diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-05 17:28:19 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-05 17:28:19 +0000 |
commit | 18657a960e125336f704ea058e25c27bd3900dcb (patch) | |
tree | 17b438b680ed45a996d7b59951e6aa34023783f2 /ext/fts5/fts5_index.c | |
parent | Initial commit. (diff) | |
download | sqlite3-upstream.tar.xz sqlite3-upstream.zip |
Adding upstream version 3.40.1.upstream/3.40.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | ext/fts5/fts5_index.c | 6822 |
1 files changed, 6822 insertions, 0 deletions
diff --git a/ext/fts5/fts5_index.c b/ext/fts5/fts5_index.c new file mode 100644 index 0000000..7eca9b1 --- /dev/null +++ b/ext/fts5/fts5_index.c @@ -0,0 +1,6822 @@ +/* +** 2014 May 31 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** Low level access to the FTS index stored in the database file. The +** routines in this file file implement all read and write access to the +** %_data table. Other parts of the system access this functionality via +** the interface defined in fts5Int.h. +*/ + + +#include "fts5Int.h" + +/* +** Overview: +** +** The %_data table contains all the FTS indexes for an FTS5 virtual table. +** As well as the main term index, there may be up to 31 prefix indexes. +** The format is similar to FTS3/4, except that: +** +** * all segment b-tree leaf data is stored in fixed size page records +** (e.g. 1000 bytes). A single doclist may span multiple pages. Care is +** taken to ensure it is possible to iterate in either direction through +** the entries in a doclist, or to seek to a specific entry within a +** doclist, without loading it into memory. +** +** * large doclists that span many pages have associated "doclist index" +** records that contain a copy of the first rowid on each page spanned by +** the doclist. This is used to speed up seek operations, and merges of +** large doclists with very small doclists. +** +** * extra fields in the "structure record" record the state of ongoing +** incremental merge operations. +** +*/ + + +#define FTS5_OPT_WORK_UNIT 1000 /* Number of leaf pages per optimize step */ +#define FTS5_WORK_UNIT 64 /* Number of leaf pages in unit of work */ + +#define FTS5_MIN_DLIDX_SIZE 4 /* Add dlidx if this many empty pages */ + +#define FTS5_MAIN_PREFIX '0' + +#if FTS5_MAX_PREFIX_INDEXES > 31 +# error "FTS5_MAX_PREFIX_INDEXES is too large" +#endif + +/* +** Details: +** +** The %_data table managed by this module, +** +** CREATE TABLE %_data(id INTEGER PRIMARY KEY, block BLOB); +** +** , contains the following 5 types of records. See the comments surrounding +** the FTS5_*_ROWID macros below for a description of how %_data rowids are +** assigned to each fo them. +** +** 1. Structure Records: +** +** The set of segments that make up an index - the index structure - are +** recorded in a single record within the %_data table. The record consists +** of a single 32-bit configuration cookie value followed by a list of +** SQLite varints. If the FTS table features more than one index (because +** there are one or more prefix indexes), it is guaranteed that all share +** the same cookie value. +** +** Immediately following the configuration cookie, the record begins with +** three varints: +** +** + number of levels, +** + total number of segments on all levels, +** + value of write counter. +** +** Then, for each level from 0 to nMax: +** +** + number of input segments in ongoing merge. +** + total number of segments in level. +** + for each segment from oldest to newest: +** + segment id (always > 0) +** + first leaf page number (often 1, always greater than 0) +** + final leaf page number +** +** 2. The Averages Record: +** +** A single record within the %_data table. The data is a list of varints. +** The first value is the number of rows in the index. Then, for each column +** from left to right, the total number of tokens in the column for all +** rows of the table. +** +** 3. Segment leaves: +** +** TERM/DOCLIST FORMAT: +** +** Most of each segment leaf is taken up by term/doclist data. The +** general format of term/doclist, starting with the first term +** on the leaf page, is: +** +** varint : size of first term +** blob: first term data +** doclist: first doclist +** zero-or-more { +** varint: number of bytes in common with previous term +** varint: number of bytes of new term data (nNew) +** blob: nNew bytes of new term data +** doclist: next doclist +** } +** +** doclist format: +** +** varint: first rowid +** poslist: first poslist +** zero-or-more { +** varint: rowid delta (always > 0) +** poslist: next poslist +** } +** +** poslist format: +** +** varint: size of poslist in bytes multiplied by 2, not including +** this field. Plus 1 if this entry carries the "delete" flag. +** collist: collist for column 0 +** zero-or-more { +** 0x01 byte +** varint: column number (I) +** collist: collist for column I +** } +** +** collist format: +** +** varint: first offset + 2 +** zero-or-more { +** varint: offset delta + 2 +** } +** +** PAGE FORMAT +** +** Each leaf page begins with a 4-byte header containing 2 16-bit +** unsigned integer fields in big-endian format. They are: +** +** * The byte offset of the first rowid on the page, if it exists +** and occurs before the first term (otherwise 0). +** +** * The byte offset of the start of the page footer. If the page +** footer is 0 bytes in size, then this field is the same as the +** size of the leaf page in bytes. +** +** The page footer consists of a single varint for each term located +** on the page. Each varint is the byte offset of the current term +** within the page, delta-compressed against the previous value. In +** other words, the first varint in the footer is the byte offset of +** the first term, the second is the byte offset of the second less that +** of the first, and so on. +** +** The term/doclist format described above is accurate if the entire +** term/doclist data fits on a single leaf page. If this is not the case, +** the format is changed in two ways: +** +** + if the first rowid on a page occurs before the first term, it +** is stored as a literal value: +** +** varint: first rowid +** +** + the first term on each page is stored in the same way as the +** very first term of the segment: +** +** varint : size of first term +** blob: first term data +** +** 5. Segment doclist indexes: +** +** Doclist indexes are themselves b-trees, however they usually consist of +** a single leaf record only. The format of each doclist index leaf page +** is: +** +** * Flags byte. Bits are: +** 0x01: Clear if leaf is also the root page, otherwise set. +** +** * Page number of fts index leaf page. As a varint. +** +** * First rowid on page indicated by previous field. As a varint. +** +** * A list of varints, one for each subsequent termless page. A +** positive delta if the termless page contains at least one rowid, +** or an 0x00 byte otherwise. +** +** Internal doclist index nodes are: +** +** * Flags byte. Bits are: +** 0x01: Clear for root page, otherwise set. +** +** * Page number of first child page. As a varint. +** +** * Copy of first rowid on page indicated by previous field. As a varint. +** +** * A list of delta-encoded varints - the first rowid on each subsequent +** child page. +** +*/ + +/* +** Rowids for the averages and structure records in the %_data table. +*/ +#define FTS5_AVERAGES_ROWID 1 /* Rowid used for the averages record */ +#define FTS5_STRUCTURE_ROWID 10 /* The structure record */ + +/* +** Macros determining the rowids used by segment leaves and dlidx leaves +** and nodes. All nodes and leaves are stored in the %_data table with large +** positive rowids. +** +** Each segment has a unique non-zero 16-bit id. +** +** The rowid for each segment leaf is found by passing the segment id and +** the leaf page number to the FTS5_SEGMENT_ROWID macro. Leaves are numbered +** sequentially starting from 1. +*/ +#define FTS5_DATA_ID_B 16 /* Max seg id number 65535 */ +#define FTS5_DATA_DLI_B 1 /* Doclist-index flag (1 bit) */ +#define FTS5_DATA_HEIGHT_B 5 /* Max dlidx tree height of 32 */ +#define FTS5_DATA_PAGE_B 31 /* Max page number of 2147483648 */ + +#define fts5_dri(segid, dlidx, height, pgno) ( \ + ((i64)(segid) << (FTS5_DATA_PAGE_B+FTS5_DATA_HEIGHT_B+FTS5_DATA_DLI_B)) + \ + ((i64)(dlidx) << (FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) + \ + ((i64)(height) << (FTS5_DATA_PAGE_B)) + \ + ((i64)(pgno)) \ +) + +#define FTS5_SEGMENT_ROWID(segid, pgno) fts5_dri(segid, 0, 0, pgno) +#define FTS5_DLIDX_ROWID(segid, height, pgno) fts5_dri(segid, 1, height, pgno) + +#ifdef SQLITE_DEBUG +int sqlite3Fts5Corrupt() { return SQLITE_CORRUPT_VTAB; } +#endif + + +/* +** Each time a blob is read from the %_data table, it is padded with this +** many zero bytes. This makes it easier to decode the various record formats +** without overreading if the records are corrupt. +*/ +#define FTS5_DATA_ZERO_PADDING 8 +#define FTS5_DATA_PADDING 20 + +typedef struct Fts5Data Fts5Data; +typedef struct Fts5DlidxIter Fts5DlidxIter; +typedef struct Fts5DlidxLvl Fts5DlidxLvl; +typedef struct Fts5DlidxWriter Fts5DlidxWriter; +typedef struct Fts5Iter Fts5Iter; +typedef struct Fts5PageWriter Fts5PageWriter; +typedef struct Fts5SegIter Fts5SegIter; +typedef struct Fts5DoclistIter Fts5DoclistIter; +typedef struct Fts5SegWriter Fts5SegWriter; +typedef struct Fts5Structure Fts5Structure; +typedef struct Fts5StructureLevel Fts5StructureLevel; +typedef struct Fts5StructureSegment Fts5StructureSegment; + +struct Fts5Data { + u8 *p; /* Pointer to buffer containing record */ + int nn; /* Size of record in bytes */ + int szLeaf; /* Size of leaf without page-index */ +}; + +/* +** One object per %_data table. +*/ +struct Fts5Index { + Fts5Config *pConfig; /* Virtual table configuration */ + char *zDataTbl; /* Name of %_data table */ + int nWorkUnit; /* Leaf pages in a "unit" of work */ + + /* + ** Variables related to the accumulation of tokens and doclists within the + ** in-memory hash tables before they are flushed to disk. + */ + Fts5Hash *pHash; /* Hash table for in-memory data */ + int nPendingData; /* Current bytes of pending data */ + i64 iWriteRowid; /* Rowid for current doc being written */ + int bDelete; /* Current write is a delete */ + + /* Error state. */ + int rc; /* Current error code */ + + /* State used by the fts5DataXXX() functions. */ + sqlite3_blob *pReader; /* RO incr-blob open on %_data table */ + sqlite3_stmt *pWriter; /* "INSERT ... %_data VALUES(?,?)" */ + sqlite3_stmt *pDeleter; /* "DELETE FROM %_data ... id>=? AND id<=?" */ + sqlite3_stmt *pIdxWriter; /* "INSERT ... %_idx VALUES(?,?,?,?)" */ + sqlite3_stmt *pIdxDeleter; /* "DELETE FROM %_idx WHERE segid=?" */ + sqlite3_stmt *pIdxSelect; + int nRead; /* Total number of blocks read */ + + sqlite3_stmt *pDataVersion; + i64 iStructVersion; /* data_version when pStruct read */ + Fts5Structure *pStruct; /* Current db structure (or NULL) */ +}; + +struct Fts5DoclistIter { + u8 *aEof; /* Pointer to 1 byte past end of doclist */ + + /* Output variables. aPoslist==0 at EOF */ + i64 iRowid; + u8 *aPoslist; + int nPoslist; + int nSize; +}; + +/* +** The contents of the "structure" record for each index are represented +** using an Fts5Structure record in memory. Which uses instances of the +** other Fts5StructureXXX types as components. +*/ +struct Fts5StructureSegment { + int iSegid; /* Segment id */ + int pgnoFirst; /* First leaf page number in segment */ + int pgnoLast; /* Last leaf page number in segment */ +}; +struct Fts5StructureLevel { + int nMerge; /* Number of segments in incr-merge */ + int nSeg; /* Total number of segments on level */ + Fts5StructureSegment *aSeg; /* Array of segments. aSeg[0] is oldest. */ +}; +struct Fts5Structure { + int nRef; /* Object reference count */ + u64 nWriteCounter; /* Total leaves written to level 0 */ + int nSegment; /* Total segments in this structure */ + int nLevel; /* Number of levels in this index */ + Fts5StructureLevel aLevel[1]; /* Array of nLevel level objects */ +}; + +/* +** An object of type Fts5SegWriter is used to write to segments. +*/ +struct Fts5PageWriter { + int pgno; /* Page number for this page */ + int iPrevPgidx; /* Previous value written into pgidx */ + Fts5Buffer buf; /* Buffer containing leaf data */ + Fts5Buffer pgidx; /* Buffer containing page-index */ + Fts5Buffer term; /* Buffer containing previous term on page */ +}; +struct Fts5DlidxWriter { + int pgno; /* Page number for this page */ + int bPrevValid; /* True if iPrev is valid */ + i64 iPrev; /* Previous rowid value written to page */ + Fts5Buffer buf; /* Buffer containing page data */ +}; +struct Fts5SegWriter { + int iSegid; /* Segid to write to */ + Fts5PageWriter writer; /* PageWriter object */ + i64 iPrevRowid; /* Previous rowid written to current leaf */ + u8 bFirstRowidInDoclist; /* True if next rowid is first in doclist */ + u8 bFirstRowidInPage; /* True if next rowid is first in page */ + /* TODO1: Can use (writer.pgidx.n==0) instead of bFirstTermInPage */ + u8 bFirstTermInPage; /* True if next term will be first in leaf */ + int nLeafWritten; /* Number of leaf pages written */ + int nEmpty; /* Number of contiguous term-less nodes */ + + int nDlidx; /* Allocated size of aDlidx[] array */ + Fts5DlidxWriter *aDlidx; /* Array of Fts5DlidxWriter objects */ + + /* Values to insert into the %_idx table */ + Fts5Buffer btterm; /* Next term to insert into %_idx table */ + int iBtPage; /* Page number corresponding to btterm */ +}; + +typedef struct Fts5CResult Fts5CResult; +struct Fts5CResult { + u16 iFirst; /* aSeg[] index of firstest iterator */ + u8 bTermEq; /* True if the terms are equal */ +}; + +/* +** Object for iterating through a single segment, visiting each term/rowid +** pair in the segment. +** +** pSeg: +** The segment to iterate through. +** +** iLeafPgno: +** Current leaf page number within segment. +** +** iLeafOffset: +** Byte offset within the current leaf that is the first byte of the +** position list data (one byte passed the position-list size field). +** rowid field of the current entry. Usually this is the size field of the +** position list data. The exception is if the rowid for the current entry +** is the last thing on the leaf page. +** +** pLeaf: +** Buffer containing current leaf page data. Set to NULL at EOF. +** +** iTermLeafPgno, iTermLeafOffset: +** Leaf page number containing the last term read from the segment. And +** the offset immediately following the term data. +** +** flags: +** Mask of FTS5_SEGITER_XXX values. Interpreted as follows: +** +** FTS5_SEGITER_ONETERM: +** If set, set the iterator to point to EOF after the current doclist +** has been exhausted. Do not proceed to the next term in the segment. +** +** FTS5_SEGITER_REVERSE: +** This flag is only ever set if FTS5_SEGITER_ONETERM is also set. If +** it is set, iterate through rowid in descending order instead of the +** default ascending order. +** +** iRowidOffset/nRowidOffset/aRowidOffset: +** These are used if the FTS5_SEGITER_REVERSE flag is set. +** +** For each rowid on the page corresponding to the current term, the +** corresponding aRowidOffset[] entry is set to the byte offset of the +** start of the "position-list-size" field within the page. +** +** iTermIdx: +** Index of current term on iTermLeafPgno. +*/ +struct Fts5SegIter { + Fts5StructureSegment *pSeg; /* Segment to iterate through */ + int flags; /* Mask of configuration flags */ + int iLeafPgno; /* Current leaf page number */ + Fts5Data *pLeaf; /* Current leaf data */ + Fts5Data *pNextLeaf; /* Leaf page (iLeafPgno+1) */ + i64 iLeafOffset; /* Byte offset within current leaf */ + + /* Next method */ + void (*xNext)(Fts5Index*, Fts5SegIter*, int*); + + /* The page and offset from which the current term was read. The offset + ** is the offset of the first rowid in the current doclist. */ + int iTermLeafPgno; + int iTermLeafOffset; + + int iPgidxOff; /* Next offset in pgidx */ + int iEndofDoclist; + + /* The following are only used if the FTS5_SEGITER_REVERSE flag is set. */ + int iRowidOffset; /* Current entry in aRowidOffset[] */ + int nRowidOffset; /* Allocated size of aRowidOffset[] array */ + int *aRowidOffset; /* Array of offset to rowid fields */ + + Fts5DlidxIter *pDlidx; /* If there is a doclist-index */ + + /* Variables populated based on current entry. */ + Fts5Buffer term; /* Current term */ + i64 iRowid; /* Current rowid */ + int nPos; /* Number of bytes in current position list */ + u8 bDel; /* True if the delete flag is set */ +}; + +/* +** Argument is a pointer to an Fts5Data structure that contains a +** leaf page. +*/ +#define ASSERT_SZLEAF_OK(x) assert( \ + (x)->szLeaf==(x)->nn || (x)->szLeaf==fts5GetU16(&(x)->p[2]) \ +) + +#define FTS5_SEGITER_ONETERM 0x01 +#define FTS5_SEGITER_REVERSE 0x02 + +/* +** Argument is a pointer to an Fts5Data structure that contains a leaf +** page. This macro evaluates to true if the leaf contains no terms, or +** false if it contains at least one term. +*/ +#define fts5LeafIsTermless(x) ((x)->szLeaf >= (x)->nn) + +#define fts5LeafTermOff(x, i) (fts5GetU16(&(x)->p[(x)->szLeaf + (i)*2])) + +#define fts5LeafFirstRowidOff(x) (fts5GetU16((x)->p)) + +/* +** Object for iterating through the merged results of one or more segments, +** visiting each term/rowid pair in the merged data. +** +** nSeg is always a power of two greater than or equal to the number of +** segments that this object is merging data from. Both the aSeg[] and +** aFirst[] arrays are sized at nSeg entries. The aSeg[] array is padded +** with zeroed objects - these are handled as if they were iterators opened +** on empty segments. +** +** The results of comparing segments aSeg[N] and aSeg[N+1], where N is an +** even number, is stored in aFirst[(nSeg+N)/2]. The "result" of the +** comparison in this context is the index of the iterator that currently +** points to the smaller term/rowid combination. Iterators at EOF are +** considered to be greater than all other iterators. +** +** aFirst[1] contains the index in aSeg[] of the iterator that points to +** the smallest key overall. aFirst[0] is unused. +** +** poslist: +** Used by sqlite3Fts5IterPoslist() when the poslist needs to be buffered. +** There is no way to tell if this is populated or not. +*/ +struct Fts5Iter { + Fts5IndexIter base; /* Base class containing output vars */ + + Fts5Index *pIndex; /* Index that owns this iterator */ + Fts5Buffer poslist; /* Buffer containing current poslist */ + Fts5Colset *pColset; /* Restrict matches to these columns */ + + /* Invoked to set output variables. */ + void (*xSetOutputs)(Fts5Iter*, Fts5SegIter*); + + int nSeg; /* Size of aSeg[] array */ + int bRev; /* True to iterate in reverse order */ + u8 bSkipEmpty; /* True to skip deleted entries */ + + i64 iSwitchRowid; /* Firstest rowid of other than aFirst[1] */ + Fts5CResult *aFirst; /* Current merge state (see above) */ + Fts5SegIter aSeg[1]; /* Array of segment iterators */ +}; + + +/* +** An instance of the following type is used to iterate through the contents +** of a doclist-index record. +** +** pData: +** Record containing the doclist-index data. +** +** bEof: +** Set to true once iterator has reached EOF. +** +** iOff: +** Set to the current offset within record pData. +*/ +struct Fts5DlidxLvl { + Fts5Data *pData; /* Data for current page of this level */ + int iOff; /* Current offset into pData */ + int bEof; /* At EOF already */ + int iFirstOff; /* Used by reverse iterators */ + + /* Output variables */ + int iLeafPgno; /* Page number of current leaf page */ + i64 iRowid; /* First rowid on leaf iLeafPgno */ +}; +struct Fts5DlidxIter { + int nLvl; + int iSegid; + Fts5DlidxLvl aLvl[1]; +}; + +static void fts5PutU16(u8 *aOut, u16 iVal){ + aOut[0] = (iVal>>8); + aOut[1] = (iVal&0xFF); +} + +static u16 fts5GetU16(const u8 *aIn){ + return ((u16)aIn[0] << 8) + aIn[1]; +} + +/* +** Allocate and return a buffer at least nByte bytes in size. +** +** If an OOM error is encountered, return NULL and set the error code in +** the Fts5Index handle passed as the first argument. +*/ +static void *fts5IdxMalloc(Fts5Index *p, sqlite3_int64 nByte){ + return sqlite3Fts5MallocZero(&p->rc, nByte); +} + +/* +** Compare the contents of the pLeft buffer with the pRight/nRight blob. +** +** Return -ve if pLeft is smaller than pRight, 0 if they are equal or +** +ve if pRight is smaller than pLeft. In other words: +** +** res = *pLeft - *pRight +*/ +#ifdef SQLITE_DEBUG +static int fts5BufferCompareBlob( + Fts5Buffer *pLeft, /* Left hand side of comparison */ + const u8 *pRight, int nRight /* Right hand side of comparison */ +){ + int nCmp = MIN(pLeft->n, nRight); + int res = memcmp(pLeft->p, pRight, nCmp); + return (res==0 ? (pLeft->n - nRight) : res); +} +#endif + +/* +** Compare the contents of the two buffers using memcmp(). If one buffer +** is a prefix of the other, it is considered the lesser. +** +** Return -ve if pLeft is smaller than pRight, 0 if they are equal or +** +ve if pRight is smaller than pLeft. In other words: +** +** res = *pLeft - *pRight +*/ +static int fts5BufferCompare(Fts5Buffer *pLeft, Fts5Buffer *pRight){ + int nCmp, res; + nCmp = MIN(pLeft->n, pRight->n); + assert( nCmp<=0 || pLeft->p!=0 ); + assert( nCmp<=0 || pRight->p!=0 ); + res = fts5Memcmp(pLeft->p, pRight->p, nCmp); + return (res==0 ? (pLeft->n - pRight->n) : res); +} + +static int fts5LeafFirstTermOff(Fts5Data *pLeaf){ + int ret; + fts5GetVarint32(&pLeaf->p[pLeaf->szLeaf], ret); + return ret; +} + +/* +** Close the read-only blob handle, if it is open. +*/ +void sqlite3Fts5IndexCloseReader(Fts5Index *p){ + if( p->pReader ){ + sqlite3_blob *pReader = p->pReader; + p->pReader = 0; + sqlite3_blob_close(pReader); + } +} + +/* +** Retrieve a record from the %_data table. +** +** If an error occurs, NULL is returned and an error left in the +** Fts5Index object. +*/ +static Fts5Data *fts5DataRead(Fts5Index *p, i64 iRowid){ + Fts5Data *pRet = 0; + if( p->rc==SQLITE_OK ){ + int rc = SQLITE_OK; + + if( p->pReader ){ + /* This call may return SQLITE_ABORT if there has been a savepoint + ** rollback since it was last used. In this case a new blob handle + ** is required. */ + sqlite3_blob *pBlob = p->pReader; + p->pReader = 0; + rc = sqlite3_blob_reopen(pBlob, iRowid); + assert( p->pReader==0 ); + p->pReader = pBlob; + if( rc!=SQLITE_OK ){ + sqlite3Fts5IndexCloseReader(p); + } + if( rc==SQLITE_ABORT ) rc = SQLITE_OK; + } + + /* If the blob handle is not open at this point, open it and seek + ** to the requested entry. */ + if( p->pReader==0 && rc==SQLITE_OK ){ + Fts5Config *pConfig = p->pConfig; + rc = sqlite3_blob_open(pConfig->db, + pConfig->zDb, p->zDataTbl, "block", iRowid, 0, &p->pReader + ); + } + + /* If either of the sqlite3_blob_open() or sqlite3_blob_reopen() calls + ** above returned SQLITE_ERROR, return SQLITE_CORRUPT_VTAB instead. + ** All the reasons those functions might return SQLITE_ERROR - missing + ** table, missing row, non-blob/text in block column - indicate + ** backing store corruption. */ + if( rc==SQLITE_ERROR ) rc = FTS5_CORRUPT; + + if( rc==SQLITE_OK ){ + u8 *aOut = 0; /* Read blob data into this buffer */ + int nByte = sqlite3_blob_bytes(p->pReader); + sqlite3_int64 nAlloc = sizeof(Fts5Data) + nByte + FTS5_DATA_PADDING; + pRet = (Fts5Data*)sqlite3_malloc64(nAlloc); + if( pRet ){ + pRet->nn = nByte; + aOut = pRet->p = (u8*)&pRet[1]; + }else{ + rc = SQLITE_NOMEM; + } + + if( rc==SQLITE_OK ){ + rc = sqlite3_blob_read(p->pReader, aOut, nByte, 0); + } + if( rc!=SQLITE_OK ){ + sqlite3_free(pRet); + pRet = 0; + }else{ + /* TODO1: Fix this */ + pRet->p[nByte] = 0x00; + pRet->p[nByte+1] = 0x00; + pRet->szLeaf = fts5GetU16(&pRet->p[2]); + } + } + p->rc = rc; + p->nRead++; + } + + assert( (pRet==0)==(p->rc!=SQLITE_OK) ); + return pRet; +} + + +/* +** Release a reference to data record returned by an earlier call to +** fts5DataRead(). +*/ +static void fts5DataRelease(Fts5Data *pData){ + sqlite3_free(pData); +} + +static Fts5Data *fts5LeafRead(Fts5Index *p, i64 iRowid){ + Fts5Data *pRet = fts5DataRead(p, iRowid); + if( pRet ){ + if( pRet->nn<4 || pRet->szLeaf>pRet->nn ){ + p->rc = FTS5_CORRUPT; + fts5DataRelease(pRet); + pRet = 0; + } + } + return pRet; +} + +static int fts5IndexPrepareStmt( + Fts5Index *p, + sqlite3_stmt **ppStmt, + char *zSql +){ + if( p->rc==SQLITE_OK ){ + if( zSql ){ + p->rc = sqlite3_prepare_v3(p->pConfig->db, zSql, -1, + SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB, + ppStmt, 0); + }else{ + p->rc = SQLITE_NOMEM; + } + } + sqlite3_free(zSql); + return p->rc; +} + + +/* +** INSERT OR REPLACE a record into the %_data table. +*/ +static void fts5DataWrite(Fts5Index *p, i64 iRowid, const u8 *pData, int nData){ + if( p->rc!