summaryrefslogtreecommitdiffstats
path: root/src/analyze.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 17:28:19 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 17:28:19 +0000
commit18657a960e125336f704ea058e25c27bd3900dcb (patch)
tree17b438b680ed45a996d7b59951e6aa34023783f2 /src/analyze.c
parentInitial commit. (diff)
downloadsqlite3-18657a960e125336f704ea058e25c27bd3900dcb.tar.xz
sqlite3-18657a960e125336f704ea058e25c27bd3900dcb.zip
Adding upstream version 3.40.1.upstream/3.40.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/analyze.c')
-rw-r--r--src/analyze.c1937
1 files changed, 1937 insertions, 0 deletions
diff --git a/src/analyze.c b/src/analyze.c
new file mode 100644
index 0000000..8562b9d
--- /dev/null
+++ b/src/analyze.c
@@ -0,0 +1,1937 @@
+/*
+** 2005-07-08
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code associated with the ANALYZE command.
+**
+** The ANALYZE command gather statistics about the content of tables
+** and indices. These statistics are made available to the query planner
+** to help it make better decisions about how to perform queries.
+**
+** The following system tables are or have been supported:
+**
+** CREATE TABLE sqlite_stat1(tbl, idx, stat);
+** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
+** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
+** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
+**
+** Additional tables might be added in future releases of SQLite.
+** The sqlite_stat2 table is not created or used unless the SQLite version
+** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
+** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated.
+** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
+** created and used by SQLite versions 3.7.9 through 3.29.0 when
+** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3
+** is a superset of sqlite_stat2 and is also now deprecated. The
+** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only
+** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite
+** versions 3.8.1 and later. STAT4 is the only variant that is still
+** supported.
+**
+** For most applications, sqlite_stat1 provides all the statistics required
+** for the query planner to make good choices.
+**
+** Format of sqlite_stat1:
+**
+** There is normally one row per index, with the index identified by the
+** name in the idx column. The tbl column is the name of the table to
+** which the index belongs. In each such row, the stat column will be
+** a string consisting of a list of integers. The first integer in this
+** list is the number of rows in the index. (This is the same as the
+** number of rows in the table, except for partial indices.) The second
+** integer is the average number of rows in the index that have the same
+** value in the first column of the index. The third integer is the average
+** number of rows in the index that have the same value for the first two
+** columns. The N-th integer (for N>1) is the average number of rows in
+** the index which have the same value for the first N-1 columns. For
+** a K-column index, there will be K+1 integers in the stat column. If
+** the index is unique, then the last integer will be 1.
+**
+** The list of integers in the stat column can optionally be followed
+** by the keyword "unordered". The "unordered" keyword, if it is present,
+** must be separated from the last integer by a single space. If the
+** "unordered" keyword is present, then the query planner assumes that
+** the index is unordered and will not use the index for a range query.
+**
+** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
+** column contains a single integer which is the (estimated) number of
+** rows in the table identified by sqlite_stat1.tbl.
+**
+** Format of sqlite_stat2:
+**
+** The sqlite_stat2 is only created and is only used if SQLite is compiled
+** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
+** 3.6.18 and 3.7.8. The "stat2" table contains additional information
+** about the distribution of keys within an index. The index is identified by
+** the "idx" column and the "tbl" column is the name of the table to which
+** the index belongs. There are usually 10 rows in the sqlite_stat2
+** table for each index.
+**
+** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
+** inclusive are samples of the left-most key value in the index taken at
+** evenly spaced points along the index. Let the number of samples be S
+** (10 in the standard build) and let C be the number of rows in the index.
+** Then the sampled rows are given by:
+**
+** rownumber = (i*C*2 + C)/(S*2)
+**
+** For i between 0 and S-1. Conceptually, the index space is divided into
+** S uniform buckets and the samples are the middle row from each bucket.
+**
+** The format for sqlite_stat2 is recorded here for legacy reference. This
+** version of SQLite does not support sqlite_stat2. It neither reads nor
+** writes the sqlite_stat2 table. This version of SQLite only supports
+** sqlite_stat3.
+**
+** Format for sqlite_stat3:
+**
+** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the
+** sqlite_stat4 format will be described first. Further information
+** about sqlite_stat3 follows the sqlite_stat4 description.
+**
+** Format for sqlite_stat4:
+**
+** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
+** to aid the query planner in choosing good indices based on the values
+** that indexed columns are compared against in the WHERE clauses of
+** queries.
+**
+** The sqlite_stat4 table contains multiple entries for each index.
+** The idx column names the index and the tbl column is the table of the
+** index. If the idx and tbl columns are the same, then the sample is
+** of the INTEGER PRIMARY KEY. The sample column is a blob which is the
+** binary encoding of a key from the index. The nEq column is a
+** list of integers. The first integer is the approximate number
+** of entries in the index whose left-most column exactly matches
+** the left-most column of the sample. The second integer in nEq
+** is the approximate number of entries in the index where the
+** first two columns match the first two columns of the sample.
+** And so forth. nLt is another list of integers that show the approximate
+** number of entries that are strictly less than the sample. The first
+** integer in nLt contains the number of entries in the index where the
+** left-most column is less than the left-most column of the sample.
+** The K-th integer in the nLt entry is the number of index entries
+** where the first K columns are less than the first K columns of the
+** sample. The nDLt column is like nLt except that it contains the
+** number of distinct entries in the index that are less than the
+** sample.
+**
+** There can be an arbitrary number of sqlite_stat4 entries per index.
+** The ANALYZE command will typically generate sqlite_stat4 tables
+** that contain between 10 and 40 samples which are distributed across
+** the key space, though not uniformly, and which include samples with
+** large nEq values.
+**
+** Format for sqlite_stat3 redux:
+**
+** The sqlite_stat3 table is like sqlite_stat4 except that it only
+** looks at the left-most column of the index. The sqlite_stat3.sample
+** column contains the actual value of the left-most column instead
+** of a blob encoding of the complete index key as is found in
+** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3
+** all contain just a single integer which is the same as the first
+** integer in the equivalent columns in sqlite_stat4.
+*/
+#ifndef SQLITE_OMIT_ANALYZE
+#include "sqliteInt.h"
+
+#if defined(SQLITE_ENABLE_STAT4)
+# define IsStat4 1
+#else
+# define IsStat4 0
+# undef SQLITE_STAT4_SAMPLES
+# define SQLITE_STAT4_SAMPLES 1
+#endif
+
+/*
+** This routine generates code that opens the sqlite_statN tables.
+** The sqlite_stat1 table is always relevant. sqlite_stat2 is now
+** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when
+** appropriate compile-time options are provided.
+**
+** If the sqlite_statN tables do not previously exist, it is created.
+**
+** Argument zWhere may be a pointer to a buffer containing a table name,
+** or it may be a NULL pointer. If it is not NULL, then all entries in
+** the sqlite_statN tables associated with the named table are deleted.
+** If zWhere==0, then code is generated to delete all stat table entries.
+*/
+static void openStatTable(
+ Parse *pParse, /* Parsing context */
+ int iDb, /* The database we are looking in */
+ int iStatCur, /* Open the sqlite_stat1 table on this cursor */
+ const char *zWhere, /* Delete entries for this table or index */
+ const char *zWhereType /* Either "tbl" or "idx" */
+){
+ static const struct {
+ const char *zName;
+ const char *zCols;
+ } aTable[] = {
+ { "sqlite_stat1", "tbl,idx,stat" },
+#if defined(SQLITE_ENABLE_STAT4)
+ { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
+#else
+ { "sqlite_stat4", 0 },
+#endif
+ { "sqlite_stat3", 0 },
+ };
+ int i;
+ sqlite3 *db = pParse->db;
+ Db *pDb;
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ u32 aRoot[ArraySize(aTable)];
+ u8 aCreateTbl[ArraySize(aTable)];
+#ifdef SQLITE_ENABLE_STAT4
+ const int nToOpen = OptimizationEnabled(db,SQLITE_Stat4) ? 2 : 1;
+#else
+ const int nToOpen = 1;
+#endif
+
+ if( v==0 ) return;
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ assert( sqlite3VdbeDb(v)==db );
+ pDb = &db->aDb[iDb];
+
+ /* Create new statistic tables if they do not exist, or clear them
+ ** if they do already exist.
