(pExpr, pNode); + } + return rc; +} + + +/* +** Begin iterating through the set of documents in index pIdx matched by +** the MATCH expression passed as the first argument. If the "bDesc" +** parameter is passed a non-zero value, iteration is in descending rowid +** order. Or, if it is zero, in ascending order. +** +** If iterating in ascending rowid order (bDesc==0), the first document +** visited is that with the smallest rowid that is larger than or equal +** to parameter iFirst. Or, if iterating in ascending order (bDesc==1), +** then the first document visited must have a rowid smaller than or +** equal to iFirst. +** +** Return SQLITE_OK if successful, or an SQLite error code otherwise. It +** is not considered an error if the query does not match any documents. +*/ +int sqlite3Fts5ExprFirst(Fts5Expr *p, Fts5Index *pIdx, i64 iFirst, int bDesc){ + Fts5ExprNode *pRoot = p->pRoot; + int rc; /* Return code */ + + p->pIndex = pIdx; + p->bDesc = bDesc; + rc = fts5ExprNodeFirst(p, pRoot); + + /* If not at EOF but the current rowid occurs earlier than iFirst in + ** the iteration order, move to document iFirst or later. */ + if( rc==SQLITE_OK + && 0==pRoot->bEof + && fts5RowidCmp(p, pRoot->iRowid, iFirst)<0 + ){ + rc = fts5ExprNodeNext(p, pRoot, 1, iFirst); + } + + /* If the iterator is not at a real match, skip forward until it is. */ + while( pRoot->bNomatch && rc==SQLITE_OK ){ + assert( pRoot->bEof==0 ); + rc = fts5ExprNodeNext(p, pRoot, 0, 0); + } + return rc; +} + +/* +** Move to the next document +** +** Return SQLITE_OK if successful, or an SQLite error code otherwise. It +** is not considered an error if the query does not match any documents. +*/ +int sqlite3Fts5ExprNext(Fts5Expr *p, i64 iLast){ + int rc; + Fts5ExprNode *pRoot = p->pRoot; + assert( pRoot->bEof==0 && pRoot->bNomatch==0 ); + do { + rc = fts5ExprNodeNext(p, pRoot, 0, 0); + assert( pRoot->bNomatch==0 || (rc==SQLITE_OK && pRoot->bEof==0) ); + }while( pRoot->bNomatch ); + if( fts5RowidCmp(p, pRoot->iRowid, iLast)>0 ){ + pRoot->bEof = 1; + } + return rc; +} + +int sqlite3Fts5ExprEof(Fts5Expr *p){ + return p->pRoot->bEof; +} + +i64 sqlite3Fts5ExprRowid(Fts5Expr *p){ + return p->pRoot->iRowid; +} + +static int fts5ParseStringFromToken(Fts5Token *pToken, char **pz){ + int rc = SQLITE_OK; + *pz = sqlite3Fts5Strndup(&rc, pToken->p, pToken->n); + return rc; +} + +/* +** Free the phrase object passed as the only argument. +*/ +static void fts5ExprPhraseFree(Fts5ExprPhrase *pPhrase){ + if( pPhrase ){ + int i; + for(i=0; i<pPhrase->nTerm; i++){ + Fts5ExprTerm *pSyn; + Fts5ExprTerm *pNext; + Fts5ExprTerm *pTerm = &pPhrase->aTerm[i]; + sqlite3_free(pTerm->zTerm); + sqlite3Fts5IterClose(pTerm->pIter); + for(pSyn=pTerm->pSynonym; pSyn; pSyn=pNext){ + pNext = pSyn->pSynonym; + sqlite3Fts5IterClose(pSyn->pIter); + fts5BufferFree((Fts5Buffer*)&pSyn[1]); + sqlite3_free(pSyn); + } + } + if( pPhrase->poslist.nSpace>0 ) fts5BufferFree(&pPhrase->poslist); + sqlite3_free(pPhrase); + } +} + +/* +** Set the "bFirst" flag on the first token of the phrase passed as the +** only argument. +*/ +void sqlite3Fts5ParseSetCaret(Fts5ExprPhrase *pPhrase){ + if( pPhrase && pPhrase->nTerm ){ + pPhrase->aTerm[0].bFirst = 1; + } +} + +/* +** If argument pNear is NULL, then a new Fts5ExprNearset object is allocated +** and populated with pPhrase. Or, if pNear is not NULL, phrase pPhrase is +** appended to it and the results returned. +** +** If an OOM error occurs, both the pNear and pPhrase objects are freed and +** NULL returned. +*/ +Fts5ExprNearset *sqlite3Fts5ParseNearset( + Fts5Parse *pParse, /* Parse context */ + Fts5ExprNearset *pNear, /* Existing nearset, or NULL */ + Fts5ExprPhrase *pPhrase /* Recently parsed phrase */ +){ + const int SZALLOC = 8; + Fts5ExprNearset *pRet = 0; + + if( pParse->rc==SQLITE_OK ){ + if( pPhrase==0 ){ + return pNear; + } + if( pNear==0 ){ + sqlite3_int64 nByte; + nByte = sizeof(Fts5ExprNearset) + SZALLOC * sizeof(Fts5ExprPhrase*); + pRet = sqlite3_malloc64(nByte); + if( pRet==0 ){ + pParse->rc = SQLITE_NOMEM; + }else{ + memset(pRet, 0, (size_t)nByte); + } + }else if( (pNear->nPhrase % SZALLOC)==0 ){ + int nNew = pNear->nPhrase + SZALLOC; + sqlite3_int64 nByte; + + nByte = sizeof(Fts5ExprNearset) + nNew * sizeof(Fts5ExprPhrase*); + pRet = (Fts5ExprNearset*)sqlite3_realloc64(pNear, nByte); + if( pRet==0 ){ + pParse->rc = SQLITE_NOMEM; + } + }else{ + pRet = pNear; + } + } + + if( pRet==0 ){ + assert( pParse->rc!=SQLITE_OK ); + sqlite3Fts5ParseNearsetFree(pNear); + sqlite3Fts5ParsePhraseFree(pPhrase); + }else{ + if( pRet->nPhrase>0 ){ + Fts5ExprPhrase *pLast = pRet->apPhrase[pRet->nPhrase-1]; + assert( pParse!=0 ); + assert( pParse->apPhrase!