=SQLITE_OK ) return; + + if( p->pWriter==0 ){ + Fts5Config *pConfig = p->pConfig; + fts5IndexPrepareStmt(p, &p->pWriter, sqlite3_mprintf( + "REPLACE INTO '%q'.'%q_data'(id, block) VALUES(?,?)", + pConfig->zDb, pConfig->zName + )); + if( p->rc ) return; + } + + sqlite3_bind_int64(p->pWriter, 1, iRowid); + sqlite3_bind_blob(p->pWriter, 2, pData, nData, SQLITE_STATIC); + sqlite3_step(p->pWriter); + p->rc = sqlite3_reset(p->pWriter); + sqlite3_bind_null(p->pWriter, 2); +} + +/* +** Execute the following SQL: +** +** DELETE FROM %_data WHERE id BETWEEN $iFirst AND $iLast +*/ +static void fts5DataDelete(Fts5Index *p, i64 iFirst, i64 iLast){ + if( p->rc!=SQLITE_OK ) return; + + if( p->pDeleter==0 ){ + Fts5Config *pConfig = p->pConfig; + char *zSql = sqlite3_mprintf( + "DELETE FROM '%q'.'%q_data' WHERE id>=? AND id<=?", + pConfig->zDb, pConfig->zName + ); + if( fts5IndexPrepareStmt(p, &p->pDeleter, zSql) ) return; + } + + sqlite3_bind_int64(p->pDeleter, 1, iFirst); + sqlite3_bind_int64(p->pDeleter, 2, iLast); + sqlite3_step(p->pDeleter); + p->rc = sqlite3_reset(p->pDeleter); +} + +/* +** Remove all records associated with segment iSegid. +*/ +static void fts5DataRemoveSegment(Fts5Index *p, int iSegid){ + i64 iFirst = FTS5_SEGMENT_ROWID(iSegid, 0); + i64 iLast = FTS5_SEGMENT_ROWID(iSegid+1, 0)-1; + fts5DataDelete(p, iFirst, iLast); + if( p->pIdxDeleter==0 ){ + Fts5Config *pConfig = p->pConfig; + fts5IndexPrepareStmt(p, &p->pIdxDeleter, sqlite3_mprintf( + "DELETE FROM '%q'.'%q_idx' WHERE segid=?", + pConfig->zDb, pConfig->zName + )); + } + if( p->rc==SQLITE_OK ){ + sqlite3_bind_int(p->pIdxDeleter, 1, iSegid); + sqlite3_step(p->pIdxDeleter); + p->rc = sqlite3_reset(p->pIdxDeleter); + } +} + +/* +** Release a reference to an Fts5Structure object returned by an earlier +** call to fts5StructureRead() or fts5StructureDecode(). +*/ +static void fts5StructureRelease(Fts5Structure *pStruct){ + if( pStruct && 0>=(--pStruct->nRef) ){ + int i; + assert( pStruct->nRef==0 ); + for(i=0; i<pStruct->nLevel; i++){ + sqlite3_free(pStruct->aLevel[i].aSeg); + } + sqlite3_free(pStruct); + } +} + +static void fts5StructureRef(Fts5Structure *pStruct){ + pStruct->nRef++; +} + +void *sqlite3Fts5StructureRef(Fts5Index *p){ + fts5StructureRef(p->pStruct); + return (void*)p->pStruct; +} +void sqlite3Fts5StructureRelease(void *p){ + if( p ){ + fts5StructureRelease((Fts5Structure*)p); + } +} +int sqlite3Fts5StructureTest(Fts5Index *p, void *pStruct){ + if( p->pStruct!=(Fts5Structure*)pStruct ){ + return SQLITE_ABORT; + } + return SQLITE_OK; +} + +/* +** Ensure that structure object (*pp) is writable. +** +** This function is a no-op if (*pRc) is not SQLITE_OK when it is called. If +** an error occurs, (*pRc) is set to an SQLite error code before returning. +*/ +static void fts5StructureMakeWritable(int *pRc, Fts5Structure **pp){ + Fts5Structure *p = *pp; + if( *pRc==SQLITE_OK && p->nRef>1 ){ + i64 nByte = sizeof(Fts5Structure)+(p->nLevel-1)*sizeof(Fts5StructureLevel); + Fts5Structure *pNew; + pNew = (Fts5Structure*)sqlite3Fts5MallocZero(pRc, nByte); + if( pNew ){ + int i; + memcpy(pNew, p, nByte); + for(i=0; i<p->nLevel; i++) pNew->aLevel[i].aSeg = 0; + for(i=0; i<p->nLevel; i++){ + Fts5StructureLevel *pLvl = &pNew->aLevel[i]; + nByte = sizeof(Fts5StructureSegment) * pNew->aLevel[i].nSeg; + pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(pRc, nByte); + if( pLvl->aSeg==0 ){ + for(i=0; i<p->nLevel; i++){ + sqlite3_free(pNew->aLevel[i].aSeg); + } + sqlite3_free(pNew); + return; + } + memcpy(pLvl->aSeg, p->aLevel[i].aSeg, nByte); + } + p->nRef--; + pNew->nRef = 1; + } + *pp = pNew; + } +} + +/* +** Deserialize and return the structure record currently stored in serialized +** form within buffer pData/nData. +** +** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array +** are over-allocated by one slot. This allows the structure contents +** to be more easily edited. +** +** If an error occurs, *ppOut is set to NULL and an SQLite error code +** returned. Otherwise, *ppOut is set to point to the new object and +** SQLITE_OK returned. +*/ +static int fts5StructureDecode( + const u8 *pData, /* Buffer containing serialized structure */ + int nData, /* Size of buffer pData in bytes */ + int *piCookie, /* Configuration cookie value */ + Fts5Structure **ppOut /* OUT: Deserialized object */ +){ + int rc = SQLITE_OK; + int i = 0; + int iLvl; + int nLevel = 0; + int nSegment = 0; + sqlite3_int64 nByte; /* Bytes of space to allocate at pRet */ + Fts5Structure *pRet = 0; /* Structure object to return */ + + /* Grab the cookie value */ + if( piCookie ) *piCookie = sqlite3Fts5Get32(pData); + i = 4; + + /* Read the total number of levels and segments from the start of the + ** structure record. */ + i += fts5GetVarint32(&pData[i], nLevel); + i += fts5GetVarint32(&pData[i], nSegment); + if( nLevel>FTS5_MAX_SEGMENT || nLevel<0 + || nSegment>FTS5_MAX_SEGMENT || nSegment<0 + ){ + return FTS5_CORRUPT; + } + nByte = ( + sizeof(Fts5Structure) + /* Main structure */ + sizeof(Fts5StructureLevel) * (nLevel-1) /* aLevel[] array */ + ); + pRet = (Fts5Structure*)sqlite3Fts5MallocZero(&rc, nByte); + + if( pRet ){ + pRet->nRef = 1; + pRet->nLevel = nLevel; + pRet->nSegment = nSegment; + i += sqlite3Fts5GetVarint(&pData[i], &pRet->nWriteCounter); + + for(iLvl=0; rc==SQLITE_OK && iLvl<nLevel; iLvl++){ + Fts5StructureLevel *pLvl = &pRet->aLevel[iLvl]; + int nTotal = 0; + int iSeg; + + if( i>=nData ){ + rc = FTS5_CORRUPT; + }else{ + i += fts5GetVarint32(&pData[i], pLvl->nMerge); + i += fts5GetVarint32(&pData[i], nTotal); + if( nTotal<pLvl->nMerge ) rc = FTS5_CORRUPT; + pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&rc, + nTotal * sizeof(Fts5StructureSegment) + ); + nSegment -= nTotal; + } + + if( rc==SQLITE_OK ){ + pLvl->nSeg = nTotal; + for(iSeg=0; iSeg<nTotal; iSeg++){ + Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg]; + if( i>=nData ){ + rc = FTS5_CORRUPT; + break; + } + i += fts5GetVarint32(&pData[i], pSeg->iSegid); + i += fts5GetVarint32(&pData[i], pSeg->pgnoFirst); + i += fts5GetVarint32(&pData[i], pSeg->pgnoLast); + if( pSeg->pgnoLast<pSeg->pgnoFirst ){ + rc = FTS5_CORRUPT; + break; + } + } + if( iLvl>0 && pLvl[-1].nMerge && nTotal==0 ) rc = FTS5_CORRUPT; + if( iLvl==nLevel-1 && pLvl->nMerge ) rc = FTS5_CORRUPT; + } + } + if( nSegment!=0 && rc==SQLITE_OK ) rc = FTS5_CORRUPT; + + if( rc!=SQLITE_OK ){ + fts5StructureRelease(pRet); + pRet = 0; + } + } + + *ppOut = pRet; + return rc; +} + +/* +** Add a level to the Fts5Structure.aLevel[] array of structure object +** (*ppStruct). +*/ +static void fts5StructureAddLevel(int *pRc, Fts5Structure **ppStruct){ + fts5StructureMakeWritable(pRc, ppStruct); + if( *pRc==SQLITE_OK ){ + Fts5Structure *pStruct = *ppStruct; + int nLevel = pStruct->nLevel; + sqlite3_int64 nByte = ( + sizeof(Fts5Structure) + /* Main structure */ + sizeof(Fts5StructureLevel) * (nLevel+1) /* aLevel[] array */ + ); + + pStruct = sqlite3_realloc64(pStruct, nByte); + if( pStruct ){ + memset(&pStruct->aLevel[nLevel], 0, sizeof(Fts5StructureLevel)); + pStruct->nLevel++; + *ppStruct = pStruct; + }else{ + *pRc = SQLITE_NOMEM; + } + } +} + +/* +** Extend level iLvl so that there is room for at least nExtra more +** segments. +*/ +static void fts5StructureExtendLevel( + int *pRc, + Fts5Structure *pStruct, + int iLvl, + int nExtra, + int bInsert +){ + if( *pRc==SQLITE_OK ){ + Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl]; + Fts5StructureSegment *aNew; + sqlite3_int64 nByte; + + nByte = (pLvl->nSeg + nExtra) * sizeof(Fts5StructureSegment); + aNew = sqlite3_realloc64(pLvl->aSeg, nByte); + if( aNew ){ + if( bInsert==0 ){ + memset(&aNew[pLvl->nSeg], 0, sizeof(Fts5StructureSegment) * nExtra); + }else{ + int nMove = pLvl->nSeg * sizeof(Fts5StructureSegment); + memmove(&aNew[nExtra], aNew, nMove); + memset(aNew, 0, sizeof(Fts5StructureSegment) * nExtra); + } + pLvl->aSeg = aNew; + }else{ + *pRc = SQLITE_NOMEM; + } + } +} + +static Fts5Structure *fts5StructureReadUncached(Fts5Index *p){ + Fts5Structure *pRet = 0; + Fts5Config *pConfig = p->pConfig; + int iCookie; /* Configuration cookie */ + Fts5Data *pData; + + pData = fts5DataRead(p, FTS5_STRUCTURE_ROWID); + if( p->rc==SQLITE_OK ){ + /* TODO: Do we need this if the leaf-index is appended? Probably... */ + memset(&pData->p[pData->nn], 0, FTS5_DATA_PADDING); + p->rc = fts5StructureDecode(pData->p, pData->nn, &iCookie, &pRet); + if( p->rc==SQLITE_OK && (pConfig->pgsz==0 || pConfig->iCookie!=iCookie) ){ + p->rc = sqlite3Fts5ConfigLoad(pConfig, iCookie); + } + fts5DataRelease(pData); + if( p->rc!=SQLITE_OK ){ + fts5StructureRelease(pRet); + pRet = 0; + } + } + + return pRet; +} + +static i64 fts5IndexDataVersion(Fts5Index *p){ + i64 iVersion = 0; + + if( p->rc==SQLITE_OK ){ + if( p->pDataVersion==0 ){ + p->rc = fts5IndexPrepareStmt(p, &p->pDataVersion, + sqlite3_mprintf("PRAGMA %Q.data_version", p->pConfig->zDb) + ); + if( p->rc ) return 0; + } + + if( SQLITE_ROW==sqlite3_step(p->pDataVersion) ){ + iVersion = sqlite3_column_int64(p->pDataVersion, 0); + } + p->rc = sqlite3_reset(p->pDataVersion); + } + + return iVersion; +} + +/* +** Read, deserialize and return the structure record. +** +** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array +** are over-allocated as described for function fts5StructureDecode() +** above. +** +** If an error occurs, NULL is returned and an error code left in the +** Fts5Index handle. If an error has already occurred when this function +** is called, it is a no-op. +*/ +static Fts5Structure *fts5StructureRead(Fts5Index *p){ + + if( p->pStruct==0 ){ + p->iStructVersion = fts5IndexDataVersion(p); + if( p->rc==SQLITE_OK ){ + p->pStruct = fts5StructureReadUncached(p); + } + } + +#if 0 + else{ + Fts5Structure *pTest = fts5StructureReadUncached(p); + if( pTest ){ + int i, j; + assert_nc( p->pStruct->nSegment==pTest->nSegment ); + assert_nc( p->pStruct->nLevel==pTest->nLevel ); + for(i=0; i<pTest->nLevel; i++){ + assert_nc( p->pStruct->aLevel[i].nMerge==pTest->aLevel[i].nMerge ); + assert_nc( p->pStruct->aLevel[i].nSeg==pTest->aLevel[i].nSeg ); + for(j=0; j<pTest->aLevel[i].nSeg; j++){ + Fts5StructureSegment *p1 = &pTest->aLevel[i].aSeg[j]; + Fts5StructureSegment *p2 = &p->pStruct->aLevel[i].aSeg[j]; + assert_nc( p1->iSegid==p2->iSegid ); + assert_nc( p1->pgnoFirst==p2->pgnoFirst ); + assert_nc( p1->pgnoLast==p2->pgnoLast ); + } + } + fts5StructureRelease(pTest); + } + } +#endif + + if( p->rc!=SQLITE_OK ) return 0; + assert( p->iStructVersion!=0 ); + assert( p->pStruct!=0 ); + fts5StructureRef(p->pStruct); + return p->pStruct; +} + +static void fts5StructureInvalidate(Fts5Index *p){ + if( p->pStruct ){ + fts5StructureRelease(p->pStruct); + p->pStruct = 0; + } +} + +/* +** Return the total number of segments in index structure pStruct. This +** function is only ever used as part of assert() conditions. +*/ +#ifdef SQLITE_DEBUG +static int fts5StructureCountSegments(Fts5Structure *pStruct){ + int nSegment = 0; /* Total number of segments */ + if( pStruct ){ + int iLvl; /* Used to iterate through levels */ + for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){ + nSegment += pStruct->aLevel[iLvl].nSeg; + } + } + + return nSegment; +} +#endif + +#define fts5BufferSafeAppendBlob(pBuf, pBlob, nBlob) { \ + assert( (pBuf)->nSpace>=((pBuf)->n+nBlob) ); \ + memcpy(&(pBuf)->p[(pBuf)->n], pBlob, nBlob); \ + (pBuf)->n += nBlob; \ +} + +#define fts5BufferSafeAppendVarint(pBuf, iVal) { \ + (pBuf)->n += sqlite3Fts5PutVarint(&(pBuf)->p[(pBuf)->n], (iVal)); \ + assert( (pBuf)->nSpace>=(pBuf)->n ); \ +} + + +/* +** Serialize and store the "structure" record. +** +** If an error occurs, leave an error code in the Fts5Index object. If an +** error has already occurred, this function is a no-op. +*/ +static void fts5StructureWrite(Fts5Index *p, Fts5Structure *pStruct){ + if( p->rc==SQLITE_OK ){ + Fts5Buffer buf; /* Buffer to serialize record into */ + int iLvl; /* Used to iterate through levels */ + int iCookie; /* Cookie value to store */ + + assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) ); + memset(&buf, 0, sizeof(Fts5Buffer)); + + /* Append the current configuration cookie */ + iCookie = p->pConfig->iCookie; + if( iCookie<0 ) iCookie = 0; + + if( 0==sqlite3Fts5BufferSize(&p->rc, &buf, 4+9+9+9) ){ + sqlite3Fts5Put32(buf.p, iCookie); + buf.n = 4; + fts5BufferSafeAppendVarint(&buf, pStruct->nLevel); + fts5BufferSafeAppendVarint(&buf, pStruct->nSegment); + fts5BufferSafeAppendVarint(&buf, (i64)pStruct->nWriteCounter); + } + + for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){ + int iSeg; /* Used to iterate through segments */ + Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl]; + fts5BufferAppendVarint(&p->rc, &buf, pLvl->nMerge); + fts5BufferAppendVarint(&p->rc, &buf, pLvl->nSeg); + assert( pLvl->nMerge<=pLvl->nSeg ); + + for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){ + fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].iSegid); + fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoFirst); + fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoLast); + } + } + + fts5DataWrite(p, FTS5_STRUCTURE_ROWID, buf.p, buf.n); + fts5BufferFree(&buf); + } +} + +#if 0 +static void fts5DebugStructure(int*,Fts5Buffer*,Fts5Structure*); +static void fts5PrintStructure(const char *zCaption, Fts5Structure *pStruct){ + int rc = SQLITE_OK; + Fts5Buffer buf; + memset(&buf, 0, sizeof(buf)); + fts5DebugStructure(&rc, &buf, pStruct); + fprintf(stdout, "%s: %s\n", zCaption, buf.p); + fflush(stdout); + fts5BufferFree(&buf); +} +#else +# define fts5PrintStructure(x,y) +#endif + +static int fts5SegmentSize(Fts5StructureSegment *pSeg){ + return 1 + pSeg->pgnoLast - pSeg->pgnoFirst; +} + +/* +** Return a copy of index structure pStruct. Except, promote as many +** segments as possible to level iPromote. If an OOM occurs, NULL is +** returned. +*/ +static void fts5StructurePromoteTo( + Fts5Index *p, + int iPromote, + int szPromote, + Fts5Structure *pStruct +){ + int il, is; + Fts5StructureLevel *pOut = &pStruct->aLevel[iPromote]; + + if( pOut->nMerge==0 ){ + for(il=iPromote+1; il<pStruct->nLevel; il++){ + Fts5StructureLevel *pLvl = &pStruct->aLevel[il]; + if( pLvl->nMerge ) return; + for(is=pLvl->nSeg-1; is>=0; is--){ + int sz = fts5SegmentSize(&pLvl->aSeg[is]); + if( sz>szPromote ) return; + fts5StructureExtendLevel(&p->rc, pStruct, iPromote, 1, 1); + if( p->rc ) return; + memcpy(pOut->aSeg, &pLvl->aSeg[is], sizeof(Fts5StructureSegment)); + pOut->nSeg++; + pLvl->nSeg--; + } + } + } +} + +/* +** A new segment has just been written to level iLvl of index structure +** pStruct. This function determines if any segments should be promoted +** as a result. Segments are promoted in two scenarios: +** +** a) If the segment just written is smaller than one or more segments +** within the previous populated level, it is promoted to the previous +** populated level. +** +** b) If the segment just written is larger than the newest segment on +** the next populated level, then that segment, and any other adjacent +** segments that are also smaller than the one just written, are +** promoted. +** +** If one or more segments are promoted, the structure object is updated +** to reflect this. +*/ +static void fts5StructurePromote( + Fts5Index *p, /* FTS5 backend object */ + int iLvl, /* Index level just updated */ + Fts5Structure *pStruct /* Index structure */ +){ + if( p->rc==SQLITE_OK ){ + int iTst; + int iPromote = -1; + int szPromote = 0; /* Promote anything this size or smaller */ + Fts5StructureSegment *pSeg; /* Segment just written */ + int szSeg; /* Size of segment just written */ + int nSeg = pStruct->aLevel[iLvl].nSeg; + + if( nSeg==0 ) return; + pSeg = &pStruct->aLevel[iLvl].aSeg[pStruct->aLevel[iLvl].nSeg-1]; + szSeg = (1 + pSeg->pgnoLast - pSeg->pgnoFirst); + + /* Check for condition (a) */ + for(iTst=iLvl-1; iTst>=0 && pStruct->aLevel[iTst].nSeg==0; iTst--); + if( iTst>=0 ){ + int i; + int szMax = 0; + Fts5StructureLevel *pTst = &pStruct->aLevel[iTst]; + assert( pTst->nMerge==0 ); + for(i=0; i<pTst->nSeg; i++){ + int sz = pTst->aSeg[i].pgnoLast - pTst->aSeg[i].pgnoFirst + 1; + if( sz>szMax ) szMax = sz; + } + if( szMax>=szSeg ){ + /* Condition (a) is true. Promote the newest segment on level + ** iLvl to level iTst. */ + iPromote = iTst; + szPromote = szMax; + } + } + + /* If condition (a) is not met, assume (b) is true. StructurePromoteTo() + ** is a no-op if it is not. */ + if( iPromote<0 ){ + iPromote = iLvl; + szPromote = szSeg; + } + fts5StructurePromoteTo(p, iPromote, szPromote, pStruct); + } +} + + +/* +** Advance the iterator passed as the only argument. If the end of the +** doclist-index page is reached, return non-zero. +*/ +static int fts5DlidxLvlNext(Fts5DlidxLvl *pLvl){ + Fts5Data *pData = pLvl->pData; + + if( pLvl->iOff==0 ){ + assert( pLvl->bEof==0 ); + pLvl->iOff = 1; + pLvl->iOff += fts5GetVarint32(&pData->p[1], pLvl->iLeafPgno); + pLvl->iOff += fts5GetVarint(&pData->p[pLvl->iOff], (u64*)&pLvl->iRowid); + pLvl->iFirstOff = pLvl->iOff; + }else{ + int iOff; + for(iOff=pLvl->iOff; iOff<pData->nn; iOff++){ + if( pData->p[iOff] ) break; + } + + if( iOff<pData->nn ){ + i64 iVal; + pLvl->iLeafPgno += (iOff - pLvl->iOff) + 1; + iOff += fts5GetVarint(&pData->p[iOff], (u64*)&iVal); + pLvl->iRowid += iVal; + pLvl->iOff = iOff; + }else{ + pLvl->bEof = 1; + } + } + + return pLvl->bEof; +} + +/* +** Advance the iterator passed as the only argument. +*/ +static int fts5DlidxIterNextR(Fts5Index *p, Fts5DlidxIter *pIter, int iLvl){ + Fts5DlidxLvl *pLvl = &pIter->aLvl[iLvl]; + + assert( iLvl<pIter->nLvl ); + if( fts5DlidxLvlNext(pLvl) ){ + if( (iLvl+1) < pIter->nLvl ){ + fts5DlidxIterNextR(p, pIter, iLvl+1); + if( pLvl[1].bEof==0 ){ + fts5DataRelease(pLvl->pData); + memset(pLvl, 0, sizeof(Fts5DlidxLvl)); + pLvl->pData = fts5DataRead(p, + FTS5_DLIDX_ROWID(pIter->iSegid, iLvl, pLvl[1].iLeafPgno) + ); + if( pLvl->pData ) fts5DlidxLvlNext(pLvl); + } + } + } + + return pIter->aLvl[0].bEof; +} +static int fts5DlidxIterNext(Fts5Index *p, Fts5DlidxIter *pIter){ + return fts5DlidxIterNextR(p, pIter, 0); +} + +/* +** The iterator passed as the first argument has the following fields set +** as follows. This function sets up the rest of the iterator so that it +** points to the first rowid in the doclist-index. +** +** pData: +** pointer to doclist-index record, +** +** When this function is called pIter->iLeafPgno is the page number the +** doclist is associated with (the one featuring the term). +*/ +static int fts5DlidxIterFirst(Fts5DlidxIter *pIter){ + int i; + for(i=0; i<pIter->nLvl; i++){ + fts5DlidxLvlNext(&pIter->aLvl[i]); + } + return pIter->aLvl[0].bEof; +} + + +static int fts5DlidxIterEof(Fts5Index *p, Fts5DlidxIter *pIter){ + return p->rc!=SQLITE_OK || pIter->aLvl[0].bEof; +} + +static void fts5DlidxIterLast(Fts5Index *p, Fts5DlidxIter *pIter){ + int i; + + /* Advance each level to the last entry on the last page */ + for(i=pIter->nLvl-1; p->rc==SQLITE_OK && i>=0; i--){ + Fts5DlidxLvl *pLvl = &pIter->aLvl[i]; + while( fts5DlidxLvlNext(pLvl)==0 ); + pLvl->bEof = 0; + + if( i>0 ){ + Fts5DlidxLvl *pChild = &pLvl[-1]; + fts5DataRelease(pChild->pData); + memset(pChild, 0, sizeof(Fts5DlidxLvl)); + pChild->pData = fts5DataRead(p, + FTS5_DLIDX_ROWID(pIter->iSegid, i-1, pLvl->iLeafPgno) + ); + } + } +} + +/* +** Move the iterator passed as the only argument to the previous entry. +*/ +static int fts5DlidxLvlPrev(Fts5DlidxLvl *pLvl){ + int iOff = pLvl->iOff; + + assert( pLvl->bEof==0 ); + if( iOff<=pLvl->iFirstOff ){ + pLvl->bEof = 1; + }else{ + u8 *a = pLvl->pData->p; + i64 iVal; + int iLimit; + int ii; + int nZero = 0; + + /* Currently iOff points to the first byte of a varint. This block + ** decrements iOff until it points to the first byte of the previous + ** varint. Taking care not to read any memory locations that occur + ** before the buffer in memory. */ + iLimit = (iOff>9 ? iOff-9 : 0); + for(iOff--; iOff>iLimit; iOff--){ + if( (a[iOff-1] & 0x80)==0 ) break; + } + + fts5GetVarint(&a[iOff], (u64*)&iVal); + pLvl->iRowid -= iVal; + pLvl->iLeafPgno--; + + /* Skip backwards past any 0x00 varints. */ + for(ii=iOff-1; ii>=pLvl->iFirstOff && a[ii]==0x00; ii--){ + nZero++; + } + if( ii>=pLvl->iFirstOff && (a[ii] & 0x80) ){ + /* The byte immediately before the last 0x00 byte has the 0x80 bit + ** set. So the last 0x00 is only a varint 0 if there are 8 more 0x80 + ** bytes before a[ii]. */ + int bZero = 0; /* True if last 0x00 counts */ + if( (ii-8)>=pLvl->iFirstOff ){ + int j; + for(j=1; j<=8 && (a[ii-j] & 0x80); j++); + bZero = (j>8); + } + if( bZero==0 ) nZero--; + } + pLvl->iLeafPgno -= nZero; + pLvl->iOff = iOff - nZero; + } + + return pLvl->bEof; +} + +static int fts5DlidxIterPrevR(Fts5Index *p, Fts5DlidxIter *pIter, int iLvl){ + Fts5DlidxLvl *pLvl = &pIter->aLvl[iLvl]; + + assert( iLvl<pIter->nLvl ); + if( fts5DlidxLvlPrev(pLvl) ){ + if( (iLvl+1) < pIter->nLvl ){ + fts5DlidxIterPrevR(p, pIter, iLvl+1); + if( pLvl[1].bEof==0 ){ + fts5DataRelease(pLvl->pData); + memset(pLvl, 0, sizeof(Fts5DlidxLvl)); + pLvl->pData = fts5DataRead(p, + FTS5_DLIDX_ROWID(pIter->iSegid, iLvl, pLvl[1].iLeafPgno) + ); + if( pLvl->pData ){ + while( fts5DlidxLvlNext(pLvl)==0 ); + pLvl->bEof = 0; + } + } + } + } + + return pIter->aLvl[0].bEof; +} +static int fts5DlidxIterPrev(Fts5Index *p, Fts5DlidxIter *pIter){ + return fts5DlidxIterPrevR(p, pIter, 0); +} + +/* +** Free a doclist-index iterator object allocated by fts5DlidxIterInit(). +*/ +static void fts5DlidxIterFree(Fts5DlidxIter *pIter){ + if( pIter ){ + int i; + for(i=0; i<pIter->nLvl; i++){ + fts5DataRelease(pIter->aLvl[i].pData); + } + sqlite3_free(pIter); + } +} + +static Fts5DlidxIter *fts5DlidxIterInit( + Fts5Index *p, /* Fts5 Backend to iterate within */ + int bRev, /* True for ORDER BY ASC */ + int iSegid, /* Segment id */ + int iLeafPg /* Leaf page number to load dlidx for */ +){ + Fts5DlidxIter *pIter = 0; + int i; + int bDone = 0; + + for(i=0; p->rc==SQLITE_OK && bDone==0; i++){ + sqlite3_int64 nByte = sizeof(Fts5DlidxIter) + i * sizeof(Fts5DlidxLvl); + Fts5DlidxIter *pNew; + + pNew = (Fts5DlidxIter*)sqlite3_realloc64(pIter, nByte); + if( pNew==0 ){ + p->rc = SQLITE_NOMEM; + }else{ + i64 iRowid = FTS5_DLIDX_ROWID(iSegid, i, iLeafPg); + Fts5DlidxLvl *pLvl = &pNew->aLvl[i]; + pIter = pNew; + memset(pLvl, 0, sizeof(Fts5DlidxLvl)); + pLvl->pData = fts5DataRead(p, iRowid); + if( pLvl->pData && (pLvl->pData->p[0] & 0x0001)==0 ){ + bDone = 1; + } + pIter->nLvl = i+1; + } + } + + if( p->rc==SQLITE_OK ){ + pIter->iSegid = iSegid; + if( bRev==0 ){ + fts5DlidxIterFirst(pIter); + }else{ + fts5DlidxIterLast(p, pIter); + } + } + + if( p->rc!