+ */
+ for(i=0; i<ArraySize(aTable); i++){
+ const char *zTab = aTable[i].zName;
+ Table *pStat;
+ aCreateTbl[i] = 0;
+ if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){
+ if( i<nToOpen ){
+ /* The sqlite_statN table does not exist. Create it. Note that a
+ ** side-effect of the CREATE TABLE statement is to leave the rootpage
+ ** of the new table in register pParse->regRoot. This is important
+ ** because the OpenWrite opcode below will be needing it. */
+ sqlite3NestedParse(pParse,
+ "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols
+ );
+ aRoot[i] = (u32)pParse->regRoot;
+ aCreateTbl[i] = OPFLAG_P2ISREG;
+ }
+ }else{
+ /* The table already exists. If zWhere is not NULL, delete all entries
+ ** associated with the table zWhere. If zWhere is NULL, delete the
+ ** entire contents of the table. */
+ aRoot[i] = pStat->tnum;
+ sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
+ if( zWhere ){
+ sqlite3NestedParse(pParse,
+ "DELETE FROM %Q.%s WHERE %s=%Q",
+ pDb->zDbSName, zTab, zWhereType, zWhere
+ );
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ }else if( db->xPreUpdateCallback ){
+ sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab);
+#endif
+ }else{
+ /* The sqlite_stat[134] table already exists. Delete all rows. */
+ sqlite3VdbeAddOp2(v, OP_Clear, (int)aRoot[i], iDb);
+ }
+ }
+ }
+
+ /* Open the sqlite_stat[134] tables for writing. */
+ for(i=0; i<nToOpen; i++){
+ assert( i<ArraySize(aTable) );
+ sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, (int)aRoot[i], iDb, 3);
+ sqlite3VdbeChangeP5(v, aCreateTbl[i]);
+ VdbeComment((v, aTable[i].zName));
+ }
+}
+
+/*
+** Recommended number of samples for sqlite_stat4
+*/
+#ifndef SQLITE_STAT4_SAMPLES
+# define SQLITE_STAT4_SAMPLES 24
+#endif
+
+/*
+** Three SQL functions - stat_init(), stat_push(), and stat_get() -
+** share an instance of the following structure to hold their state
+** information.
+*/
+typedef struct StatAccum StatAccum;
+typedef struct StatSample StatSample;
+struct StatSample {
+ tRowcnt *anEq; /* sqlite_stat4.nEq */
+ tRowcnt *anDLt; /* sqlite_stat4.nDLt */
+#ifdef SQLITE_ENABLE_STAT4
+ tRowcnt *anLt; /* sqlite_stat4.nLt */
+ union {
+ i64 iRowid; /* Rowid in main table of the key */
+ u8 *aRowid; /* Key for WITHOUT ROWID tables */
+ } u;
+ u32 nRowid; /* Sizeof aRowid[] */
+ u8 isPSample; /* True if a periodic sample */
+ int iCol; /* If !isPSample, the reason for inclusion */
+ u32 iHash; /* Tiebreaker hash */
+#endif
+};
+struct StatAccum {
+ sqlite3 *db; /* Database connection, for malloc() */
+ tRowcnt nEst; /* Estimated number of rows */
+ tRowcnt nRow; /* Number of rows visited so far */
+ int nLimit; /* Analysis row-scan limit */
+ int nCol; /* Number of columns in index + pk/rowid */
+ int nKeyCol; /* Number of index columns w/o the pk/rowid */
+ u8 nSkipAhead; /* Number of times of skip-ahead */
+ StatSample current; /* Current row as a StatSample */
+#ifdef SQLITE_ENABLE_STAT4
+ tRowcnt nPSample; /* How often to do a periodic sample */
+ int mxSample; /* Maximum number of samples to accumulate */
+ u32 iPrn; /* Pseudo-random number used for sampling */
+ StatSample *aBest; /* Array of nCol best samples */
+ int iMin; /* Index in a[] of entry with minimum score */
+ int nSample; /* Current number of samples */
+ int nMaxEqZero; /* Max leading 0 in anEq[] for any a[] entry */
+ int iGet; /* Index of current sample accessed by stat_get() */
+ StatSample *a; /* Array of mxSample StatSample objects */
+#endif
+};
+
+/* Reclaim memory used by a StatSample
+*/
+#ifdef SQLITE_ENABLE_STAT4
+static void sampleClear(sqlite3 *db, StatSample *p){
+ assert( db!=0 );
+ if( p->nRowid ){
+ sqlite3DbFree(db, p->u.aRowid);
+ p->nRowid = 0;
+ }
+}
+#endif
+
+/* Initialize the BLOB value of a ROWID
+*/
+#ifdef SQLITE_ENABLE_STAT4
+static void sampleSetRowid(sqlite3 *db, StatSample *p, int n, const u8 *pData){
+ assert( db!=0 );
+ if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
+ p->u.aRowid = sqlite3DbMallocRawNN(db, n);
+ if( p->u.aRowid ){
+ p->nRowid = n;
+ memcpy(p->u.aRowid, pData, n);
+ }else{
+ p->nRowid = 0;
+ }
+}
+#endif
+
+/* Initialize the INTEGER value of a ROWID.
+*/
+#ifdef SQLITE_ENABLE_STAT4
+static void sampleSetRowidInt64(sqlite3 *db, StatSample *p, i64 iRowid){
+ assert( db!=0 );
+ if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
+ p->nRowid = 0;
+ p->u.iRowid = iRowid;
+}
+#endif
+
+
+/*
+** Copy the contents of object (*pFrom) into (*pTo).
+*/
+#ifdef SQLITE_ENABLE_STAT4
+static void sampleCopy(StatAccum *p, StatSample *pTo, StatSample *pFrom){
+ pTo->isPSample = pFrom->isPSample;
+ pTo->iCol = pFrom->iCol;
+ pTo->iHash = pFrom->iHash;
+ memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
+ memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
+ memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
+ if( pFrom->nRowid ){
+ sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid);
+ }else{
+ sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid);
+ }
+}
+#endif
+
+/*
+** Reclaim all memory of a StatAccum structure.
+*/
+static void statAccumDestructor(void *pOld){
+ StatAccum *p = (StatAccum*)pOld;
+#ifdef SQLITE_ENABLE_STAT4
+ if( p->mxSample ){
+ int i;
+ for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i);
+ for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i);
+ sampleClear(p->db, &p->current);
+ }
+#endif
+ sqlite3DbFree(p->db, p);
+}
+
+/*
+** Implementation of the stat_init(N,K,C,L) SQL function. The four parameters
+** are:
+** N: The number of columns in the index including the rowid/pk (note 1)
+** K: The number of columns in the index excluding the rowid/pk.
+** C: Estimated number of rows in the index
+** L: A limit on the number of rows to scan, or 0 for no-limit
+**
+** Note 1: In the special case of the covering index that implements a
+** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the
+** total number of columns in the table.
+**
+** For indexes on ordinary rowid tables, N==K+1. But for indexes on
+** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
+** PRIMARY KEY of the table. The covering index that implements the
+** original WITHOUT ROWID table as N==K as a special case.
+**
+** This routine allocates the StatAccum object in heap memory. The return
+** value is a pointer to the StatAccum object. The datatype of the
+** return value is BLOB, but it is really just a pointer to the StatAccum
+** object.