=0 ); + assert( pParse->nPhrase>=2 ); + assert( pLast==pParse->apPhrase[pParse->nPhrase-2] ); + if( pPhrase->nTerm==0 ){ + fts5ExprPhraseFree(pPhrase); + pRet->nPhrase--; + pParse->nPhrase--; + pPhrase = pLast; + }else if( pLast->nTerm==0 ){ + fts5ExprPhraseFree(pLast); + pParse->apPhrase[pParse->nPhrase-2] = pPhrase; + pParse->nPhrase--; + pRet->nPhrase--; + } + } + pRet->apPhrase[pRet->nPhrase++] = pPhrase; + } + return pRet; +} + +typedef struct TokenCtx TokenCtx; +struct TokenCtx { + Fts5ExprPhrase *pPhrase; + int rc; +}; + +/* +** Callback for tokenizing terms used by ParseTerm(). +*/ +static int fts5ParseTokenize( + void *pContext, /* Pointer to Fts5InsertCtx object */ + int tflags, /* Mask of FTS5_TOKEN_* flags */ + const char *pToken, /* Buffer containing token */ + int nToken, /* Size of token in bytes */ + int iUnused1, /* Start offset of token */ + int iUnused2 /* End offset of token */ +){ + int rc = SQLITE_OK; + const int SZALLOC = 8; + TokenCtx *pCtx = (TokenCtx*)pContext; + Fts5ExprPhrase *pPhrase = pCtx->pPhrase; + + UNUSED_PARAM2(iUnused1, iUnused2); + + /* If an error has already occurred, this is a no-op */ + if( pCtx->rc!=SQLITE_OK ) return pCtx->rc; + if( nToken>FTS5_MAX_TOKEN_SIZE ) nToken = FTS5_MAX_TOKEN_SIZE; + + if( pPhrase && pPhrase->nTerm>0 && (tflags & FTS5_TOKEN_COLOCATED) ){ + Fts5ExprTerm *pSyn; + sqlite3_int64 nByte = sizeof(Fts5ExprTerm) + sizeof(Fts5Buffer) + nToken+1; + pSyn = (Fts5ExprTerm*)sqlite3_malloc64(nByte); + if( pSyn==0 ){ + rc = SQLITE_NOMEM; + }else{ + memset(pSyn, 0, (size_t)nByte); + pSyn->zTerm = ((char*)pSyn) + sizeof(Fts5ExprTerm) + sizeof(Fts5Buffer); + memcpy(pSyn->zTerm, pToken, nToken); + pSyn->pSynonym = pPhrase->aTerm[pPhrase->nTerm-1].pSynonym; + pPhrase->aTerm[pPhrase->nTerm-1].pSynonym = pSyn; + } + }else{ + Fts5ExprTerm *pTerm; + if( pPhrase==0 || (pPhrase->nTerm % SZALLOC)==0 ){ + Fts5ExprPhrase *pNew; + int nNew = SZALLOC + (pPhrase ? pPhrase->nTerm : 0); + + pNew = (Fts5ExprPhrase*)sqlite3_realloc64(pPhrase, + sizeof(Fts5ExprPhrase) + sizeof(Fts5ExprTerm) * nNew + ); + if( pNew==0 ){ + rc = SQLITE_NOMEM; + }else{ + if( pPhrase==0 ) memset(pNew, 0, sizeof(Fts5ExprPhrase)); + pCtx->pPhrase = pPhrase = pNew; + pNew->nTerm = nNew - SZALLOC; + } + } + + if( rc==SQLITE_OK ){ + pTerm = &pPhrase->aTerm[pPhrase->nTerm++]; + memset(pTerm, 0, sizeof(Fts5ExprTerm)); + pTerm->zTerm = sqlite3Fts5Strndup(&rc, pToken, nToken); + } + } + + pCtx->rc = rc; + return rc; +} + + +/* +** Free the phrase object passed as the only argument. +*/ +void sqlite3Fts5ParsePhraseFree(Fts5ExprPhrase *pPhrase){ + fts5ExprPhraseFree(pPhrase); +} + +/* +** Free the phrase object passed as the second argument. +*/ +void sqlite3Fts5ParseNearsetFree(Fts5ExprNearset *pNear){ + if( pNear ){ + int i; + for(i=0; i<pNear->nPhrase; i++){ + fts5ExprPhraseFree(pNear->apPhrase[i]); + } + sqlite3_free(pNear->pColset); + sqlite3_free(pNear); + } +} + +void sqlite3Fts5ParseFinished(Fts5Parse *pParse, Fts5ExprNode *p){ + assert( pParse->pExpr==0 ); + pParse->pExpr = p; +} + +static int parseGrowPhraseArray(Fts5Parse *pParse){ + if( (pParse->nPhrase % 8)==0 ){ + sqlite3_int64 nByte = sizeof(Fts5ExprPhrase*) * (pParse->nPhrase + 8); + Fts5ExprPhrase **apNew; + apNew = (Fts5ExprPhrase**)sqlite3_realloc64(pParse->apPhrase, nByte); + if( apNew==0 ){ + pParse->rc = SQLITE_NOMEM; + return SQLITE_NOMEM; + } + pParse->apPhrase = apNew; + } + return SQLITE_OK; +} + +/* +** This function is called by the parser to process a string token. The +** string may or may not be quoted. In any case it is tokenized and a +** phrase object consisting of all tokens returned. +*/ +Fts5ExprPhrase *sqlite3Fts5ParseTerm( + Fts5Parse *pParse, /* Parse context */ + Fts5ExprPhrase *pAppend, /* Phrase to append to */ + Fts5Token *pToken, /* String to tokenize */ + int bPrefix /* True if there is a trailing "*" */ +){ + Fts5Config *pConfig = pParse->pConfig; + TokenCtx sCtx; /* Context object passed to callback */ + int rc; /* Tokenize return code */ + char *z = 0; + + memset(&sCtx, 0, sizeof(TokenCtx)); + sCtx.pPhrase = pAppend; + + rc = fts5ParseStringFromToken(pToken, &z); + if( rc==SQLITE_OK ){ + int flags = FTS5_TOKENIZE_QUERY | (bPrefix ? FTS5_TOKENIZE_PREFIX : 0); + int n; + sqlite3Fts5Dequote(z); + n = (int)strlen(z); + rc = sqlite3Fts5Tokenize(pConfig, flags, z, n, &sCtx, fts5ParseTokenize); + } + sqlite3_free(z); + if( rc || (rc = sCtx.rc) ){ + pParse->rc = rc; + fts5ExprPhraseFree(sCtx.pPhrase); + sCtx.pPhrase = 0; + }else{ + + if( pAppend==0 ){ + if( parseGrowPhraseArray(pParse) ){ + fts5ExprPhraseFree(sCtx.pPhrase); + return 0; + } + pParse->nPhrase++; + } + + if( sCtx.pPhrase==0 ){ + /* This happens when parsing a token or quoted phrase that contains + ** no token characters at all. (e.g ... MATCH '""'). */ + sCtx.pPhrase = sqlite3Fts5MallocZero(&pParse->rc, sizeof(Fts5ExprPhrase)); + }else if( sCtx.pPhrase->nTerm ){ + sCtx.pPhrase->aTerm[sCtx.pPhrase->nTerm-1].bPrefix = (u8)bPrefix; + } + pParse->apPhrase[pParse->nPhrase-1] = sCtx.pPhrase; + } + + return sCtx.pPhrase; +} + +/* +** Create a new FTS5 expression by cloning phrase iPhrase of the +** expression passed as the second argument. +*/ +int sqlite3Fts5ExprClonePhrase( + Fts5Expr *pExpr, + int iPhrase, + Fts5Expr **ppNew +){ + int rc = SQLITE_OK; /* Return code */ + Fts5ExprPhrase *pOrig; /* The phrase extracted from pExpr */ + Fts5Expr *pNew = 0; /* Expression to return via *ppNew */ + TokenCtx sCtx = {0,0}; /* Context object for fts5ParseTokenize */ + + pOrig = pExpr->apExprPhrase[iPhrase]; + pNew = (Fts5Expr*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Expr)); + if( rc==SQLITE_OK ){ + pNew->apExprPhrase = (Fts5ExprPhrase**)sqlite3Fts5MallocZero(&rc, + sizeof(Fts5ExprPhrase*)); + } + if( rc==SQLITE_OK ){ + pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&rc, + sizeof(Fts5ExprNode)); + } + if( rc==SQLITE_OK ){ + pNew->pRoot->pNear = (Fts5ExprNearset*)sqlite3Fts5MallocZero(&rc, + sizeof(Fts5ExprNearset) + sizeof(Fts5ExprPhrase*)); + } + if( rc==SQLITE_OK ){ + Fts5Colset *pColsetOrig = pOrig->pNode->pNear->pColset; + if( pColsetOrig ){ + sqlite3_int64 nByte; + Fts5Colset *pColset; + nByte = sizeof(Fts5Colset) + (pColsetOrig->nCol-1) * sizeof(int); + pColset = (Fts5Colset*)sqlite3Fts5MallocZero(&rc, nByte); + if( pColset ){ + memcpy(pColset, pColsetOrig, (size_t)nByte); + } + pNew->pRoot->pNear->pColset = pColset; + } + } + + if( pOrig->nTerm ){ + int i; /* Used to iterate through phrase terms */ + for(i=0; rc==SQLITE_OK && i<pOrig->nTerm; i++){ + int tflags = 0; + Fts5ExprTerm *p; + for(p=&pOrig->aTerm[i]; p && rc==SQLITE_OK; p=p->pSynonym){ + const char *zTerm = p->zTerm; + rc = fts5ParseTokenize((void*)&sCtx, tflags, zTerm, (int)strlen(zTerm), + 0, 0); + tflags = FTS5_TOKEN_COLOCATED; + } + if( rc==SQLITE_OK ){ + sCtx.pPhrase->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix; + sCtx.pPhrase->aTerm[i].bFirst = pOrig->aTerm[i].bFirst; + } + } + }else{ + /* This happens when parsing a token or quoted phrase that contains + ** no token characters at all. (e.g ... MATCH '""'). */ + sCtx.pPhrase = sqlite3Fts5MallocZero(&rc, sizeof(Fts5ExprPhrase)); + } + + if( rc==SQLITE_OK && ALWAYS(sCtx.pPhrase) ){ + /* All the allocations succeeded. Put the expression object together. */ + pNew->pIndex = pExpr->pIndex; + pNew->pConfig = pExpr->pConfig; + pNew->nPhrase = 1; + pNew->apExprPhrase[0] = sCtx.pPhrase; + pNew->pRoot->pNear->apPhrase[0] = sCtx.pPhrase; + pNew->pRoot->pNear->nPhrase = 1; + sCtx.pPhrase->pNode = pNew->pRoot; + + if( pOrig->nTerm==1 + && pOrig->aTerm[0].pSynonym==0 + && pOrig->aTerm[0].bFirst==0 + ){ + pNew->pRoot->eType = FTS5_TERM; + pNew->pRoot->xNext = fts5ExprNodeNext_TERM; + }else{ + pNew->pRoot->eType = FTS5_STRING; + pNew->pRoot->xNext = fts5ExprNodeNext_STRING; + } + }else{ + sqlite3Fts5ExprFree(pNew); + fts5ExprPhraseFree(sCtx.pPhrase); + pNew = 0; + } + + *ppNew = pNew; + return rc; +} + + +/* +** Token pTok has appeared in a MATCH expression where the NEAR operator +** is expected. If token pTok does not contain "NEAR", store an error +** in the pParse object. +*/ +void sqlite3Fts5ParseNear(Fts5Parse *pParse, Fts5Token *pTok){ + if( pTok->n!=4 || memcmp("NEAR", pTok->p, 4) ){ + sqlite3Fts5ParseError( + pParse, "fts5: syntax error near \"%.*s\"", pTok->n, pTok->p + ); + } +} + +void sqlite3Fts5ParseSetDistance( + Fts5Parse *pParse, + Fts5ExprNearset *pNear, + Fts5Token *p +){ + if( pNear ){ + int nNear = 0; + int i; + if( p->n ){ + for(i=0; i<p->n; i++){ + char c = (char)p->p[i]; + if( c<'0' || c>'9' ){ + sqlite3Fts5ParseError( + pParse, "expected integer, got \"%.*s\"", p->n, p->p + ); + return; + } + nNear = nNear * 10 + (p->p[i] - '0'); + } + }else{ + nNear = FTS5_DEFAULT_NEARDIST; + } + pNear->nNear = nNear; + } +} + +/* +** The second argument passed to this function may be NULL, or it may be +** an existing Fts5Colset object. This function returns a pointer to +** a new colset object containing the contents of (p) with new value column +** number iCol appended. +** +** If an OOM error occurs, store an error code in pParse and return NULL. +** The old colset object (if any) is not freed in this case. +*/ +static Fts5Colset *fts5ParseColset( + Fts5Parse *pParse, /* Store SQLITE_NOMEM here if required */ + Fts5Colset *p, /* Existing colset object */ + int iCol /* New column to add to colset object */ +){ + int nCol = p ? p->nCol : 0; /* Num. columns already in colset object */ + Fts5Colset *pNew; /* New colset object to return */ + + assert( pParse->rc==SQLITE_OK ); + assert( iCol>=0 && iCol<pParse->pConfig->nCol ); + + pNew = sqlite3_realloc64(p, sizeof(Fts5Colset) + sizeof(int)*nCol); + if( pNew==0 ){ + pParse->rc = SQLITE_NOMEM; + }else{ + int *aiCol = pNew->aiCol; + int i, j; + for(i=0; i<nCol; i++){ + if( aiCol[i]==iCol ) return pNew; + if( aiCol[i]>iCol ) break; + } + for(j=nCol; j>i; j--){ + aiCol[j] = aiCol[j-1]; + } + aiCol[i] = iCol; + pNew->nCol = nCol+1; + +#ifndef NDEBUG + /* Check that the array is in order and contains no duplicate entries. */ + for(i=1; i<pNew->nCol; i++) assert( pNew->aiCol[i]>pNew->aiCol[i-1] ); +#endif + } + + return pNew; +} + +/* +** Allocate and return an Fts5Colset object specifying the inverse of +** the colset passed as the second argument. Free the colset passed +** as the second argument before returning. +*/ +Fts5Colset *sqlite3Fts5ParseColsetInvert(Fts5Parse *pParse, Fts5Colset *p){ + Fts5Colset *pRet; + int nCol = pParse->pConfig->nCol; + + pRet = (Fts5Colset*)sqlite3Fts5MallocZero(&pParse->rc, + sizeof(Fts5Colset) + sizeof(int)*nCol + ); + if( pRet ){ + int i; + int iOld = 0; + for(i=0; i<nCol; i++){ + if( iOld>=p->nCol || p->aiCol[iOld]!=i ){ + pRet->aiCol[pRet->nCol++] = i; + }else{ + iOld++; + } + } + } + + sqlite3_free(p); + return pRet; +} + +Fts5Colset *sqlite3Fts5ParseColset( + Fts5Parse *pParse, /* Store SQLITE_NOMEM here if required */ + Fts5Colset *pColset, /* Existing colset object */ + Fts5Token *p +){ + Fts5Colset *pRet = 0; + int iCol; + char *z; /* Dequoted copy of token p */ + + z = sqlite3Fts5Strndup(&pParse->rc, p->p, p->n); + if( pParse->rc==SQLITE_OK ){ + Fts5Config *pConfig = pParse->pConfig; + sqlite3Fts5Dequote(z); + for(iCol=0; iCol<pConfig->nCol; iCol++){ + if( 0==sqlite3_stricmp(pConfig->azCol[iCol], z) ) break; + } + if( iCol==pConfig->nCol ){ + sqlite3Fts5ParseError(pParse, "no such column: %s", z); + }else{ + pRet = fts5ParseColset(pParse, pColset, iCol); + } + sqlite3_free(z); + } + + if( pRet==0 ){ + assert( pParse->rc!