=SQLITE_OK ){ + fts5DlidxIterFree(pIter); + pIter = 0; + } + + return pIter; +} + +static i64 fts5DlidxIterRowid(Fts5DlidxIter *pIter){ + return pIter->aLvl[0].iRowid; +} +static int fts5DlidxIterPgno(Fts5DlidxIter *pIter){ + return pIter->aLvl[0].iLeafPgno; +} + +/* +** Load the next leaf page into the segment iterator. +*/ +static void fts5SegIterNextPage( + Fts5Index *p, /* FTS5 backend object */ + Fts5SegIter *pIter /* Iterator to advance to next page */ +){ + Fts5Data *pLeaf; + Fts5StructureSegment *pSeg = pIter->pSeg; + fts5DataRelease(pIter->pLeaf); + pIter->iLeafPgno++; + if( pIter->pNextLeaf ){ + pIter->pLeaf = pIter->pNextLeaf; + pIter->pNextLeaf = 0; + }else if( pIter->iLeafPgno<=pSeg->pgnoLast ){ + pIter->pLeaf = fts5LeafRead(p, + FTS5_SEGMENT_ROWID(pSeg->iSegid, pIter->iLeafPgno) + ); + }else{ + pIter->pLeaf = 0; + } + pLeaf = pIter->pLeaf; + + if( pLeaf ){ + pIter->iPgidxOff = pLeaf->szLeaf; + if( fts5LeafIsTermless(pLeaf) ){ + pIter->iEndofDoclist = pLeaf->nn+1; + }else{ + pIter->iPgidxOff += fts5GetVarint32(&pLeaf->p[pIter->iPgidxOff], + pIter->iEndofDoclist + ); + } + } +} + +/* +** Argument p points to a buffer containing a varint to be interpreted as a +** position list size field. Read the varint and return the number of bytes +** read. Before returning, set *pnSz to the number of bytes in the position +** list, and *pbDel to true if the delete flag is set, or false otherwise. +*/ +static int fts5GetPoslistSize(const u8 *p, int *pnSz, int *pbDel){ + int nSz; + int n = 0; + fts5FastGetVarint32(p, n, nSz); + assert_nc( nSz>=0 ); + *pnSz = nSz/2; + *pbDel = nSz & 0x0001; + return n; +} + +/* +** Fts5SegIter.iLeafOffset currently points to the first byte of a +** position-list size field. Read the value of the field and store it +** in the following variables: +** +** Fts5SegIter.nPos +** Fts5SegIter.bDel +** +** Leave Fts5SegIter.iLeafOffset pointing to the first byte of the +** position list content (if any). +*/ +static void fts5SegIterLoadNPos(Fts5Index *p, Fts5SegIter *pIter){ + if( p->rc==SQLITE_OK ){ + int iOff = pIter->iLeafOffset; /* Offset to read at */ + ASSERT_SZLEAF_OK(pIter->pLeaf); + if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){ + int iEod = MIN(pIter->iEndofDoclist, pIter->pLeaf->szLeaf); + pIter->bDel = 0; + pIter->nPos = 1; + if( iOff<iEod && pIter->pLeaf->p[iOff]==0 ){ + pIter->bDel = 1; + iOff++; + if( iOff<iEod && pIter->pLeaf->p[iOff]==0 ){ + pIter->nPos = 1; + iOff++; + }else{ + pIter->nPos = 0; + } + } + }else{ + int nSz; + fts5FastGetVarint32(pIter->pLeaf->p, iOff, nSz); + pIter->bDel = (nSz & 0x0001); + pIter->nPos = nSz>>1; + assert_nc( pIter->nPos>=0 ); + } + pIter->iLeafOffset = iOff; + } +} + +static void fts5SegIterLoadRowid(Fts5Index *p, Fts5SegIter *pIter){ + u8 *a = pIter->pLeaf->p; /* Buffer to read data from */ + i64 iOff = pIter->iLeafOffset; + + ASSERT_SZLEAF_OK(pIter->pLeaf); + if( iOff>=pIter->pLeaf->szLeaf ){ + fts5SegIterNextPage(p, pIter); + if( pIter->pLeaf==0 ){ + if( p->rc==SQLITE_OK ) p->rc = FTS5_CORRUPT; + return; + } + iOff = 4; + a = pIter->pLeaf->p; + } + iOff += sqlite3Fts5GetVarint(&a[iOff], (u64*)&pIter->iRowid); + pIter->iLeafOffset = iOff; +} + +/* +** Fts5SegIter.iLeafOffset currently points to the first byte of the +** "nSuffix" field of a term. Function parameter nKeep contains the value +** of the "nPrefix" field (if there was one - it is passed 0 if this is +** the first term in the segment). +** +** This function populates: +** +** Fts5SegIter.term +** Fts5SegIter.rowid +** +** accordingly and leaves (Fts5SegIter.iLeafOffset) set to the content of +** the first position list. The position list belonging to document +** (Fts5SegIter.iRowid). +*/ +static void fts5SegIterLoadTerm(Fts5Index *p, Fts5SegIter *pIter, int nKeep){ + u8 *a = pIter->pLeaf->p; /* Buffer to read data from */ + i64 iOff = pIter->iLeafOffset; /* Offset to read at */ + int nNew; /* Bytes of new data */ + + iOff += fts5GetVarint32(&a[iOff], nNew); + if( iOff+nNew>pIter->pLeaf->szLeaf || nKeep>pIter->term.n || nNew==0 ){ + p->rc = FTS5_CORRUPT; + return; + } + pIter->term.n = nKeep; + fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]); + assert( pIter->term.n<=pIter->term.nSpace ); + iOff += nNew; + pIter->iTermLeafOffset = iOff; + pIter->iTermLeafPgno = pIter->iLeafPgno; + pIter->iLeafOffset = iOff; + + if( pIter->iPgidxOff>=pIter->pLeaf->nn ){ + pIter->iEndofDoclist = pIter->pLeaf->nn+1; + }else{ + int nExtra; + pIter->iPgidxOff += fts5GetVarint32(&a[pIter->iPgidxOff], nExtra); + pIter->iEndofDoclist += nExtra; + } + + fts5SegIterLoadRowid(p, pIter); +} + +static void fts5SegIterNext(Fts5Index*, Fts5SegIter*, int*); +static void fts5SegIterNext_Reverse(Fts5Index*, Fts5SegIter*, int*); +static void fts5SegIterNext_None(Fts5Index*, Fts5SegIter*, int*); + +static void fts5SegIterSetNext(Fts5Index *p, Fts5SegIter *pIter){ + if( pIter->flags & FTS5_SEGITER_REVERSE ){ + pIter->xNext = fts5SegIterNext_Reverse; + }else if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){ + pIter->xNext = fts5SegIterNext_None; + }else{ + pIter->xNext = fts5SegIterNext; + } +} + +/* +** Initialize the iterator object pIter to iterate through the entries in +** segment pSeg. The iterator is left pointing to the first entry when +** this function returns. +** +** If an error occurs, Fts5Index.rc is set to an appropriate error code. If +** an error has already occurred when this function is called, it is a no-op. +*/ +static void fts5SegIterInit( + Fts5Index *p, /* FTS index object */ + Fts5StructureSegment *pSeg, /* Description of segment */ + Fts5SegIter *pIter /* Object to populate */ +){ + if( pSeg->pgnoFirst==0 ){ + /* This happens if the segment is being used as an input to an incremental + ** merge and all data has already been "trimmed". See function + ** fts5TrimSegments() for details. In this case leave the iterator empty. + ** The caller will see the (pIter->pLeaf==0) and assume the iterator is + ** at EOF already. */ + assert( pIter->pLeaf==0 ); + return; + } + + if( p->rc==SQLITE_OK ){ + memset(pIter, 0, sizeof(*pIter)); + fts5SegIterSetNext(p, pIter); + pIter->pSeg = pSeg; + pIter->iLeafPgno = pSeg->pgnoFirst-1; + fts5SegIterNextPage(p, pIter); + } + + if( p->rc==SQLITE_OK ){ + pIter->iLeafOffset = 4; + assert( pIter->pLeaf!=0 ); + assert_nc( pIter->pLeaf->nn>4 ); + assert_nc( fts5LeafFirstTermOff(pIter->pLeaf)==4 ); + pIter->iPgidxOff = pIter->pLeaf->szLeaf+1; + fts5SegIterLoadTerm(p, pIter, 0); + fts5SegIterLoadNPos(p, pIter); + } +} + +/* +** This function is only ever called on iterators created by calls to +** Fts5IndexQuery() with the FTS5INDEX_QUERY_DESC flag set. +** +** The iterator is in an unusual state when this function is called: the +** Fts5SegIter.iLeafOffset variable is set to the offset of the start of +** the position-list size field for the first relevant rowid on the page. +** Fts5SegIter.rowid is set, but nPos and bDel are not. +** +** This function advances the iterator so that it points to the last +** relevant rowid on the page and, if necessary, initializes the +** aRowidOffset[] and iRowidOffset variables. At this point the iterator +** is in its regular state - Fts5SegIter.iLeafOffset points to the first +** byte of the position list content associated with said rowid. +*/ +static void fts5SegIterReverseInitPage(Fts5Index *p, Fts5SegIter *pIter){ + int eDetail = p->pConfig->eDetail; + int n = pIter->pLeaf->szLeaf; + int i = pIter->iLeafOffset; + u8 *a = pIter->pLeaf->p; + int iRowidOffset = 0; + + if( n>pIter->iEndofDoclist ){ + n = pIter->iEndofDoclist; + } + + ASSERT_SZLEAF_OK(pIter->pLeaf); + while( 1 ){ + u64 iDelta = 0; + + if( eDetail==FTS5_DETAIL_NONE ){ + /* todo */ + if( i<n && a[i]==0 ){ + i++; + if( i<n && a[i]==0 ) i++; + } + }else{ + int nPos; + int bDummy; + i += fts5GetPoslistSize(&a[i], &nPos, &bDummy); + i += nPos; + } + if( i>=n ) break; + i += fts5GetVarint(&a[i], &iDelta); + pIter->iRowid += iDelta; + + /* If necessary, grow the pIter->aRowidOffset[] array. */ + if( iRowidOffset>=pIter->nRowidOffset ){ + int nNew = pIter->nRowidOffset + 8; + int *aNew = (int*)sqlite3_realloc64(pIter->aRowidOffset,nNew*sizeof(int)); + if( aNew==0 ){ + p->rc = SQLITE_NOMEM; + break; + } + pIter->aRowidOffset = aNew; + pIter->nRowidOffset = nNew; + } + + pIter->aRowidOffset[iRowidOffset++] = pIter->iLeafOffset; + pIter->iLeafOffset = i; + } + pIter->iRowidOffset = iRowidOffset; + fts5SegIterLoadNPos(p, pIter); +} + +/* +** +*/ +static void fts5SegIterReverseNewPage(Fts5Index *p, Fts5SegIter *pIter){ + assert( pIter->flags & FTS5_SEGITER_REVERSE ); + assert( pIter->flags & FTS5_SEGITER_ONETERM ); + + fts5DataRelease(pIter->pLeaf); + pIter->pLeaf = 0; + while( p->rc==SQLITE_OK && pIter->iLeafPgno>pIter->iTermLeafPgno ){ + Fts5Data *pNew; + pIter->iLeafPgno--; + pNew = fts5DataRead(p, FTS5_SEGMENT_ROWID( + pIter->pSeg->iSegid, pIter->iLeafPgno + )); + if( pNew ){ + /* iTermLeafOffset may be equal to szLeaf if the term is the last + ** thing on the page - i.e. the first rowid is on the following page. + ** In this case leave pIter->pLeaf==0, this iterator is at EOF. */ + if( pIter->iLeafPgno==pIter->iTermLeafPgno ){ + assert( pIter->pLeaf==0 ); + if( pIter->iTermLeafOffset<pNew->szLeaf ){ + pIter->pLeaf = pNew; + pIter->iLeafOffset = pIter->iTermLeafOffset; + } + }else{ + int iRowidOff; + iRowidOff = fts5LeafFirstRowidOff(pNew); + if( iRowidOff ){ + if( iRowidOff>=pNew->szLeaf ){ + p->rc = FTS5_CORRUPT; + }else{ + pIter->pLeaf = pNew; + pIter->iLeafOffset = iRowidOff; + } + } + } + + if( pIter->pLeaf ){ + u8 *a = &pIter->pLeaf->p[pIter->iLeafOffset]; + pIter->iLeafOffset += fts5GetVarint(a, (u64*)&pIter->iRowid); + break; + }else{ + fts5DataRelease(pNew); + } + } + } + + if( pIter->pLeaf ){ + pIter->iEndofDoclist = pIter->pLeaf->nn+1; + fts5SegIterReverseInitPage(p, pIter); + } +} + +/* +** Return true if the iterator passed as the second argument currently +** points to a delete marker. A delete marker is an entry with a 0 byte +** position-list. +*/ +static int fts5MultiIterIsEmpty(Fts5Index *p, Fts5Iter *pIter){ + Fts5SegIter *pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst]; + return (p->rc==SQLITE_OK && pSeg->pLeaf && pSeg->nPos==0); +} + +/* +** Advance iterator pIter to the next entry. +** +** This version of fts5SegIterNext() is only used by reverse iterators. +*/ +static void fts5SegIterNext_Reverse( + Fts5Index *p, /* FTS5 backend object */ + Fts5SegIter *pIter, /* Iterator to advance */ + int *pbUnused /* Unused */ +){ + assert( pIter->flags & FTS5_SEGITER_REVERSE ); + assert( pIter->pNextLeaf==0 ); + UNUSED_PARAM(pbUnused); + + if( pIter->iRowidOffset>0 ){ + u8 *a = pIter->pLeaf->p; + int iOff; + u64 iDelta; + + pIter->iRowidOffset--; + pIter->iLeafOffset = pIter->aRowidOffset[pIter->iRowidOffset]; + fts5SegIterLoadNPos(p, pIter); + iOff = pIter->iLeafOffset; + if( p->pConfig->eDetail!=FTS5_DETAIL_NONE ){ + iOff += pIter->nPos; + } + fts5GetVarint(&a[iOff], &iDelta); + pIter->iRowid -= iDelta; + }else{ + fts5SegIterReverseNewPage(p, pIter); + } +} + +/* +** Advance iterator pIter to the next entry. +** +** This version of fts5SegIterNext() is only used if detail=none and the +** iterator is not a reverse direction iterator. +*/ +static void fts5SegIterNext_None( + Fts5Index *p, /* FTS5 backend object */ + Fts5SegIter *pIter, /* Iterator to advance */ + int *pbNewTerm /* OUT: Set for new term */ +){ + int iOff; + + assert( p->rc==SQLITE_OK ); + assert( (pIter->flags & FTS5_SEGITER_REVERSE)==0 ); + assert( p->pConfig->eDetail==FTS5_DETAIL_NONE ); + + ASSERT_SZLEAF_OK(pIter->pLeaf); + iOff = pIter->iLeafOffset; + + /* Next entry is on the next page */ + if( pIter->pSeg && iOff>=pIter->pLeaf->szLeaf ){ + fts5SegIterNextPage(p, pIter); + if( p->rc || pIter->pLeaf==0 ) return; + pIter->iRowid = 0; + iOff = 4; + } + + if( iOff<pIter->iEndofDoclist ){ + /* Next entry is on the current page */ + i64 iDelta; + iOff += sqlite3Fts5GetVarint(&pIter->pLeaf->p[iOff], (u64*)&iDelta); + pIter->iLeafOffset = iOff; + pIter->iRowid += iDelta; + }else if( (pIter->flags & FTS5_SEGITER_ONETERM)==0 ){ + if( pIter->pSeg ){ + int nKeep = 0; + if( iOff!=fts5LeafFirstTermOff(pIter->pLeaf) ){ + iOff += fts5GetVarint32(&pIter->pLeaf->p[iOff], nKeep); + } + pIter->iLeafOffset = iOff; + fts5SegIterLoadTerm(p, pIter, nKeep); + }else{ + const u8 *pList = 0; + const char *zTerm = 0; + int nList; + sqlite3Fts5HashScanNext(p->pHash); + sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList); + if( pList==0 ) goto next_none_eof; + pIter->pLeaf->p = (u8*)pList; + pIter->pLeaf->nn = nList; + pIter->pLeaf->szLeaf = nList; + pIter->iEndofDoclist = nList; + sqlite3Fts5BufferSet(&p->rc,&pIter->term, (int)strlen(zTerm), (u8*)zTerm); + pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid); + } + + if( pbNewTerm ) *pbNewTerm = 1; + }else{ + goto next_none_eof; + } + + fts5SegIterLoadNPos(p, pIter); + + return; + next_none_eof: + fts5DataRelease(pIter->pLeaf); + pIter->pLeaf = 0; +} + + +/* +** Advance iterator pIter to the next entry. +** +** If an error occurs, Fts5Index.rc is set to an appropriate error code. It +** is not considered an error if the iterator reaches EOF. If an error has +** already occurred when this function is called, it is a no-op. +*/ +static void fts5SegIterNext( + Fts5Index *p, /* FTS5 backend object */ + Fts5SegIter *pIter, /* Iterator to advance */ + int *pbNewTerm /* OUT: Set for new term */ +){ + Fts5Data *pLeaf = pIter->pLeaf; + int iOff; + int bNewTerm = 0; + int nKeep = 0; + u8 *a; + int n; + + assert( pbNewTerm==0 || *pbNewTerm==0 ); + assert( p->pConfig->eDetail!=FTS5_DETAIL_NONE ); + + /* Search for the end of the position list within the current page. */ + a = pLeaf->p; + n = pLeaf->szLeaf; + + ASSERT_SZLEAF_OK(pLeaf); + iOff = pIter->iLeafOffset + pIter->nPos; + + if( iOff<n ){ + /* The next entry is on the current page. */ + assert_nc( iOff<=pIter->iEndofDoclist ); + if( iOff>=pIter->iEndofDoclist ){ + bNewTerm = 1; + if( iOff!=fts5LeafFirstTermOff(pLeaf) ){ + iOff += fts5GetVarint32(&a[iOff], nKeep); + } + }else{ + u64 iDelta; + iOff += sqlite3Fts5GetVarint(&a[iOff], &iDelta); + pIter->iRowid += iDelta; + assert_nc( iDelta>0 ); + } + pIter->iLeafOffset = iOff; + + }else if( pIter->pSeg==0 ){ + const u8 *pList = 0; + const char *zTerm = 0; + int nList = 0; + assert( (pIter->flags & FTS5_SEGITER_ONETERM) || pbNewTerm ); + if( 0==(pIter->flags & FTS5_SEGITER_ONETERM) ){ + sqlite3Fts5HashScanNext(p->pHash); + sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList); + } + if( pList==0 ){ + fts5DataRelease(pIter->pLeaf); + pIter->pLeaf = 0; + }else{ + pIter->pLeaf->p = (u8*)pList; + pIter->pLeaf->nn = nList; + pIter->pLeaf->szLeaf = nList; + pIter->iEndofDoclist = nList+1; + sqlite3Fts5BufferSet(&p->rc, &pIter->term, (int)strlen(zTerm), + (u8*)zTerm); + pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid); + *pbNewTerm = 1; + } + }else{ + iOff = 0; + /* Next entry is not on the current page */ + while( iOff==0 ){ + fts5SegIterNextPage(p, pIter); + pLeaf = pIter->pLeaf; + if( pLeaf==0 ) break; + ASSERT_SZLEAF_OK(pLeaf); + if( (iOff = fts5LeafFirstRowidOff(pLeaf)) && iOff<pLeaf->szLeaf ){ + iOff += sqlite3Fts5GetVarint(&pLeaf->p[iOff], (u64*)&pIter->iRowid); + pIter->iLeafOffset = iOff; + + if( pLeaf->nn>pLeaf->szLeaf ){ + pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32( + &pLeaf->p[pLeaf->szLeaf], pIter->iEndofDoclist + ); + } + } + else if( pLeaf->nn>pLeaf->szLeaf ){ + pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32( + &pLeaf->p[pLeaf->szLeaf], iOff + ); + pIter->iLeafOffset = iOff; + pIter->iEndofDoclist = iOff; + bNewTerm = 1; + } + assert_nc( iOff<pLeaf->szLeaf ); + if( iOff>pLeaf->szLeaf ){ + p->rc = FTS5_CORRUPT; + return; + } + } + } + + /* Check if the iterator is now at EOF. If so, return early. */ + if( pIter->pLeaf ){ + if( bNewTerm ){ + if( pIter->flags & FTS5_SEGITER_ONETERM ){ + fts5DataRelease(pIter->pLeaf); + pIter->pLeaf = 0; + }else{ + fts5SegIterLoadTerm(p, pIter, nKeep); + fts5SegIterLoadNPos(p, pIter); + if( pbNewTerm ) *pbNewTerm = 1; + } + }else{ + /* The following could be done by calling fts5SegIterLoadNPos(). But + ** this block is particularly performance critical, so equivalent + ** code is inlined. */ + int nSz; + assert_nc( pIter->iLeafOffset<=pIter->pLeaf->nn ); + fts5FastGetVarint32(pIter->pLeaf->p, pIter->iLeafOffset, nSz); + pIter->bDel = (nSz & 0x0001); + pIter->nPos = nSz>>1; + assert_nc( pIter->nPos>=0 ); + } + } +} + +#define SWAPVAL(T, a, b) { T tmp; tmp=a; a=b; b=tmp; } + +#define fts5IndexSkipVarint(a, iOff) { \ + int iEnd = iOff+9; \ + while( (a[iOff++] & 0x80) && iOff<iEnd ); \ +} + +/* +** Iterator pIter currently points to the first rowid in a doclist. This +** function sets the iterator up so that iterates in reverse order through +** the doclist. +*/ +static void fts5SegIterReverse(Fts5Index *p, Fts5SegIter *pIter){ + Fts5DlidxIter *pDlidx = pIter->pDlidx; + Fts5Data *pLast = 0; + int pgnoLast = 0; + + if( pDlidx ){ + int iSegid = pIter->pSeg->iSegid; + pgnoLast = fts5DlidxIterPgno(pDlidx); + pLast = fts5LeafRead(p, FTS5_SEGMENT_ROWID(iSegid, pgnoLast)); + }else{ + Fts5Data *pLeaf = pIter->pLeaf; /* Current leaf data */ + + /* Currently, Fts5SegIter.iLeafOffset points to the first byte of + ** position-list content for the current rowid. Back it up so that it + ** points to the start of the position-list size field. */ + int iPoslist; + if( pIter->iTermLeafPgno==pIter->iLeafPgno ){ + iPoslist = pIter->iTermLeafOffset; + }else{ + iPoslist = 4; + } + fts5IndexSkipVarint(pLeaf->p, iPoslist); + pIter->iLeafOffset = iPoslist; + + /* If this condition is true then the largest rowid for the current + ** term may not be stored on the current page. So search forward to + ** see where said rowid really is. */ + if( pIter->iEndofDoclist>=pLeaf->szLeaf ){ + int pgno; + Fts5StructureSegment *pSeg = pIter->pSeg; + + /* The last rowid in the doclist may not be on the current page. Search + ** forward to find the page containing the last rowid. */ + for(pgno=pIter->iLeafPgno+1; !p->rc && pgno<=pSeg->pgnoLast; pgno++){ + i64 iAbs = FTS5_SEGMENT_ROWID(pSeg->iSegid, pgno); + Fts5Data *pNew = fts5LeafRead(p, iAbs); + if( pNew ){ + int iRowid, bTermless; + iRowid = fts5LeafFirstRowidOff(pNew); + bTermless = fts5LeafIsTermless(pNew); + if( iRowid ){ + SWAPVAL(Fts5Data*, pNew, pLast); + pgnoLast = pgno; + } + fts5DataRelease(pNew); + if( bTermless==0 ) break; + } + } + } + } + + /* If pLast is NULL at this point, then the last rowid for this doclist + ** lies on the page currently indicated by the iterator. In this case + ** pIter->iLeafOffset is already set to point to the position-list size + ** field associated with the first relevant rowid on the page. + ** + ** Or, if pLast is non-NULL, then it is the page that contains the last + ** rowid. In this case configure the iterator so that it points to the + ** first rowid on this page. + */ + if( pLast ){ + int iOff; + fts5DataRelease(pIter->pLeaf); + pIter->pLeaf = pLast; + pIter->iLeafPgno = pgnoLast; + iOff = fts5LeafFirstRowidOff(pLast); + if( iOff>pLast->szLeaf ){ + p->rc = FTS5_CORRUPT; + return; + } + iOff += fts5GetVarint(&pLast->p[iOff], (u64*)&pIter->iRowid); + pIter->iLeafOffset = iOff; + + if( fts5LeafIsTermless(pLast) ){ + pIter->iEndofDoclist = pLast->nn+1; + }else{ + pIter->iEndofDoclist = fts5LeafFirstTermOff(pLast); + } + } + + fts5SegIterReverseInitPage(p, pIter); +} + +/* +** Iterator pIter currently points to the first rowid of a doclist. +** There is a doclist-index associated with the final term on the current +** page. If the current term is the last term on the page, load the +** doclist-index from disk and initialize an iterator at (pIter->pDlidx). +*/ +static void fts5SegIterLoadDlidx(Fts5Index *p, Fts5SegIter *pIter){ + int iSeg = pIter->pSeg->iSegid; + int bRev = (pIter->flags & FTS5_SEGITER_REVERSE); + Fts5Data *pLeaf = pIter->pLeaf; /* Current leaf data */ + + assert( pIter->flags & FTS5_SEGITER_ONETERM ); + assert( pIter->pDlidx==0 ); + + /* Check if the current doclist ends on this page. If it does, return + ** early without loading the doclist-index (as it belongs to a different + ** term. */ + if( pIter->iTermLeafPgno==pIter->iLeafPgno + && pIter->iEndofDoclist<pLeaf->szLeaf + ){ + return; + } + + pIter->pDlidx = fts5DlidxIterInit(p, bRev, iSeg, pIter->iTermLeafPgno); +} + +/* +** The iterator object passed as the second argument currently contains +** no valid values except for the Fts5SegIter.pLeaf member variable. This +** function searches the leaf page for a term matching (pTerm/nTerm). +** +** If the specified term is found on the page, then the iterator is left +** pointing to it. If argument bGe is zero and the term is not found, +** the iterator is left pointing at EOF. +** +** If bGe is non-zero and the specified term is not found, then the +** iterator is left pointing to the smallest term in the segment that +** is larger than the specified term, even if this term is not on the +** current page. +*/ +static void fts5LeafSeek( + Fts5Index *p, /* Leave any error code here */ + int bGe, /* True for a >= search */ + Fts5SegIter *pIter, /* Iterator to seek */ + const u8 *pTerm, int nTerm /* Term to search for */ +){ + u32 iOff; + const u8 *a = pIter->pLeaf->p; + u32 n = (u32)pIter->pLeaf->nn; + + u32 nMatch = 0; + u32 nKeep = 0; + u32 nNew = 0; + u32 iTermOff; + u32 iPgidx; /* Current offset in pgidx */ + int bEndOfPage = 0; + + assert( p->rc==SQLITE_OK ); + + iPgidx = (u32)pIter->pLeaf->szLeaf; + iPgidx += fts5GetVarint32(&a[iPgidx], iTermOff); + iOff = iTermOff; + if( iOff>n ){ + p->rc = FTS5_CORRUPT; + return; + } + + while( 1 ){ + + /* Figure out how many new bytes are in this term */ + fts5FastGetVarint32(a, iOff, nNew); + if( nKeep<nMatch ){ + goto search_failed; + } + + assert( nKeep>=nMatch ); + if( nKeep==nMatch ){ + u32 nCmp; + u32 i; + nCmp = (u32)MIN(nNew, nTerm-nMatch); + for(i=0; i<nCmp; i++){ + if( a[iOff+i]!=pTerm[nMatch+i] ) break; + } + nMatch += i; + + if( (u32)nTerm==nMatch ){ + if( i==nNew ){ + goto search_success; + }else{ + goto search_failed; + } + }else if( i<nNew && a[iOff+i]>pTerm[nMatch] ){ + goto search_failed; + } + } + + if( iPgidx>=n ){ + bEndOfPage = 1; + break; + } + + iPgidx += fts5GetVarint32(&a[iPgidx], nKeep); + iTermOff += nKeep; + iOff = iTermOff; + + if( iOff>=n ){ + p->rc = FTS5_CORRUPT; + return; + } + + /* Read the nKeep field of the next term. */ + fts5FastGetVarint32(a, iOff, nKeep); + } + + search_failed: + if( bGe==0 ){ + fts5DataRelease(pIter->pLeaf); + pIter->pLeaf = 0; + return; + }else if( bEndOfPage ){ + do { + fts5SegIterNextPage(p, pIter); + if( pIter->pLeaf==0 ) return; + a = pIter->pLeaf->p; + if( fts5LeafIsTermless(pIter->pLeaf)==0 ){ + iPgidx = (u32)pIter->pLeaf->szLeaf; + iPgidx += fts5GetVarint32(&pIter->pLeaf->p[iPgidx], iOff); + if( iOff<4 || (i64)iOff>=pIter->pLeaf->szLeaf ){ + p->rc = FTS5_CORRUPT; + return; + }else{ + nKeep = 0; + iTermOff = iOff; + n = (u32)pIter->pLeaf->nn; + iOff += fts5GetVarint32(&a[iOff], nNew); + break; + } + } + }while( 1 ); + } + + search_success: + if( (i64)iOff+nNew>n || nNew<1 ){ + p->rc = FTS5_CORRUPT; + return; + } + pIter->iLeafOffset = iOff + nNew; + pIter->iTermLeafOffset = pIter->iLeafOffset; + pIter->iTermLeafPgno = pIter->iLeafPgno; + + fts5BufferSet(&p->rc, &pIter->term, nKeep, pTerm); + fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]); + + if( iPgidx>=n ){ + pIter->iEndofDoclist = pIter->pLeaf->nn+1; + }else{ + int nExtra; + iPgidx += fts5GetVarint32(&a[iPgidx], nExtra); + pIter->iEndofDoclist = iTermOff + nExtra; + } + pIter->iPgidxOff = iPgidx; + + fts5SegIterLoadRowid(p, pIter); + fts5SegIterLoadNPos(p, pIter); +} + +static sqlite3_stmt *fts5IdxSelectStmt(Fts5Index *p){ + if( p->pIdxSelect==0 ){ + Fts5Config *pConfig = p->pConfig; + fts5IndexPrepareStmt(p, &p->pIdxSelect, sqlite3_mprintf( + "SELECT pgno FROM '%q'.'%q_idx' WHERE " + "segid=? AND term<=? ORDER BY term DESC LIMIT 1", + pConfig->zDb, pConfig->zName + )); + } + return p->pIdxSelect; +} + +/* +** Initialize the object pIter to point to term pTerm/nTerm within segment +** pSeg. If there is no such term in the index, the iterator is set to EOF. +** +** If an error occurs, Fts5Index.rc is set to an appropriate error code. If +** an error has already occurred when this function is called, it is a no-op. +*/ +static void fts5SegIterSeekInit( + Fts5Index *p, /* FTS5 backend */ + const u8 *pTerm, int nTerm, /* Term to seek to */ + int flags, /* Mask of FTS5INDEX_XXX flags */ + Fts5StructureSegment *pSeg, /* Description of segment */ + Fts5SegIter *pIter /* Object to populate */ +){ + int iPg = 1; + int bGe = (flags & FTS5INDEX_QUERY_SCAN); + int bDlidx = 0; /* True if there is a doclist-index */ + sqlite3_stmt *pIdxSelect = 0; + + assert( bGe==0 || (flags & FTS5INDEX_QUERY_DESC)==0 ); + assert( pTerm && nTerm ); + memset(pIter, 0, sizeof(*pIter)); + pIter->pSeg = pSeg; + + /* This block sets stack variable iPg to the leaf page number that may + ** contain term (pTerm/nTerm), if it is present in the segment. */ + pIdxSelect = fts5IdxSelectStmt(p); + if( p->rc ) return; + sqlite3_bind_int(pIdxSelect, 1, pSeg->iSegid); + sqlite3_bind_blob(pIdxSelect, 2, pTerm, nTerm, SQLITE_STATIC); + if( SQLITE_ROW==sqlite3_step(pIdxSelect) ){ + i64 val = sqlite3_column_int(pIdxSelect, 0); + iPg = (int)(val>>1); + bDlidx = (val & 0x0001); + } + p->rc = sqlite3_reset(pIdxSelect); + sqlite3_bind_null(pIdxSelect, 2); + + if( iPg<pSeg->pgnoFirst ){ + iPg = pSeg->pgnoFirst; + bDlidx = 0; + } + + pIter->iLeafPgno = iPg - 1; + fts5SegIterNextPage(p, pIter); + + if( pIter->pLeaf ){ + fts5LeafSeek(p, bGe, pIter, pTerm, nTerm); + } + + if( p->rc==SQLITE_OK && bGe==0 ){ + pIter->flags |= FTS5_SEGITER_ONETERM; + if( pIter->pLeaf ){ + if( flags & FTS5INDEX_QUERY_DESC ){ + pIter->flags |= FTS5_SEGITER_REVERSE; + } + if( bDlidx ){ + fts5SegIterLoadDlidx(p, pIter); + } + if( flags & FTS5INDEX_QUERY_DESC ){ + fts5SegIterReverse(p, pIter); + } + } + } + + fts5SegIterSetNext(p, pIter); + + /* Either: + ** + ** 1) an error has occurred, or + ** 2) the iterator points to EOF, or + ** 3) the iterator points to an entry with term (pTerm/nTerm), or + ** 4) the FTS5INDEX_QUERY_SCAN flag was set and the iterator points + ** to an entry with a term greater than or equal to (pTerm/nTerm). + */ + assert_nc( p->rc!