+*/
+static void statInit(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ StatAccum *p;
+ int nCol; /* Number of columns in index being sampled */
+ int nKeyCol; /* Number of key columns */
+ int nColUp; /* nCol rounded up for alignment */
+ int n; /* Bytes of space to allocate */
+ sqlite3 *db = sqlite3_context_db_handle(context); /* Database connection */
+#ifdef SQLITE_ENABLE_STAT4
+ /* Maximum number of samples. 0 if STAT4 data is not collected */
+ int mxSample = OptimizationEnabled(db,SQLITE_Stat4) ?SQLITE_STAT4_SAMPLES :0;
+#endif
+
+ /* Decode the three function arguments */
+ UNUSED_PARAMETER(argc);
+ nCol = sqlite3_value_int(argv[0]);
+ assert( nCol>0 );
+ nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;
+ nKeyCol = sqlite3_value_int(argv[1]);
+ assert( nKeyCol<=nCol );
+ assert( nKeyCol>0 );
+
+ /* Allocate the space required for the StatAccum object */
+ n = sizeof(*p)
+ + sizeof(tRowcnt)*nColUp /* StatAccum.anEq */
+ + sizeof(tRowcnt)*nColUp; /* StatAccum.anDLt */
+#ifdef SQLITE_ENABLE_STAT4
+ if( mxSample ){
+ n += sizeof(tRowcnt)*nColUp /* StatAccum.anLt */
+ + sizeof(StatSample)*(nCol+mxSample) /* StatAccum.aBest[], a[] */
+ + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample);
+ }
+#endif
+ p = sqlite3DbMallocZero(db, n);
+ if( p==0 ){
+ sqlite3_result_error_nomem(context);
+ return;
+ }
+
+ p->db = db;
+ p->nEst = sqlite3_value_int64(argv[2]);
+ p->nRow = 0;
+ p->nLimit = sqlite3_value_int64(argv[3]);
+ p->nCol = nCol;
+ p->nKeyCol = nKeyCol;
+ p->nSkipAhead = 0;
+ p->current.anDLt = (tRowcnt*)&p[1];
+ p->current.anEq = &p->current.anDLt[nColUp];
+
+#ifdef SQLITE_ENABLE_STAT4
+ p->mxSample = p->nLimit==0 ? mxSample : 0;
+ if( mxSample ){
+ u8 *pSpace; /* Allocated space not yet assigned */
+ int i; /* Used to iterate through p->aSample[] */
+
+ p->iGet = -1;
+ p->nPSample = (tRowcnt)(p->nEst/(mxSample/3+1) + 1);
+ p->current.anLt = &p->current.anEq[nColUp];
+ p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]);
+
+ /* Set up the StatAccum.a[] and aBest[] arrays */
+ p->a = (struct StatSample*)&p->current.anLt[nColUp];
+ p->aBest = &p->a[mxSample];
+ pSpace = (u8*)(&p->a[mxSample+nCol]);
+ for(i=0; i<(mxSample+nCol); i++){
+ p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
+ p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
+ p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
+ }
+ assert( (pSpace - (u8*)p)==n );
+
+ for(i=0; i<nCol; i++){
+ p->aBest[i].iCol = i;
+ }
+ }
+#endif
+
+ /* Return a pointer to the allocated object to the caller. Note that
+ ** only the pointer (the 2nd parameter) matters. The size of the object
+ ** (given by the 3rd parameter) is never used and can be any positive
+ ** value. */
+ sqlite3_result_blob(context, p, sizeof(*p), statAccumDestructor);
+}
+static const FuncDef statInitFuncdef = {
+ 4, /* nArg */
+ SQLITE_UTF8, /* funcFlags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ statInit, /* xSFunc */
+ 0, /* xFinalize */
+ 0, 0, /* xValue, xInverse */
+ "stat_init", /* zName */
+ {0}
+};
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** pNew and pOld are both candidate non-periodic samples selected for
+** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
+** considering only any trailing columns and the sample hash value, this
+** function returns true if sample pNew is to be preferred over pOld.
+** In other words, if we assume that the cardinalities of the selected
+** column for pNew and pOld are equal, is pNew to be preferred over pOld.
+**
+** This function assumes that for each argument sample, the contents of
+** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
+*/
+static int sampleIsBetterPost(
+ StatAccum *pAccum,
+ StatSample *pNew,
+ StatSample *pOld
+){
+ int nCol = pAccum->nCol;
+ int i;
+ assert( pNew->iCol==pOld->iCol );
+ for(i=pNew->iCol+1; i<nCol; i++){
+ if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
+ if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
+ }
+ if( pNew->iHash>pOld->iHash ) return 1;
+ return 0;
+}
+#endif
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Return true if pNew is to be preferred over pOld.
+**
+** This function assumes that for each argument sample, the contents of
+** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
+*/
+static int sampleIsBetter(
+ StatAccum *pAccum,
+ StatSample *pNew,
+ StatSample *pOld
+){
+ tRowcnt nEqNew = pNew->anEq[pNew->iCol];
+ tRowcnt nEqOld = pOld->anEq[pOld->iCol];
+
+ assert( pOld->isPSample==0 && pNew->isPSample==0 );
+ assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );
+
+ if( (nEqNew>nEqOld) ) return 1;
+ if( nEqNew==nEqOld ){
+ if( pNew->iCol<pOld->iCol ) return 1;
+ return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
+ }
+ return 0;
+}
+
+/*
+** Copy the contents of sample *pNew into the p->a[] array. If necessary,
+** remove the least desirable sample from p->a[] to make room.
+*/
+static void sampleInsert(StatAccum *p, StatSample *pNew, int nEqZero){
+ StatSample *pSample = 0;
+ int i;
+
+ assert( IsStat4 || nEqZero==0 );
+
+ /* StatAccum.nMaxEqZero is set to the maximum number of leading 0
+ ** values in the anEq[] array of any sample in StatAccum.a[]. In
+ ** other words, if nMaxEqZero is n, then it is guaranteed that there
+ ** are no samples with StatSample.anEq[m]==0 for (m>=n). */
+ if( nEqZero>p->nMaxEqZero ){
+ p->nMaxEqZero = nEqZero;
+ }
+ if( pNew->isPSample==0 ){
+ StatSample *pUpgrade = 0;
+ assert( pNew->anEq[pNew->iCol]>0 );
+
+ /* This sample is being added because the prefix that ends in column
+ ** iCol occurs many times in the table. However, if we have already
+ ** added a sample that shares this prefix, there is no need to add
+ ** this one. Instead, upgrade the priority of the highest priority
+ ** existing sample that shares this prefix. */
+ for(i=p->nSample-1; i>=0; i--){
+ StatSample *pOld = &p->a[i];
+ if( pOld->anEq[pNew->iCol]==0 ){
+ if( pOld->isPSample ) return;
+ assert( pOld->iCol>pNew->iCol );
+ assert( sampleIsBetter(p, pNew, pOld) );
+ if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
+ pUpgrade = pOld;
+ }
+ }
+ }
+ if( pUpgrade ){
+ pUpgrade->iCol = pNew->iCol;
+ pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
+ goto find_new_min;
+ }
+ }
+
+ /* If necessary, remove sample iMin to make room for the new sample. */
+ if( p->nSample>=p->mxSample ){
+ StatSample *pMin = &p->a[p->iMin];
+ tRowcnt *anEq = pMin->anEq;
+ tRowcnt *anLt = pMin->anLt;
+ tRowcnt *anDLt = pMin->anDLt;
+ sampleClear(p->db, pMin);
+ memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
+ pSample = &p->a[p->nSample-1];
+ pSample->nRowid = 0;
+ pSample->anEq = anEq;
+ pSample->anDLt = anDLt;
+ pSample->anLt = anLt;
+ p->nSample = p->mxSample-1;
+ }
+
+ /* The "rows less-than" for the rowid column must be greater than that
+ ** for the last sample in the p->a[] array. Otherwise, the samples would
+ ** be out of order. */
+ assert( p->nSample==0
+ || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );
+
+ /* Insert the new sample */
+ pSample = &p->a[p->nSample];
+ sampleCopy(p, pSample, pNew);
+ p->nSample++;
+
+ /* Zero the first nEqZero entries in the anEq[] array. */
+ memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);
+
+find_new_min:
+ if( p->nSample>=p->mxSample ){
+ int iMin = -1;
+ for(i=0; i<p->mxSample; i++){
+ if( p->a[i].isPSample ) continue;
+ if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
+ iMin = i;
+ }
+ }
+ assert( iMin>=0 );
+ p->iMin = iMin;
+ }
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Field iChng of the index being scanned has changed. So at this point
+** p->current contains a sample that reflects the previous row of the
+** index. The value of anEq[iChng] and subsequent anEq[] elements are
+** correct at this point.
+*/
+static void samplePushPrevious(StatAccum *p, int iChng){
+ int i;
+
+ /* Check if any samples from the aBest[] array should be pushed
+ ** into IndexSample.a[] at this point. */
+ for(i=(p->nCol-2); i>=iChng; i--){
+ StatSample *pBest = &p->aBest[i];
+ pBest->anEq[i] = p->current.anEq[i];
+ if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
+ sampleInsert(p, pBest, i);
+ }
+ }
+
+ /* Check that no sample contains an anEq[] entry with an index of
+ ** p->nMaxEqZero or greater set to zero. */
+ for(i=p->nSample-1; i>=0; i--){
+ int j;
+ for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 );
+ }
+
+ /* Update the anEq[] fields of any samples already collected. */
+ if( iChng<p->nMaxEqZero ){
+ for(i=p->nSample-1; i>=0; i--){
+ int j;
+ for(j=iChng; j<p->nCol; j++){
+ if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
+ }
+ }
+ p->nMaxEqZero = iChng;
+ }
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+/*
+** Implementation of the stat_push SQL function: stat_push(P,C,R)
+** Arguments:
+**
+** P Pointer to the StatAccum object created by stat_init()
+** C Index of left-most column to differ from previous row
+** R Rowid for the current row. Might be a key record for
+** WITHOUT ROWID tables.