=SQLITE_OK ); + sqlite3_free(pColset); + } + + return pRet; +} + +/* +** If argument pOrig is NULL, or if (*pRc) is set to anything other than +** SQLITE_OK when this function is called, NULL is returned. +** +** Otherwise, a copy of (*pOrig) is made into memory obtained from +** sqlite3Fts5MallocZero() and a pointer to it returned. If the allocation +** fails, (*pRc) is set to SQLITE_NOMEM and NULL is returned. +*/ +static Fts5Colset *fts5CloneColset(int *pRc, Fts5Colset *pOrig){ + Fts5Colset *pRet; + if( pOrig ){ + sqlite3_int64 nByte = sizeof(Fts5Colset) + (pOrig->nCol-1) * sizeof(int); + pRet = (Fts5Colset*)sqlite3Fts5MallocZero(pRc, nByte); + if( pRet ){ + memcpy(pRet, pOrig, (size_t)nByte); + } + }else{ + pRet = 0; + } + return pRet; +} + +/* +** Remove from colset pColset any columns that are not also in colset pMerge. +*/ +static void fts5MergeColset(Fts5Colset *pColset, Fts5Colset *pMerge){ + int iIn = 0; /* Next input in pColset */ + int iMerge = 0; /* Next input in pMerge */ + int iOut = 0; /* Next output slot in pColset */ + + while( iIn<pColset->nCol && iMerge<pMerge->nCol ){ + int iDiff = pColset->aiCol[iIn] - pMerge->aiCol[iMerge]; + if( iDiff==0 ){ + pColset->aiCol[iOut++] = pMerge->aiCol[iMerge]; + iMerge++; + iIn++; + }else if( iDiff>0 ){ + iMerge++; + }else{ + iIn++; + } + } + pColset->nCol = iOut; +} + +/* +** Recursively apply colset pColset to expression node pNode and all of +** its decendents. If (*ppFree) is not NULL, it contains a spare copy +** of pColset. This function may use the spare copy and set (*ppFree) to +** zero, or it may create copies of pColset using fts5CloneColset(). +*/ +static void fts5ParseSetColset( + Fts5Parse *pParse, + Fts5ExprNode *pNode, + Fts5Colset *pColset, + Fts5Colset **ppFree +){ + if( pParse->rc==SQLITE_OK ){ + assert( pNode->eType==FTS5_TERM || pNode->eType==FTS5_STRING + || pNode->eType==FTS5_AND || pNode->eType==FTS5_OR + || pNode->eType==FTS5_NOT || pNode->eType==FTS5_EOF + ); + if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){ + Fts5ExprNearset *pNear = pNode->pNear; + if( pNear->pColset ){ + fts5MergeColset(pNear->pColset, pColset); + if( pNear->pColset->nCol==0 ){ + pNode->eType = FTS5_EOF; + pNode->xNext = 0; + } + }else if( *ppFree ){ + pNear->pColset = pColset; + *ppFree = 0; + }else{ + pNear->pColset = fts5CloneColset(&pParse->rc, pColset); + } + }else{ + int i; + assert( pNode->eType!=FTS5_EOF || pNode->nChild==0 ); + for(i=0; i<pNode->nChild; i++){ + fts5ParseSetColset(pParse, pNode->apChild[i], pColset, ppFree); + } + } + } +} + +/* +** Apply colset pColset to expression node pExpr and all of its descendents. +*/ +void sqlite3Fts5ParseSetColset( + Fts5Parse *pParse, + Fts5ExprNode *pExpr, + Fts5Colset *pColset +){ + Fts5Colset *pFree = pColset; + if( pParse->pConfig->eDetail==FTS5_DETAIL_NONE ){ + sqlite3Fts5ParseError(pParse, + "fts5: column queries are not supported (detail=none)" + ); + }else{ + fts5ParseSetColset(pParse, pExpr, pColset, &pFree); + } + sqlite3_free(pFree); +} + +static void fts5ExprAssignXNext(Fts5ExprNode *pNode){ + switch( pNode->eType ){ + case FTS5_STRING: { + Fts5ExprNearset *pNear = pNode->pNear; + if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1 + && pNear->apPhrase[0]->aTerm[0].pSynonym==0 + && pNear->apPhrase[0]->aTerm[0].bFirst==0 + ){ + pNode->eType = FTS5_TERM; + pNode->xNext = fts5ExprNodeNext_TERM; + }else{ + pNode->xNext = fts5ExprNodeNext_STRING; + } + break; + }; + + case FTS5_OR: { + pNode->xNext = fts5ExprNodeNext_OR; + break; + }; + + case FTS5_AND: { + pNode->xNext = fts5ExprNodeNext_AND; + break; + }; + + default: assert( pNode->eType==FTS5_NOT ); { + pNode->xNext = fts5ExprNodeNext_NOT; + break; + }; + } +} + +static void fts5ExprAddChildren(Fts5ExprNode *p, Fts5ExprNode *pSub){ + if( p->eType!=FTS5_NOT && pSub->eType==p->eType ){ + int nByte = sizeof(Fts5ExprNode*) * pSub->nChild; + memcpy(&p->apChild[p->nChild], pSub->apChild, nByte); + p->nChild += pSub->nChild; + sqlite3_free(pSub); + }else{ + p->apChild[p->nChild++] = pSub; + } +} + +/* +** This function is used when parsing LIKE or GLOB patterns against +** trigram indexes that specify either detail=column or detail=none. +** It converts a phrase: +** +** abc + def + ghi +** +** into an AND tree: +** +** abc AND def AND ghi +*/ +static Fts5ExprNode *fts5ParsePhraseToAnd( + Fts5Parse *pParse, + Fts5ExprNearset *pNear +){ + int nTerm = pNear->apPhrase[0]->nTerm; + int ii; + int nByte; + Fts5ExprNode *pRet; + + assert( pNear->nPhrase==1 ); + assert( pParse->bPhraseToAnd ); + + nByte = sizeof(Fts5ExprNode) + nTerm*sizeof(Fts5ExprNode*); + pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte); + if( pRet ){ + pRet->eType = FTS5_AND; + pRet->nChild = nTerm; + fts5ExprAssignXNext(pRet); + pParse->nPhrase--; + for(ii=0; ii<nTerm; ii++){ + Fts5ExprPhrase *pPhrase = (Fts5ExprPhrase*)sqlite3Fts5MallocZero( + &pParse->rc, sizeof(Fts5ExprPhrase) + ); + if( pPhrase ){ + if( parseGrowPhraseArray(pParse) ){ + fts5ExprPhraseFree(pPhrase); + }else{ + pParse->apPhrase[pParse->nPhrase++] = pPhrase; + pPhrase->nTerm = 1; + pPhrase->aTerm[0].zTerm = sqlite3Fts5Strndup( + &pParse->rc, pNear->apPhrase[0]->aTerm[ii].zTerm, -1 + ); + pRet->apChild[ii] = sqlite3Fts5ParseNode(pParse, FTS5_STRING, + 0, 0, sqlite3Fts5ParseNearset(pParse, 0, pPhrase) + ); + } + } + } + + if( pParse->rc ){ + sqlite3Fts5ParseNodeFree(pRet); + pRet = 0; + }else{ + sqlite3Fts5ParseNearsetFree(pNear); + } + } + + return pRet; +} + +/* +** Allocate and return a new expression object. If anything goes wrong (i.e. +** OOM error), leave an error code in pParse and return NULL. +*/ +Fts5ExprNode *sqlite3Fts5ParseNode( + Fts5Parse *pParse, /* Parse context */ + int eType, /* FTS5_STRING, AND, OR or NOT */ + Fts5ExprNode *pLeft, /* Left hand child expression */ + Fts5ExprNode *pRight, /* Right hand child expression */ + Fts5ExprNearset *pNear /* For STRING expressions, the near cluster */ +){ + Fts5ExprNode *pRet = 0; + + if( pParse->rc==SQLITE_OK ){ + int nChild = 0; /* Number of children of returned node */ + sqlite3_int64 nByte; /* Bytes of space to allocate for this node */ + + assert( (eType!=FTS5_STRING && !pNear) + || (eType==FTS5_STRING && !pLeft && !pRight) + ); + if( eType==FTS5_STRING && pNear==0 ) return 0; + if( eType!=FTS5_STRING && pLeft==0 ) return pRight; + if( eType!=FTS5_STRING && pRight==0 ) return pLeft; + + if( eType==FTS5_STRING + && pParse->bPhraseToAnd + && pNear->apPhrase[0]->nTerm>1 + ){ + pRet = fts5ParsePhraseToAnd(pParse, pNear); + }else{ + if( eType==FTS5_NOT ){ + nChild = 2; + }else if( eType==FTS5_AND || eType==FTS5_OR ){ + nChild = 2; + if( pLeft->eType==eType ) nChild += pLeft->nChild-1; + if( pRight->eType==eType ) nChild += pRight->nChild-1; + } + + nByte = sizeof(Fts5ExprNode) + sizeof(Fts5ExprNode*)*(nChild-1); + pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte); + + if( pRet ){ + pRet->eType = eType; + pRet->pNear = pNear; + fts5ExprAssignXNext(pRet); + if( eType==FTS5_STRING ){ + int iPhrase; + for(iPhrase=0; iPhrase<pNear->nPhrase; iPhrase++){ + pNear->apPhrase[iPhrase]->pNode = pRet; + if( pNear->apPhrase[iPhrase]->nTerm==0 ){ + pRet->xNext = 0; + pRet->eType = FTS5_EOF; + } + } + + if( pParse->pConfig->eDetail!=FTS5_DETAIL_FULL ){ + Fts5ExprPhrase *pPhrase = pNear->apPhrase[0]; + if( pNear->nPhrase!=1 + || pPhrase->nTerm>1 + || (pPhrase->nTerm>0 && pPhrase->aTerm[0].bFirst) + ){ + sqlite3Fts5ParseError(pParse, + "fts5: %s queries are not supported (detail!=full)", + pNear->nPhrase==1 ? "phrase": "NEAR" + ); + sqlite3_free(pRet); + pRet = 0; + } + } + }else{ + fts5ExprAddChildren(pRet, pLeft); + fts5ExprAddChildren(pRet, pRight); + } + } + } + } + + if( pRet==0 ){ + assert( pParse->rc!=SQLITE_OK ); + sqlite3Fts5ParseNodeFree(pLeft); + sqlite3Fts5ParseNodeFree(pRight); + sqlite3Fts5ParseNearsetFree(pNear); + } + return pRet; +} + +Fts5ExprNode *sqlite3Fts5ParseImplicitAnd( + Fts5Parse *pParse, /* Parse context */ + Fts5ExprNode *pLeft, /* Left hand child expression */ + Fts5ExprNode *pRight /* Right hand child expression */ +){ + Fts5ExprNode *pRet = 0; + Fts5ExprNode *pPrev; + + if( pParse->rc ){ + sqlite3Fts5ParseNodeFree(pLeft); + sqlite3Fts5ParseNodeFree(pRight); + }else{ + + assert( pLeft->eType==FTS5_STRING + || pLeft->eType==FTS5_TERM + || pLeft->eType==FTS5_EOF + || pLeft->eType==FTS5_AND + ); + assert( pRight->eType==FTS5_STRING + || pRight->eType==FTS5_TERM + || pRight->eType==FTS5_EOF + ); + + if( pLeft->eType==FTS5_AND ){ + pPrev = pLeft->apChild[pLeft->nChild-1]; + }else{ + pPrev = pLeft; + } + assert( pPrev->eType==FTS5_STRING + || pPrev->eType==FTS5_TERM + || pPrev->eType==FTS5_EOF + ); + + if( pRight->eType==FTS5_EOF ){ + assert( pParse->apPhrase[pParse->nPhrase-1]==pRight->pNear->apPhrase[0] ); + sqlite3Fts5ParseNodeFree(pRight); + pRet = pLeft; + pParse->nPhrase--; + } + else if( pPrev->eType==FTS5_EOF ){ + Fts5ExprPhrase **ap; + + if( pPrev==pLeft ){ + pRet = pRight; + }else{ + pLeft->apChild[pLeft->nChild-1] = pRight; + pRet = pLeft; + } + + ap = &pParse->apPhrase[pParse->nPhrase-1-pRight->pNear->nPhrase]; + assert( ap[0]==pPrev->pNear->apPhrase[0] ); + memmove(ap, &ap[1], sizeof(Fts5ExprPhrase*)*pRight->pNear->nPhrase); + pParse->nPhrase--; + + sqlite3Fts5ParseNodeFree(pPrev); + } + else{ + pRet = sqlite3Fts5ParseNode(pParse, FTS5_AND, pLeft, pRight, 0); + } + } + + return pRet; +} + +#ifdef SQLITE_TEST +static char *fts5ExprTermPrint(Fts5ExprTerm *pTerm){ + sqlite3_int64 nByte = 0; + Fts5ExprTerm *p; + char *zQuoted; + + /* Determine the maximum amount of space required. */ + for(p=pTerm; p; p=p->pSynonym){ + nByte += (int)strlen(pTerm->zTerm) * 2 + 3 + 2; + } + zQuoted = sqlite3_malloc64(nByte); + + if( zQuoted ){ + int i = 0; + for(p=pTerm; p; p=p->pSynonym){ + char *zIn = p->zTerm; + zQuoted[i++] = '"'; + while( *zIn ){ + if( *zIn=='"' ) zQuoted[i++] = '"'; + zQuoted[i++] = *zIn++; + } + zQuoted[i++] = '"'; + if( p->pSynonym ) zQuoted[i++] = '|'; + } + if( pTerm->bPrefix ){ + zQuoted[i++] = ' '; + zQuoted[i++] = '*'; + } + zQuoted[i++] = '\0'; + } + return zQuoted; +} + +static char *fts5PrintfAppend(char *zApp, const char *zFmt, ...){ + char *zNew; + va_list