=SQLITE_OK /* 1 */ + || pIter->pLeaf==0 /* 2 */ + || fts5BufferCompareBlob(&pIter->term, pTerm, nTerm)==0 /* 3 */ + || (bGe && fts5BufferCompareBlob(&pIter->term, pTerm, nTerm)>0) /* 4 */ + ); +} + +/* +** Initialize the object pIter to point to term pTerm/nTerm within the +** in-memory hash table. If there is no such term in the hash-table, the +** iterator is set to EOF. +** +** If an error occurs, Fts5Index.rc is set to an appropriate error code. If +** an error has already occurred when this function is called, it is a no-op. +*/ +static void fts5SegIterHashInit( + Fts5Index *p, /* FTS5 backend */ + const u8 *pTerm, int nTerm, /* Term to seek to */ + int flags, /* Mask of FTS5INDEX_XXX flags */ + Fts5SegIter *pIter /* Object to populate */ +){ + int nList = 0; + const u8 *z = 0; + int n = 0; + Fts5Data *pLeaf = 0; + + assert( p->pHash ); + assert( p->rc==SQLITE_OK ); + + if( pTerm==0 || (flags & FTS5INDEX_QUERY_SCAN) ){ + const u8 *pList = 0; + + p->rc = sqlite3Fts5HashScanInit(p->pHash, (const char*)pTerm, nTerm); + sqlite3Fts5HashScanEntry(p->pHash, (const char**)&z, &pList, &nList); + n = (z ? (int)strlen((const char*)z) : 0); + if( pList ){ + pLeaf = fts5IdxMalloc(p, sizeof(Fts5Data)); + if( pLeaf ){ + pLeaf->p = (u8*)pList; + } + } + }else{ + p->rc = sqlite3Fts5HashQuery(p->pHash, sizeof(Fts5Data), + (const char*)pTerm, nTerm, (void**)&pLeaf, &nList + ); + if( pLeaf ){ + pLeaf->p = (u8*)&pLeaf[1]; + } + z = pTerm; + n = nTerm; + pIter->flags |= FTS5_SEGITER_ONETERM; + } + + if( pLeaf ){ + sqlite3Fts5BufferSet(&p->rc, &pIter->term, n, z); + pLeaf->nn = pLeaf->szLeaf = nList; + pIter->pLeaf = pLeaf; + pIter->iLeafOffset = fts5GetVarint(pLeaf->p, (u64*)&pIter->iRowid); + pIter->iEndofDoclist = pLeaf->nn; + + if( flags & FTS5INDEX_QUERY_DESC ){ + pIter->flags |= FTS5_SEGITER_REVERSE; + fts5SegIterReverseInitPage(p, pIter); + }else{ + fts5SegIterLoadNPos(p, pIter); + } + } + + fts5SegIterSetNext(p, pIter); +} + +/* +** Zero the iterator passed as the only argument. +*/ +static void fts5SegIterClear(Fts5SegIter *pIter){ + fts5BufferFree(&pIter->term); + fts5DataRelease(pIter->pLeaf); + fts5DataRelease(pIter->pNextLeaf); + fts5DlidxIterFree(pIter->pDlidx); + sqlite3_free(pIter->aRowidOffset); + memset(pIter, 0, sizeof(Fts5SegIter)); +} + +#ifdef SQLITE_DEBUG + +/* +** This function is used as part of the big assert() procedure implemented by +** fts5AssertMultiIterSetup(). It ensures that the result currently stored +** in *pRes is the correct result of comparing the current positions of the +** two iterators. +*/ +static void fts5AssertComparisonResult( + Fts5Iter *pIter, + Fts5SegIter *p1, + Fts5SegIter *p2, + Fts5CResult *pRes +){ + int i1 = p1 - pIter->aSeg; + int i2 = p2 - pIter->aSeg; + + if( p1->pLeaf || p2->pLeaf ){ + if( p1->pLeaf==0 ){ + assert( pRes->iFirst==i2 ); + }else if( p2->pLeaf==0 ){ + assert( pRes->iFirst==i1 ); + }else{ + int nMin = MIN(p1->term.n, p2->term.n); + int res = fts5Memcmp(p1->term.p, p2->term.p, nMin); + if( res==0 ) res = p1->term.n - p2->term.n; + + if( res==0 ){ + assert( pRes->bTermEq==1 ); + assert( p1->iRowid!=p2->iRowid ); + res = ((p1->iRowid > p2->iRowid)==pIter->bRev) ? -1 : 1; + }else{ + assert( pRes->bTermEq==0 ); + } + + if( res<0 ){ + assert( pRes->iFirst==i1 ); + }else{ + assert( pRes->iFirst==i2 ); + } + } + } +} + +/* +** This function is a no-op unless SQLITE_DEBUG is defined when this module +** is compiled. In that case, this function is essentially an assert() +** statement used to verify that the contents of the pIter->aFirst[] array +** are correct. +*/ +static void fts5AssertMultiIterSetup(Fts5Index *p, Fts5Iter *pIter){ + if( p->rc==SQLITE_OK ){ + Fts5SegIter *pFirst = &pIter->aSeg[ pIter->aFirst[1].iFirst ]; + int i; + + assert( (pFirst->pLeaf==0)==pIter->base.bEof ); + + /* Check that pIter->iSwitchRowid is set correctly. */ + for(i=0; i<pIter->nSeg; i++){ + Fts5SegIter *p1 = &pIter->aSeg[i]; + assert( p1==pFirst + || p1->pLeaf==0 + || fts5BufferCompare(&pFirst->term, &p1->term) + || p1->iRowid==pIter->iSwitchRowid + || (p1->iRowid<pIter->iSwitchRowid)==pIter->bRev + ); + } + + for(i=0; i<pIter->nSeg; i+=2){ + Fts5SegIter *p1 = &pIter->aSeg[i]; + Fts5SegIter *p2 = &pIter->aSeg[i+1]; + Fts5CResult *pRes = &pIter->aFirst[(pIter->nSeg + i) / 2]; + fts5AssertComparisonResult(pIter, p1, p2, pRes); + } + + for(i=1; i<(pIter->nSeg / 2); i+=2){ + Fts5SegIter *p1 = &pIter->aSeg[ pIter->aFirst[i*2].iFirst ]; + Fts5SegIter *p2 = &pIter->aSeg[ pIter->aFirst[i*2+1].iFirst ]; + Fts5CResult *pRes = &pIter->aFirst[i]; + fts5AssertComparisonResult(pIter, p1, p2, pRes); + } + } +} +#else +# define fts5AssertMultiIterSetup(x,y) +#endif + +/* +** Do the comparison necessary to populate pIter->aFirst[iOut]. +** +** If the returned value is non-zero, then it is the index of an entry +** in the pIter->aSeg[] array that is (a) not at EOF, and (b) pointing +** to a key that is a duplicate of another, higher priority, +** segment-iterator in the pSeg->aSeg[] array. +*/ +static int fts5MultiIterDoCompare(Fts5Iter *pIter, int iOut){ + int i1; /* Index of left-hand Fts5SegIter */ + int i2; /* Index of right-hand Fts5SegIter */ + int iRes; + Fts5SegIter *p1; /* Left-hand Fts5SegIter */ + Fts5SegIter *p2; /* Right-hand Fts5SegIter */ + Fts5CResult *pRes = &pIter->aFirst[iOut]; + + assert( iOut<pIter->nSeg && iOut>0 ); + assert( pIter->bRev==0 || pIter->bRev==1 ); + + if( iOut>=(pIter->nSeg/2) ){ + i1 = (iOut - pIter->nSeg/2) * 2; + i2 = i1 + 1; + }else{ + i1 = pIter->aFirst[iOut*2].iFirst; + i2 = pIter->aFirst[iOut*2+1].iFirst; + } + p1 = &pIter->aSeg[i1]; + p2 = &pIter->aSeg[i2]; + + pRes->bTermEq = 0; + if( p1->pLeaf==0 ){ /* If p1 is at EOF */ + iRes = i2; + }else if( p2->pLeaf==0 ){ /* If p2 is at EOF */ + iRes = i1; + }else{ + int res = fts5BufferCompare(&p1->term, &p2->term); + if( res==0 ){ + assert_nc( i2>i1 ); + assert_nc( i2!=0 ); + pRes->bTermEq = 1; + if( p1->iRowid==p2->iRowid ){ + p1->bDel = p2->bDel; + return i2; + } + res = ((p1->iRowid > p2->iRowid)==pIter->bRev) ? -1 : +1; + } + assert( res!=0 ); + if( res<0 ){ + iRes = i1; + }else{ + iRes = i2; + } + } + + pRes->iFirst = (u16)iRes; + return 0; +} + +/* +** Move the seg-iter so that it points to the first rowid on page iLeafPgno. +** It is an error if leaf iLeafPgno does not exist or contains no rowids. +*/ +static void fts5SegIterGotoPage( + Fts5Index *p, /* FTS5 backend object */ + Fts5SegIter *pIter, /* Iterator to advance */ + int iLeafPgno +){ + assert( iLeafPgno>pIter->iLeafPgno ); + + if( iLeafPgno>pIter->pSeg->pgnoLast ){ + p->rc = FTS5_CORRUPT; + }else{ + fts5DataRelease(pIter->pNextLeaf); + pIter->pNextLeaf = 0; + pIter->iLeafPgno = iLeafPgno-1; + fts5SegIterNextPage(p, pIter); + assert( p->rc!=SQLITE_OK || pIter->iLeafPgno==iLeafPgno ); + + if( p->rc==SQLITE_OK && ALWAYS(pIter->pLeaf!=0) ){ + int iOff; + u8 *a = pIter->pLeaf->p; + int n = pIter->pLeaf->szLeaf; + + iOff = fts5LeafFirstRowidOff(pIter->pLeaf); + if( iOff<4 || iOff>=n ){ + p->rc = FTS5_CORRUPT; + }else{ + iOff += fts5GetVarint(&a[iOff], (u64*)&pIter->iRowid); + pIter->iLeafOffset = iOff; + fts5SegIterLoadNPos(p, pIter); + } + } + } +} + +/* +** Advance the iterator passed as the second argument until it is at or +** past rowid iFrom. Regardless of the value of iFrom, the iterator is +** always advanced at least once. +*/ +static void fts5SegIterNextFrom( + Fts5Index *p, /* FTS5 backend object */ + Fts5SegIter *pIter, /* Iterator to advance */ + i64 iMatch /* Advance iterator at least this far */ +){ + int bRev = (pIter->flags & FTS5_SEGITER_REVERSE); + Fts5DlidxIter *pDlidx = pIter->pDlidx; + int iLeafPgno = pIter->iLeafPgno; + int bMove = 1; + + assert( pIter->flags & FTS5_SEGITER_ONETERM ); + assert( pIter->pDlidx ); + assert( pIter->pLeaf ); + + if( bRev==0 ){ + while( !fts5DlidxIterEof(p, pDlidx) && iMatch>fts5DlidxIterRowid(pDlidx) ){ + iLeafPgno = fts5DlidxIterPgno(pDlidx); + fts5DlidxIterNext(p, pDlidx); + } + assert_nc( iLeafPgno>=pIter->iLeafPgno || p->rc ); + if( iLeafPgno>pIter->iLeafPgno ){ + fts5SegIterGotoPage(p, pIter, iLeafPgno); + bMove = 0; + } + }else{ + assert( pIter->pNextLeaf==0 ); + assert( iMatch<pIter->iRowid ); + while( !fts5DlidxIterEof(p, pDlidx) && iMatch<fts5DlidxIterRowid(pDlidx) ){ + fts5DlidxIterPrev(p, pDlidx); + } + iLeafPgno = fts5DlidxIterPgno(pDlidx); + + assert( fts5DlidxIterEof(p, pDlidx) || iLeafPgno<=pIter->iLeafPgno ); + + if( iLeafPgno<pIter->iLeafPgno ){ + pIter->iLeafPgno = iLeafPgno+1; + fts5SegIterReverseNewPage(p, pIter); + bMove = 0; + } + } + + do{ + if( bMove && p->rc==SQLITE_OK ) pIter->xNext(p, pIter, 0); + if( pIter->pLeaf==0 ) break; + if( bRev==0 && pIter->iRowid>=iMatch ) break; + if( bRev!=0 && pIter->iRowid<=iMatch ) break; + bMove = 1; + }while( p->rc==SQLITE_OK ); +} + + +/* +** Free the iterator object passed as the second argument. +*/ +static void fts5MultiIterFree(Fts5Iter *pIter){ + if( pIter ){ + int i; + for(i=0; i<pIter->nSeg; i++){ + fts5SegIterClear(&pIter->aSeg[i]); + } + fts5BufferFree(&pIter->poslist); + sqlite3_free(pIter); + } +} + +static void fts5MultiIterAdvanced( + Fts5Index *p, /* FTS5 backend to iterate within */ + Fts5Iter *pIter, /* Iterator to update aFirst[] array for */ + int iChanged, /* Index of sub-iterator just advanced */ + int iMinset /* Minimum entry in aFirst[] to set */ +){ + int i; + for(i=(pIter->nSeg+iChanged)/2; i>=iMinset && p->rc==SQLITE_OK; i=i/2){ + int iEq; + if( (iEq = fts5MultiIterDoCompare(pIter, i)) ){ + Fts5SegIter *pSeg = &pIter->aSeg[iEq]; + assert( p->rc==SQLITE_OK ); + pSeg->xNext(p, pSeg, 0); + i = pIter->nSeg + iEq; + } + } +} + +/* +** Sub-iterator iChanged of iterator pIter has just been advanced. It still +** points to the same term though - just a different rowid. This function +** attempts to update the contents of the pIter->aFirst[] accordingly. +** If it does so successfully, 0 is returned. Otherwise 1. +** +** If non-zero is returned, the caller should call fts5MultiIterAdvanced() +** on the iterator instead. That function does the same as this one, except +** that it deals with more complicated cases as well. +*/ +static int fts5MultiIterAdvanceRowid( + Fts5Iter *pIter, /* Iterator to update aFirst[] array for */ + int iChanged, /* Index of sub-iterator just advanced */ + Fts5SegIter **ppFirst +){ + Fts5SegIter *pNew = &pIter->aSeg[iChanged]; + + if( pNew->iRowid==pIter->iSwitchRowid + || (pNew->iRowid<pIter->iSwitchRowid)==pIter->bRev + ){ + int i; + Fts5SegIter *pOther = &pIter->aSeg[iChanged ^ 0x0001]; + pIter->iSwitchRowid = pIter->bRev ? SMALLEST_INT64 : LARGEST_INT64; + for(i=(pIter->nSeg+iChanged)/2; 1; i=i/2){ + Fts5CResult *pRes = &pIter->aFirst[i]; + + assert( pNew->pLeaf ); + assert( pRes->bTermEq==0 || pOther->pLeaf ); + + if( pRes->bTermEq ){ + if( pNew->iRowid==pOther->iRowid ){ + return 1; + }else if( (pOther->iRowid>pNew->iRowid)==pIter->bRev ){ + pIter->iSwitchRowid = pOther->iRowid; + pNew = pOther; + }else if( (pOther->iRowid>pIter->iSwitchRowid)==pIter->bRev ){ + pIter->iSwitchRowid = pOther->iRowid; + } + } + pRes->iFirst = (u16)(pNew - pIter->aSeg); + if( i==1 ) break; + + pOther = &pIter->aSeg[ pIter->aFirst[i ^ 0x0001].iFirst ]; + } + } + + *ppFirst = pNew; + return 0; +} + +/* +** Set the pIter->bEof variable based on the state of the sub-iterators. +*/ +static void fts5MultiIterSetEof(Fts5Iter *pIter){ + Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ]; + pIter->base.bEof = pSeg->pLeaf==0; + pIter->iSwitchRowid = pSeg->iRowid; +} + +/* +** Move the iterator to the next entry. +** +** If an error occurs, an error code is left in Fts5Index.rc. It is not +** considered an error if the iterator reaches EOF, or if it is already at +** EOF when this function is called. +*/ +static void fts5MultiIterNext( + Fts5Index *p, + Fts5Iter *pIter, + int bFrom, /* True if argument iFrom is valid */ + i64 iFrom /* Advance at least as far as this */ +){ + int bUseFrom = bFrom; + assert( pIter->base.bEof==0 ); + while( p->rc==SQLITE_OK ){ + int iFirst = pIter->aFirst[1].iFirst; + int bNewTerm = 0; + Fts5SegIter *pSeg = &pIter->aSeg[iFirst]; + assert( p->rc==SQLITE_OK ); + if( bUseFrom && pSeg->pDlidx ){ + fts5SegIterNextFrom(p, pSeg, iFrom); + }else{ + pSeg->xNext(p, pSeg, &bNewTerm); + } + + if( pSeg->pLeaf==0 || bNewTerm + || fts5MultiIterAdvanceRowid(pIter, iFirst, &pSeg) + ){ + fts5MultiIterAdvanced(p, pIter, iFirst, 1); + fts5MultiIterSetEof(pIter); + pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst]; + if( pSeg->pLeaf==0 ) return; + } + + fts5AssertMultiIterSetup(p, pIter); + assert( pSeg==&pIter->aSeg[pIter->aFirst[1].iFirst] && pSeg->pLeaf ); + if( pIter->bSkipEmpty==0 || pSeg->nPos ){ + pIter->xSetOutputs(pIter, pSeg); + return; + } + bUseFrom = 0; + } +} + +static void fts5MultiIterNext2( + Fts5Index *p, + Fts5Iter *pIter, + int *pbNewTerm /* OUT: True if *might* be new term */ +){ + assert( pIter->bSkipEmpty ); + if( p->rc==SQLITE_OK ){ + *pbNewTerm = 0; + do{ + int iFirst = pIter->aFirst[1].iFirst; + Fts5SegIter *pSeg = &pIter->aSeg[iFirst]; + int bNewTerm = 0; + + assert( p->rc==SQLITE_OK ); + pSeg->xNext(p, pSeg, &bNewTerm); + if( pSeg->pLeaf==0 || bNewTerm + || fts5MultiIterAdvanceRowid(pIter, iFirst, &pSeg) + ){ + fts5MultiIterAdvanced(p, pIter, iFirst, 1); + fts5MultiIterSetEof(pIter); + *pbNewTerm = 1; + } + fts5AssertMultiIterSetup(p, pIter); + + }while( fts5MultiIterIsEmpty(p, pIter) ); + } +} + +static void fts5IterSetOutputs_Noop(Fts5Iter *pUnused1, Fts5SegIter *pUnused2){ + UNUSED_PARAM2(pUnused1, pUnused2); +} + +static Fts5Iter *fts5MultiIterAlloc( + Fts5Index *p, /* FTS5 backend to iterate within */ + int nSeg +){ + Fts5Iter *pNew; + int nSlot; /* Power of two >= nSeg */ + + for(nSlot=2; nSlot<nSeg; nSlot=nSlot*2); + pNew = fts5IdxMalloc(p, + sizeof(Fts5Iter) + /* pNew */ + sizeof(Fts5SegIter) * (nSlot-1) + /* pNew->aSeg[] */ + sizeof(Fts5CResult) * nSlot /* pNew->aFirst[] */ + ); + if( pNew ){ + pNew->nSeg = nSlot; + pNew->aFirst = (Fts5CResult*)&pNew->aSeg[nSlot]; + pNew->pIndex = p; + pNew->xSetOutputs = fts5IterSetOutputs_Noop; + } + return pNew; +} + +static void fts5PoslistCallback( + Fts5Index *pUnused, + void *pContext, + const u8 *pChunk, int nChunk +){ + UNUSED_PARAM(pUnused); + assert_nc( nChunk>=0 ); + if( nChunk>0 ){ + fts5BufferSafeAppendBlob((Fts5Buffer*)pContext, pChunk, nChunk); + } +} + +typedef struct PoslistCallbackCtx PoslistCallbackCtx; +struct PoslistCallbackCtx { + Fts5Buffer *pBuf; /* Append to this buffer */ + Fts5Colset *pColset; /* Restrict matches to this column */ + int eState; /* See above */ +}; + +typedef struct PoslistOffsetsCtx PoslistOffsetsCtx; +struct PoslistOffsetsCtx { + Fts5Buffer *pBuf; /* Append to this buffer */ + Fts5Colset *pColset; /* Restrict matches to this column */ + int iRead; + int iWrite; +}; + +/* +** TODO: Make this more efficient! +*/ +static int fts5IndexColsetTest(Fts5Colset *pColset, int iCol){ + int i; + for(i=0; i<pColset->nCol; i++){ + if( pColset->aiCol[i]==iCol ) return 1; + } + return 0; +} + +static void fts5PoslistOffsetsCallback( + Fts5Index *pUnused, + void *pContext, + const u8 *pChunk, int nChunk +){ + PoslistOffsetsCtx *pCtx = (PoslistOffsetsCtx*)pContext; + UNUSED_PARAM(pUnused); + assert_nc( nChunk>=0 ); + if( nChunk>0 ){ + int i = 0; + while( i<nChunk ){ + int iVal; + i += fts5GetVarint32(&pChunk[i], iVal); + iVal += pCtx->iRead - 2; + pCtx->iRead = iVal; + if( fts5IndexColsetTest(pCtx->pColset, iVal) ){ + fts5BufferSafeAppendVarint(pCtx->pBuf, iVal + 2 - pCtx->iWrite); + pCtx->iWrite = iVal; + } + } + } +} + +static void fts5PoslistFilterCallback( + Fts5Index *pUnused, + void *pContext, + const u8 *pChunk, int nChunk +){ + PoslistCallbackCtx *pCtx = (PoslistCallbackCtx*)pContext; + UNUSED_PARAM(pUnused); + assert_nc( nChunk>=0 ); + if( nChunk>0 ){ + /* Search through to find the first varint with value 1. This is the + ** start of the next columns hits. */ + int i = 0; + int iStart = 0; + + if( pCtx->eState==2 ){ + int iCol; + fts5FastGetVarint32(pChunk, i, iCol); + if( fts5IndexColsetTest(pCtx->pColset, iCol) ){ + pCtx->eState = 1; + fts5BufferSafeAppendVarint(pCtx->pBuf, 1); + }else{ + pCtx->eState = 0; + } + } + + do { + while( i<nChunk && pChunk[i]!=0x01 ){ + while( pChunk[i] & 0x80 ) i++; + i++; + } + if( pCtx->eState ){ + fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart); + } + if( i<nChunk ){ + int iCol; + iStart = i; + i++; + if( i>=nChunk ){ + pCtx->eState = 2; + }else{ + fts5FastGetVarint32(pChunk, i, iCol); + pCtx->eState = fts5IndexColsetTest(pCtx->pColset, iCol); + if( pCtx->eState ){ + fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart); + iStart = i; + } + } + } + }while( i<nChunk ); + } +} + +static void fts5ChunkIterate( + Fts5Index *p, /* Index object */ + Fts5SegIter *pSeg, /* Poslist of this iterator */ + void *pCtx, /* Context pointer for xChunk callback */ + void (*xChunk)(Fts5Index*, void*, const u8*, int) +){ + int nRem = pSeg->nPos; /* Number of bytes still to come */ + Fts5Data *pData = 0; + u8 *pChunk = &pSeg->pLeaf->p[pSeg->iLeafOffset]; + int nChunk = MIN(nRem, pSeg->pLeaf->szLeaf - pSeg->iLeafOffset); + int pgno = pSeg->iLeafPgno; + int pgnoSave = 0; + + /* This function does not work with detail=none databases. */ + assert( p->pConfig->eDetail!=FTS5_DETAIL_NONE ); + + if( (pSeg->flags & FTS5_SEGITER_REVERSE)==0 ){ + pgnoSave = pgno+1; + } + + while( 1 ){ + xChunk(p, pCtx, pChunk, nChunk); + nRem -= nChunk; + fts5DataRelease(pData); + if( nRem<=0 ){ + break; + }else if( pSeg->pSeg==0 ){ + p->rc = FTS5_CORRUPT; + return; + }else{ + pgno++; + pData = fts5LeafRead(p, FTS5_SEGMENT_ROWID(pSeg->pSeg->iSegid, pgno)); + if( pData==0 ) break; + pChunk = &pData->p[4]; + nChunk = MIN(nRem, pData->szLeaf - 4); + if( pgno==pgnoSave ){ + assert( pSeg->pNextLeaf==0 ); + pSeg->pNextLeaf = pData; + pData = 0; + } + } + } +} + +/* +** Iterator pIter currently points to a valid entry (not EOF). This +** function appends the position list data for the current entry to +** buffer pBuf. It does not make a copy of the position-list size +** field. +*/ +static void fts5SegiterPoslist( + Fts5Index *p, + Fts5SegIter *pSeg, + Fts5Colset *pColset, + Fts5Buffer *pBuf +){ + assert( pBuf!=0 ); + assert( pSeg!=0 ); + if( 0==fts5BufferGrow(&p->rc, pBuf, pSeg->nPos+FTS5_DATA_ZERO_PADDING) ){ + assert( pBuf->p!=0 ); + assert( pBuf->nSpace >= pBuf->n+pSeg->nPos+FTS5_DATA_ZERO_PADDING ); + memset(&pBuf->p[pBuf->n+pSeg->nPos], 0, FTS5_DATA_ZERO_PADDING); + if( pColset==0 ){ + fts5ChunkIterate(p, pSeg, (void*)pBuf, fts5PoslistCallback); + }else{ + if( p->pConfig->eDetail==FTS5_DETAIL_FULL ){ + PoslistCallbackCtx sCtx; + sCtx.pBuf = pBuf; + sCtx.pColset = pColset; + sCtx.eState = fts5IndexColsetTest(pColset, 0); + assert( sCtx.eState==0 || sCtx.eState==1 ); + fts5ChunkIterate(p, pSeg, (void*)&sCtx, fts5PoslistFilterCallback); + }else{ + PoslistOffsetsCtx sCtx; + memset(&sCtx, 0, sizeof(sCtx)); + sCtx.pBuf = pBuf; + sCtx.pColset = pColset; + fts5ChunkIterate(p, pSeg, (void*)&sCtx, fts5PoslistOffsetsCallback); + } + } + } +} + +/* +** Parameter pPos points to a buffer containing a position list, size nPos. +** This function filters it according to pColset (which must be non-NULL) +** and sets pIter->base.pData/nData to point to the new position list. +** If memory is required for the new position list, use buffer pIter->poslist. +** Or, if the new position list is a contiguous subset of the input, set +** pIter->base.pData/nData to point directly to it. +** +** This function is a no-op if *pRc is other than SQLITE_OK when it is +** called. If an OOM error is encountered, *pRc is set to SQLITE_NOMEM +** before returning. +*/ +static void fts5IndexExtractColset( + int *pRc, + Fts5Colset *pColset, /* Colset to filter on */ + const u8 *pPos, int nPos, /* Position list */ + Fts5Iter *pIter +){ + if( *pRc==SQLITE_OK ){ + const u8 *p = pPos; + const u8 *aCopy = p; + const u8 *pEnd = &p[nPos]; /* One byte past end of position list */ + int i = 0; + int iCurrent = 0; + + if( pColset->nCol>1 && sqlite3Fts5BufferSize(pRc, &pIter->poslist, nPos) ){ + return; + } + + while( 1 ){ + while( pColset->aiCol[i]<iCurrent ){ + i++; + if( i==pColset->nCol ){ + pIter->base.pData = pIter->poslist.p; + pIter->base.nData = pIter->poslist.n; + return; + } + } + + /* Advance pointer p until it points to pEnd or an 0x01 byte that is + ** not part of a varint */ + while( p<pEnd && *p!=0x01 ){ + while( *p++ & 0x80 ); + } + + if( pColset->aiCol[i]==iCurrent ){ + if( pColset->nCol==1 ){ + pIter->base.pData = aCopy; + pIter->base.nData = p-aCopy; + return; + } + fts5BufferSafeAppendBlob(&pIter->poslist, aCopy, p-aCopy); + } + if( p>=pEnd ){ + pIter->base.pData = pIter->poslist.p; + pIter->base.nData = pIter->poslist.n; + return; + } + aCopy = p++; + iCurrent = *p++; + if( iCurrent & 0x80 ){ + p--; + p += fts5GetVarint32(p, iCurrent); + } + } + } + +} + +/* +** xSetOutputs callback used by detail=none tables. +*/ +static void fts5IterSetOutputs_None(Fts5Iter *pIter, Fts5SegIter *pSeg){ + assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_NONE ); + pIter->base.iRowid = pSeg->iRowid; + pIter->base.nData = pSeg->nPos; +} + +/* +** xSetOutputs callback used by detail=full and detail=col tables when no +** column filters are specified. +*/ +static void fts5IterSetOutputs_Nocolset(Fts5Iter *pIter, Fts5SegIter *pSeg){ + pIter->base.iRowid = pSeg->iRowid; + pIter->base.nData = pSeg->nPos; + + assert( pIter->pIndex->pConfig->eDetail!=FTS5_DETAIL_NONE ); + assert( pIter->pColset==0 ); + + if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf ){ + /* All data is stored on the current page. Populate the output + ** variables to point into the body of the page object. */ + pIter->base.pData = &pSeg->pLeaf->p[pSeg->iLeafOffset]; + }else{ + /* The data is distributed over two or more pages. Copy it into the + ** Fts5Iter.poslist buffer and then set the output pointer to point + ** to this buffer. */ + fts5BufferZero(&pIter->poslist); + fts5SegiterPoslist(pIter->pIndex, pSeg, 0, &pIter->poslist); + pIter->base.pData = pIter->poslist.p; + } +} + +/* +** xSetOutputs callback used when the Fts5Colset object has nCol==0 (match +** against no columns at all). +*/ +static void fts5IterSetOutputs_ZeroColset(Fts5Iter *pIter, Fts5SegIter *pSeg){ + UNUSED_PARAM(pSeg); + pIter->base.nData = 0; +} + +/* +** xSetOutputs callback used by detail=col when there is a column filter +** and there are 100 or more columns. Also called as a fallback from +** fts5IterSetOutputs_Col100 if the column-list spans more than one page. +*/ +static void fts5IterSetOutputs_Col(Fts5Iter *pIter, Fts5SegIter *pSeg){ + fts5BufferZero(&pIter->poslist); + fts5SegiterPoslist(pIter->pIndex, pSeg, pIter->pColset, &pIter->poslist); + pIter->base.iRowid = pSeg->iRowid; + pIter->base.pData = pIter->poslist.p; + pIter->base.nData = pIter->poslist.n; +} + +/* +** xSetOutputs callback used when: +** +** * detail=col, +** * there is a column filter, and +** * the table contains 100 or fewer columns. +** +** The last point is to ensure all column numbers are stored as +** single-byte varints. +*/ +static void fts5IterSetOutputs_Col100(Fts5Iter *pIter, Fts5SegIter *pSeg){ + + assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_COLUMNS ); + assert( pIter->pColset ); + + if( pSeg->iLeafOffset+pSeg->nPos>pSeg->pLeaf->szLeaf ){ + fts5IterSetOutputs_Col(pIter, pSeg); + }else{ + u8 *a = (u8*)&pSeg->pLeaf->p[pSeg->iLeafOffset]; + u8 *pEnd = (u8*)&a[pSeg->nPos]; + int iPrev = 0; + int *aiCol = pIter->pColset->aiCol; + int *aiColEnd = &aiCol[pIter->pColset->nCol]; + + u8 *aOut = pIter->poslist.p; + int iPrevOut = 0; + + pIter->base.iRowid = pSeg->iRowid; + + while( a<pEnd ){ + iPrev += (int)a++[0] - 2; + while( *aiCol<iPrev ){ + aiCol++; + if( aiCol==aiColEnd ) goto setoutputs_col_out; + } + if( *aiCol==iPrev ){ + *aOut++ = (u8)((iPrev - iPrevOut) + 2); + iPrevOut = iPrev; + } + } + +setoutputs_col_out: + pIter->base.pData = pIter->poslist.p; + pIter->base.nData = aOut - pIter->poslist.p; + } +} + +/* +** xSetOutputs callback used by detail=full when there is a column filter. +*/ +static void fts5IterSetOutputs_Full(Fts5Iter *pIter, Fts5SegIter *pSeg){ + Fts5Colset *pColset = pIter->pColset; + pIter->base.iRowid = pSeg->iRowid; + + assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_FULL ); + assert( pColset ); + + if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf ){ + /* All data is stored on the current page. Populate the output + ** variables to point into the body of the page object. */ + const u8 *a = &pSeg->pLeaf->p[pSeg->iLeafOffset]; + int *pRc = &pIter->pIndex->rc; + fts5BufferZero(&pIter->poslist); + fts5IndexExtractColset(pRc, pColset, a, pSeg->nPos, pIter); + }else{ + /* The data is distributed over two or more pages. Copy it into the + ** Fts5Iter.poslist buffer and then set the output pointer to point + ** to this buffer. */ + fts5BufferZero(&pIter->poslist); + fts5SegiterPoslist(pIter->pIndex, pSeg, pColset, &pIter->poslist); + pIter->base.pData = pIter->poslist.p; + pIter->base.nData = pIter->poslist.n; + } +} + +static void fts5IterSetOutputCb(int *pRc, Fts5Iter *pIter){ + assert( pIter!=0 || (*pRc)!