+**
+** The purpose of this routine is to collect statistical data and/or
+** samples from the index being analyzed into the StatAccum object.
+** The stat_get() SQL function will be used afterwards to
+** retrieve the information gathered.
+**
+** This SQL function usually returns NULL, but might return an integer
+** if it wants the byte-code to do special processing.
+**
+** The R parameter is only used for STAT4
+*/
+static void statPush(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int i;
+
+ /* The three function arguments */
+ StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
+ int iChng = sqlite3_value_int(argv[1]);
+
+ UNUSED_PARAMETER( argc );
+ UNUSED_PARAMETER( context );
+ assert( p->nCol>0 );
+ assert( iChng<p->nCol );
+
+ if( p->nRow==0 ){
+ /* This is the first call to this function. Do initialization. */
+ for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
+ }else{
+ /* Second and subsequent calls get processed here */
+#ifdef SQLITE_ENABLE_STAT4
+ if( p->mxSample ) samplePushPrevious(p, iChng);
+#endif
+
+ /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
+ ** to the current row of the index. */
+ for(i=0; i<iChng; i++){
+ p->current.anEq[i]++;
+ }
+ for(i=iChng; i<p->nCol; i++){
+ p->current.anDLt[i]++;
+#ifdef SQLITE_ENABLE_STAT4
+ if( p->mxSample ) p->current.anLt[i] += p->current.anEq[i];
+#endif
+ p->current.anEq[i] = 1;
+ }
+ }
+
+ p->nRow++;
+#ifdef SQLITE_ENABLE_STAT4
+ if( p->mxSample ){
+ tRowcnt nLt;
+ if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){
+ sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2]));
+ }else{
+ sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]),
+ sqlite3_value_blob(argv[2]));
+ }
+ p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
+
+ nLt = p->current.anLt[p->nCol-1];
+ /* Check if this is to be a periodic sample. If so, add it. */
+ if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
+ p->current.isPSample = 1;
+ p->current.iCol = 0;
+ sampleInsert(p, &p->current, p->nCol-1);
+ p->current.isPSample = 0;
+ }
+
+ /* Update the aBest[] array. */
+ for(i=0; i<(p->nCol-1); i++){
+ p->current.iCol = i;
+ if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
+ sampleCopy(p, &p->aBest[i], &p->current);
+ }
+ }
+ }else
+#endif
+ if( p->nLimit && p->nRow>(tRowcnt)p->nLimit*(p->nSkipAhead+1) ){
+ p->nSkipAhead++;
+ sqlite3_result_int(context, p->current.anDLt[0]>0);
+ }
+}
+
+static const FuncDef statPushFuncdef = {
+ 2+IsStat4, /* nArg */
+ SQLITE_UTF8, /* funcFlags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ statPush, /* xSFunc */
+ 0, /* xFinalize */
+ 0, 0, /* xValue, xInverse */
+ "stat_push", /* zName */
+ {0}
+};
+
+#define STAT_GET_STAT1 0 /* "stat" column of stat1 table */
+#define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */
+#define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */
+#define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */
+#define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */
+
+/*
+** Implementation of the stat_get(P,J) SQL function. This routine is
+** used to query statistical information that has been gathered into
+** the StatAccum object by prior calls to stat_push(). The P parameter
+** has type BLOB but it is really just a pointer to the StatAccum object.
+** The content to returned is determined by the parameter J
+** which is one of the STAT_GET_xxxx values defined above.
+**
+** The stat_get(P,J) function is not available to generic SQL. It is
+** inserted as part of a manually constructed bytecode program. (See
+** the callStatGet() routine below.) It is guaranteed that the P
+** parameter will always be a pointer to a StatAccum object, never a
+** NULL.
+**
+** If STAT4 is not enabled, then J is always
+** STAT_GET_STAT1 and is hence omitted and this routine becomes
+** a one-parameter function, stat_get(P), that always returns the
+** stat1 table entry information.
+*/
+static void statGet(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
+#ifdef SQLITE_ENABLE_STAT4
+ /* STAT4 has a parameter on this routine. */
+ int eCall = sqlite3_value_int(argv[1]);
+ assert( argc==2 );
+ assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ
+ || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
+ || eCall==STAT_GET_NDLT
+ );
+ assert( eCall==STAT_GET_STAT1 || p->mxSample );
+ if( eCall==STAT_GET_STAT1 )
+#else
+ assert( argc==1 );
+#endif
+ {
+ /* Return the value to store in the "stat" column of the sqlite_stat1
+ ** table for this index.
+ **
+ ** The value is a string composed of a list of integers describing
+ ** the index. The first integer in the list is the total number of
+ ** entries in the index. There is one additional integer in the list
+ ** for each indexed column. This additional integer is an estimate of
+ ** the number of rows matched by a equality query on the index using
+ ** a key with the corresponding number of fields. In other words,
+ ** if the index is on columns (a,b) and the sqlite_stat1 value is
+ ** "100 10 2", then SQLite estimates that:
+ **
+ ** * the index contains 100 rows,
+ ** * "WHERE a=?" matches 10 rows, and
+ ** * "WHERE a=? AND b=?" matches 2 rows.
+ **
+ ** If D is the count of distinct values and K is the total number of
+ ** rows, then each estimate is usually computed as:
+ **
+ ** I = (K+D-1)/D
+ **
+ ** In other words, I is K/D rounded up to the next whole integer.
+ ** However, if I is between 1.0 and 1.1 (in other words if I is
+ ** close to 1.0 but just a little larger) then do not round up but
+ ** instead keep the I value at 1.0.
+ */
+ sqlite3_str sStat; /* Text of the constructed "stat" line */
+ int i; /* Loop counter */
+
+ sqlite3StrAccumInit(&sStat, 0, 0, 0, (p->nKeyCol+1)*100);
+ sqlite3_str_appendf(&sStat, "%llu",
+ p->nSkipAhead ? (u64)p->nEst : (u64)p->nRow);
+ for(i=0; i<p->nKeyCol; i++){
+ u64 nDistinct = p->current.anDLt[i] + 1;
+ u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
+ if( iVal==2 && p->nRow*10 <= nDistinct*11 ) iVal = 1;
+ sqlite3_str_appendf(&sStat, " %llu", iVal);
+ assert( p->current.anEq[i] );
+ }
+ sqlite3ResultStrAccum(context, &sStat);
+ }
+#ifdef SQLITE_ENABLE_STAT4
+ else if( eCall==STAT_GET_ROWID ){
+ if( p->iGet<0 ){
+ samplePushPrevious(p, 0);
+ p->iGet = 0;
+ }
+ if( p->iGet<p->nSample ){
+ StatSample *pS = p->a + p->iGet;
+ if( pS->nRowid==0 ){
+ sqlite3_result_int64(context, pS->u.iRowid);
+ }else{
+ sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid,
+ SQLITE_TRANSIENT);
+ }
+ }
+ }else{
+ tRowcnt *aCnt = 0;
+ sqlite3_str sStat;
+ int i;
+
+ assert( p->iGet<p->nSample );
+ switch( eCall ){
+ case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break;
+ case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break;
+ default: {
+ aCnt = p->a[p->iGet].anDLt;
+ p->iGet++;
+ break;
+ }
+ }
+ sqlite3StrAccumInit(&sStat, 0, 0, 0, p->nCol*100);
+ for(i=0; i<p->nCol; i++){
+ sqlite3_str_appendf(&sStat, "%llu ", (u64)aCnt[i]);
+ }
+ if( sStat.nChar ) sStat.nChar--;
+ sqlite3ResultStrAccum(context, &sStat);
+ }
+#endif /* SQLITE_ENABLE_STAT4 */
+#ifndef SQLITE_DEBUG
+ UNUSED_PARAMETER( argc );
+#endif
+}
+static const FuncDef statGetFuncdef = {
+ 1+IsStat4, /* nArg */
+ SQLITE_UTF8, /* funcFlags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ statGet, /* xSFunc */
+ 0, /* xFinalize */
+ 0, 0, /* xValue, xInverse */
+ "stat_get", /* zName */
+ {0}
+};
+
+static void callStatGet(Parse *pParse, int regStat, int iParam, int regOut){
+#ifdef SQLITE_ENABLE_STAT4
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_Integer, iParam, regStat+1);
+#elif SQLITE_DEBUG
+ assert( iParam==STAT_GET_STAT1 );
+#else
+ UNUSED_PARAMETER( iParam );
+#endif
+ assert( regOut!=regStat && regOut!=regStat+1 );
+ sqlite3VdbeAddFunctionCall(pParse, 0, regStat, regOut, 1+IsStat4,
+ &statGetFuncdef, 0);
+}
+
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
+/* Add a comment to the most recent VDBE opcode that is the name
+** of the k-th column of the pIdx index.