ap; + va_start(ap, zFmt); + zNew = sqlite3_vmprintf(zFmt, ap); + va_end(ap); + if( zApp && zNew ){ + char *zNew2 = sqlite3_mprintf("%s%s", zApp, zNew); + sqlite3_free(zNew); + zNew = zNew2; + } + sqlite3_free(zApp); + return zNew; +} + +/* +** Compose a tcl-readable representation of expression pExpr. Return a +** pointer to a buffer containing that representation. It is the +** responsibility of the caller to at some point free the buffer using +** sqlite3_free(). +*/ +static char *fts5ExprPrintTcl( + Fts5Config *pConfig, + const char *zNearsetCmd, + Fts5ExprNode *pExpr +){ + char *zRet = 0; + if( pExpr->eType==FTS5_STRING || pExpr->eType==FTS5_TERM ){ + Fts5ExprNearset *pNear = pExpr->pNear; + int i; + int iTerm; + + zRet = fts5PrintfAppend(zRet, "%s ", zNearsetCmd); + if( zRet==0 ) return 0; + if( pNear->pColset ){ + int *aiCol = pNear->pColset->aiCol; + int nCol = pNear->pColset->nCol; + if( nCol==1 ){ + zRet = fts5PrintfAppend(zRet, "-col %d ", aiCol[0]); + }else{ + zRet = fts5PrintfAppend(zRet, "-col {%d", aiCol[0]); + for(i=1; i<pNear->pColset->nCol; i++){ + zRet = fts5PrintfAppend(zRet, " %d", aiCol[i]); + } + zRet = fts5PrintfAppend(zRet, "} "); + } + if( zRet==0 ) return 0; + } + + if( pNear->nPhrase>1 ){ + zRet = fts5PrintfAppend(zRet, "-near %d ", pNear->nNear); + if( zRet==0 ) return 0; + } + + zRet = fts5PrintfAppend(zRet, "--"); + if( zRet==0 ) return 0; + + for(i=0; i<pNear->nPhrase; i++){ + Fts5ExprPhrase *pPhrase = pNear->apPhrase[i]; + + zRet = fts5PrintfAppend(zRet, " {"); + for(iTerm=0; zRet && iTerm<pPhrase->nTerm; iTerm++){ + char *zTerm = pPhrase->aTerm[iTerm].zTerm; + zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" ", zTerm); + if( pPhrase->aTerm[iTerm].bPrefix ){ + zRet = fts5PrintfAppend(zRet, "*"); + } + } + + if( zRet ) zRet = fts5PrintfAppend(zRet, "}"); + if( zRet==0 ) return 0; + } + + }else{ + char const *zOp = 0; + int i; + switch( pExpr->eType ){ + case FTS5_AND: zOp = "AND"; break; + case FTS5_NOT: zOp = "NOT"; break; + default: + assert( pExpr->eType==FTS5_OR ); + zOp = "OR"; + break; + } + + zRet = sqlite3_mprintf("%s", zOp); + for(i=0; zRet && i<pExpr->nChild; i++){ + char *z = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->apChild[i]); + if( !z ){ + sqlite3_free(zRet); + zRet = 0; + }else{ + zRet = fts5PrintfAppend(zRet, " [%z]", z); + } + } + } + + return zRet; +} + +static char *fts5ExprPrint(Fts5Config *pConfig, Fts5ExprNode *pExpr){ + char *zRet = 0; + if( pExpr->eType==0 ){ + return sqlite3_mprintf("\"\""); + }else + if( pExpr->eType==FTS5_STRING || pExpr->eType==FTS5_TERM ){ + Fts5ExprNearset *pNear = pExpr->pNear; + int i; + int iTerm; + + if( pNear->pColset ){ + int ii; + Fts5Colset *pColset = pNear->pColset; + if( pColset->nCol>1 ) zRet = fts5PrintfAppend(zRet, "{"); + for(ii=0; ii<pColset->nCol; ii++){ + zRet = fts5PrintfAppend(zRet, "%s%s", + pConfig->azCol[pColset->aiCol[ii]], ii==pColset->nCol-1 ? "" : " " + ); + } + if( zRet ){ + zRet = fts5PrintfAppend(zRet, "%s : ", pColset->nCol>1 ? "}" : ""); + } + if( zRet==0 ) return 0; + } + + if( pNear->nPhrase>1 ){ + zRet = fts5PrintfAppend(zRet, "NEAR("); + if( zRet==0 ) return 0; + } + + for(i=0; i<pNear->nPhrase; i++){ + Fts5ExprPhrase *pPhrase = pNear->apPhrase[i]; + if( i!=0 ){ + zRet = fts5PrintfAppend(zRet, " "); + if( zRet==0 ) return 0; + } + for(iTerm=0; iTerm<pPhrase->nTerm; iTerm++){ + char *zTerm = fts5ExprTermPrint(&pPhrase->aTerm[iTerm]); + if( zTerm ){ + zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" + ", zTerm); + sqlite3_free(zTerm); + } + if( zTerm==0 || zRet==0 ){ + sqlite3_free(zRet); + return 0; + } + } + } + + if( pNear->nPhrase>1 ){ + zRet = fts5PrintfAppend(zRet, ", %d)", pNear->nNear); + if( zRet==0 ) return 0; + } + + }else{ + char const *zOp = 0; + int i; + + switch( pExpr->eType ){ + case FTS5_AND: zOp = " AND "; break; + case FTS5_NOT: zOp = " NOT "; break; + default: + assert( pExpr->eType==FTS5_OR ); + zOp = " OR "; + break; + } + + for(i=0; i<pExpr->nChild; i++){ + char *z = fts5ExprPrint(pConfig, pExpr->apChild[i]); + if( z==0 ){ + sqlite3_free(zRet); + zRet = 0; + }else{ + int e = pExpr->apChild[i]->eType; + int b = (e!=FTS5_STRING && e!=FTS5_TERM && e!=FTS5_EOF); + zRet = fts5PrintfAppend(zRet, "%s%s%z%s", + (i==0 ? "" : zOp), + (b?"(":""), z, (b?")":"") + ); + } + if( zRet==0 ) break; + } + } + + return zRet; +} + +/* +** The implementation of user-defined scalar functions fts5_expr() (bTcl==0) +** and fts5_expr_tcl() (bTcl!=0). +*/ +static void fts5ExprFunction( + sqlite3_context *pCtx, /* Function call context */ + int nArg, /* Number of args */ + sqlite3_value **apVal, /* Function arguments */ + int bTcl +){ + Fts5Global *pGlobal = (Fts5Global*)sqlite3_user_data(pCtx); + sqlite3 *db = sqlite3_context_db_handle(pCtx); + const char *zExpr = 0; + char *zErr = 0; + Fts5Expr *pExpr = 0; + int rc; + int i; + + const char **azConfig; /* Array of arguments for Fts5Config */ + const char *zNearsetCmd = "nearset"; + int nConfig; /* Size of azConfig[] */ + Fts5Config *pConfig = 0; + int iArg = 1; + + if( nArg<1 ){ + zErr = sqlite3_mprintf("wrong number of arguments to function %s", + bTcl ? "fts5_expr_tcl" : "fts5_expr" + ); + sqlite3_result_error(pCtx, zErr, -1); + sqlite3_free(zErr); + return; + } + + if( bTcl && nArg>1 ){ + zNearsetCmd = (const char*)sqlite3_value_text(apVal[1]); + iArg = 2; + } + + nConfig = 3 + (nArg-iArg); + azConfig = (const char**)sqlite3_malloc64(sizeof(char*) * nConfig); + if( azConfig==0 ){ + sqlite3_result_error_nomem(pCtx); + return; + } + azConfig[0] = 0; + azConfig[1] = "main"; + azConfig[2] = "tbl"; + for(i=3; iArg<nArg; iArg++){ + const char *z = (const char*)sqlite3_value_text(apVal[iArg]); + azConfig[i++] = (z ? z : ""); + } + + zExpr = (const char*)sqlite3_value_text(apVal[0]); + if( zExpr==0 ) zExpr = ""; + + rc = sqlite3Fts5ConfigParse(pGlobal, db, nConfig, azConfig, &pConfig, &zErr); + if( rc==SQLITE_OK ){ + rc = sqlite3Fts5ExprNew(pConfig, 0, pConfig->nCol, zExpr, &pExpr, &zErr); + } + if( rc==SQLITE_OK ){ + char *zText; + if( pExpr->pRoot->xNext==0 ){ + zText = sqlite3_mprintf(""); + }else if( bTcl ){ + zText = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->pRoot); + }else{ + zText = fts5ExprPrint(pConfig, pExpr->pRoot); + } + if( zText==0 ){ + rc = SQLITE_NOMEM; + }else{ + sqlite3_result_text(pCtx, zText, -1, SQLITE_TRANSIENT); + sqlite3_free(zText); + } + } + + if( rc!=SQLITE_OK ){ + if( zErr ){ + sqlite3_result_error(pCtx, zErr, -1); + sqlite3_free(zErr); + }else{ + sqlite3_result_error_code(pCtx, rc); + } + } + sqlite3_free((void *)azConfig); + sqlite3Fts5ConfigFree(pConfig); + sqlite3Fts5ExprFree(pExpr); +} + +static void fts5ExprFunctionHr( + sqlite3_context *pCtx, /* Function call context */ + int nArg, /* Number of args */ + sqlite3_value **apVal /* Function arguments */ +){ + fts5ExprFunction(pCtx, nArg, apVal, 0); +} +static void fts5ExprFunctionTcl( + sqlite3_context *pCtx, /* Function call context */ + int nArg, /* Number of args */ + sqlite3_value **apVal /* Function arguments */ +){ + fts5ExprFunction(pCtx, nArg, apVal, 1); +} + +/* +** The implementation of an SQLite user-defined-function that accepts a +** single integer as an argument. If the integer is an alpha-numeric +** unicode code point, 1 is returned. Otherwise 0. +*/ +static void fts5ExprIsAlnum( + sqlite3_context *pCtx, /* Function call context */ + int nArg, /* Number of args */ + sqlite3_value **apVal /* Function arguments */ +){ + int iCode; + u8 aArr[32]; + if( nArg!=1 ){ + sqlite3_result_error(pCtx, + "wrong number of arguments to function fts5_isalnum", -1 + ); + return; + } + memset(aArr, 0, sizeof(aArr)); + sqlite3Fts5UnicodeCatParse("L*", aArr); + sqlite3Fts5UnicodeCatParse("N*", aArr); + sqlite3Fts5UnicodeCatParse("Co", aArr); + iCode = sqlite3_value_int(apVal[0]); + sqlite3_result_int(pCtx, aArr[sqlite3Fts5UnicodeCategory((u32)iCode)]); +} + +static void fts5ExprFold( + sqlite3_context *pCtx, /* Function call context */ + int nArg, /* Number of args */ + sqlite3_value **apVal /* Function arguments */ +){ + if( nArg!=1 && nArg!=2 ){ + sqlite3_result_error(pCtx, + "wrong number of arguments to function fts5_fold", -1 + ); + }else{ + int iCode; + int bRemoveDiacritics = 0; + iCode = sqlite3_value_int(apVal[0]); + if( nArg==2 ) bRemoveDiacritics = sqlite3_value_int(apVal[1]); + sqlite3_result_int(pCtx, sqlite3Fts5UnicodeFold(iCode, bRemoveDiacritics)); + } +} +#endif /* ifdef SQLITE_TEST */ + +/* +** This is called during initialization to register the fts5_expr() scalar +** UDF with the SQLite handle passed as the only argument. +*/ +int sqlite3Fts5ExprInit(Fts5Global *pGlobal, sqlite3 *db){ +#ifdef SQLITE_TEST + struct Fts5ExprFunc { + const char *z; + void (*x)(sqlite3_context*,int,sqlite3_value**); + } aFunc[] = { + { "fts5_expr", fts5ExprFunctionHr }, + { "fts5_expr_tcl", fts5ExprFunctionTcl }, + { "fts5_isalnum", fts5ExprIsAlnum }, + { "fts5_fold", fts5ExprFold }, + }; + int i; + int rc = SQLITE_OK; + void *pCtx = (void*)pGlobal; + + for(i=0; rc==SQLITE_OK && i<ArraySize(aFunc); i++){ + struct Fts5ExprFunc *p = &aFunc[i]; + rc = sqlite3_create_function(db, p->z, -1, SQLITE_UTF8, pCtx, p->x, 0, 0); + } +#else + int rc = SQLITE_OK; + UNUSED_PARAM2(pGlobal,db); +#endif + + /* Avoid warnings indicating that sqlite3Fts5ParserTrace() and + ** sqlite3Fts5ParserFallback() are unused */ +#ifndef NDEBUG + (void)sqlite3Fts5ParserTrace; +#endif + (void)sqlite3Fts5ParserFallback; + + return rc; +} + +/* +** Return the number of phrases in expression pExpr. +*/ +int sqlite3Fts5ExprPhraseCount(Fts5Expr *pExpr){ + return (pExpr ? pExpr->nPhrase : 0); +} + +/* +** Return the number of terms in the iPhrase'th phrase in pExpr. +*/ +int sqlite3Fts5ExprPhraseSize(Fts5Expr *pExpr, int iPhrase){ + if( iPhrase<0 || iPhrase>=pExpr->nPhrase ) return 0; + return pExpr->apExprPhrase[iPhrase]->nTerm; +} + +/* +** This function is used to access the current position list for phrase +** iPhrase. +*/ +int sqlite3Fts5ExprPoslist(Fts5Expr *pExpr, int iPhrase, const u8 **pa){ + int nRet; + Fts5ExprPhrase *pPhrase = pExpr->apExprPhrase[iPhrase]; + Fts5ExprNode *pNode = pPhrase->pNode; + if( pNode->bEof==0 && pNode->iRowid==pExpr->pRoot->iRowid ){ + *pa = pPhrase->poslist.p; + nRet = pPhrase->poslist.n; + }else{ + *pa = 0; + nRet = 0; + } + return nRet; +} + +struct Fts5PoslistPopulator { + Fts5PoslistWriter writer; + int bOk; /* True if ok to populate */ + int bMiss; +}; + +/* +** Clear the position lists associated with all phrases in the expression +** passed as the first