=SQLITE_OK ); + if( *pRc==SQLITE_OK ){ + Fts5Config *pConfig = pIter->pIndex->pConfig; + if( pConfig->eDetail==FTS5_DETAIL_NONE ){ + pIter->xSetOutputs = fts5IterSetOutputs_None; + } + + else if( pIter->pColset==0 ){ + pIter->xSetOutputs = fts5IterSetOutputs_Nocolset; + } + + else if( pIter->pColset->nCol==0 ){ + pIter->xSetOutputs = fts5IterSetOutputs_ZeroColset; + } + + else if( pConfig->eDetail==FTS5_DETAIL_FULL ){ + pIter->xSetOutputs = fts5IterSetOutputs_Full; + } + + else{ + assert( pConfig->eDetail==FTS5_DETAIL_COLUMNS ); + if( pConfig->nCol<=100 ){ + pIter->xSetOutputs = fts5IterSetOutputs_Col100; + sqlite3Fts5BufferSize(pRc, &pIter->poslist, pConfig->nCol); + }else{ + pIter->xSetOutputs = fts5IterSetOutputs_Col; + } + } + } +} + + +/* +** Allocate a new Fts5Iter object. +** +** The new object will be used to iterate through data in structure pStruct. +** If iLevel is -ve, then all data in all segments is merged. Or, if iLevel +** is zero or greater, data from the first nSegment segments on level iLevel +** is merged. +** +** The iterator initially points to the first term/rowid entry in the +** iterated data. +*/ +static void fts5MultiIterNew( + Fts5Index *p, /* FTS5 backend to iterate within */ + Fts5Structure *pStruct, /* Structure of specific index */ + int flags, /* FTS5INDEX_QUERY_XXX flags */ + Fts5Colset *pColset, /* Colset to filter on (or NULL) */ + const u8 *pTerm, int nTerm, /* Term to seek to (or NULL/0) */ + int iLevel, /* Level to iterate (-1 for all) */ + int nSegment, /* Number of segments to merge (iLevel>=0) */ + Fts5Iter **ppOut /* New object */ +){ + int nSeg = 0; /* Number of segment-iters in use */ + int iIter = 0; /* */ + int iSeg; /* Used to iterate through segments */ + Fts5StructureLevel *pLvl; + Fts5Iter *pNew; + + assert( (pTerm==0 && nTerm==0) || iLevel<0 ); + + /* Allocate space for the new multi-seg-iterator. */ + if( p->rc==SQLITE_OK ){ + if( iLevel<0 ){ + assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) ); + nSeg = pStruct->nSegment; + nSeg += (p->pHash ? 1 : 0); + }else{ + nSeg = MIN(pStruct->aLevel[iLevel].nSeg, nSegment); + } + } + *ppOut = pNew = fts5MultiIterAlloc(p, nSeg); + if( pNew==0 ){ + assert( p->rc!=SQLITE_OK ); + goto fts5MultiIterNew_post_check; + } + pNew->bRev = (0!=(flags & FTS5INDEX_QUERY_DESC)); + pNew->bSkipEmpty = (0!=(flags & FTS5INDEX_QUERY_SKIPEMPTY)); + pNew->pColset = pColset; + if( (flags & FTS5INDEX_QUERY_NOOUTPUT)==0 ){ + fts5IterSetOutputCb(&p->rc, pNew); + } + + /* Initialize each of the component segment iterators. */ + if( p->rc==SQLITE_OK ){ + if( iLevel<0 ){ + Fts5StructureLevel *pEnd = &pStruct->aLevel[pStruct->nLevel]; + if( p->pHash ){ + /* Add a segment iterator for the current contents of the hash table. */ + Fts5SegIter *pIter = &pNew->aSeg[iIter++]; + fts5SegIterHashInit(p, pTerm, nTerm, flags, pIter); + } + for(pLvl=&pStruct->aLevel[0]; pLvl<pEnd; pLvl++){ + for(iSeg=pLvl->nSeg-1; iSeg>=0; iSeg--){ + Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg]; + Fts5SegIter *pIter = &pNew->aSeg[iIter++]; + if( pTerm==0 ){ + fts5SegIterInit(p, pSeg, pIter); + }else{ + fts5SegIterSeekInit(p, pTerm, nTerm, flags, pSeg, pIter); + } + } + } + }else{ + pLvl = &pStruct->aLevel[iLevel]; + for(iSeg=nSeg-1; iSeg>=0; iSeg--){ + fts5SegIterInit(p, &pLvl->aSeg[iSeg], &pNew->aSeg[iIter++]); + } + } + assert( iIter==nSeg ); + } + + /* If the above was successful, each component iterators now points + ** to the first entry in its segment. In this case initialize the + ** aFirst[] array. Or, if an error has occurred, free the iterator + ** object and set the output variable to NULL. */ + if( p->rc==SQLITE_OK ){ + for(iIter=pNew->nSeg-1; iIter>0; iIter--){ + int iEq; + if( (iEq = fts5MultiIterDoCompare(pNew, iIter)) ){ + Fts5SegIter *pSeg = &pNew->aSeg[iEq]; + if( p->rc==SQLITE_OK ) pSeg->xNext(p, pSeg, 0); + fts5MultiIterAdvanced(p, pNew, iEq, iIter); + } + } + fts5MultiIterSetEof(pNew); + fts5AssertMultiIterSetup(p, pNew); + + if( pNew->bSkipEmpty && fts5MultiIterIsEmpty(p, pNew) ){ + fts5MultiIterNext(p, pNew, 0, 0); + }else if( pNew->base.bEof==0 ){ + Fts5SegIter *pSeg = &pNew->aSeg[pNew->aFirst[1].iFirst]; + pNew->xSetOutputs(pNew, pSeg); + } + + }else{ + fts5MultiIterFree(pNew); + *ppOut = 0; + } + +fts5MultiIterNew_post_check: + assert( (*ppOut)!=0 || p->rc!=SQLITE_OK ); + return; +} + +/* +** Create an Fts5Iter that iterates through the doclist provided +** as the second argument. +*/ +static void fts5MultiIterNew2( + Fts5Index *p, /* FTS5 backend to iterate within */ + Fts5Data *pData, /* Doclist to iterate through */ + int bDesc, /* True for descending rowid order */ + Fts5Iter **ppOut /* New object */ +){ + Fts5Iter *pNew; + pNew = fts5MultiIterAlloc(p, 2); + if( pNew ){ + Fts5SegIter *pIter = &pNew->aSeg[1]; + + pIter->flags = FTS5_SEGITER_ONETERM; + if( pData->szLeaf>0 ){ + pIter->pLeaf = pData; + pIter->iLeafOffset = fts5GetVarint(pData->p, (u64*)&pIter->iRowid); + pIter->iEndofDoclist = pData->nn; + pNew->aFirst[1].iFirst = 1; + if( bDesc ){ + pNew->bRev = 1; + pIter->flags |= FTS5_SEGITER_REVERSE; + fts5SegIterReverseInitPage(p, pIter); + }else{ + fts5SegIterLoadNPos(p, pIter); + } + pData = 0; + }else{ + pNew->base.bEof = 1; + } + fts5SegIterSetNext(p, pIter); + + *ppOut = pNew; + } + + fts5DataRelease(pData); +} + +/* +** Return true if the iterator is at EOF or if an error has occurred. +** False otherwise. +*/ +static int fts5MultiIterEof(Fts5Index *p, Fts5Iter *pIter){ + assert( pIter!=0 || p->rc!=SQLITE_OK ); + assert( p->rc!=SQLITE_OK + || (pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf==0)==pIter->base.bEof + ); + return (p->rc || pIter->base.bEof); +} + +/* +** Return the rowid of the entry that the iterator currently points +** to. If the iterator points to EOF when this function is called the +** results are undefined. +*/ +static i64 fts5MultiIterRowid(Fts5Iter *pIter){ + assert( pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf ); + return pIter->aSeg[ pIter->aFirst[1].iFirst ].iRowid; +} + +/* +** Move the iterator to the next entry at or following iMatch. +*/ +static void fts5MultiIterNextFrom( + Fts5Index *p, + Fts5Iter *pIter, + i64 iMatch +){ + while( 1 ){ + i64 iRowid; + fts5MultiIterNext(p, pIter, 1, iMatch); + if( fts5MultiIterEof(p, pIter) ) break; + iRowid = fts5MultiIterRowid(pIter); + if( pIter->bRev==0 && iRowid>=iMatch ) break; + if( pIter->bRev!=0 && iRowid<=iMatch ) break; + } +} + +/* +** Return a pointer to a buffer containing the term associated with the +** entry that the iterator currently points to. +*/ +static const u8 *fts5MultiIterTerm(Fts5Iter *pIter, int *pn){ + Fts5SegIter *p = &pIter->aSeg[ pIter->aFirst[1].iFirst ]; + *pn = p->term.n; + return p->term.p; +} + +/* +** Allocate a new segment-id for the structure pStruct. The new segment +** id must be between 1 and 65335 inclusive, and must not be used by +** any currently existing segment. If a free segment id cannot be found, +** SQLITE_FULL is returned. +** +** If an error has already occurred, this function is a no-op. 0 is +** returned in this case. +*/ +static int fts5AllocateSegid(Fts5Index *p, Fts5Structure *pStruct){ + int iSegid = 0; + + if( p->rc==SQLITE_OK ){ + if( pStruct->nSegment>=FTS5_MAX_SEGMENT ){ + p->rc = SQLITE_FULL; + }else{ + /* FTS5_MAX_SEGMENT is currently defined as 2000. So the following + ** array is 63 elements, or 252 bytes, in size. */ + u32 aUsed[(FTS5_MAX_SEGMENT+31) / 32]; + int iLvl, iSeg; + int i; + u32 mask; + memset(aUsed, 0, sizeof(aUsed)); + for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){ + for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){ + int iId = pStruct->aLevel[iLvl].aSeg[iSeg].iSegid; + if( iId<=FTS5_MAX_SEGMENT && iId>0 ){ + aUsed[(iId-1) / 32] |= (u32)1 << ((iId-1) % 32); + } + } + } + + for(i=0; aUsed[i]==0xFFFFFFFF; i++); + mask = aUsed[i]; + for(iSegid=0; mask & ((u32)1 << iSegid); iSegid++); + iSegid += 1 + i*32; + +#ifdef SQLITE_DEBUG + for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){ + for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){ + assert_nc( iSegid!=pStruct->aLevel[iLvl].aSeg[iSeg].iSegid ); + } + } + assert_nc( iSegid>0 && iSegid<=FTS5_MAX_SEGMENT ); + + { + sqlite3_stmt *pIdxSelect = fts5IdxSelectStmt(p); + if( p->rc==SQLITE_OK ){ + u8 aBlob[2] = {0xff, 0xff}; + sqlite3_bind_int(pIdxSelect, 1, iSegid); + sqlite3_bind_blob(pIdxSelect, 2, aBlob, 2, SQLITE_STATIC); + assert_nc( sqlite3_step(pIdxSelect)!=SQLITE_ROW ); + p->rc = sqlite3_reset(pIdxSelect); + sqlite3_bind_null(pIdxSelect, 2); + } + } +#endif + } + } + + return iSegid; +} + +/* +** Discard all data currently cached in the hash-tables. +*/ +static void fts5IndexDiscardData(Fts5Index *p){ + assert( p->pHash || p->nPendingData==0 ); + if( p->pHash ){ + sqlite3Fts5HashClear(p->pHash); + p->nPendingData = 0; + } +} + +/* +** Return the size of the prefix, in bytes, that buffer +** (pNew/<length-unknown>) shares with buffer (pOld/nOld). +** +** Buffer (pNew/<length-unknown>) is guaranteed to be greater +** than buffer (pOld/nOld). +*/ +static int fts5PrefixCompress(int nOld, const u8 *pOld, const u8 *pNew){ + int i; + for(i=0; i<nOld; i++){ + if( pOld[i]!=pNew[i] ) break; + } + return i; +} + +static void fts5WriteDlidxClear( + Fts5Index *p, + Fts5SegWriter *pWriter, + int bFlush /* If true, write dlidx to disk */ +){ + int i; + assert( bFlush==0 || (pWriter->nDlidx>0 && pWriter->aDlidx[0].buf.n>0) ); + for(i=0; i<pWriter->nDlidx; i++){ + Fts5DlidxWriter *pDlidx = &pWriter->aDlidx[i]; + if( pDlidx->buf.n==0 ) break; + if( bFlush ){ + assert( pDlidx->pgno!=0 ); + fts5DataWrite(p, + FTS5_DLIDX_ROWID(pWriter->iSegid, i, pDlidx->pgno), + pDlidx->buf.p, pDlidx->buf.n + ); + } + sqlite3Fts5BufferZero(&pDlidx->buf); + pDlidx->bPrevValid = 0; + } +} + +/* +** Grow the pWriter->aDlidx[] array to at least nLvl elements in size. +** Any new array elements are zeroed before returning. +*/ +static int fts5WriteDlidxGrow( + Fts5Index *p, + Fts5SegWriter *pWriter, + int nLvl +){ + if( p->rc==SQLITE_OK && nLvl>=pWriter->nDlidx ){ + Fts5DlidxWriter *aDlidx = (Fts5DlidxWriter*)sqlite3_realloc64( + pWriter->aDlidx, sizeof(Fts5DlidxWriter) * nLvl + ); + if( aDlidx==0 ){ + p->rc = SQLITE_NOMEM; + }else{ + size_t nByte = sizeof(Fts5DlidxWriter) * (nLvl - pWriter->nDlidx); + memset(&aDlidx[pWriter->nDlidx], 0, nByte); + pWriter->aDlidx = aDlidx; + pWriter->nDlidx = nLvl; + } + } + return p->rc; +} + +/* +** If the current doclist-index accumulating in pWriter->aDlidx[] is large +** enough, flush it to disk and return 1. Otherwise discard it and return +** zero. +*/ +static int fts5WriteFlushDlidx(Fts5Index *p, Fts5SegWriter *pWriter){ + int bFlag = 0; + + /* If there were FTS5_MIN_DLIDX_SIZE or more empty leaf pages written + ** to the database, also write the doclist-index to disk. */ + if( pWriter->aDlidx[0].buf.n>0 && pWriter->nEmpty>=FTS5_MIN_DLIDX_SIZE ){ + bFlag = 1; + } + fts5WriteDlidxClear(p, pWriter, bFlag); + pWriter->nEmpty = 0; + return bFlag; +} + +/* +** This function is called whenever processing of the doclist for the +** last term on leaf page (pWriter->iBtPage) is completed. +** +** The doclist-index for that term is currently stored in-memory within the +** Fts5SegWriter.aDlidx[] array. If it is large enough, this function +** writes it out to disk. Or, if it is too small to bother with, discards +** it. +** +** Fts5SegWriter.btterm currently contains the first term on page iBtPage. +*/ +static void fts5WriteFlushBtree(Fts5Index *p, Fts5SegWriter *pWriter){ + int bFlag; + + assert( pWriter->iBtPage || pWriter->nEmpty==0 ); + if( pWriter->iBtPage==0 ) return; + bFlag = fts5WriteFlushDlidx(p, pWriter); + + if( p->rc==SQLITE_OK ){ + const char *z = (pWriter->btterm.n>0?(const char*)pWriter->btterm.p:""); + /* The following was already done in fts5WriteInit(): */ + /* sqlite3_bind_int(p->pIdxWriter, 1, pWriter->iSegid); */ + sqlite3_bind_blob(p->pIdxWriter, 2, z, pWriter->btterm.n, SQLITE_STATIC); + sqlite3_bind_int64(p->pIdxWriter, 3, bFlag + ((i64)pWriter->iBtPage<<1)); + sqlite3_step(p->pIdxWriter); + p->rc = sqlite3_reset(p->pIdxWriter); + sqlite3_bind_null(p->pIdxWriter, 2); + } + pWriter->iBtPage = 0; +} + +/* +** This is called once for each leaf page except the first that contains +** at least one term. Argument (nTerm/pTerm) is the split-key - a term that +** is larger than all terms written to earlier leaves, and equal to or +** smaller than the first term on the new leaf. +** +** If an error occurs, an error code is left in Fts5Index.rc. If an error +** has already occurred when this function is called, it is a no-op. +*/ +static void fts5WriteBtreeTerm( + Fts5Index *p, /* FTS5 backend object */ + Fts5SegWriter *pWriter, /* Writer object */ + int nTerm, const u8 *pTerm /* First term on new page */ +){ + fts5WriteFlushBtree(p, pWriter); + if( p->rc==SQLITE_OK ){ + fts5BufferSet(&p->rc, &pWriter->btterm, nTerm, pTerm); + pWriter->iBtPage = pWriter->writer.pgno; + } +} + +/* +** This function is called when flushing a leaf page that contains no +** terms at all to disk. +*/ +static void fts5WriteBtreeNoTerm( + Fts5Index *p, /* FTS5 backend object */ + Fts5SegWriter *pWriter /* Writer object */ +){ + /* If there were no rowids on the leaf page either and the doclist-index + ** has already been started, append an 0x00 byte to it. */ + if( pWriter->bFirstRowidInPage && pWriter->aDlidx[0].buf.n>0 ){ + Fts5DlidxWriter *pDlidx = &pWriter->aDlidx[0]; + assert( pDlidx->bPrevValid ); + sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, 0); + } + + /* Increment the "number of sequential leaves without a term" counter. */ + pWriter->nEmpty++; +} + +static i64 fts5DlidxExtractFirstRowid(Fts5Buffer *pBuf){ + i64 iRowid; + int iOff; + + iOff = 1 + fts5GetVarint(&pBuf->p[1], (u64*)&iRowid); + fts5GetVarint(&pBuf->p[iOff], (u64*)&iRowid); + return iRowid; +} + +/* +** Rowid iRowid has just been appended to the current leaf page. It is the +** first on the page. This function appends an appropriate entry to the current +** doclist-index. +*/ +static void fts5WriteDlidxAppend( + Fts5Index *p, + Fts5SegWriter *pWriter, + i64 iRowid +){ + int i; + int bDone = 0; + + for(i=0; p->rc==SQLITE_OK && bDone==0; i++){ + i64 iVal; + Fts5DlidxWriter *pDlidx = &pWriter->aDlidx[i]; + + if( pDlidx->buf.n>=p->pConfig->pgsz ){ + /* The current doclist-index page is full. Write it to disk and push + ** a copy of iRowid (which will become the first rowid on the next + ** doclist-index leaf page) up into the next level of the b-tree + ** hierarchy. If the node being flushed is currently the root node, + ** also push its first rowid upwards. */ + pDlidx->buf.p[0] = 0x01; /* Not the root node */ + fts5DataWrite(p, + FTS5_DLIDX_ROWID(pWriter->iSegid, i, pDlidx->pgno), + pDlidx->buf.p, pDlidx->buf.n + ); + fts5WriteDlidxGrow(p, pWriter, i+2); + pDlidx = &pWriter->aDlidx[i]; + if( p->rc==SQLITE_OK && pDlidx[1].buf.n==0 ){ + i64 iFirst = fts5DlidxExtractFirstRowid(&pDlidx->buf); + + /* This was the root node. Push its first rowid up to the new root. */ + pDlidx[1].pgno = pDlidx->pgno; + sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx[1].buf, 0); + sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx[1].buf, pDlidx->pgno); + sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx[1].buf, iFirst); + pDlidx[1].bPrevValid = 1; + pDlidx[1].iPrev = iFirst; + } + + sqlite3Fts5BufferZero(&pDlidx->buf); + pDlidx->bPrevValid = 0; + pDlidx->pgno++; + }else{ + bDone = 1; + } + + if( pDlidx->bPrevValid ){ + iVal = iRowid - pDlidx->iPrev; + }else{ + i64 iPgno = (i==0 ? pWriter->writer.pgno : pDlidx[-1].pgno); + assert( pDlidx->buf.n==0 ); + sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, !bDone); + sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, iPgno); + iVal = iRowid; + } + + sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, iVal); + pDlidx->bPrevValid = 1; + pDlidx->iPrev = iRowid; + } +} + +static void fts5WriteFlushLeaf(Fts5Index *p, Fts5SegWriter *pWriter){ + static const u8 zero[] = { 0x00, 0x00, 0x00, 0x00 }; + Fts5PageWriter *pPage = &pWriter->writer; + i64 iRowid; + + assert( (pPage->pgidx.n==0)==(pWriter->bFirstTermInPage) ); + + /* Set the szLeaf header field. */ + assert( 0==fts5GetU16(&pPage->buf.p[2]) ); + fts5PutU16(&pPage->buf.p[2], (u16)pPage->buf.n); + + if( pWriter->bFirstTermInPage ){ + /* No term was written to this page. */ + assert( pPage->pgidx.n==0 ); + fts5WriteBtreeNoTerm(p, pWriter); + }else{ + /* Append the pgidx to the page buffer. Set the szLeaf header field. */ + fts5BufferAppendBlob(&p->rc, &pPage->buf, pPage->pgidx.n, pPage->pgidx.p); + } + + /* Write the page out to disk */ + iRowid = FTS5_SEGMENT_ROWID(pWriter->iSegid, pPage->pgno); + fts5DataWrite(p, iRowid, pPage->buf.p, pPage->buf.n); + + /* Initialize the next page. */ + fts5BufferZero(&pPage->buf); + fts5BufferZero(&pPage->pgidx); + fts5BufferAppendBlob(&p->rc, &pPage->buf, 4, zero); + pPage->iPrevPgidx = 0; + pPage->pgno++; + + /* Increase the leaves written counter */ + pWriter->nLeafWritten++; + + /* The new leaf holds no terms or rowids */ + pWriter->bFirstTermInPage = 1; + pWriter->bFirstRowidInPage = 1; +} + +/* +** Append term pTerm/nTerm to the segment being written by the writer passed +** as the second argument. +** +** If an error occurs, set the Fts5Index.rc error code. If an error has +** already occurred, this function is a no-op. +*/ +static void fts5WriteAppendTerm( + Fts5Index *p, + Fts5SegWriter *pWriter, + int nTerm, const u8 *pTerm +){ + int nPrefix; /* Bytes of prefix compression for term */ + Fts5PageWriter *pPage = &pWriter->writer; + Fts5Buffer *pPgidx = &pWriter->writer.pgidx; + int nMin = MIN(pPage->term.n, nTerm); + + assert( p->rc==SQLITE_OK ); + assert( pPage->buf.n>=4 ); + assert( pPage->buf.n>4 || pWriter->bFirstTermInPage ); + + /* If the current leaf page is full, flush it to disk. */ + if( (pPage->buf.n + pPgidx->n + nTerm + 2)>=p->pConfig->pgsz ){ + if( pPage->buf.n>4 ){ + fts5WriteFlushLeaf(p, pWriter); + if( p->rc!=SQLITE_OK ) return; + } + fts5BufferGrow(&p->rc, &pPage->buf, nTerm+FTS5_DATA_PADDING); + } + + /* TODO1: Updating pgidx here. */ + pPgidx->n += sqlite3Fts5PutVarint( + &pPgidx->p[pPgidx->n], pPage->buf.n - pPage->iPrevPgidx + ); + pPage->iPrevPgidx = pPage->buf.n; +#if 0 + fts5PutU16(&pPgidx->p[pPgidx->n], pPage->buf.n); + pPgidx->n += 2; +#endif + + if( pWriter->bFirstTermInPage ){ + nPrefix = 0; + if( pPage->pgno!=1 ){ + /* This is the first term on a leaf that is not the leftmost leaf in + ** the segment b-tree. In this case it is necessary to add a term to + ** the b-tree hierarchy that is (a) larger than the largest term + ** already written to the segment and (b) smaller than or equal to + ** this term. In other words, a prefix of (pTerm/nTerm) that is one + ** byte longer than the longest prefix (pTerm/nTerm) shares with the + ** previous term. + ** + ** Usually, the previous term is available in pPage->term. The exception + ** is if this is the first term written in an incremental-merge step. + ** In this case the previous term is not available, so just write a + ** copy of (pTerm/nTerm) into the parent node. This is slightly + ** inefficient, but still correct. */ + int n = nTerm; + if( pPage->term.n ){ + n = 1 + fts5PrefixCompress(nMin, pPage->term.p, pTerm); + } + fts5WriteBtreeTerm(p, pWriter, n, pTerm); + if( p->rc!=SQLITE_OK ) return; + pPage = &pWriter->writer; + } + }else{ + nPrefix = fts5PrefixCompress(nMin, pPage->term.p, pTerm); + fts5BufferAppendVarint(&p->rc, &pPage->buf, nPrefix); + } + + /* Append the number of bytes of new data, then the term data itself + ** to the page. */ + fts5BufferAppendVarint(&p->rc, &pPage->buf, nTerm - nPrefix); + fts5BufferAppendBlob(&p->rc, &pPage->buf, nTerm - nPrefix, &pTerm[nPrefix]); + + /* Update the Fts5PageWriter.term field. */ + fts5BufferSet(&p->rc, &pPage->term, nTerm, pTerm); + pWriter->bFirstTermInPage = 0; + + pWriter->bFirstRowidInPage = 0; + pWriter->bFirstRowidInDoclist = 1; + + assert( p->rc || (pWriter->nDlidx>0 && pWriter->aDlidx[0].buf.n==0) ); + pWriter->aDlidx[0].pgno = pPage->pgno; +} + +/* +** Append a rowid and position-list size field to the writers output. +*/ +static void fts5WriteAppendRowid( + Fts5Index *p, + Fts5SegWriter *pWriter, + i64 iRowid +){ + if( p->rc==SQLITE_OK ){ + Fts5PageWriter *pPage = &pWriter->writer; + + if( (pPage->buf.n + pPage->pgidx.n)>=p->pConfig->pgsz ){ + fts5WriteFlushLeaf(p, pWriter); + } + + /* If this is to be the first rowid written to the page, set the + ** rowid-pointer in the page-header. Also append a value to the dlidx + ** buffer, in case a doclist-index is required. */ + if( pWriter->bFirstRowidInPage ){ + fts5PutU16(pPage->buf.p, (u16)pPage->buf.n); + fts5WriteDlidxAppend(p, pWriter, iRowid); + } + + /* Write the rowid. */ + if( pWriter->bFirstRowidInDoclist || pWriter->bFirstRowidInPage ){ + fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid); + }else{ + assert_nc( p->rc || iRowid>pWriter->iPrevRowid ); + fts5BufferAppendVarint(&p->rc, &pPage->buf, + (u64)iRowid - (u64)pWriter->iPrevRowid + ); + } + pWriter->iPrevRowid = iRowid; + pWriter->bFirstRowidInDoclist = 0; + pWriter->bFirstRowidInPage = 0; + } +} + +static void fts5WriteAppendPoslistData( + Fts5Index *p, + Fts5SegWriter *pWriter, + const u8 *aData, + int nData +){ + Fts5PageWriter *pPage = &pWriter->writer; + const u8 *a = aData; + int n = nData; + + assert( p->pConfig->pgsz>0 ); + while( p->rc==SQLITE_OK + && (pPage->buf.n + pPage->pgidx.n + n)>=p->pConfig->pgsz + ){ + int nReq = p->pConfig->pgsz - pPage->buf.n - pPage->pgidx.n; + int nCopy = 0; + while( nCopy<nReq ){ + i64 dummy; + nCopy += fts5GetVarint(&a[nCopy], (u64*)&dummy); + } + fts5BufferAppendBlob(&p->rc, &pPage->buf, nCopy, a); + a += nCopy; + n -= nCopy; + fts5WriteFlushLeaf(p, pWriter); + } + if( n>0 ){ + fts5BufferAppendBlob(&p->rc, &pPage->buf, n, a); + } +} + +/* +** Flush any data cached by the writer object to the database. Free any +** allocations associated with the writer. +*/ +static void fts5WriteFinish( + Fts5Index *p, + Fts5SegWriter *pWriter, /* Writer object */ + int *pnLeaf /* OUT: Number of leaf pages in b-tree */ +){ + int i; + Fts5PageWriter *pLeaf = &pWriter->writer; + if( p->rc==SQLITE_OK ){ + assert( pLeaf->pgno>=1 ); + if( pLeaf->buf.n>4 ){ + fts5WriteFlushLeaf(p, pWriter); + } + *pnLeaf = pLeaf->pgno-1; + if( pLeaf->pgno>1 ){ + fts5WriteFlushBtree(p, pWriter); + } + } + fts5BufferFree(&pLeaf->term); + fts5BufferFree(&pLeaf->buf); + fts5BufferFree(&pLeaf->pgidx); + fts5BufferFree(&pWriter->btterm); + + for(i=0; i<pWriter->nDlidx; i++){ + sqlite3Fts5BufferFree(&pWriter->aDlidx[i].buf); + } + sqlite3_free(pWriter->aDlidx); +} + +static void fts5WriteInit( + Fts5Index *p, + Fts5SegWriter *pWriter, + int iSegid +){ + const int nBuffer = p->pConfig->pgsz + FTS5_DATA_PADDING; + + memset(pWriter, 0, sizeof(Fts5SegWriter)); + pWriter->iSegid = iSegid; + + fts5WriteDlidxGrow(p, pWriter, 1); + pWriter->writer.pgno = 1; + pWriter->bFirstTermInPage = 1; + pWriter->iBtPage = 1; + + assert( pWriter->writer.buf.n==0 ); + assert( pWriter->writer.pgidx.n==0 ); + + /* Grow the two buffers to pgsz + padding bytes in size. */ + sqlite3Fts5BufferSize(&p->rc, &pWriter->writer.pgidx, nBuffer); + sqlite3Fts5BufferSize(&p->rc, &pWriter->writer.buf, nBuffer); + + if( p->pIdxWriter==0 ){ + Fts5Config *pConfig = p->pConfig; + fts5IndexPrepareStmt(p, &p->pIdxWriter, sqlite3_mprintf( + "INSERT INTO '%q'.'