+*/
+static void analyzeVdbeCommentIndexWithColumnName(
+ Vdbe *v, /* Prepared statement under construction */
+ Index *pIdx, /* Index whose column is being loaded */
+ int k /* Which column index */
+){
+ int i; /* Index of column in the table */
+ assert( k>=0 && k<pIdx->nColumn );
+ i = pIdx->aiColumn[k];
+ if( NEVER(i==XN_ROWID) ){
+ VdbeComment((v,"%s.rowid",pIdx->zName));
+ }else if( i==XN_EXPR ){
+ assert( pIdx->bHasExpr );
+ VdbeComment((v,"%s.expr(%d)",pIdx->zName, k));
+ }else{
+ VdbeComment((v,"%s.%s", pIdx->zName, pIdx->pTable->aCol[i].zCnName));
+ }
+}
+#else
+# define analyzeVdbeCommentIndexWithColumnName(a,b,c)
+#endif /* SQLITE_DEBUG */
+
+/*
+** Generate code to do an analysis of all indices associated with
+** a single table.
+*/
+static void analyzeOneTable(
+ Parse *pParse, /* Parser context */
+ Table *pTab, /* Table whose indices are to be analyzed */
+ Index *pOnlyIdx, /* If not NULL, only analyze this one index */
+ int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */
+ int iMem, /* Available memory locations begin here */
+ int iTab /* Next available cursor */
+){
+ sqlite3 *db = pParse->db; /* Database handle */
+ Index *pIdx; /* An index to being analyzed */
+ int iIdxCur; /* Cursor open on index being analyzed */
+ int iTabCur; /* Table cursor */
+ Vdbe *v; /* The virtual machine being built up */
+ int i; /* Loop counter */
+ int jZeroRows = -1; /* Jump from here if number of rows is zero */
+ int iDb; /* Index of database containing pTab */
+ u8 needTableCnt = 1; /* True to count the table */
+ int regNewRowid = iMem++; /* Rowid for the inserted record */
+ int regStat = iMem++; /* Register to hold StatAccum object */
+ int regChng = iMem++; /* Index of changed index field */
+ int regRowid = iMem++; /* Rowid argument passed to stat_push() */
+ int regTemp = iMem++; /* Temporary use register */
+ int regTemp2 = iMem++; /* Second temporary use register */
+ int regTabname = iMem++; /* Register containing table name */
+ int regIdxname = iMem++; /* Register containing index name */
+ int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */
+ int regPrev = iMem; /* MUST BE LAST (see below) */
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ Table *pStat1 = 0;
+#endif
+
+ pParse->nMem = MAX(pParse->nMem, iMem);
+ v = sqlite3GetVdbe(pParse);
+ if( v==0 || NEVER(pTab==0) ){
+ return;
+ }
+ if( !IsOrdinaryTable(pTab) ){
+ /* Do not gather statistics on views or virtual tables */
+ return;
+ }
+ if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){
+ /* Do not gather statistics on system tables */
+ return;
+ }
+ assert( sqlite3BtreeHoldsAllMutexes(db) );
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ assert( iDb>=0 );
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+#ifndef SQLITE_OMIT_AUTHORIZATION
+ if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
+ db->aDb[iDb].zDbSName ) ){
+ return;
+ }
+#endif
+
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ if( db->xPreUpdateCallback ){
+ pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13);
+ if( pStat1==0 ) return;
+ pStat1->zName = (char*)&pStat1[1];
+ memcpy(pStat1->zName, "sqlite_stat1", 13);
+ pStat1->nCol = 3;
+ pStat1->iPKey = -1;
+ sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNAMIC);
+ }
+#endif
+
+ /* Establish a read-lock on the table at the shared-cache level.
+ ** Open a read-only cursor on the table. Also allocate a cursor number
+ ** to use for scanning indexes (iIdxCur). No index cursor is opened at
+ ** this time though. */
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+ iTabCur = iTab++;
+ iIdxCur = iTab++;
+ pParse->nTab = MAX(pParse->nTab, iTab);
+ sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
+ sqlite3VdbeLoadString(v, regTabname, pTab->zName);
+
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ int nCol; /* Number of columns in pIdx. "N" */
+ int addrRewind; /* Address of "OP_Rewind iIdxCur" */
+ int addrNextRow; /* Address of "next_row:" */
+ const char *zIdxName; /* Name of the index */
+ int nColTest; /* Number of columns to test for changes */
+
+ if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
+ if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
+ if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){
+ nCol = pIdx->nKeyCol;
+ zIdxName = pTab->zName;
+ nColTest = nCol - 1;
+ }else{
+ nCol = pIdx->nColumn;
+ zIdxName = pIdx->zName;
+ nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1;
+ }
+
+ /* Populate the register containing the index name. */
+ sqlite3VdbeLoadString(v, regIdxname, zIdxName);
+ VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName));
+
+ /*
+ ** Pseudo-code for loop that calls stat_push():
+ **
+ ** Rewind csr
+ ** if eof(csr) goto end_of_scan;
+ ** regChng = 0
+ ** goto chng_addr_0;
+ **
+ ** next_row:
+ ** regChng = 0
+ ** if( idx(0) != regPrev(0) ) goto chng_addr_0
+ ** regChng = 1
+ ** if( idx(1) != regPrev(1) ) goto chng_addr_1
+ ** ...
+ ** regChng = N
+ ** goto chng_addr_N
+ **
+ ** chng_addr_0:
+ ** regPrev(0) = idx(0)
+ ** chng_addr_1:
+ ** regPrev(1) = idx(1)
+ ** ...
+ **
+ ** endDistinctTest:
+ ** regRowid = idx(rowid)
+ ** stat_push(P, regChng, regRowid)
+ ** Next csr
+ ** if !eof(csr) goto next_row;
+ **
+ ** end_of_scan:
+ */
+
+ /* Make sure there are enough memory cells allocated to accommodate
+ ** the regPrev array and a trailing rowid (the rowid slot is required
+ ** when building a record to insert into the sample column of
+ ** the sqlite_stat4 table. */
+ pParse->nMem = MAX(pParse->nMem, regPrev+nColTest);
+
+ /* Open a read-only cursor on the index being analyzed. */
+ assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
+ VdbeComment((v, "%s", pIdx->zName));
+
+ /* Invoke the stat_init() function. The arguments are:
+ **
+ ** (1) the number of columns in the index including the rowid
+ ** (or for a WITHOUT ROWID table, the number of PK columns),
+ ** (2) the number of columns in the key without the rowid/pk
+ ** (3) estimated number of rows in the index,
+ */
+ sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat+1);
+ assert( regRowid==regStat+2 );
+ sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regRowid);
+#ifdef SQLITE_ENABLE_STAT4
+ if( OptimizationEnabled(db, SQLITE_Stat4) ){
+ sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regTemp);
+ addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
+ VdbeCoverage(v);
+ }else
+#endif
+ {
+ addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_Count, iIdxCur, regTemp, 1);
+ }
+ assert( regTemp2==regStat+4 );
+ sqlite3VdbeAddOp2(v, OP_Integer, db->nAnalysisLimit, regTemp2);
+ sqlite3VdbeAddFunctionCall(pParse, 0, regStat+1, regStat, 4,
+ &statInitFuncdef, 0);
+
+ /* Implementation of the following:
+ **
+ ** Rewind csr
+ ** if eof(csr) goto end_of_scan;
+ ** regChng = 0
+ ** goto next_push_0;
+ **
+ */
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
+ addrNextRow = sqlite3VdbeCurrentAddr(v);
+
+ if( nColTest>0 ){
+ int endDistinctTest = sqlite3VdbeMakeLabel(pParse);
+ int *aGotoChng; /* Array of jump instruction addresses */
+ aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest);
+ if( aGotoChng==0 ) continue;
+
+ /*
+ ** next_row:
+ ** regChng = 0
+ ** if( idx(0) != regPrev(0) ) goto chng_addr_0
+ ** regChng = 1
+ ** if( idx(1) != regPrev(1) ) goto chng_addr_1
+ ** ...