argument. Argument bLive is true if the expression +** might be pointing to a real entry, otherwise it has just been reset. +** +** At present this function is only used for detail=col and detail=none +** fts5 tables. This implies that all phrases must be at most 1 token +** in size, as phrase matches are not supported without detail=full. +*/ +Fts5PoslistPopulator *sqlite3Fts5ExprClearPoslists(Fts5Expr *pExpr, int bLive){ + Fts5PoslistPopulator *pRet; + pRet = sqlite3_malloc64(sizeof(Fts5PoslistPopulator)*pExpr->nPhrase); + if( pRet ){ + int i; + memset(pRet, 0, sizeof(Fts5PoslistPopulator)*pExpr->nPhrase); + for(i=0; i<pExpr->nPhrase; i++){ + Fts5Buffer *pBuf = &pExpr->apExprPhrase[i]->poslist; + Fts5ExprNode *pNode = pExpr->apExprPhrase[i]->pNode; + assert( pExpr->apExprPhrase[i]->nTerm<=1 ); + if( bLive && + (pBuf->n==0 || pNode->iRowid!=pExpr->pRoot->iRowid || pNode->bEof) + ){ + pRet[i].bMiss = 1; + }else{ + pBuf->n = 0; + } + } + } + return pRet; +} + +struct Fts5ExprCtx { + Fts5Expr *pExpr; + Fts5PoslistPopulator *aPopulator; + i64 iOff; +}; +typedef struct Fts5ExprCtx Fts5ExprCtx; + +/* +** TODO: Make this more efficient! +*/ +static int fts5ExprColsetTest(Fts5Colset *pColset, int iCol){ + int i; + for(i=0; i<pColset->nCol; i++){ + if( pColset->aiCol[i]==iCol ) return 1; + } + return 0; +} + +static int fts5ExprPopulatePoslistsCb( + void *pCtx, /* Copy of 2nd argument to xTokenize() */ + int tflags, /* Mask of FTS5_TOKEN_* flags */ + const char *pToken, /* Pointer to buffer containing token */ + int nToken, /* Size of token in bytes */ + int iUnused1, /* Byte offset of token within input text */ + int iUnused2 /* Byte offset of end of token within input text */ +){ + Fts5ExprCtx *p = (Fts5ExprCtx*)pCtx; + Fts5Expr *pExpr = p->pExpr; + int i; + + UNUSED_PARAM2(iUnused1, iUnused2); + + if( nToken>FTS5_MAX_TOKEN_SIZE ) nToken = FTS5_MAX_TOKEN_SIZE; + if( (tflags & FTS5_TOKEN_COLOCATED)==0 ) p->iOff++; + for(i=0; i<pExpr->nPhrase; i++){ + Fts5ExprTerm *pTerm; + if( p->aPopulator[i].bOk==0 ) continue; + for(pTerm=&pExpr->apExprPhrase[i]->aTerm[0]; pTerm; pTerm=pTerm->pSynonym){ + int nTerm = (int)strlen(pTerm->zTerm); + if( (nTerm==nToken || (nTerm<nToken && pTerm->bPrefix)) + && memcmp(pTerm->zTerm, pToken, nTerm)==0 + ){ + int rc = sqlite3Fts5PoslistWriterAppend( + &pExpr->apExprPhrase[i]->poslist, &p->aPopulator[i].writer, p->iOff + ); + if( rc ) return rc; + break; + } + } + } + return SQLITE_OK; +} + +int sqlite3Fts5ExprPopulatePoslists( + Fts5Config *pConfig, + Fts5Expr *pExpr, + Fts5PoslistPopulator *aPopulator, + int iCol, + const char *z, int n +){ + int i; + Fts5ExprCtx sCtx; + sCtx.pExpr = pExpr; + sCtx.aPopulator = aPopulator; + sCtx.iOff = (((i64)iCol) << 32) - 1; + + for(i=0; i<pExpr->nPhrase; i++){ + Fts5ExprNode *pNode = pExpr->apExprPhrase[i]->pNode; + Fts5Colset *pColset = pNode->pNear->pColset; + if( (pColset && 0==fts5ExprColsetTest(pColset, iCol)) + || aPopulator[i].bMiss + ){ + aPopulator[i].bOk = 0; + }else{ + aPopulator[i].bOk = 1; + } + } + + return sqlite3Fts5Tokenize(pConfig, + FTS5_TOKENIZE_DOCUMENT, z, n, (void*)&sCtx, fts5ExprPopulatePoslistsCb + ); +} + +static void fts5ExprClearPoslists(Fts5ExprNode *pNode){ + if( pNode->eType==FTS5_TERM || pNode->eType==FTS5_STRING ){ + pNode->pNear->apPhrase[0]->poslist.n = 0; + }else{ + int i; + for(i=0; i<pNode->nChild; i++){ + fts5ExprClearPoslists(pNode->apChild[i]); + } + } +} + +static int fts5ExprCheckPoslists(Fts5ExprNode *pNode, i64 iRowid){ + pNode->iRowid = iRowid; + pNode->bEof = 0; + switch( pNode->eType ){ + case FTS5_TERM: + case FTS5_STRING: + return (pNode->pNear->apPhrase[0]->poslist.n>0); + + case FTS5_AND: { + int i; + for(i=0; i<pNode->nChild; i++){ + if( fts5ExprCheckPoslists(pNode->apChild[i], iRowid)==0 ){ + fts5ExprClearPoslists(pNode); + return 0; + } + } + break; + } + + case FTS5_OR: { + int i; + int bRet = 0; + for(i=0; i<pNode->nChild; i++){ + if( fts5ExprCheckPoslists(pNode->apChild[i], iRowid) ){ + bRet = 1; + } + } + return bRet; + } + + default: { + assert( pNode->eType==FTS5_NOT ); + if( 0==fts5ExprCheckPoslists(pNode->apChild[0], iRowid) + || 0!=fts5ExprCheckPoslists(pNode->apChild[1], iRowid) + ){ + fts5ExprClearPoslists(pNode); + return 0; + } + break; + } + } + return 1; +} + +void sqlite3Fts5ExprCheckPoslists(Fts5Expr *pExpr, i64 iRowid){ + fts5ExprCheckPoslists(pExpr->pRoot, iRowid); +} + +/* +** This function is only called for detail=columns tables. +*/ +int sqlite3Fts5ExprPhraseCollist( + Fts5Expr *pExpr, + int iPhrase, + const u8 **ppCollist, + int *pnCollist +){ + Fts5ExprPhrase *pPhrase = pExpr->apExprPhrase[iPhrase]; + Fts5ExprNode *pNode = pPhrase->pNode; + int rc = SQLITE_OK; + + assert( iPhrase>=0 && iPhrase<pExpr->nPhrase ); + assert( pExpr->pConfig->eDetail==FTS5_DETAIL_COLUMNS ); + + if( pNode->bEof==0 + && pNode->iRowid==pExpr->pRoot->iRowid + && pPhrase->poslist.n>0 + ){ + Fts5ExprTerm *pTerm = &pPhrase->aTerm[0]; + if( pTerm->pSynonym ){ + Fts5Buffer *pBuf = (Fts5Buffer*)&pTerm->pSynonym[1]; + rc = fts5ExprSynonymList( + pTerm, pNode->iRowid, pBuf, (u8**)ppCollist, pnCollist + ); + }else{ + *ppCollist = pPhrase->aTerm[0].pIter->pData; + *pnCollist = pPhrase->aTerm[0].pIter->nData; + } + }else{ + *ppCollist = 0; + *pnCollist = 0; + } + + return rc; +} |