%q_idx'(segid,term,pgno) VALUES(?,?,?)", + pConfig->zDb, pConfig->zName + )); + } + + if( p->rc==SQLITE_OK ){ + /* Initialize the 4-byte leaf-page header to 0x00. */ + memset(pWriter->writer.buf.p, 0, 4); + pWriter->writer.buf.n = 4; + + /* Bind the current output segment id to the index-writer. This is an + ** optimization over binding the same value over and over as rows are + ** inserted into %_idx by the current writer. */ + sqlite3_bind_int(p->pIdxWriter, 1, pWriter->iSegid); + } +} + +/* +** Iterator pIter was used to iterate through the input segments of on an +** incremental merge operation. This function is called if the incremental +** merge step has finished but the input has not been completely exhausted. +*/ +static void fts5TrimSegments(Fts5Index *p, Fts5Iter *pIter){ + int i; + Fts5Buffer buf; + memset(&buf, 0, sizeof(Fts5Buffer)); + for(i=0; i<pIter->nSeg && p->rc==SQLITE_OK; i++){ + Fts5SegIter *pSeg = &pIter->aSeg[i]; + if( pSeg->pSeg==0 ){ + /* no-op */ + }else if( pSeg->pLeaf==0 ){ + /* All keys from this input segment have been transfered to the output. + ** Set both the first and last page-numbers to 0 to indicate that the + ** segment is now empty. */ + pSeg->pSeg->pgnoLast = 0; + pSeg->pSeg->pgnoFirst = 0; + }else{ + int iOff = pSeg->iTermLeafOffset; /* Offset on new first leaf page */ + i64 iLeafRowid; + Fts5Data *pData; + int iId = pSeg->pSeg->iSegid; + u8 aHdr[4] = {0x00, 0x00, 0x00, 0x00}; + + iLeafRowid = FTS5_SEGMENT_ROWID(iId, pSeg->iTermLeafPgno); + pData = fts5LeafRead(p, iLeafRowid); + if( pData ){ + if( iOff>pData->szLeaf ){ + /* This can occur if the pages that the segments occupy overlap - if + ** a single page has been assigned to more than one segment. In + ** this case a prior iteration of this loop may have corrupted the + ** segment currently being trimmed. */ + p->rc = FTS5_CORRUPT; + }else{ + fts5BufferZero(&buf); + fts5BufferGrow(&p->rc, &buf, pData->nn); + fts5BufferAppendBlob(&p->rc, &buf, sizeof(aHdr), aHdr); + fts5BufferAppendVarint(&p->rc, &buf, pSeg->term.n); + fts5BufferAppendBlob(&p->rc, &buf, pSeg->term.n, pSeg->term.p); + fts5BufferAppendBlob(&p->rc, &buf, pData->szLeaf-iOff,&pData->p[iOff]); + if( p->rc==SQLITE_OK ){ + /* Set the szLeaf field */ + fts5PutU16(&buf.p[2], (u16)buf.n); + } + + /* Set up the new page-index array */ + fts5BufferAppendVarint(&p->rc, &buf, 4); + if( pSeg->iLeafPgno==pSeg->iTermLeafPgno + && pSeg->iEndofDoclist<pData->szLeaf + && pSeg->iPgidxOff<=pData->nn + ){ + int nDiff = pData->szLeaf - pSeg->iEndofDoclist; + fts5BufferAppendVarint(&p->rc, &buf, buf.n - 1 - nDiff - 4); + fts5BufferAppendBlob(&p->rc, &buf, + pData->nn - pSeg->iPgidxOff, &pData->p[pSeg->iPgidxOff] + ); + } + + pSeg->pSeg->pgnoFirst = pSeg->iTermLeafPgno; + fts5DataDelete(p, FTS5_SEGMENT_ROWID(iId, 1), iLeafRowid); + fts5DataWrite(p, iLeafRowid, buf.p, buf.n); + } + fts5DataRelease(pData); + } + } + } + fts5BufferFree(&buf); +} + +static void fts5MergeChunkCallback( + Fts5Index *p, + void *pCtx, + const u8 *pChunk, int nChunk +){ + Fts5SegWriter *pWriter = (Fts5SegWriter*)pCtx; + fts5WriteAppendPoslistData(p, pWriter, pChunk, nChunk); +} + +/* +** +*/ +static void fts5IndexMergeLevel( + Fts5Index *p, /* FTS5 backend object */ + Fts5Structure **ppStruct, /* IN/OUT: Stucture of index */ + int iLvl, /* Level to read input from */ + int *pnRem /* Write up to this many output leaves */ +){ + Fts5Structure *pStruct = *ppStruct; + Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl]; + Fts5StructureLevel *pLvlOut; + Fts5Iter *pIter = 0; /* Iterator to read input data */ + int nRem = pnRem ? *pnRem : 0; /* Output leaf pages left to write */ + int nInput; /* Number of input segments */ + Fts5SegWriter writer; /* Writer object */ + Fts5StructureSegment *pSeg; /* Output segment */ + Fts5Buffer term; + int bOldest; /* True if the output segment is the oldest */ + int eDetail = p->pConfig->eDetail; + const int flags = FTS5INDEX_QUERY_NOOUTPUT; + int bTermWritten = 0; /* True if current term already output */ + + assert( iLvl<pStruct->nLevel ); + assert( pLvl->nMerge<=pLvl->nSeg ); + + memset(&writer, 0, sizeof(Fts5SegWriter)); + memset(&term, 0, sizeof(Fts5Buffer)); + if( pLvl->nMerge ){ + pLvlOut = &pStruct->aLevel[iLvl+1]; + assert( pLvlOut->nSeg>0 ); + nInput = pLvl->nMerge; + pSeg = &pLvlOut->aSeg[pLvlOut->nSeg-1]; + + fts5WriteInit(p, &writer, pSeg->iSegid); + writer.writer.pgno = pSeg->pgnoLast+1; + writer.iBtPage = 0; + }else{ + int iSegid = fts5AllocateSegid(p, pStruct); + + /* Extend the Fts5Structure object as required to ensure the output + ** segment exists. */ + if( iLvl==pStruct->nLevel-1 ){ + fts5StructureAddLevel(&p->rc, ppStruct); + pStruct = *ppStruct; + } + fts5StructureExtendLevel(&p->rc, pStruct, iLvl+1, 1, 0); + if( p->rc ) return; + pLvl = &pStruct->aLevel[iLvl]; + pLvlOut = &pStruct->aLevel[iLvl+1]; + + fts5WriteInit(p, &writer, iSegid); + + /* Add the new segment to the output level */ + pSeg = &pLvlOut->aSeg[pLvlOut->nSeg]; + pLvlOut->nSeg++; + pSeg->pgnoFirst = 1; + pSeg->iSegid = iSegid; + pStruct->nSegment++; + + /* Read input from all segments in the input level */ + nInput = pLvl->nSeg; + } + bOldest = (pLvlOut->nSeg==1 && pStruct->nLevel==iLvl+2); + + assert( iLvl>=0 ); + for(fts5MultiIterNew(p, pStruct, flags, 0, 0, 0, iLvl, nInput, &pIter); + fts5MultiIterEof(p, pIter)==0; + fts5MultiIterNext(p, pIter, 0, 0) + ){ + Fts5SegIter *pSegIter = &pIter->aSeg[ pIter->aFirst[1].iFirst ]; + int nPos; /* position-list size field value */ + int nTerm; + const u8 *pTerm; + + pTerm = fts5MultiIterTerm(pIter, &nTerm); + if( nTerm!=term.n || fts5Memcmp(pTerm, term.p, nTerm) ){ + if( pnRem && writer.nLeafWritten>nRem ){ + break; + } + fts5BufferSet(&p->rc, &term, nTerm, pTerm); + bTermWritten =0; + } + + /* Check for key annihilation. */ + if( pSegIter->nPos==0 && (bOldest || pSegIter->bDel==0) ) continue; + + if( p->rc==SQLITE_OK && bTermWritten==0 ){ + /* This is a new term. Append a term to the output segment. */ + fts5WriteAppendTerm(p, &writer, nTerm, pTerm); + bTermWritten = 1; + } + + /* Append the rowid to the output */ + /* WRITEPOSLISTSIZE */ + fts5WriteAppendRowid(p, &writer, fts5MultiIterRowid(pIter)); + + if( eDetail==FTS5_DETAIL_NONE ){ + if( pSegIter->bDel ){ + fts5BufferAppendVarint(&p->rc, &writer.writer.buf, 0); + if( pSegIter->nPos>0 ){ + fts5BufferAppendVarint(&p->rc, &writer.writer.buf, 0); + } + } + }else{ + /* Append the position-list data to the output */ + nPos = pSegIter->nPos*2 + pSegIter->bDel; + fts5BufferAppendVarint(&p->rc, &writer.writer.buf, nPos); + fts5ChunkIterate(p, pSegIter, (void*)&writer, fts5MergeChunkCallback); + } + } + + /* Flush the last leaf page to disk. Set the output segment b-tree height + ** and last leaf page number at the same time. */ + fts5WriteFinish(p, &writer, &pSeg->pgnoLast); + + assert( pIter!=0 || p->rc!=SQLITE_OK ); + if( fts5MultiIterEof(p, pIter) ){ + int i; + + /* Remove the redundant segments from the %_data table */ + for(i=0; i<nInput; i++){ + fts5DataRemoveSegment(p, pLvl->aSeg[i].iSegid); + } + + /* Remove the redundant segments from the input level */ + if( pLvl->nSeg!=nInput ){ + int nMove = (pLvl->nSeg - nInput) * sizeof(Fts5StructureSegment); + memmove(pLvl->aSeg, &pLvl->aSeg[nInput], nMove); + } + pStruct->nSegment -= nInput; + pLvl->nSeg -= nInput; + pLvl->nMerge = 0; + if( pSeg->pgnoLast==0 ){ + pLvlOut->nSeg--; + pStruct->nSegment--; + } + }else{ + assert( pSeg->pgnoLast>0 ); + fts5TrimSegments(p, pIter); + pLvl->nMerge = nInput; + } + + fts5MultiIterFree(pIter); + fts5BufferFree(&term); + if( pnRem ) *pnRem -= writer.nLeafWritten; +} + +/* +** Do up to nPg pages of automerge work on the index. +** +** Return true if any changes were actually made, or false otherwise. +*/ +static int fts5IndexMerge( + Fts5Index *p, /* FTS5 backend object */ + Fts5Structure **ppStruct, /* IN/OUT: Current structure of index */ + int nPg, /* Pages of work to do */ + int nMin /* Minimum number of segments to merge */ +){ + int nRem = nPg; + int bRet = 0; + Fts5Structure *pStruct = *ppStruct; + while( nRem>0 && p->rc==SQLITE_OK ){ + int iLvl; /* To iterate through levels */ + int iBestLvl = 0; /* Level offering the most input segments */ + int nBest = 0; /* Number of input segments on best level */ + + /* Set iBestLvl to the level to read input segments from. */ + assert( pStruct->nLevel>0 ); + for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){ + Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl]; + if( pLvl->nMerge ){ + if( pLvl->nMerge>nBest ){ + iBestLvl = iLvl; + nBest = pLvl->nMerge; + } + break; + } + if( pLvl->nSeg>nBest ){ + nBest = pLvl->nSeg; + iBestLvl = iLvl; + } + } + + /* If nBest is still 0, then the index must be empty. */ +#ifdef SQLITE_DEBUG + for(iLvl=0; nBest==0 && iLvl<pStruct->nLevel; iLvl++){ + assert( pStruct->aLevel[iLvl].nSeg==0 ); + } +#endif + + if( nBest<nMin && pStruct->aLevel[iBestLvl].nMerge==0 ){ + break; + } + bRet = 1; + fts5IndexMergeLevel(p, &pStruct, iBestLvl, &nRem); + if( p->rc==SQLITE_OK && pStruct->aLevel[iBestLvl].nMerge==0 ){ + fts5StructurePromote(p, iBestLvl+1, pStruct); + } + } + *ppStruct = pStruct; + return bRet; +} + +/* +** A total of nLeaf leaf pages of data has just been flushed to a level-0 +** segment. This function updates the write-counter accordingly and, if +** necessary, performs incremental merge work. +** +** If an error occurs, set the Fts5Index.rc error code. If an error has +** already occurred, this function is a no-op. +*/ +static void fts5IndexAutomerge( + Fts5Index *p, /* FTS5 backend object */ + Fts5Structure **ppStruct, /* IN/OUT: Current structure of index */ + int nLeaf /* Number of output leaves just written */ +){ + if( p->rc==SQLITE_OK && p->pConfig->nAutomerge>0 && ALWAYS((*ppStruct)!=0) ){ + Fts5Structure *pStruct = *ppStruct; + u64 nWrite; /* Initial value of write-counter */ + int nWork; /* Number of work-quanta to perform */ + int nRem; /* Number of leaf pages left to write */ + + /* Update the write-counter. While doing so, set nWork. */ + nWrite = pStruct->nWriteCounter; + nWork = (int)(((nWrite + nLeaf) / p->nWorkUnit) - (nWrite / p->nWorkUnit)); + pStruct->nWriteCounter += nLeaf; + nRem = (int)(p->nWorkUnit * nWork * pStruct->nLevel); + + fts5IndexMerge(p, ppStruct, nRem, p->pConfig->nAutomerge); + } +} + +static void fts5IndexCrisismerge( + Fts5Index *p, /* FTS5 backend object */ + Fts5Structure **ppStruct /* IN/OUT: Current structure of index */ +){ + const int nCrisis = p->pConfig->nCrisisMerge; + Fts5Structure *pStruct = *ppStruct; + int iLvl = 0; + + assert( p->rc!=SQLITE_OK || pStruct->nLevel>0 ); + while( p->rc==SQLITE_OK && pStruct->aLevel[iLvl].nSeg>=nCrisis ){ + fts5IndexMergeLevel(p, &pStruct, iLvl, 0); + assert( p->rc!=SQLITE_OK || pStruct->nLevel>(iLvl+1) ); + fts5StructurePromote(p, iLvl+1, pStruct); + iLvl++; + } + *ppStruct = pStruct; +} + +static int fts5IndexReturn(Fts5Index *p){ + int rc = p->rc; + p->rc = SQLITE_OK; + return rc; +} + +typedef struct Fts5FlushCtx Fts5FlushCtx; +struct Fts5FlushCtx { + Fts5Index *pIdx; + Fts5SegWriter writer; +}; + +/* +** Buffer aBuf[] contains a list of varints, all small enough to fit +** in a 32-bit integer. Return the size of the largest prefix of this +** list nMax bytes or less in size. +*/ +static int fts5PoslistPrefix(const u8 *aBuf, int nMax){ + int ret; + u32 dummy; + ret = fts5GetVarint32(aBuf, dummy); + if( ret<nMax ){ + while( 1 ){ + int i = fts5GetVarint32(&aBuf[ret], dummy); + if( (ret + i) > nMax ) break; + ret += i; + } + } + return ret; +} + +/* +** Flush the contents of in-memory hash table iHash to a new level-0 +** segment on disk. Also update the corresponding structure record. +** +** If an error occurs, set the Fts5Index.rc error code. If an error has +** already occurred, this function is a no-op. +*/ +static void fts5FlushOneHash(Fts5Index *p){ + Fts5Hash *pHash = p->pHash; + Fts5Structure *pStruct; + int iSegid; + int pgnoLast = 0; /* Last leaf page number in segment */ + + /* Obtain a reference to the index structure and allocate a new segment-id + ** for the new level-0 segment. */ + pStruct = fts5StructureRead(p); + iSegid = fts5AllocateSegid(p, pStruct); + fts5StructureInvalidate(p); + + if( iSegid ){ + const int pgsz = p->pConfig->pgsz; + int eDetail = p->pConfig->eDetail; + Fts5StructureSegment *pSeg; /* New segment within pStruct */ + Fts5Buffer *pBuf; /* Buffer in which to assemble leaf page */ + Fts5Buffer *pPgidx; /* Buffer in which to assemble pgidx */ + + Fts5SegWriter writer; + fts5WriteInit(p, &writer, iSegid); + + pBuf = &writer.writer.buf; + pPgidx = &writer.writer.pgidx; + + /* fts5WriteInit() should have initialized the buffers to (most likely) + ** the maximum space required. */ + assert( p->rc || pBuf->nSpace>=(pgsz + FTS5_DATA_PADDING) ); + assert( p->rc || pPgidx->nSpace>=(pgsz + FTS5_DATA_PADDING) ); + + /* Begin scanning through hash table entries. This loop runs once for each + ** term/doclist currently stored within the hash table. */ + if( p->rc==SQLITE_OK ){ + p->rc = sqlite3Fts5HashScanInit(pHash, 0, 0); + } + while( p->rc==SQLITE_OK && 0==sqlite3Fts5HashScanEof(pHash) ){ + const char *zTerm; /* Buffer containing term */ + const u8 *pDoclist; /* Pointer to doclist for this term */ + int nDoclist; /* Size of doclist in bytes */ + + /* Write the term for this entry to disk. */ + sqlite3Fts5HashScanEntry(pHash, &zTerm, &pDoclist, &nDoclist); + fts5WriteAppendTerm(p, &writer, (int)strlen(zTerm), (const u8*)zTerm); + if( p->rc!=SQLITE_OK ) break; + + assert( writer.bFirstRowidInPage==0 ); + if( pgsz>=(pBuf->n + pPgidx->n + nDoclist + 1) ){ + /* The entire doclist will fit on the current leaf. */ + fts5BufferSafeAppendBlob(pBuf, pDoclist, nDoclist); + }else{ + i64 iRowid = 0; + u64 iDelta = 0; + int iOff = 0; + + /* The entire doclist will not fit on this leaf. The following + ** loop iterates through the poslists that make up the current + ** doclist. */ + while( p->rc==SQLITE_OK && iOff<nDoclist ){ + iOff += fts5GetVarint(&pDoclist[iOff], &iDelta); + iRowid += iDelta; + + if( writer.bFirstRowidInPage ){ + fts5PutU16(&pBuf->p[0], (u16)pBuf->n); /* first rowid on page */ + pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iRowid); + writer.bFirstRowidInPage = 0; + fts5WriteDlidxAppend(p, &writer, iRowid); + if( p->rc!=SQLITE_OK ) break; + }else{ + pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iDelta); + } + assert( pBuf->n<=pBuf->nSpace ); + + if( eDetail==FTS5_DETAIL_NONE ){ + if( iOff<nDoclist && pDoclist[iOff]==0 ){ + pBuf->p[pBuf->n++] = 0; + iOff++; + if( iOff<nDoclist && pDoclist[iOff]==0 ){ + pBuf->p[pBuf->n++] = 0; + iOff++; + } + } + if( (pBuf->n + pPgidx->n)>=pgsz ){ + fts5WriteFlushLeaf(p, &writer); + } + }else{ + int bDummy; + int nPos; + int nCopy = fts5GetPoslistSize(&pDoclist[iOff], &nPos, &bDummy); + nCopy += nPos; + if( (pBuf->n + pPgidx->n + nCopy) <= pgsz ){ + /* The entire poslist will fit on the current leaf. So copy + ** it in one go. */ + fts5BufferSafeAppendBlob(pBuf, &pDoclist[iOff], nCopy); + }else{ + /* The entire poslist will not fit on this leaf. So it needs + ** to be broken into sections. The only qualification being + ** that each varint must be stored contiguously. */ + const u8 *pPoslist = &pDoclist[iOff]; + int iPos = 0; + while( p->rc==SQLITE_OK ){ + int nSpace = pgsz - pBuf->n - pPgidx->n; + int n = 0; + if( (nCopy - iPos)<=nSpace ){ + n = nCopy - iPos; + }else{ + n = fts5PoslistPrefix(&pPoslist[iPos], nSpace); + } + assert( n>0 ); + fts5BufferSafeAppendBlob(pBuf, &pPoslist[iPos], n); + iPos += n; + if( (pBuf->n + pPgidx->n)>=pgsz ){ + fts5WriteFlushLeaf(p, &writer); + } + if( iPos>=nCopy ) break; + } + } + iOff += nCopy; + } + } + } + + /* TODO2: Doclist terminator written here. */ + /* pBuf->p[pBuf->n++] = '\0'; */ + assert( pBuf->n<=pBuf->nSpace ); + if( p->rc==SQLITE_OK ) sqlite3Fts5HashScanNext(pHash); + } + sqlite3Fts5HashClear(pHash); + fts5WriteFinish(p, &writer, &pgnoLast); + + /* Update the Fts5Structure. It is written back to the database by the + ** fts5StructureRelease() call below. */ + if( pStruct->nLevel==0 ){ + fts5StructureAddLevel(&p->rc, &pStruct); + } + fts5StructureExtendLevel(&p->rc, pStruct, 0, 1, 0); + if( p->rc==SQLITE_OK ){ + pSeg = &pStruct->aLevel[0].aSeg[ pStruct->aLevel[0].nSeg++ ]; + pSeg->iSegid = iSegid; + pSeg->pgnoFirst = 1; + pSeg->pgnoLast = pgnoLast; + pStruct->nSegment++; + } + fts5StructurePromote(p, 0, pStruct); + } + + fts5IndexAutomerge(p, &pStruct, pgnoLast); + fts5IndexCrisismerge(p, &pStruct); + fts5StructureWrite(p, pStruct); + fts5StructureRelease(pStruct); +} + +/* +** Flush any data stored in the in-memory hash tables to the database. +*/ +static void fts5IndexFlush(Fts5Index *p){ + /* Unless it is empty, flush the hash table to disk */ + if( p->nPendingData ){ + assert( p->pHash ); + p->nPendingData = 0; + fts5FlushOneHash(p); + } +} + +static Fts5Structure *fts5IndexOptimizeStruct( + Fts5Index *p, + Fts5Structure *pStruct +){ + Fts5Structure *pNew = 0; + sqlite3_int64 nByte = sizeof(Fts5Structure); + int nSeg = pStruct->nSegment; + int i; + + /* Figure out if this structure requires optimization. A structure does + ** not require optimization if either: + ** + ** + it consists of fewer than two segments, or + ** + all segments are on the same level, or + ** + all segments except one are currently inputs to a merge operation. + ** + ** In the first case, return NULL. In the second, increment the ref-count + ** on *pStruct and return a copy of the pointer to it. + */ + if( nSeg<2 ) return 0; + for(i=0; i<pStruct->nLevel; i++){ + int nThis = pStruct->aLevel[i].nSeg; + if( nThis==nSeg || (nThis==nSeg-1 && pStruct->aLevel[i].nMerge==nThis) ){ + fts5StructureRef(pStruct); + return pStruct; + } + assert( pStruct->aLevel[i].nMerge<=nThis ); + } + + nByte += (pStruct->nLevel+1) * sizeof(Fts5StructureLevel); + pNew = (Fts5Structure*)sqlite3Fts5MallocZero(&p->rc, nByte); + + if( pNew ){ + Fts5StructureLevel *pLvl; + nByte = nSeg * sizeof(Fts5StructureSegment); + pNew->nLevel = pStruct->nLevel+1; + pNew->nRef = 1; + pNew->nWriteCounter = pStruct->nWriteCounter; + pLvl = &pNew->aLevel[pStruct->nLevel]; + pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&p->rc, nByte); + if( pLvl->aSeg ){ + int iLvl, iSeg; + int iSegOut = 0; + /* Iterate through all segments, from oldest to newest. Add them to + ** the new Fts5Level object so that pLvl->aSeg[0] is the oldest + ** segment in the data structure. */ + for(iLvl=pStruct->nLevel-1; iLvl>=0; iLvl--){ + for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){ + pLvl->aSeg[iSegOut] = pStruct->aLevel[iLvl].aSeg[iSeg]; + iSegOut++; + } + } + pNew->nSegment = pLvl->nSeg = nSeg; + }else{ + sqlite3_free(pNew); + pNew = 0; + } + } + + return pNew; +} + +int sqlite3Fts5IndexOptimize(Fts5Index *p){ + Fts5Structure *pStruct; + Fts5Structure *pNew = 0; + + assert( p->rc==SQLITE_OK ); + fts5IndexFlush(p); + pStruct = fts5StructureRead(p); + fts5StructureInvalidate(p); + + if( pStruct ){ + pNew = fts5IndexOptimizeStruct(p, pStruct); + } + fts5StructureRelease(pStruct); + + assert( pNew==0 || pNew->nSegment>0 ); + if( pNew ){ + int iLvl; + for(iLvl=0; pNew->aLevel[iLvl].nSeg==0; iLvl++){} + while( p->rc==SQLITE_OK && pNew->aLevel[iLvl].nSeg>0 ){ + int nRem = FTS5_OPT_WORK_UNIT; + fts5IndexMergeLevel(p, &pNew, iLvl, &nRem); + } + + fts5StructureWrite(p, pNew); + fts5StructureRelease(pNew); + } + + return fts5IndexReturn(p); +} + +/* +** This is called to implement the special "VALUES('merge', $nMerge)" +** INSERT command. +*/ +int sqlite3Fts5IndexMerge(Fts5Index *p, int nMerge){ + Fts5Structure *pStruct = fts5StructureRead(p); + if( pStruct ){ + int nMin = p->pConfig->nUsermerge; + fts5StructureInvalidate(p); + if( nMerge<0 ){ + Fts5Structure *pNew = fts5IndexOptimizeStruct(p, pStruct); + fts5StructureRelease(pStruct); + pStruct = pNew; + nMin = 2; + nMerge = nMerge*-1; + } + if( pStruct && pStruct->nLevel ){ + if( fts5IndexMerge(p, &pStruct, nMerge, nMin) ){ + fts5StructureWrite(p, pStruct); + } + } + fts5StructureRelease(pStruct); + } + return fts5IndexReturn(p); +} + +static void fts5AppendRowid( + Fts5Index *p, + u64 iDelta, + Fts5Iter *pUnused, + Fts5Buffer *pBuf +){ + UNUSED_PARAM(pUnused); + fts5BufferAppendVarint(&p->rc, pBuf, iDelta); +} + +static void fts5AppendPoslist( + Fts5Index *p, + u64 iDelta, + Fts5Iter *pMulti, + Fts5Buffer *pBuf +){ + int nData = pMulti->base.nData; + int nByte = nData + 9 + 9 + FTS5_DATA_ZERO_PADDING; + assert( nData>0 ); + if( p->rc==SQLITE_OK && 0==fts5BufferGrow(&p->rc, pBuf, nByte) ){ + fts5BufferSafeAppendVarint(pBuf, iDelta); + fts5BufferSafeAppendVarint(pBuf, nData*2); + fts5BufferSafeAppendBlob(pBuf, pMulti->base.pData, nData); + memset(&pBuf->p[pBuf->n], 0, FTS5_DATA_ZERO_PADDING); + } +} + + +static void fts5DoclistIterNext(Fts5DoclistIter *pIter){ + u8 *p = pIter->aPoslist + pIter->nSize + pIter->nPoslist; + + assert( pIter->aPoslist || (p==0 && pIter->aPoslist==0) ); + if( p>=pIter->aEof ){ + pIter->aPoslist = 0; + }else{ + i64 iDelta; + + p += fts5GetVarint(p, (u64*)&iDelta); + pIter->iRowid += iDelta; + + /* Read position list size */ + if( p[0] & 0x80 ){ + int nPos; + pIter->nSize = fts5GetVarint32(p, nPos); + pIter->nPoslist = (nPos>>1); + }else{ + pIter->nPoslist = ((int)(p[0])) >> 1; + pIter->nSize = 1; + } + + pIter->aPoslist = p; + if( &pIter->aPoslist[pIter->nPoslist]>pIter->aEof ){ + pIter->aPoslist = 0; + } + } +} + +static void fts5DoclistIterInit( + Fts5Buffer *pBuf, + Fts5DoclistIter *pIter +){ + memset(pIter, 0, sizeof(*pIter)); + if( pBuf->n>0 ){ + pIter->aPoslist = pBuf->p; + pIter->aEof = &pBuf->p[pBuf->n]; + fts5DoclistIterNext(pIter); + } +} + +#if 0 +/* +** Append a doclist to buffer pBuf. +** +** This function assumes that space within the buffer has already been +** allocated. +*/ +static void fts5MergeAppendDocid( + Fts5Buffer *pBuf, /* Buffer to write to */ + i64 *piLastRowid, /* IN/OUT: Previous rowid written (if any) */ + i64 iRowid /* Rowid to append */ +){ + assert( pBuf->n!=0 || (*piLastRowid)==0 ); + fts5BufferSafeAppendVarint(pBuf, iRowid - *piLastRowid); + *piLastRowid = iRowid; +} +#endif + +#define fts5MergeAppendDocid(pBuf, iLastRowid, iRowid) { \ + assert( (pBuf)->n!=0 || (iLastRowid)==0 ); \ + fts5BufferSafeAppendVarint((pBuf), (u64)(iRowid) - (u64)(iLastRowid)); \ + (iLastRowid) = (iRowid); \ +} + +/* +** Swap the contents of buffer *p1 with that of *p2. +*/ +static void fts5BufferSwap(Fts5Buffer *p1, Fts5Buffer *p2){ + Fts5Buffer tmp = *p1; + *p1 = *p2; + *p2 = tmp; +} + +static void fts5NextRowid(Fts5Buffer *pBuf, int *piOff, i64 *piRowid){ + int i = *piOff; + if( i>=pBuf->n ){ + *piOff = -1; + }else{ + u64 iVal; + *piOff = i + sqlite3Fts5GetVarint(&pBuf->p[i], &iVal); + *piRowid += iVal; + } +} + +/* +** This is the equivalent of fts5MergePrefixLists() for detail=none mode. +** In this case the buffers consist of a delta-encoded list of rowids only. +*/ +static void fts5MergeRowidLists( + Fts5Index *p, /* FTS5 backend object */ + Fts5Buffer *p1, /* First list to merge */ + int nBuf, /* Number of entries in apBuf[] */ + Fts5Buffer *aBuf /* Array of other lists to merge into p1 */ +){ + int i1 = 0; + int i2 = 0; + i64 iRowid1 = 0; + i64 iRowid2 = 0; + i64 iOut = 0; + Fts5Buffer *p2 = &aBuf[0]; + Fts5Buffer out; + + (void)nBuf; + memset(&out, 0, sizeof(out)); + assert( nBuf==1 ); + sqlite3Fts5BufferSize(&p->rc, &out, p1->n + p2->n); + if( p->rc ) return; + + fts5NextRowid(p1, &i1, &iRowid1); + fts5NextRowid(p2, &i2, &iRowid2); + while( i1>=0 || i2>=0 ){ + if( i1>=0 && (i2<0 || iRowid1<iRowid2) ){ + assert( iOut==0 || iRowid1>iOut ); + fts5BufferSafeAppendVarint(&out, iRowid1 - iOut); + iOut = iRowid1; + fts5NextRowid(p1, &i1, &iRowid1); + }else{ + assert( iOut==0 || iRowid2>iOut ); + fts5BufferSafeAppendVarint(&out, iRowid2 - iOut); + iOut = iRowid2; + if( i1>=0 && iRowid1==iRowid2 ){ + fts5NextRowid(p1, &i1, &iRowid1); + } + fts5NextRowid(p2, &i2, &iRowid2); + } + } + + fts5BufferSwap(&out, p1); + fts5BufferFree(&out); +} + +typedef struct PrefixMerger PrefixMerger; +struct PrefixMerger { + Fts5DoclistIter iter; /* Doclist iterator */ + i64 iPos; /* For iterating through a position list */ + int iOff; + u8 *aPos; + PrefixMerger *pNext; /* Next in docid/poslist order */ +}; + +static void fts5PrefixMergerInsertByRowid( + PrefixMerger **ppHead, + PrefixMerger *p +){ + if( p->iter.aPoslist ){ + PrefixMerger **pp = ppHead; + while( *pp && p->iter.iRowid>(*pp)->iter.iRowid ){ + pp = &(*pp)->pNext; + } + p->pNext = *pp; + *pp = p; + } +} + +static void fts5PrefixMergerInsertByPosition( + PrefixMerger **ppHead, + PrefixMerger *p +){ + if( p->iPos>=0 ){ + PrefixMerger **pp = ppHead; + while( *pp && p->iPos>(*pp)->iPos ){ + pp = &(*pp)->pNext; + } + p->pNext = *pp; + *pp = p; + } +} + + +/* +** Array aBuf[] contains nBuf doclists. These are all merged in with the +** doclist in buffer p1. +*/ +static void fts5MergePrefixLists( + Fts5Index *p, /* FTS5 backend object */ + Fts5Buffer *p1, /* First list to merge */ + int nBuf, /* Number of buffers in array aBuf[] */ + Fts5Buffer *aBuf /* Other lists to merge in */ +){ +#define fts5PrefixMergerNextPosition(p) \ + sqlite3Fts5PoslistNext64((p)->aPos,(p)->iter.nPoslist,&(p)->iOff,&(p)->iPos) +#define FTS5_MERGE_NLIST 16 + PrefixMerger aMerger[FTS5_MERGE_NLIST]; + PrefixMerger *pHead = 0; + int i; + int nOut = 0; + Fts5Buffer out = {0, 0, 0}; + Fts5Buffer tmp = {0, 0, 0}; + i64 iLastRowid = 0; + + /* Initialize a doclist-iterator for each input buffer. Arrange them in + ** a linked-list starting at pHead in ascending order of rowid. Avoid + ** linking any iterators already at EOF into the linked list at all. */ + assert( nBuf+1<=sizeof(aMerger)/sizeof(aMerger[0]) ); + memset(aMerger, 0, sizeof(PrefixMerger)*(nBuf+1)); + pHead = &aMerger[nBuf]; + fts5DoclistIterInit(p1, &pHead->iter); + for(i=0; i<nBuf; i++){ + fts5DoclistIterInit(&aBuf[i], &aMerger[i].iter); + fts5PrefixMergerInsertByRowid(&pHead, &aMerger[i]); + nOut += aBuf[i].n; + } + if( nOut==0 ) return; + nOut += p1->n + 9 + 10*nBuf; + + /* The maximum size of the output is equal to the sum of the + ** input sizes + 1 varint (9 bytes). The extra varint is because if the + ** first rowid in one input is a large negative number, and the first in + ** the other a non-negative number, the delta for the non-negative + ** number will be larger on disk than the literal integer value + ** was. + ** + ** Or, if the input position-lists are corrupt, then the output might + ** include up to (nBuf+1) extra 10-byte positions created by interpreting -1 + ** (the value PoslistNext64() uses for EOF) as a position and appending + ** it to the output. This can happen at most once for each input + ** position-list, hence (nBuf+1) 10 byte paddings. */ + if( sqlite3Fts5BufferSize(&p->rc, &out, nOut) ) return; + + while( pHead ){ + fts5MergeAppendDocid(&out, iLastRowid, pHead->iter.iRowid); + + if( pHead->pNext && iLastRowid==pHead->pNext->iter.iRowid ){ + /* Merge data from two or more poslists */ + i64 iPrev = 0; + int nTmp = FTS5_DATA_ZERO_PADDING; + int nMerge = 0; + PrefixMerger *pSave = pHead; + PrefixMerger *pThis = 0; + int nTail = 0; + + pHead = 0; + while( pSave && pSave->iter.iRowid==iLastRowid ){ + PrefixMerger *pNext = pSave->pNext; + pSave->iOff = 0; + pSave->iPos = 0; + pSave->aPos = &pSave->iter.aPoslist[pSave->iter.nSize]; + fts5PrefixMergerNextPosition(pSave); + nTmp += pSave->iter.nPoslist + 10; + nMerge++; + fts5PrefixMergerInsertByPosition(&pHead, pSave); + pSave = pNext; + } + + if( pHead==0 || pHead->pNext==0 ){ + p->rc = FTS5_CORRUPT; + break; + } + + /* See the earlier comment in this function for an explanation of why + ** corrupt input position lists might cause the output to consume + ** at most nMerge*10 bytes of unexpected space. */ + if( sqlite3Fts5BufferSize(&p->rc, &tmp, nTmp+nMerge*10) ){ + break; + } + fts5BufferZero(&tmp); + + pThis = pHead; + pHead = pThis->pNext; + sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, pThis->iPos); + fts5PrefixMergerNextPosition(pThis); + fts5PrefixMergerInsertByPosition(&pHead, pThis); + + while( pHead->pNext ){ + pThis = pHead; + if( pThis->iPos!