+ ** regChng = N
+ ** goto endDistinctTest
+ */
+ sqlite3VdbeAddOp0(v, OP_Goto);
+ addrNextRow = sqlite3VdbeCurrentAddr(v);
+ if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){
+ /* For a single-column UNIQUE index, once we have found a non-NULL
+ ** row, we know that all the rest will be distinct, so skip
+ ** subsequent distinctness tests. */
+ sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest);
+ VdbeCoverage(v);
+ }
+ for(i=0; i<nColTest; i++){
+ char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
+ sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
+ analyzeVdbeCommentIndexWithColumnName(v,pIdx,i);
+ aGotoChng[i] =
+ sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
+ sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng);
+ sqlite3VdbeGoto(v, endDistinctTest);
+
+
+ /*
+ ** chng_addr_0:
+ ** regPrev(0) = idx(0)
+ ** chng_addr_1:
+ ** regPrev(1) = idx(1)
+ ** ...
+ */
+ sqlite3VdbeJumpHere(v, addrNextRow-1);
+ for(i=0; i<nColTest; i++){
+ sqlite3VdbeJumpHere(v, aGotoChng[i]);
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
+ analyzeVdbeCommentIndexWithColumnName(v,pIdx,i);
+ }
+ sqlite3VdbeResolveLabel(v, endDistinctTest);
+ sqlite3DbFree(db, aGotoChng);
+ }
+
+ /*
+ ** chng_addr_N:
+ ** regRowid = idx(rowid) // STAT4 only
+ ** stat_push(P, regChng, regRowid) // 3rd parameter STAT4 only
+ ** Next csr
+ ** if !eof(csr) goto next_row;
+ */
+#ifdef SQLITE_ENABLE_STAT4
+ if( OptimizationEnabled(db, SQLITE_Stat4) ){
+ assert( regRowid==(regStat+2) );
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
+ int j, k, regKey;
+ regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol);
+ for(j=0; j<pPk->nKeyCol; j++){
+ k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
+ assert( k>=0 && k<pIdx->nColumn );
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j);
+ analyzeVdbeCommentIndexWithColumnName(v,pIdx,k);
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
+ sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
+ }
+ }
+#endif
+ assert( regChng==(regStat+1) );
+ {
+ sqlite3VdbeAddFunctionCall(pParse, 1, regStat, regTemp, 2+IsStat4,
+ &statPushFuncdef, 0);
+ if( db->nAnalysisLimit ){
+ int j1, j2, j3;
+ j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regTemp); VdbeCoverage(v);
+ j2 = sqlite3VdbeAddOp1(v, OP_If, regTemp); VdbeCoverage(v);
+ j3 = sqlite3VdbeAddOp4Int(v, OP_SeekGT, iIdxCur, 0, regPrev, 1);
+ VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, j1);
+ sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, j2);
+ sqlite3VdbeJumpHere(v, j3);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
+ }
+ }
+
+ /* Add the entry to the stat1 table. */
+ callStatGet(pParse, regStat, STAT_GET_STAT1, regStat1);
+ assert( "BBB"[0]==SQLITE_AFF_TEXT );
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
+#endif
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+
+ /* Add the entries to the stat4 table. */
+#ifdef SQLITE_ENABLE_STAT4
+ if( OptimizationEnabled(db, SQLITE_Stat4) && db->nAnalysisLimit==0 ){
+ int regEq = regStat1;
+ int regLt = regStat1+1;
+ int regDLt = regStat1+2;
+ int regSample = regStat1+3;
+ int regCol = regStat1+4;
+ int regSampleRowid = regCol + nCol;
+ int addrNext;
+ int addrIsNull;
+ u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
+
+ pParse->nMem = MAX(pParse->nMem, regCol+nCol);
+
+ addrNext = sqlite3VdbeCurrentAddr(v);
+ callStatGet(pParse, regStat, STAT_GET_ROWID, regSampleRowid);
+ addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
+ VdbeCoverage(v);
+ callStatGet(pParse, regStat, STAT_GET_NEQ, regEq);
+ callStatGet(pParse, regStat, STAT_GET_NLT, regLt);
+ callStatGet(pParse, regStat, STAT_GET_NDLT, regDLt);
+ sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
+ VdbeCoverage(v);
+ for(i=0; i<nCol; i++){
+ sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i);
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
+ sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
+ sqlite3VdbeJumpHere(v, addrIsNull);
+ }
+#endif /* SQLITE_ENABLE_STAT4 */
+
+ /* End of analysis */
+ sqlite3VdbeJumpHere(v, addrRewind);
+ }
+
+
+ /* Create a single sqlite_stat1 entry containing NULL as the index
+ ** name and the row count as the content.
+ */
+ if( pOnlyIdx==0 && needTableCnt ){
+ VdbeComment((v, "%s", pTab->zName));
+ sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
+ jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
+ assert( "BBB"[0]==SQLITE_AFF_TEXT );
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
+ sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
+#endif
+ sqlite3VdbeJumpHere(v, jZeroRows);
+ }
+}
+
+
+/*
+** Generate code that will cause the most recent index analysis to
+** be loaded into internal hash tables where is can be used.
+*/
+static void loadAnalysis(Parse *pParse, int iDb){
+ Vdbe *v = sqlite3GetVdbe(pParse);
+ if( v ){
+ sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
+ }
+}
+
+/*
+** Generate code that will do an analysis of an entire database
+*/
+static void analyzeDatabase(Parse *pParse, int iDb){
+ sqlite3 *db = pParse->db;
+ Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
+ HashElem *k;
+ int iStatCur;
+ int iMem;
+ int iTab;
+
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ iStatCur = pParse->nTab;
+ pParse->nTab += 3;
+ openStatTable(pParse, iDb, iStatCur, 0, 0);
+ iMem = pParse->nMem+1;
+ iTab = pParse->nTab;
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
+ Table *pTab = (Table*)sqliteHashData(k);
+ analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
+ }
+ loadAnalysis(pParse, iDb);
+}
+
+/*
+** Generate code that will do an analysis of a single table in
+** a database. If pOnlyIdx is not NULL then it is a single index
+** in pTab that should be analyzed.
+*/
+static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
+ int iDb;
+ int iStatCur;
+
+ assert( pTab!=0 );
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ sqlite3BeginWriteOperation(pParse, 0, iDb);
+ iStatCur = pParse->nTab;
+ pParse->nTab += 3;
+ if( pOnlyIdx ){
+ openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
+ }else{
+ openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
+ }
+ analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
+ loadAnalysis(pParse, iDb);
+}
+
+/*
+** Generate code for the ANALYZE command. The parser calls this routine
+** when it recognizes an ANALYZE command.
+**
+** ANALYZE -- 1
+** ANALYZE <database> -- 2
+** ANALYZE ?<database>.?<tablename> -- 3
+**
+** Form 1 causes all indices in all attached databases to be analyzed.
+** Form 2 analyzes all indices the single database named.
+** Form 3 analyzes all indices associated with the named table.