=iPrev ){ + sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, pThis->iPos); + } + fts5PrefixMergerNextPosition(pThis); + pHead = pThis->pNext; + fts5PrefixMergerInsertByPosition(&pHead, pThis); + } + + if( pHead->iPos!=iPrev ){ + sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, pHead->iPos); + } + nTail = pHead->iter.nPoslist - pHead->iOff; + + /* WRITEPOSLISTSIZE */ + assert_nc( tmp.n+nTail<=nTmp ); + assert( tmp.n+nTail<=nTmp+nMerge*10 ); + if( tmp.n+nTail>nTmp-FTS5_DATA_ZERO_PADDING ){ + if( p->rc==SQLITE_OK ) p->rc = FTS5_CORRUPT; + break; + } + fts5BufferSafeAppendVarint(&out, (tmp.n+nTail) * 2); + fts5BufferSafeAppendBlob(&out, tmp.p, tmp.n); + if( nTail>0 ){ + fts5BufferSafeAppendBlob(&out, &pHead->aPos[pHead->iOff], nTail); + } + + pHead = pSave; + for(i=0; i<nBuf+1; i++){ + PrefixMerger *pX = &aMerger[i]; + if( pX->iter.aPoslist && pX->iter.iRowid==iLastRowid ){ + fts5DoclistIterNext(&pX->iter); + fts5PrefixMergerInsertByRowid(&pHead, pX); + } + } + + }else{ + /* Copy poslist from pHead to output */ + PrefixMerger *pThis = pHead; + Fts5DoclistIter *pI = &pThis->iter; + fts5BufferSafeAppendBlob(&out, pI->aPoslist, pI->nPoslist+pI->nSize); + fts5DoclistIterNext(pI); + pHead = pThis->pNext; + fts5PrefixMergerInsertByRowid(&pHead, pThis); + } + } + + fts5BufferFree(p1); + fts5BufferFree(&tmp); + memset(&out.p[out.n], 0, FTS5_DATA_ZERO_PADDING); + *p1 = out; +} + +static void fts5SetupPrefixIter( + Fts5Index *p, /* Index to read from */ + int bDesc, /* True for "ORDER BY rowid DESC" */ + int iIdx, /* Index to scan for data */ + u8 *pToken, /* Buffer containing prefix to match */ + int nToken, /* Size of buffer pToken in bytes */ + Fts5Colset *pColset, /* Restrict matches to these columns */ + Fts5Iter **ppIter /* OUT: New iterator */ +){ + Fts5Structure *pStruct; + Fts5Buffer *aBuf; + int nBuf = 32; + int nMerge = 1; + + void (*xMerge)(Fts5Index*, Fts5Buffer*, int, Fts5Buffer*); + void (*xAppend)(Fts5Index*, u64, Fts5Iter*, Fts5Buffer*); + if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){ + xMerge = fts5MergeRowidLists; + xAppend = fts5AppendRowid; + }else{ + nMerge = FTS5_MERGE_NLIST-1; + nBuf = nMerge*8; /* Sufficient to merge (16^8)==(2^32) lists */ + xMerge = fts5MergePrefixLists; + xAppend = fts5AppendPoslist; + } + + aBuf = (Fts5Buffer*)fts5IdxMalloc(p, sizeof(Fts5Buffer)*nBuf); + pStruct = fts5StructureRead(p); + + if( aBuf && pStruct ){ + const int flags = FTS5INDEX_QUERY_SCAN + | FTS5INDEX_QUERY_SKIPEMPTY + | FTS5INDEX_QUERY_NOOUTPUT; + int i; + i64 iLastRowid = 0; + Fts5Iter *p1 = 0; /* Iterator used to gather data from index */ + Fts5Data *pData; + Fts5Buffer doclist; + int bNewTerm = 1; + + memset(&doclist, 0, sizeof(doclist)); + if( iIdx!=0 ){ + int dummy = 0; + const int f2 = FTS5INDEX_QUERY_SKIPEMPTY|FTS5INDEX_QUERY_NOOUTPUT; + pToken[0] = FTS5_MAIN_PREFIX; + fts5MultiIterNew(p, pStruct, f2, pColset, pToken, nToken, -1, 0, &p1); + fts5IterSetOutputCb(&p->rc, p1); + for(; + fts5MultiIterEof(p, p1)==0; + fts5MultiIterNext2(p, p1, &dummy) + ){ + Fts5SegIter *pSeg = &p1->aSeg[ p1->aFirst[1].iFirst ]; + p1->xSetOutputs(p1, pSeg); + if( p1->base.nData ){ + xAppend(p, (u64)p1->base.iRowid-(u64)iLastRowid, p1, &doclist); + iLastRowid = p1->base.iRowid; + } + } + fts5MultiIterFree(p1); + } + + pToken[0] = FTS5_MAIN_PREFIX + iIdx; + fts5MultiIterNew(p, pStruct, flags, pColset, pToken, nToken, -1, 0, &p1); + fts5IterSetOutputCb(&p->rc, p1); + for( /* no-op */ ; + fts5MultiIterEof(p, p1)==0; + fts5MultiIterNext2(p, p1, &bNewTerm) + ){ + Fts5SegIter *pSeg = &p1->aSeg[ p1->aFirst[1].iFirst ]; + int nTerm = pSeg->term.n; + const u8 *pTerm = pSeg->term.p; + p1->xSetOutputs(p1, pSeg); + + assert_nc( memcmp(pToken, pTerm, MIN(nToken, nTerm))<=0 ); + if( bNewTerm ){ + if( nTerm<nToken || memcmp(pToken, pTerm, nToken) ) break; + } + + if( p1->base.nData==0 ) continue; + + if( p1->base.iRowid<=iLastRowid && doclist.n>0 ){ + for(i=0; p->rc==SQLITE_OK && doclist.n; i++){ + int i1 = i*nMerge; + int iStore; + assert( i1+nMerge<=nBuf ); + for(iStore=i1; iStore<i1+nMerge; iStore++){ + if( aBuf[iStore].n==0 ){ + fts5BufferSwap(&doclist, &aBuf[iStore]); + fts5BufferZero(&doclist); + break; + } + } + if( iStore==i1+nMerge ){ + xMerge(p, &doclist, nMerge, &aBuf[i1]); + for(iStore=i1; iStore<i1+nMerge; iStore++){ + fts5BufferZero(&aBuf[iStore]); + } + } + } + iLastRowid = 0; + } + + xAppend(p, (u64)p1->base.iRowid-(u64)iLastRowid, p1, &doclist); + iLastRowid = p1->base.iRowid; + } + + assert( (nBuf%nMerge)==0 ); + for(i=0; i<nBuf; i+=nMerge){ + int iFree; + if( p->rc==SQLITE_OK ){ + xMerge(p, &doclist, nMerge, &aBuf[i]); + } + for(iFree=i; iFree<i+nMerge; iFree++){ + fts5BufferFree(&aBuf[iFree]); + } + } + fts5MultiIterFree(p1); + + pData = fts5IdxMalloc(p, sizeof(Fts5Data)+doclist.n+FTS5_DATA_ZERO_PADDING); + if( pData ){ + pData->p = (u8*)&pData[1]; + pData->nn = pData->szLeaf = doclist.n; + if( doclist.n ) memcpy(pData->p, doclist.p, doclist.n); + fts5MultiIterNew2(p, pData, bDesc, ppIter); + } + fts5BufferFree(&doclist); + } + + fts5StructureRelease(pStruct); + sqlite3_free(aBuf); +} + + +/* +** Indicate that all subsequent calls to sqlite3Fts5IndexWrite() pertain +** to the document with rowid iRowid. +*/ +int sqlite3Fts5IndexBeginWrite(Fts5Index *p, int bDelete, i64 iRowid){ + assert( p->rc==SQLITE_OK ); + + /* Allocate the hash table if it has not already been allocated */ + if( p->pHash==0 ){ + p->rc = sqlite3Fts5HashNew(p->pConfig, &p->pHash, &p->nPendingData); + } + + /* Flush the hash table to disk if required */ + if( iRowid<p->iWriteRowid + || (iRowid==p->iWriteRowid && p->bDelete==0) + || (p->nPendingData > p->pConfig->nHashSize) + ){ + fts5IndexFlush(p); + } + + p->iWriteRowid = iRowid; + p->bDelete = bDelete; + return fts5IndexReturn(p); +} + +/* +** Commit data to disk. +*/ +int sqlite3Fts5IndexSync(Fts5Index *p){ + assert( p->rc==SQLITE_OK ); + fts5IndexFlush(p); + sqlite3Fts5IndexCloseReader(p); + return fts5IndexReturn(p); +} + +/* +** Discard any data stored in the in-memory hash tables. Do not write it +** to the database. Additionally, assume that the contents of the %_data +** table may have changed on disk. So any in-memory caches of %_data +** records must be invalidated. +*/ +int sqlite3Fts5IndexRollback(Fts5Index *p){ + sqlite3Fts5IndexCloseReader(p); + fts5IndexDiscardData(p); + fts5StructureInvalidate(p); + /* assert( p->rc==SQLITE_OK ); */ + return SQLITE_OK; +} + +/* +** The %_data table is completely empty when this function is called. This +** function populates it with the initial structure objects for each index, +** and the initial version of the "averages" record (a zero-byte blob). +*/ +int sqlite3Fts5IndexReinit(Fts5Index *p){ + Fts5Structure s; + fts5StructureInvalidate(p); + fts5IndexDiscardData(p); + memset(&s, 0, sizeof(Fts5Structure)); + fts5DataWrite(p, FTS5_AVERAGES_ROWID, (const u8*)"", 0); + fts5StructureWrite(p, &s); + return fts5IndexReturn(p); +} + +/* +** Open a new Fts5Index handle. If the bCreate argument is true, create +** and initialize the underlying %_data table. +** +** If successful, set *pp to point to the new object and return SQLITE_OK. +** Otherwise, set *pp to NULL and return an SQLite error code. +*/ +int sqlite3Fts5IndexOpen( + Fts5Config *pConfig, + int bCreate, + Fts5Index **pp, + char **pzErr +){ + int rc = SQLITE_OK; + Fts5Index *p; /* New object */ + + *pp = p = (Fts5Index*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Index)); + if( rc==SQLITE_OK ){ + p->pConfig = pConfig; + p->nWorkUnit = FTS5_WORK_UNIT; + p->zDataTbl = sqlite3Fts5Mprintf(&rc, "%s_data", pConfig->zName); + if( p->zDataTbl && bCreate ){ + rc = sqlite3Fts5CreateTable( + pConfig, "data", "id INTEGER PRIMARY KEY, block BLOB", 0, pzErr + ); + if( rc==SQLITE_OK ){ + rc = sqlite3Fts5CreateTable(pConfig, "idx", + "segid, term, pgno, PRIMARY KEY(segid, term)", + 1, pzErr + ); + } + if( rc==SQLITE_OK ){ + rc = sqlite3Fts5IndexReinit(p); + } + } + } + + assert( rc!=SQLITE_OK || p->rc==SQLITE_OK ); + if( rc ){ + sqlite3Fts5IndexClose(p); + *pp = 0; + } + return rc; +} + +/* +** Close a handle opened by an earlier call to sqlite3Fts5IndexOpen(). +*/ +int sqlite3Fts5IndexClose(Fts5Index *p){ + int rc = SQLITE_OK; + if( p ){ + assert( p->pReader==0 ); + fts5StructureInvalidate(p); + sqlite3_finalize(p->pWriter); + sqlite3_finalize(p->pDeleter); + sqlite3_finalize(p->pIdxWriter); + sqlite3_finalize(p->pIdxDeleter); + sqlite3_finalize(p->pIdxSelect); + sqlite3_finalize(p->pDataVersion); + sqlite3Fts5HashFree(p->pHash); + sqlite3_free(p->zDataTbl); + sqlite3_free(p); + } + return rc; +} + +/* +** Argument p points to a buffer containing utf-8 text that is n bytes in +** size. Return the number of bytes in the nChar character prefix of the +** buffer, or 0 if there are less than nChar characters in total. +*/ +int sqlite3Fts5IndexCharlenToBytelen( + const char *p, + int nByte, + int nChar +){ + int n = 0; + int i; + for(i=0; i<nChar; i++){ + if( n>=nByte ) return 0; /* Input contains fewer than nChar chars */ + if( (unsigned char)p[n++]>=0xc0 ){ + if( n>=nByte ) return 0; + while( (p[n] & 0xc0)==0x80 ){ + n++; + if( n>=nByte ){ + if( i+1==nChar ) break; + return 0; + } + } + } + } + return n; +} + +/* +** pIn is a UTF-8 encoded string, nIn bytes in size. Return the number of +** unicode characters in the string. +*/ +static int fts5IndexCharlen(const char *pIn, int nIn){ + int nChar = 0; + int i = 0; + while( i<nIn ){ + if( (unsigned char)pIn[i++]>=0xc0 ){ + while( i<nIn && (pIn[i] & 0xc0)==0x80 ) i++; + } + nChar++; + } + return nChar; +} + +/* +** Insert or remove data to or from the index. Each time a document is +** added to or removed from the index, this function is called one or more +** times. +** +** For an insert, it must be called once for each token in the new document. +** If the operation is a delete, it must be called (at least) once for each +** unique token in the document with an iCol value less than zero. The iPos +** argument is ignored for a delete. +*/ +int sqlite3Fts5IndexWrite( + Fts5Index *p, /* Index to write to */ + int iCol, /* Column token appears in (-ve -> delete) */ + int iPos, /* Position of token within column */ + const char *pToken, int nToken /* Token to add or remove to or from index */ +){ + int i; /* Used to iterate through indexes */ + int rc = SQLITE_OK; /* Return code */ + Fts5Config *pConfig = p->pConfig; + + assert( p->rc==SQLITE_OK ); + assert( (iCol<0)==p->bDelete ); + + /* Add the entry to the main terms index. */ + rc = sqlite3Fts5HashWrite( + p->pHash, p->iWriteRowid, iCol, iPos, FTS5_MAIN_PREFIX, pToken, nToken + ); + + for(i=0; i<pConfig->nPrefix && rc==SQLITE_OK; i++){ + const int nChar = pConfig->aPrefix[i]; + int nByte = sqlite3Fts5IndexCharlenToBytelen(pToken, nToken, nChar); + if( nByte ){ + rc = sqlite3Fts5HashWrite(p->pHash, + p->iWriteRowid, iCol, iPos, (char)(FTS5_MAIN_PREFIX+i+1), pToken, + nByte + ); + } + } + + return rc; +} + +/* +** Open a new iterator to iterate though all rowid that match the +** specified token or token prefix. +*/ +int sqlite3Fts5IndexQuery( + Fts5Index *p, /* FTS index to query */ + const char *pToken, int nToken, /* Token (or prefix) to query for */ + int flags, /* Mask of FTS5INDEX_QUERY_X flags */ + Fts5Colset *pColset, /* Match these columns only */ + Fts5IndexIter **ppIter /* OUT: New iterator object */ +){ + Fts5Config *pConfig = p->pConfig; + Fts5Iter *pRet = 0; + Fts5Buffer buf = {0, 0, 0}; + + /* If the QUERY_SCAN flag is set, all other flags must be clear. */ + assert( (flags & FTS5INDEX_QUERY_SCAN)==0 || flags==FTS5INDEX_QUERY_SCAN ); + + if( sqlite3Fts5BufferSize(&p->rc, &buf, nToken+1)==0 ){ + int iIdx = 0; /* Index to search */ + int iPrefixIdx = 0; /* +1 prefix index */ + if( nToken>0 ) memcpy(&buf.p[1], pToken, nToken); + + /* Figure out which index to search and set iIdx accordingly. If this + ** is a prefix query for which there is no prefix index, set iIdx to + ** greater than pConfig->nPrefix to indicate that the query will be + ** satisfied by scanning multiple terms in the main index. + ** + ** If the QUERY_TEST_NOIDX flag was specified, then this must be a + ** prefix-query. Instead of using a prefix-index (if one exists), + ** evaluate the prefix query using the main FTS index. This is used + ** for internal sanity checking by the integrity-check in debug + ** mode only. */ +#ifdef SQLITE_DEBUG + if( pConfig->bPrefixIndex==0 || (flags & FTS5INDEX_QUERY_TEST_NOIDX) ){ + assert( flags & FTS5INDEX_QUERY_PREFIX ); + iIdx = 1+pConfig->nPrefix; + }else +#endif + if( flags & FTS5INDEX_QUERY_PREFIX ){ + int nChar = fts5IndexCharlen(pToken, nToken); + for(iIdx=1; iIdx<=pConfig->nPrefix; iIdx++){ + int nIdxChar = pConfig->aPrefix[iIdx-1]; + if( nIdxChar==nChar ) break; + if( nIdxChar==nChar+1 ) iPrefixIdx = iIdx; + } + } + + if( iIdx<=pConfig->nPrefix ){ + /* Straight index lookup */ + Fts5Structure *pStruct = fts5StructureRead(p); + buf.p[0] = (u8)(FTS5_MAIN_PREFIX + iIdx); + if( pStruct ){ + fts5MultiIterNew(p, pStruct, flags | FTS5INDEX_QUERY_SKIPEMPTY, + pColset, buf.p, nToken+1, -1, 0, &pRet + ); + fts5StructureRelease(pStruct); + } + }else{ + /* Scan multiple terms in the main index */ + int bDesc = (flags & FTS5INDEX_QUERY_DESC)!=0; + fts5SetupPrefixIter(p, bDesc, iPrefixIdx, buf.p, nToken+1, pColset,&pRet); + if( pRet==0 ){ + assert( p->rc!=SQLITE_OK ); + }else{ + assert( pRet->pColset==0 ); + fts5IterSetOutputCb(&p->rc, pRet); + if( p->rc==SQLITE_OK ){ + Fts5SegIter *pSeg = &pRet->aSeg[pRet->aFirst[1].iFirst]; + if( pSeg->pLeaf ) pRet->xSetOutputs(pRet, pSeg); + } + } + } + + if( p->rc ){ + sqlite3Fts5IterClose((Fts5IndexIter*)pRet); + pRet = 0; + sqlite3Fts5IndexCloseReader(p); + } + + *ppIter = (Fts5IndexIter*)pRet; + sqlite3Fts5BufferFree(&buf); + } + return fts5IndexReturn(p); +} + +/* +** Return true if the iterator passed as the only argument is at EOF. +*/ +/* +** Move to the next matching rowid. +*/ +int sqlite3Fts5IterNext(Fts5IndexIter *pIndexIter){ + Fts5Iter *pIter = (Fts5Iter*)pIndexIter; + assert( pIter->pIndex->rc==SQLITE_OK ); + fts5MultiIterNext(pIter->pIndex, pIter, 0, 0); + return fts5IndexReturn(pIter->pIndex); +} + +/* +** Move to the next matching term/rowid. Used by the fts5vocab module. +*/ +int sqlite3Fts5IterNextScan(Fts5IndexIter *pIndexIter){ + Fts5Iter *pIter = (Fts5Iter*)pIndexIter; + Fts5Index *p = pIter->pIndex; + + assert( pIter->pIndex->rc==SQLITE_OK ); + + fts5MultiIterNext(p, pIter, 0, 0); + if( p->rc==SQLITE_OK ){ + Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ]; + if( pSeg->pLeaf && pSeg->term.p[0]!=FTS5_MAIN_PREFIX ){ + fts5DataRelease(pSeg->pLeaf); + pSeg->pLeaf = 0; + pIter->base.bEof = 1; + } + } + + return fts5IndexReturn(pIter->pIndex); +} + +/* +** Move to the next matching rowid that occurs at or after iMatch. The +** definition of "at or after" depends on whether this iterator iterates +** in ascending or descending rowid order. +*/ +int sqlite3Fts5IterNextFrom(Fts5IndexIter *pIndexIter, i64 iMatch){ + Fts5Iter *pIter = (Fts5Iter*)pIndexIter; + fts5MultiIterNextFrom(pIter->pIndex, pIter, iMatch); + return fts5IndexReturn(pIter->pIndex); +} + +/* +** Return the current term. +*/ +const char *sqlite3Fts5IterTerm(Fts5IndexIter *pIndexIter, int *pn){ + int n; + const char *z = (const char*)fts5MultiIterTerm((Fts5Iter*)pIndexIter, &n); + assert_nc( z || n<=1 ); + *pn = n-1; + return (z ? &z[1] : 0); +} + +/* +** Close an iterator opened by an earlier call to sqlite3Fts5IndexQuery(). +*/ +void sqlite3Fts5IterClose(Fts5IndexIter *pIndexIter){ + if( pIndexIter ){ + Fts5Iter *pIter = (Fts5Iter*)pIndexIter; + Fts5Index *pIndex = pIter->pIndex; + fts5MultiIterFree(pIter); + sqlite3Fts5IndexCloseReader(pIndex); + } +} + +/* +** Read and decode the "averages" record from the database. +** +** Parameter anSize must point to an array of size nCol, where nCol is +** the number of user defined columns in the FTS table. +*/ +int sqlite3Fts5IndexGetAverages(Fts5Index *p, i64 *pnRow, i64 *anSize){ + int nCol = p->pConfig->nCol; + Fts5Data *pData; + + *pnRow = 0; + memset(anSize, 0, sizeof(i64) * nCol); + pData = fts5DataRead(p, FTS5_AVERAGES_ROWID); + if( p->rc==SQLITE_OK && pData->nn ){ + int i = 0; + int iCol; + i += fts5GetVarint(&pData->p[i], (u64*)pnRow); + for(iCol=0; i<pData->nn && iCol<nCol; iCol++){ + i += fts5GetVarint(&pData->p[i], (u64*)&anSize[iCol]); + } + } + + fts5DataRelease(pData); + return fts5IndexReturn(p); +} + +/* +** Replace the current "averages" record with the contents of the buffer +** supplied as the second argument. +*/ +int sqlite3Fts5IndexSetAverages(Fts5Index *p, const u8 *pData, int nData){ + assert( p->rc==SQLITE_OK ); + fts5DataWrite(p, FTS5_AVERAGES_ROWID, pData, nData); + return fts5IndexReturn(p); +} + +/* +** Return the total number of blocks this module has read from the %_data +** table since it was created. +*/ +int sqlite3Fts5IndexReads(Fts5Index *p){ + return p->nRead; +} + +/* +** Set the 32-bit cookie value stored at the start of all structure +** records to the value passed as the second argument. +** +** Return SQLITE_OK if successful, or an SQLite error code if an error +** occurs. +*/ +int sqlite3Fts5IndexSetCookie(Fts5Index *p, int iNew){ + int rc; /* Return code */ + Fts5Config *pConfig = p->pConfig; /* Configuration object */ + u8 aCookie[4]; /* Binary representation of iNew */ + sqlite3_blob *pBlob = 0; + + assert( p->rc==SQLITE_OK ); + sqlite3Fts5Put32(aCookie, iNew); + + rc = sqlite3_blob_open(pConfig->db, pConfig->zDb, p->zDataTbl, + "block", FTS5_STRUCTURE_ROWID, 1, &pBlob + ); + if( rc==SQLITE_OK ){ + sqlite3_blob_write(pBlob, aCookie, 4, 0); + rc = sqlite3_blob_close(pBlob); + } + + return rc; +} + +int sqlite3Fts5IndexLoadConfig(Fts5Index *p){ + Fts5Structure *pStruct; + pStruct = fts5StructureRead(p); + fts5StructureRelease(pStruct); + return fts5IndexReturn(p); +} + + +/************************************************************************* +************************************************************************** +** Below this point is the implementation of the integrity-check +** functionality. +*/ + +/* +** Return a simple checksum value based on the arguments. +*/ +u64 sqlite3Fts5IndexEntryCksum( + i64 iRowid, + int iCol, + int iPos, + int iIdx, + const char *pTerm, + int nTerm +){ + int i; + u64 ret = iRowid; + ret += (ret<<3) + iCol; + ret += (ret<<3) + iPos; + if( iIdx>=0 ) ret += (ret<<3) + (FTS5_MAIN_PREFIX + iIdx); + for(i=0; i<nTerm; i++) ret += (ret<<3) + pTerm[i]; + return ret; +} + +#ifdef SQLITE_DEBUG +/* +** This function is purely an internal test. It does not contribute to +** FTS functionality, or even the integrity-check, in any way. +** +** Instead, it tests that the same set of pgno/rowid combinations are +** visited regardless of whether the doclist-index identified by parameters +** iSegid/iLeaf is iterated in forwards or reverse order. +*/ +static void fts5TestDlidxReverse( + Fts5Index *p, + int iSegid, /* Segment id to load from */ + int iLeaf /* Load doclist-index for this leaf */ +){ + Fts5DlidxIter *pDlidx = 0; + u64 cksum1 = 13; + u64 cksum2 = 13; + + for(pDlidx=fts5DlidxIterInit(p, 0, iSegid, iLeaf); + fts5DlidxIterEof(p, pDlidx)==0; + fts5DlidxIterNext(p, pDlidx) + ){ + i64 iRowid = fts5DlidxIterRowid(pDlidx); + int pgno = fts5DlidxIterPgno(pDlidx); + assert( pgno>iLeaf ); + cksum1 += iRowid + ((i64)pgno<<32); + } + fts5DlidxIterFree(pDlidx); + pDlidx = 0; + + for(pDlidx=fts5DlidxIterInit(p, 1, iSegid, iLeaf); + fts5DlidxIterEof(p, pDlidx)==0; + fts5DlidxIterPrev(p, pDlidx) + ){ + i64 iRowid = fts5DlidxIterRowid(pDlidx); + int pgno = fts5DlidxIterPgno(pDlidx); + assert( fts5DlidxIterPgno(pDlidx)>iLeaf ); + cksum2 += iRowid + ((i64)pgno<<32); + } + fts5DlidxIterFree(pDlidx); + pDlidx = 0; + + if( p->rc==SQLITE_OK && cksum1!=cksum2 ) p->rc = FTS5_CORRUPT; +} + +static int fts5QueryCksum( + Fts5Index *p, /* Fts5 index object */ + int iIdx, + const char *z, /* Index key to query for */ + int n, /* Size of index key in bytes */ + int flags, /* Flags for Fts5IndexQuery */ + u64 *pCksum /* IN/OUT: Checksum value */ +){ + int eDetail = p->pConfig->eDetail; + u64 cksum = *pCksum; + Fts5IndexIter *pIter = 0; + int rc = sqlite3Fts5IndexQuery(p, z, n, flags, 0, &pIter); + + while( rc==SQLITE_OK && ALWAYS(pIter!=0) && 0==sqlite3Fts5IterEof(pIter) ){ + i64 rowid = pIter->iRowid; + + if( eDetail==FTS5_DETAIL_NONE ){ + cksum ^= sqlite3Fts5IndexEntryCksum(rowid, 0, 0, iIdx, z, n); + }else{ + Fts5PoslistReader sReader; + for(sqlite3Fts5PoslistReaderInit(pIter->pData, pIter->nData, &sReader); + sReader.bEof==0; + sqlite3Fts5PoslistReaderNext(&sReader) + ){ + int iCol = FTS5_POS2COLUMN(sReader.iPos); + int iOff = FTS5_POS2OFFSET(sReader.iPos); + cksum ^= sqlite3Fts5IndexEntryCksum(rowid, iCol, iOff, iIdx, z, n); + } + } + if( rc==SQLITE_OK ){ + rc = sqlite3Fts5IterNext(pIter); + } + } + sqlite3Fts5IterClose(pIter); + + *pCksum = cksum; + return rc; +} + +/* +** Check if buffer z[], size n bytes, contains as series of valid utf-8 +** encoded codepoints. If so, return 0. Otherwise, if the buffer does not +** contain valid utf-8, return non-zero. +*/ +static int fts5TestUtf8(const char *z, int n){ + int i = 0; + assert_nc( n>0 ); + while( i<n ){ + if( (z[i] & 0x80)==0x00 ){ + i++; + }else + if( (z[i] & 0xE0)==0xC0 ){ + if( i+1>=n || (z[i+1] & 0xC0)!=0x80 ) return 1; + i += 2; + }else + if( (z[i] & 0xF0)==0xE0 ){ + if( i+2>=n || (z[i+1] & 0xC0)!=0x80 || (z[i+2] & 0xC0)!=0x80 ) return 1; + i += 3; + }else + if( (z[i] & 0xF8)==0xF0 ){ + if( i+3>=n || (z[i+1] & 0xC0)!=0x80 || (z[i+2] & 0xC0)!=0x80 ) return 1; + if( (z[i+2] & 0xC0)!=0x80 ) return 1; + i += 3; + }else{ + return 1; + } + } + + return 0; +} + +/* +** This function is also purely an internal test. It does not contribute to +** FTS functionality, or even the integrity-check, in any way. +*/ +static void fts5TestTerm( + Fts5Index *p, + Fts5Buffer *pPrev, /* Previous term */ + const char *z, int n, /* Possibly new term to test */ + u64 expected, + u64 *pCksum +){ + int rc = p->rc; + if( pPrev->n==0 ){ + fts5BufferSet(&rc, pPrev, n, (const u8*)z); + }else + if( rc==SQLITE_OK && (pPrev->n!=n || memcmp(pPrev->p, z, n)) ){ + u64 cksum3 = *pCksum; + const char *zTerm = (const char*)&pPrev->p[1]; /* term sans prefix-byte */ + int nTerm = pPrev->n-1; /* Size of zTerm in bytes */ + int iIdx = (pPrev->p[0] - FTS5_MAIN_PREFIX); + int flags = (iIdx==0 ? 