+*/
+void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
+ sqlite3 *db = pParse->db;
+ int iDb;
+ int i;
+ char *z, *zDb;
+ Table *pTab;
+ Index *pIdx;
+ Token *pTableName;
+ Vdbe *v;
+
+ /* Read the database schema. If an error occurs, leave an error message
+ ** and code in pParse and return NULL. */
+ assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
+ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
+ return;
+ }
+
+ assert( pName2!=0 || pName1==0 );
+ if( pName1==0 ){
+ /* Form 1: Analyze everything */
+ for(i=0; i<db->nDb; i++){
+ if( i==1 ) continue; /* Do not analyze the TEMP database */
+ analyzeDatabase(pParse, i);
+ }
+ }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){
+ /* Analyze the schema named as the argument */
+ analyzeDatabase(pParse, iDb);
+ }else{
+ /* Form 3: Analyze the table or index named as an argument */
+ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
+ if( iDb>=0 ){
+ zDb = pName2->n ? db->aDb[iDb].zDbSName : 0;
+ z = sqlite3NameFromToken(db, pTableName);
+ if( z ){
+ if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
+ analyzeTable(pParse, pIdx->pTable, pIdx);
+ }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
+ analyzeTable(pParse, pTab, 0);
+ }
+ sqlite3DbFree(db, z);
+ }
+ }
+ }
+ if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){
+ sqlite3VdbeAddOp0(v, OP_Expire);
+ }
+}
+
+/*
+** Used to pass information from the analyzer reader through to the
+** callback routine.
+*/
+typedef struct analysisInfo analysisInfo;
+struct analysisInfo {
+ sqlite3 *db;
+ const char *zDatabase;
+};
+
+/*
+** The first argument points to a nul-terminated string containing a
+** list of space separated integers. Read the first nOut of these into
+** the array aOut[].
+*/
+static void decodeIntArray(
+ char *zIntArray, /* String containing int array to decode */
+ int nOut, /* Number of slots in aOut[] */
+ tRowcnt *aOut, /* Store integers here */
+ LogEst *aLog, /* Or, if aOut==0, here */
+ Index *pIndex /* Handle extra flags for this index, if not NULL */
+){
+ char *z = zIntArray;
+ int c;
+ int i;
+ tRowcnt v;
+
+#ifdef SQLITE_ENABLE_STAT4
+ if( z==0 ) z = "";
+#else
+ assert( z!=0 );
+#endif
+ for(i=0; *z && i<nOut; i++){
+ v = 0;
+ while( (c=z[0])>='0' && c<='9' ){
+ v = v*10 + c - '0';
+ z++;
+ }
+#ifdef SQLITE_ENABLE_STAT4
+ if( aOut ) aOut[i] = v;
+ if( aLog ) aLog[i] = sqlite3LogEst(v);
+#else
+ assert( aOut==0 );
+ UNUSED_PARAMETER(aOut);
+ assert( aLog!=0 );
+ aLog[i] = sqlite3LogEst(v);
+#endif
+ if( *z==' ' ) z++;
+ }
+#ifndef SQLITE_ENABLE_STAT4
+ assert( pIndex!=0 ); {
+#else
+ if( pIndex ){
+#endif
+ pIndex->bUnordered = 0;
+ pIndex->noSkipScan = 0;
+ while( z[0] ){
+ if( sqlite3_strglob("unordered*", z)==0 ){
+ pIndex->bUnordered = 1;
+ }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
+ int sz = sqlite3Atoi(z+3);
+ if( sz<2 ) sz = 2;
+ pIndex->szIdxRow = sqlite3LogEst(sz);
+ }else if( sqlite3_strglob("noskipscan*", z)==0 ){
+ pIndex->noSkipScan = 1;
+ }
+#ifdef SQLITE_ENABLE_COSTMULT
+ else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
+ pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
+ }
+#endif
+ while( z[0]!=0 && z[0]!=' ' ) z++;
+ while( z[0]==' ' ) z++;
+ }
+ }
+}
+
+/*
+** This callback is invoked once for each index when reading the
+** sqlite_stat1 table.
+**
+** argv[0] = name of the table
+** argv[1] = name of the index (might be NULL)
+** argv[2] = results of analysis - on integer for each column
+**
+** Entries for which argv[1]==NULL simply record the number of rows in
+** the table.
+*/
+static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
+ analysisInfo *pInfo = (analysisInfo*)pData;
+ Index *pIndex;
+ Table *pTable;
+ const char *z;
+
+ assert( argc==3 );
+ UNUSED_PARAMETER2(NotUsed, argc);
+
+ if( argv==0 || argv[0]==0 || argv[2]==0 ){
+ return 0;
+ }
+ pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
+ if( pTable==0 ){
+ return 0;
+ }
+ if( argv[1]==0 ){
+ pIndex = 0;
+ }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){
+ pIndex = sqlite3PrimaryKeyIndex(pTable);
+ }else{
+ pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
+ }
+ z = argv[2];
+
+ if( pIndex ){
+ tRowcnt *aiRowEst = 0;
+ int nCol = pIndex->nKeyCol+1;
+#ifdef SQLITE_ENABLE_STAT4
+ /* Index.aiRowEst may already be set here if there are duplicate
+ ** sqlite_stat1 entries for this index. In that case just clobber
+ ** the old data with the new instead of allocating a new array. */
+ if( pIndex->aiRowEst==0 ){
+ pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol);
+ if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db);
+ }
+ aiRowEst = pIndex->aiRowEst;
+#endif
+ pIndex->bUnordered = 0;
+ decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex);
+ pIndex->hasStat1 = 1;
+ if( pIndex->pPartIdxWhere==0 ){
+ pTable->nRowLogEst = pIndex->aiRowLogEst[0];
+ pTable->tabFlags |= TF_HasStat1;
+ }
+ }else{
+ Index fakeIdx;
+ fakeIdx.szIdxRow = pTable->szTabRow;
+#ifdef SQLITE_ENABLE_COSTMULT
+ fakeIdx.pTable = pTable;
+#endif
+ decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
+ pTable->szTabRow = fakeIdx.szIdxRow;
+ pTable->tabFlags |= TF_HasStat1;
+ }
+
+ return 0;
+}
+
+/*
+** If the Index.aSample variable is not NULL, delete the aSample[] array
+** and its contents.
+*/
+void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
+#ifdef SQLITE_ENABLE_STAT4
+ if( pIdx->aSample ){
+ int j;
+ for(j=0; j<pIdx->nSample; j++){
+ IndexSample *p = &pIdx->aSample[j];
+ sqlite3DbFree(db, p->p);
+ }
+ sqlite3DbFree(db, pIdx->aSample);
+ }
+ if( db && db->pnBytesFreed==0 ){
+ pIdx->nSample = 0;
+ pIdx->aSample = 0;
+ }
+#else
+ UNUSED_PARAMETER(db);
+ UNUSED_PARAMETER(pIdx);
+#endif /* SQLITE_ENABLE_STAT4 */
+}
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** Populate the pIdx->aAvgEq[] array based on the samples currently
+** stored in pIdx->aSample[].
+*/
+static void initAvgEq(Index *pIdx){
+ if( pIdx ){
+ IndexSample *aSample = pIdx->aSample;
+ IndexSample *pFinal = &aSample[pIdx->nSample-1];
+ int iCol;
+ int nCol = 1;
+ if( pIdx->nSampleCol>1 ){
+ /* If this is stat4 data, then calculate aAvgEq[] values for all
+ ** sample columns except the last. The last is always set to 1, as
+ ** once the trailing PK fields are considered all index keys are
+ ** unique. */
+ nCol = pIdx->nSampleCol-1;
+ pIdx->aAvgEq[nCol] = 1;
+ }
+ for(iCol=0; iCol<nCol; iCol++){
+ int nSample = pIdx->nSample;
+ int i; /* Used to iterate through samples */
+ tRowcnt sumEq = 0; /* Sum of the nEq values */
+ tRowcnt avgEq = 0;
+ tRowcnt nRow; /* Number of rows in index */
+ i64 nSum100 = 0; /* Number of terms contributing to sumEq */
+ i64 nDist100; /* Number of distinct values in index */
+
+ if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){
+ nRow = pFinal->anLt[iCol];
+ nDist100 = (i64)100 * pFinal->anDLt[iCol];
+ nSample--;
+ }else{
+ nRow = pIdx->aiRowEst[0];
+ nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1];
+ }
+ pIdx->nRowEst0 = nRow;
+
+ /* Set nSum to the number of distinct (iCol+1) field prefixes that
+ ** occur in the stat4 table for this index. Set sumEq to the sum of
+ ** the nEq values for column iCol for the same set (adding the value
+ ** only once where there exist duplicate prefixes). */
+ for(i=0; i<nSample; i++){
+ if( i==(pIdx->nSample-1)
+ || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol]
+ ){
+ sumEq += aSample[i].anEq[iCol];
+ nSum100 += 100;
+ }
+ }
+
+ if( nDist100>nSum100 && sumEq<nRow ){
+ avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100);
+ }
+ if( avgEq==0 ) avgEq = 1;
+ pIdx->aAvgEq[iCol] = avgEq;
+ }
+ }
+}
+
+/*
+** Look up an index by name. Or, if the name of a WITHOUT ROWID table
+** is supplied instead, find the PRIMARY KEY index for that table.