0 : FTS5INDEX_QUERY_PREFIX); + u64 ck1 = 0; + u64 ck2 = 0; + + /* Check that the results returned for ASC and DESC queries are + ** the same. If not, call this corruption. */ + rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, flags, &ck1); + if( rc==SQLITE_OK ){ + int f = flags|FTS5INDEX_QUERY_DESC; + rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2); + } + if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT; + + /* If this is a prefix query, check that the results returned if the + ** the index is disabled are the same. In both ASC and DESC order. + ** + ** This check may only be performed if the hash table is empty. This + ** is because the hash table only supports a single scan query at + ** a time, and the multi-iter loop from which this function is called + ** is already performing such a scan. + ** + ** Also only do this if buffer zTerm contains nTerm bytes of valid + ** utf-8. Otherwise, the last part of the buffer contents might contain + ** a non-utf-8 sequence that happens to be a prefix of a valid utf-8 + ** character stored in the main fts index, which will cause the + ** test to fail. */ + if( p->nPendingData==0 && 0==fts5TestUtf8(zTerm, nTerm) ){ + if( iIdx>0 && rc==SQLITE_OK ){ + int f = flags|FTS5INDEX_QUERY_TEST_NOIDX; + ck2 = 0; + rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2); + if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT; + } + if( iIdx>0 && rc==SQLITE_OK ){ + int f = flags|FTS5INDEX_QUERY_TEST_NOIDX|FTS5INDEX_QUERY_DESC; + ck2 = 0; + rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2); + if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT; + } + } + + cksum3 ^= ck1; + fts5BufferSet(&rc, pPrev, n, (const u8*)z); + + if( rc==SQLITE_OK && cksum3!=expected ){ + rc = FTS5_CORRUPT; + } + *pCksum = cksum3; + } + p->rc = rc; +} + +#else +# define fts5TestDlidxReverse(x,y,z) +# define fts5TestTerm(u,v,w,x,y,z) +#endif + +/* +** Check that: +** +** 1) All leaves of pSeg between iFirst and iLast (inclusive) exist and +** contain zero terms. +** 2) All leaves of pSeg between iNoRowid and iLast (inclusive) exist and +** contain zero rowids. +*/ +static void fts5IndexIntegrityCheckEmpty( + Fts5Index *p, + Fts5StructureSegment *pSeg, /* Segment to check internal consistency */ + int iFirst, + int iNoRowid, + int iLast +){ + int i; + + /* Now check that the iter.nEmpty leaves following the current leaf + ** (a) exist and (b) contain no terms. */ + for(i=iFirst; p->rc==SQLITE_OK && i<=iLast; i++){ + Fts5Data *pLeaf = fts5DataRead(p, FTS5_SEGMENT_ROWID(pSeg->iSegid, i)); + if( pLeaf ){ + if( !fts5LeafIsTermless(pLeaf) ) p->rc = FTS5_CORRUPT; + if( i>=iNoRowid && 0!=fts5LeafFirstRowidOff(pLeaf) ) p->rc = FTS5_CORRUPT; + } + fts5DataRelease(pLeaf); + } +} + +static void fts5IntegrityCheckPgidx(Fts5Index *p, Fts5Data *pLeaf){ + int iTermOff = 0; + int ii; + + Fts5Buffer buf1 = {0,0,0}; + Fts5Buffer buf2 = {0,0,0}; + + ii = pLeaf->szLeaf; + while( ii<pLeaf->nn && p->rc==SQLITE_OK ){ + int res; + int iOff; + int nIncr; + + ii += fts5GetVarint32(&pLeaf->p[ii], nIncr); + iTermOff += nIncr; + iOff = iTermOff; + + if( iOff>=pLeaf->szLeaf ){ + p->rc = FTS5_CORRUPT; + }else if( iTermOff==nIncr ){ + int nByte; + iOff += fts5GetVarint32(&pLeaf->p[iOff], nByte); + if( (iOff+nByte)>pLeaf->szLeaf ){ + p->rc = FTS5_CORRUPT; + }else{ + fts5BufferSet(&p->rc, &buf1, nByte, &pLeaf->p[iOff]); + } + }else{ + int nKeep, nByte; + iOff += fts5GetVarint32(&pLeaf->p[iOff], nKeep); + iOff += fts5GetVarint32(&pLeaf->p[iOff], nByte); + if( nKeep>buf1.n || (iOff+nByte)>pLeaf->szLeaf ){ + p->rc = FTS5_CORRUPT; + }else{ + buf1.n = nKeep; + fts5BufferAppendBlob(&p->rc, &buf1, nByte, &pLeaf->p[iOff]); + } + + if( p->rc==SQLITE_OK ){ + res = fts5BufferCompare(&buf1, &buf2); + if( res<=0 ) p->rc = FTS5_CORRUPT; + } + } + fts5BufferSet(&p->rc, &buf2, buf1.n, buf1.p); + } + + fts5BufferFree(&buf1); + fts5BufferFree(&buf2); +} + +static void fts5IndexIntegrityCheckSegment( + Fts5Index *p, /* FTS5 backend object */ + Fts5StructureSegment *pSeg /* Segment to check internal consistency */ +){ + Fts5Config *pConfig = p->pConfig; + sqlite3_stmt *pStmt = 0; + int rc2; + int iIdxPrevLeaf = pSeg->pgnoFirst-1; + int iDlidxPrevLeaf = pSeg->pgnoLast; + + if( pSeg->pgnoFirst==0 ) return; + + fts5IndexPrepareStmt(p, &pStmt, sqlite3_mprintf( + "SELECT segid, term, (pgno>>1), (pgno&1) FROM %Q.'%q_idx' WHERE segid=%d " + "ORDER BY 1, 2", + pConfig->zDb, pConfig->zName, pSeg->iSegid + )); + + /* Iterate through the b-tree hierarchy. */ + while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ + i64 iRow; /* Rowid for this leaf */ + Fts5Data *pLeaf; /* Data for this leaf */ + + const char *zIdxTerm = (const char*)sqlite3_column_blob(pStmt, 1); + int nIdxTerm = sqlite3_column_bytes(pStmt, 1); + int iIdxLeaf = sqlite3_column_int(pStmt, 2); + int bIdxDlidx = sqlite3_column_int(pStmt, 3); + + /* If the leaf in question has already been trimmed from the segment, + ** ignore this b-tree entry. Otherwise, load it into memory. */ + if( iIdxLeaf<pSeg->pgnoFirst ) continue; + iRow = FTS5_SEGMENT_ROWID(pSeg->iSegid, iIdxLeaf); + pLeaf = fts5LeafRead(p, iRow); + if( pLeaf==0 ) break; + + /* Check that the leaf contains at least one term, and that it is equal + ** to or larger than the split-key in zIdxTerm. Also check that if there + ** is also a rowid pointer within the leaf page header, it points to a + ** location before the term. */ + if( pLeaf->nn<=pLeaf->szLeaf ){ + p->rc = FTS5_CORRUPT; + }else{ + int iOff; /* Offset of first term on leaf */ + int iRowidOff; /* Offset of first rowid on leaf */ + int nTerm; /* Size of term on leaf in bytes */ + int res; /* Comparison of term and split-key */ + + iOff = fts5LeafFirstTermOff(pLeaf); + iRowidOff = fts5LeafFirstRowidOff(pLeaf); + if( iRowidOff>=iOff || iOff>=pLeaf->szLeaf ){ + p->rc = FTS5_CORRUPT; + }else{ + iOff += fts5GetVarint32(&pLeaf->p[iOff], nTerm); + res = fts5Memcmp(&pLeaf->p[iOff], zIdxTerm, MIN(nTerm, nIdxTerm)); + if( res==0 ) res = nTerm - nIdxTerm; + if( res<0 ) p->rc = FTS5_CORRUPT; + } + + fts5IntegrityCheckPgidx(p, pLeaf); + } + fts5DataRelease(pLeaf); + if( p->rc ) break; + + /* Now check that the iter.nEmpty leaves following the current leaf + ** (a) exist and (b) contain no terms. */ + fts5IndexIntegrityCheckEmpty( + p, pSeg, iIdxPrevLeaf+1, iDlidxPrevLeaf+1, iIdxLeaf-1 + ); + if( p->rc ) break; + + /* If there is a doclist-index, check that it looks right. */ + if( bIdxDlidx ){ + Fts5DlidxIter *pDlidx = 0; /* For iterating through doclist index */ + int iPrevLeaf = iIdxLeaf; + int iSegid = pSeg->iSegid; + int iPg = 0; + i64 iKey; + + for(pDlidx=fts5DlidxIterInit(p, 0, iSegid, iIdxLeaf); + fts5DlidxIterEof(p, pDlidx)==0; + fts5DlidxIterNext(p, pDlidx) + ){ + + /* Check any rowid-less pages that occur before the current leaf. */ + for(iPg=iPrevLeaf+1; iPg<fts5DlidxIterPgno(pDlidx); iPg++){ + iKey = FTS5_SEGMENT_ROWID(iSegid, iPg); + pLeaf = fts5DataRead(p, iKey); + if( pLeaf ){ + if( fts5LeafFirstRowidOff(pLeaf)!=0 ) p->rc = FTS5_CORRUPT; + fts5DataRelease(pLeaf); + } + } + iPrevLeaf = fts5DlidxIterPgno(pDlidx); + + /* Check that the leaf page indicated by the iterator really does + ** contain the rowid suggested by the same. */ + iKey = FTS5_SEGMENT_ROWID(iSegid, iPrevLeaf); + pLeaf = fts5DataRead(p, iKey); + if( pLeaf ){ + i64 iRowid; + int iRowidOff = fts5LeafFirstRowidOff(pLeaf); + ASSERT_SZLEAF_OK(pLeaf); + if( iRowidOff>=pLeaf->szLeaf ){ + p->rc = FTS5_CORRUPT; + }else{ + fts5GetVarint(&pLeaf->p[iRowidOff], (u64*)&iRowid); + if( iRowid!=fts5DlidxIterRowid(pDlidx) ) p->rc = FTS5_CORRUPT; + } + fts5DataRelease(pLeaf); + } + } + + iDlidxPrevLeaf = iPg; + fts5DlidxIterFree(pDlidx); + fts5TestDlidxReverse(p, iSegid, iIdxLeaf); + }else{ + iDlidxPrevLeaf = pSeg->pgnoLast; + /* TODO: Check there is no doclist index */ + } + + iIdxPrevLeaf = iIdxLeaf; + } + + rc2 = sqlite3_finalize(pStmt); + if( p->rc==SQLITE_OK ) p->rc = rc2; + + /* Page iter.iLeaf must now be the rightmost leaf-page in the segment */ +#if 0 + if( p->rc==SQLITE_OK && iter.iLeaf!=pSeg->pgnoLast ){ + p->rc = FTS5_CORRUPT; + } +#endif +} + + +/* +** Run internal checks to ensure that the FTS index (a) is internally +** consistent and (b) contains entries for which the XOR of the checksums +** as calculated by sqlite3Fts5IndexEntryCksum() is cksum. +** +** Return SQLITE_CORRUPT if any of the internal checks fail, or if the +** checksum does not match. Return SQLITE_OK if all checks pass without +** error, or some other SQLite error code if another error (e.g. OOM) +** occurs. +*/ +int sqlite3Fts5IndexIntegrityCheck(Fts5Index *p, u64 cksum, int bUseCksum){ + int eDetail = p->pConfig->eDetail; + u64 cksum2 = 0; /* Checksum based on contents of indexes */ + Fts5Buffer poslist = {0,0,0}; /* Buffer used to hold a poslist */ + Fts5Iter *pIter; /* Used to iterate through entire index */ + Fts5Structure *pStruct; /* Index structure */ + int iLvl, iSeg; + +#ifdef SQLITE_DEBUG + /* Used by extra internal tests only run if NDEBUG is not defined */ + u64 cksum3 = 0; /* Checksum based on contents of indexes */ + Fts5Buffer term = {0,0,0}; /* Buffer used to hold most recent term */ +#endif + const int flags = FTS5INDEX_QUERY_NOOUTPUT; + + /* Load the FTS index structure */ + pStruct = fts5StructureRead(p); + if( pStruct==0 ){ + assert( p->rc!=SQLITE_OK ); + return fts5IndexReturn(p); + } + + /* Check that the internal nodes of each segment match the leaves */ + for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){ + for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){ + Fts5StructureSegment *pSeg = &pStruct->aLevel[iLvl].aSeg[iSeg]; + fts5IndexIntegrityCheckSegment(p, pSeg); + } + } + + /* The cksum argument passed to this function is a checksum calculated + ** based on all expected entries in the FTS index (including prefix index + ** entries). This block checks that a checksum calculated based on the + ** actual contents of FTS index is identical. + ** + ** Two versions of the same checksum are calculated. The first (stack + ** variable cksum2) based on entries extracted from the full-text index + ** while doing a linear scan of each individual index in turn. + ** + ** As each term visited by the linear scans, a separate query for the + ** same term is performed. cksum3 is calculated based on the entries + ** extracted by these queries. + */ + for(fts5MultiIterNew(p, pStruct, flags, 0, 0, 0, -1, 0, &pIter); + fts5MultiIterEof(p, pIter)==0; + fts5MultiIterNext(p, pIter, 0, 0) + ){ + int n; /* Size of term in bytes */ + i64 iPos = 0; /* Position read from poslist */ + int iOff = 0; /* Offset within poslist */ + i64 iRowid = fts5MultiIterRowid(pIter); + char *z = (char*)fts5MultiIterTerm(pIter, &n); + + /* If this is a new term, query for it. Update cksum3 with the results. */ + fts5TestTerm(p, &term, z, n, cksum2, &cksum3); + if( p->rc ) break; + + if( eDetail==FTS5_DETAIL_NONE ){ + if( 0==fts5MultiIterIsEmpty(p, pIter) ){ + cksum2 ^= sqlite3Fts5IndexEntryCksum(iRowid, 0, 0, -1, z, n); + } + }else{ + poslist.n = 0; + fts5SegiterPoslist(p, &pIter->aSeg[pIter->aFirst[1].iFirst], 0, &poslist); + fts5BufferAppendBlob(&p->rc, &poslist, 4, (const u8*)"\0\0\0\0"); + while( 0==sqlite3Fts5PoslistNext64(poslist.p, poslist.n, &iOff, &iPos) ){ + int iCol = FTS5_POS2COLUMN(iPos); + int iTokOff = FTS5_POS2OFFSET(iPos); + cksum2 ^= sqlite3Fts5IndexEntryCksum(iRowid, iCol, iTokOff, -1, z, n); + } + } + } + fts5TestTerm(p, &term, 0, 0, cksum2, &cksum3); + + fts5MultiIterFree(pIter); + if( p->rc==SQLITE_OK && bUseCksum && cksum!=cksum2 ) p->rc = FTS5_CORRUPT; + + fts5StructureRelease(pStruct); +#ifdef SQLITE_DEBUG + fts5BufferFree(&term); +#endif + fts5BufferFree(&poslist); + return fts5IndexReturn(p); +} + +/************************************************************************* +************************************************************************** +** Below this point is the implementation of the fts5_decode() scalar +** function only. +*/ + +#ifdef SQLITE_TEST +/* +** Decode a segment-data rowid from the %_data table. This function is +** the opposite of macro FTS5_SEGMENT_ROWID(). +*/ +static void fts5DecodeRowid( + i64 iRowid, /* Rowid from %_data table */ + int *piSegid, /* OUT: Segment id */ + int *pbDlidx, /* OUT: Dlidx flag */ + int *piHeight, /* OUT: Height */ + int *piPgno /* OUT: Page number */ +){ + *piPgno = (int)(iRowid & (((i64)1 << FTS5_DATA_PAGE_B) - 1)); + iRowid >>= FTS5_DATA_PAGE_B; + + *piHeight = (int)(iRowid & (((i64)1 << FTS5_DATA_HEIGHT_B) - 1)); + iRowid >>= FTS5_DATA_HEIGHT_B; + + *pbDlidx = (int)(iRowid & 0x0001); + iRowid >>= FTS5_DATA_DLI_B; + + *piSegid = (int)(iRowid & (((i64)1 << FTS5_DATA_ID_B) - 1)); +} +#endif /* SQLITE_TEST */ + +#ifdef SQLITE_TEST +static void fts5DebugRowid(int *pRc, Fts5Buffer *pBuf, i64 iKey){ + int iSegid, iHeight, iPgno, bDlidx; /* Rowid compenents */ + fts5DecodeRowid(iKey, &iSegid, &bDlidx, &iHeight, &iPgno); + + if( iSegid==0 ){ + if( iKey==FTS5_AVERAGES_ROWID ){ + sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{averages} "); + }else{ + sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{structure}"); + } + } + else{ + sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{%ssegid=%d h=%d pgno=%d}", + bDlidx ? "dlidx " : "", iSegid, iHeight, iPgno + ); + } +} +#endif /* SQLITE_TEST */ + +#ifdef SQLITE_TEST +static void fts5DebugStructure( + int *pRc, /* IN/OUT: error code */ + Fts5Buffer *pBuf, + Fts5Structure *p +){ + int iLvl, iSeg; /* Iterate through levels, segments */ + + for(iLvl=0; iLvl<p->nLevel; iLvl++){ + Fts5StructureLevel *pLvl = &p->aLevel[iLvl]; + sqlite3Fts5BufferAppendPrintf(pRc, pBuf, + " {lvl=%d nMerge=%d nSeg=%d", iLvl, pLvl->nMerge, pLvl->nSeg + ); + for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){ + Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg]; + sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " {id=%d leaves=%d..%d}", + pSeg->iSegid, pSeg->pgnoFirst, pSeg->pgnoLast + ); + } + sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "}"); + } +} +#endif /* SQLITE_TEST */ + +#ifdef SQLITE_TEST +/* +** This is part of the fts5_decode() debugging aid. +** +** Arguments pBlob/nBlob contain a serialized Fts5Structure object. This +** function appends a human-readable representation of the same object +** to the buffer passed as the second argument. +*/ +static void fts5DecodeStructure( + int *pRc, /* IN/OUT: error code */ + Fts5Buffer *pBuf, + const u8 *pBlob, int nBlob +){ + int rc; /* Return code */ + Fts5Structure *p = 0; /* Decoded structure object */ + + rc = fts5StructureDecode(pBlob, nBlob, 0, &p); + if( rc!=SQLITE_OK ){ + *pRc = rc; + return; + } + + fts5DebugStructure(pRc, pBuf, p); + fts5StructureRelease(p); +} +#endif /* SQLITE_TEST */ + +#ifdef SQLITE_TEST +/* +** This is part of the fts5_decode() debugging aid. +** +** Arguments pBlob/nBlob contain an "averages" record. This function +** appends a human-readable representation of record to the buffer passed +** as the second argument. +*/ +static void fts5DecodeAverages( + int *pRc, /* IN/OUT: error code */ + Fts5Buffer *pBuf, + const u8 *pBlob, int nBlob +){ + int i = 0; + const char *zSpace = ""; + + while( i<nBlob ){ + u64 iVal; + i += sqlite3Fts5GetVarint(&pBlob[i], &iVal); + sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "%s%d", zSpace, (int)iVal); + zSpace = " "; + } +} +#endif /* SQLITE_TEST */ + +#ifdef SQLITE_TEST +/* +** Buffer (a/n) is assumed to contain a list of serialized varints. Read +** each varint and append its string representation to buffer pBuf. Return +** after either the input buffer is exhausted or a 0 value is read. +** +** The return value is the number of bytes read from the input buffer. +*/ +static int fts5DecodePoslist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){ + int iOff = 0; + while( iOff<n ){ + int iVal; + iOff += fts5GetVarint32(&a[iOff], iVal); + sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %d", iVal); + } + return iOff; +} +#endif /* SQLITE_TEST */ + +#ifdef SQLITE_TEST +/* +** The start of buffer (a/n) contains the start of a doclist. The doclist +** may or may not finish within the buffer. This function appends a text +** representation of the part of the doclist that is present to buffer +** pBuf. +** +** The return value is the number of bytes read from the input buffer. +*/ +static int fts5DecodeDoclist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){ + i64 iDocid = 0; + int iOff = 0; + + if( n>0 ){ + iOff = sqlite3Fts5GetVarint(a, (u64*)&iDocid); + sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid); + } + while( iOff<n ){ + int nPos; + int bDel; + iOff += fts5GetPoslistSize(&a[iOff], &nPos, &bDel); + sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " nPos=%d%s", nPos, bDel?"*":""); + iOff += fts5DecodePoslist(pRc, pBuf, &a[iOff], MIN(n-iOff, nPos)); + if( iOff<n ){ + i64 iDelta; + iOff += sqlite3Fts5GetVarint(&a[iOff], (u64*)&iDelta); + iDocid += iDelta; + sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid); + } + } + + return iOff; +} +#endif /* SQLITE_TEST */ + +#ifdef SQLITE_TEST +/* +** This function is part of the fts5_decode() debugging function. It is +** only ever used with detail=none tables. +** +** Buffer (pData/nData) contains a doclist in the format used by detail=none +** tables. This function appends a human-readable version of that list to +** buffer pBuf. +** +** If *pRc is other than SQLITE_OK when this function is called, it is a +** no-op. If an OOM or other error occurs within this function, *pRc is +** set to an SQLite error code before returning. The final state of buffer +** pBuf is undefined in this case. +*/ +static void fts5DecodeRowidList( + int *pRc, /* IN/OUT: Error code */ + Fts5Buffer *pBuf, /* Buffer to append text to */ + const u8 *pData, int nData /* Data to decode list-of-rowids from */ +){ + int i = 0; + i64 iRowid = 0; + + while( i<nData ){ + const char *zApp = ""; + u64 iVal; + i += sqlite3Fts5GetVarint(&pData[i], &iVal); + iRowid += iVal; + + if( i<nData && pData[i]==0x00 ){ + i++; + if( i<nData && pData[i]==0x00 ){ + i++; + zApp = "+"; + }else{ + zApp = "*"; + } + } + + sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %lld%s", iRowid, zApp); + } +} +#endif /* SQLITE_TEST */ + +#ifdef SQLITE_TEST +/* +** The implementation of user-defined scalar function fts5_decode(). +*/ +static void fts5DecodeFunction( + sqlite3_context *pCtx, /* Function call context */ + int nArg, /* Number of args (always 2) */ + sqlite3_value **apVal /* Function arguments */ +){ + i64 iRowid; /* Rowid for record being decoded */ + int iSegid,iHeight,iPgno,bDlidx;/* Rowid components */ + const u8 *aBlob; int n; /* Record to decode */ + u8 *a = 0; + Fts5Buffer s; /* Build up text to return here */ + int rc = SQLITE_OK; /* Return code */ + sqlite3_int64 nSpace = 0; + int eDetailNone = (sqlite3_user_data(pCtx)!=0); + + assert( nArg==2 ); + UNUSED_PARAM(nArg); + memset(&s, 0, sizeof(Fts5Buffer)); + iRowid = sqlite3_value_int64(apVal[0]); + + /* Make a copy of the second argument (a blob) in aBlob[]. The aBlob[] + ** copy is followed by FTS5_DATA_ZERO_PADDING 0x00 bytes, which prevents + ** buffer overreads even if the record is corrupt. */ + n = sqlite3_value_bytes(apVal[1]); + aBlob = sqlite3_value_blob(apVal[1]); + nSpace = n + FTS5_DATA_ZERO_PADDING; + a = (u8*)sqlite3Fts5MallocZero(&rc, nSpace); + if( a==0 ) goto decode_out; + if( n>0 ) memcpy(a, aBlob, n); + + fts5DecodeRowid(iRowid, &iSegid, &bDlidx, &iHeight, &iPgno); + + fts5DebugRowid(&rc, &s, iRowid); + if( bDlidx ){ + Fts5Data dlidx; + Fts5DlidxLvl lvl; + + dlidx.p = a; + dlidx.nn = n; + + memset(&lvl, 0, sizeof(Fts5DlidxLvl)); + lvl.pData = &dlidx; + lvl.iLeafPgno = iPgno; + + for(fts5DlidxLvlNext(&lvl); lvl.bEof==0; fts5DlidxLvlNext(&lvl)){ + sqlite3Fts5BufferAppendPrintf(&rc, &s, + " %d(%lld)", lvl.iLeafPgno, lvl.iRowid + ); + } + }else if( iSegid==0 ){ + if( iRowid==FTS5_AVERAGES_ROWID ){ + fts5DecodeAverages(&rc, &s, a, n); + }else{ + fts5DecodeStructure(&rc, &s, a, n); + } + }else if( eDetailNone ){ + Fts5Buffer term; /* Current term read from page */ + int szLeaf; + int iPgidxOff = szLeaf = fts5GetU16(&a[2]); + int iTermOff; + int nKeep = 0; + int iOff; + + memset(&term, 0, sizeof(Fts5Buffer)); + + /* Decode any entries that occur before the first term. */ + if( szLeaf<n ){ + iPgidxOff += fts5GetVarint32(&a[iPgidxOff], iTermOff); + }else{ + iTermOff = szLeaf; + } + fts5DecodeRowidList(&rc, &s, &a[4], iTermOff-4); + + iOff = iTermOff; + while( iOff<szLeaf ){ + int nAppend; + + /* Read the term data for the next term*/ + iOff += fts5GetVarint32(&a[iOff], nAppend); + term.n = nKeep; + fts5BufferAppendBlob(&rc, &term, nAppend, &a[iOff]); + sqlite3Fts5BufferAppendPrintf( + &rc, &s, " term=%.*s", term.n, (const char*)term.p + ); + iOff += nAppend; + + /* Figure out where the doclist for this term ends */ + if( iPgidxOff<n ){ + int nIncr; + iPgidxOff += fts5GetVarint32(&a[iPgidxOff], nIncr); + iTermOff += nIncr; + }else{ + iTermOff = szLeaf; + } + + fts5DecodeRowidList(&rc, &s, &a[iOff], iTermOff-iOff); + iOff = iTermOff; + if( iOff<szLeaf ){ + iOff += fts5GetVarint32(&a[iOff], nKeep); + } + } + + fts5BufferFree(&term); + }else{ + Fts5Buffer term; /* Current term read from page */ + int szLeaf; /* Offset of pgidx in a[] */ + int iPgidxOff; + int iPgidxPrev = 0; /* Previous value read from pgidx */ + int iTermOff = 0; + int iRowidOff = 0; + int iOff; + int nDoclist; + + memset(&term, 0, sizeof(Fts5Buffer)); + + if( n<4 ){ + sqlite3Fts5BufferSet(&rc, &s, 7, (const u8*)"corrupt"); + goto decode_out; + }else{ + iRowidOff = fts5GetU16(&a[0]); + iPgidxOff = szLeaf = fts5GetU16(&a[2]); + if( iPgidxOff<n ){ + fts5GetVarint32(&a[iPgidxOff], iTermOff); + }else if( iPgidxOff>n ){ + rc = FTS5_CORRUPT; + goto decode_out; + } + } + + /* Decode the position list tail at the start of the page */ + if( iRowidOff!=0 ){ + iOff = iRowidOff; + }else if( iTermOff!=0 ){ + iOff = iTermOff; + }else{ + iOff = szLeaf; + } + if( iOff>n ){ + rc = FTS5_CORRUPT; + goto decode_out; + } + fts5DecodePoslist(&rc, &s, &a[4], iOff-4); + + /* Decode any more doclist data that appears on the page before the + ** first term. */ + nDoclist = (iTermOff ? iTermOff : szLeaf) - iOff; + if( nDoclist+iOff>n ){ + rc = FTS5_CORRUPT; + goto decode_out; + } + fts5DecodeDoclist(&rc, &s, &a[iOff], nDoclist); + + while( iPgidxOff<n && rc==SQLITE_OK ){ + int bFirst = (iPgidxOff==szLeaf); /* True for first term on page */ + int nByte; /* Bytes of data */ + int iEnd; + + iPgidxOff += fts5GetVarint32(&a[iPgidxOff], nByte); + iPgidxPrev += nByte; + iOff = iPgidxPrev; + + if( iPgidxOff<n ){ + fts5GetVarint32(&a[iPgidxOff], nByte); + iEnd = iPgidxPrev + nByte; + }else{ + iEnd = szLeaf; + } + if( iEnd>szLeaf ){ + rc = FTS5_CORRUPT; + break; + } + + if( bFirst==0 ){ + iOff += fts5GetVarint32(&a[iOff], nByte); + if( nByte>term.n ){ + rc = FTS5_CORRUPT; + break; + } + term.n = nByte; + } + iOff += fts5GetVarint32(&a[iOff], nByte); + if( iOff+nByte>n ){ + rc = FTS5_CORRUPT; + break; + } + fts5BufferAppendBlob(&rc, &term, nByte, &a[iOff]); + iOff += nByte; + + sqlite3Fts5BufferAppendPrintf( + &rc, &s, " term=%.*s", term.n, (const char*)term.p + ); + iOff += fts5DecodeDoclist(&rc, &s, &a[iOff], iEnd-iOff); + } + + fts5BufferFree(&term); + } + + decode_out: + sqlite3_free(a); + if( rc==SQLITE_OK ){ + sqlite3_result_text(pCtx, (const char*)s.p, s.n, SQLITE_TRANSIENT); + }else{ + sqlite3_result_error_code(pCtx, rc); + } + fts5BufferFree(&s); +} +#endif /* SQLITE_TEST */ + +#ifdef SQLITE_TEST +/* +** The implementation of user-defined scalar function fts5_rowid(). +*/ +static void fts5RowidFunction( + sqlite3_context *pCtx, /* Function call context */ + int nArg, /* Number of args (always 2) */ + sqlite3_value **apVal /* Function arguments */ +){ + const char *zArg; + if( nArg==0 ){ + sqlite3_result_error(pCtx, "should be: fts5_rowid(subject, ....)", -1); + }else{ + zArg = (const char*)sqlite3_value_text(apVal[0]); + if( 0==sqlite3_stricmp(zArg, "segment") ){ + i64 iRowid; + int segid, pgno; + if( nArg!=3 ){ + sqlite3_result_error(pCtx, + "should be: fts5_rowid('segment', segid, pgno))", -1 + ); + }else{ + segid = sqlite3_value_int(apVal[1]); + pgno = sqlite3_value_int(apVal[2]); + iRowid = FTS5_SEGMENT_ROWID(segid, pgno); + sqlite3_result_int64(pCtx, iRowid); + } + }else{ + sqlite3_result_error(pCtx, + "first arg to fts5_rowid() must be 'segment'" , -1 + ); + } + } +} +#endif /* SQLITE_TEST */ + +/* +** This is called as part of registering the FTS5 module with database +** connection db. It registers several user-defined scalar functions useful +** with FTS5. +** +** If successful, SQLITE_OK is returned. If an error occurs, some other +** SQLite error code is returned instead. +*/ +int sqlite3Fts5IndexInit(sqlite3 *db){ +#ifdef SQLITE_TEST + int rc = sqlite3_create_function( + db, "fts5_decode", 2, SQLITE_UTF8, 0, fts5DecodeFunction, 0, 0 + ); + + if( rc==SQLITE_OK ){ + rc = sqlite3_create_function( + db, "fts5_decode_none", 2, + SQLITE_UTF8, (void*)db, fts5DecodeFunction, 0, 0 + ); + } + + if( rc==SQLITE_OK ){ + rc = sqlite3_create_function( + db, "fts5_rowid", -1, SQLITE_UTF8, 0, fts5RowidFunction, 0, 0 + ); + } + return rc; +#else + return SQLITE_OK; + UNUSED_PARAM(db); +#endif +} + + +int sqlite3Fts5IndexReset(Fts5Index *p){ + assert( p->pStruct==0 || p->iStructVersion!=0 ); + if( fts5IndexDataVersion(p)!=p->iStructVersion ){ + fts5StructureInvalidate(p); + } + return fts5IndexReturn(p); +} |