+*/
+static Index *findIndexOrPrimaryKey(
+ sqlite3 *db,
+ const char *zName,
+ const char *zDb
+){
+ Index *pIdx = sqlite3FindIndex(db, zName, zDb);
+ if( pIdx==0 ){
+ Table *pTab = sqlite3FindTable(db, zName, zDb);
+ if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab);
+ }
+ return pIdx;
+}
+
+/*
+** Load the content from either the sqlite_stat4
+** into the relevant Index.aSample[] arrays.
+**
+** Arguments zSql1 and zSql2 must point to SQL statements that return
+** data equivalent to the following:
+**
+** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
+** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
+**
+** where %Q is replaced with the database name before the SQL is executed.
+*/
+static int loadStatTbl(
+ sqlite3 *db, /* Database handle */
+ const char *zSql1, /* SQL statement 1 (see above) */
+ const char *zSql2, /* SQL statement 2 (see above) */
+ const char *zDb /* Database name (e.g. "main") */
+){
+ int rc; /* Result codes from subroutines */
+ sqlite3_stmt *pStmt = 0; /* An SQL statement being run */
+ char *zSql; /* Text of the SQL statement */
+ Index *pPrevIdx = 0; /* Previous index in the loop */
+ IndexSample *pSample; /* A slot in pIdx->aSample[] */
+
+ assert( db->lookaside.bDisable );
+ zSql = sqlite3MPrintf(db, zSql1, zDb);
+ if( !zSql ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
+ sqlite3DbFree(db, zSql);
+ if( rc ) return rc;
+
+ while( sqlite3_step(pStmt)==SQLITE_ROW ){
+ int nIdxCol = 1; /* Number of columns in stat4 records */
+
+ char *zIndex; /* Index name */
+ Index *pIdx; /* Pointer to the index object */
+ int nSample; /* Number of samples */
+ int nByte; /* Bytes of space required */
+ int i; /* Bytes of space required */
+ tRowcnt *pSpace;
+
+ zIndex = (char *)sqlite3_column_text(pStmt, 0);
+ if( zIndex==0 ) continue;
+ nSample = sqlite3_column_int(pStmt, 1);
+ pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
+ assert( pIdx==0 || pIdx->nSample==0 );
+ if( pIdx==0 ) continue;
+ assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 );
+ if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
+ nIdxCol = pIdx->nKeyCol;
+ }else{
+ nIdxCol = pIdx->nColumn;
+ }
+ pIdx->nSampleCol = nIdxCol;
+ nByte = sizeof(IndexSample) * nSample;
+ nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
+ nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */
+
+ pIdx->aSample = sqlite3DbMallocZero(db, nByte);
+ if( pIdx->aSample==0 ){
+ sqlite3_finalize(pStmt);
+ return SQLITE_NOMEM_BKPT;
+ }
+ pSpace = (tRowcnt*)&pIdx->aSample[nSample];
+ pIdx->aAvgEq = pSpace; pSpace += nIdxCol;
+ pIdx->pTable->tabFlags |= TF_HasStat4;
+ for(i=0; i<nSample; i++){
+ pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
+ pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
+ pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
+ }
+ assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
+ }
+ rc = sqlite3_finalize(pStmt);
+ if( rc ) return rc;
+
+ zSql = sqlite3MPrintf(db, zSql2, zDb);
+ if( !zSql ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
+ sqlite3DbFree(db, zSql);
+ if( rc ) return rc;
+
+ while( sqlite3_step(pStmt)==SQLITE_ROW ){
+ char *zIndex; /* Index name */
+ Index *pIdx; /* Pointer to the index object */
+ int nCol = 1; /* Number of columns in index */
+
+ zIndex = (char *)sqlite3_column_text(pStmt, 0);
+ if( zIndex==0 ) continue;
+ pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
+ if( pIdx==0 ) continue;
+ /* This next condition is true if data has already been loaded from
+ ** the sqlite_stat4 table. */
+ nCol = pIdx->nSampleCol;
+ if( pIdx!=pPrevIdx ){
+ initAvgEq(pPrevIdx);
+ pPrevIdx = pIdx;
+ }
+ pSample = &pIdx->aSample[pIdx->nSample];
+ decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0);
+ decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0);
+ decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0);
+
+ /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
+ ** This is in case the sample record is corrupted. In that case, the
+ ** sqlite3VdbeRecordCompare() may read up to two varints past the
+ ** end of the allocated buffer before it realizes it is dealing with
+ ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
+ ** a buffer overread. */
+ pSample->n = sqlite3_column_bytes(pStmt, 4);
+ pSample->p = sqlite3DbMallocZero(db, pSample->n + 2);
+ if( pSample->p==0 ){
+ sqlite3_finalize(pStmt);
+ return SQLITE_NOMEM_BKPT;
+ }
+ if( pSample->n ){
+ memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
+ }
+ pIdx->nSample++;
+ }
+ rc = sqlite3_finalize(pStmt);
+ if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
+ return rc;
+}
+
+/*
+** Load content from the sqlite_stat4 table into
+** the Index.aSample[] arrays of all indices.
+*/
+static int loadStat4(sqlite3 *db, const char *zDb){
+ int rc = SQLITE_OK; /* Result codes from subroutines */
+ const Table *pStat4;
+
+ assert( db->lookaside.bDisable );
+ if( (pStat4 = sqlite3FindTable(db, "sqlite_stat4", zDb))!=0
+ && IsOrdinaryTable(pStat4)
+ ){
+ rc = loadStatTbl(db,
+ "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx",
+ "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
+ zDb
+ );
+ }
+ return rc;
+}
+#endif /* SQLITE_ENABLE_STAT4 */
+
+/*
+** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The
+** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
+** arrays. The contents of sqlite_stat4 are used to populate the
+** Index.aSample[] arrays.
+**
+** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
+** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined
+** during compilation and the sqlite_stat4 table is present, no data is
+** read from it.
+**
+** If SQLITE_ENABLE_STAT4 was defined during compilation and the
+** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
+** returned. However, in this case, data is read from the sqlite_stat1
+** table (if it is present) before returning.
+**
+** If an OOM error occurs, this function always sets db->mallocFailed.
+** This means if the caller does not care about other errors, the return
+** code may be ignored.
+*/
+int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
+ analysisInfo sInfo;
+ HashElem *i;
+ char *zSql;
+ int rc = SQLITE_OK;
+ Schema *pSchema = db->aDb[iDb].pSchema;
+ const Table *pStat1;
+
+ assert( iDb>=0 && iDb<db->nDb );
+ assert( db->aDb[iDb].pBt!=0 );
+
+ /* Clear any prior statistics */
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){
+ Table *pTab = sqliteHashData(i);
+ pTab->tabFlags &= ~TF_HasStat1;
+ }
+ for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
+ Index *pIdx = sqliteHashData(i);
+ pIdx->hasStat1 = 0;
+#ifdef SQLITE_ENABLE_STAT4
+ sqlite3DeleteIndexSamples(db, pIdx);
+ pIdx->aSample = 0;
+#endif
+ }
+
+ /* Load new statistics out of the sqlite_stat1 table */
+ sInfo.db = db;
+ sInfo.zDatabase = db->aDb[iDb].zDbSName;
+ if( (pStat1 = sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase))
+ && IsOrdinaryTable(pStat1)
+ ){
+ zSql = sqlite3MPrintf(db,
+ "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
+ sqlite3DbFree(db, zSql);
+ }
+ }
+
+ /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
+ for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
+ Index *pIdx = sqliteHashData(i);
+ if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx);
+ }
+
+ /* Load the statistics from the sqlite_stat4 table. */
+#ifdef SQLITE_ENABLE_STAT4
+ if( rc==SQLITE_OK ){
+ DisableLookaside;
+ rc = loadStat4(db, sInfo.zDatabase);
+ EnableLookaside;
+ }
+ for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
+ Index *pIdx = sqliteHashData(i);
+ sqlite3_free(pIdx->aiRowEst);
+ pIdx->aiRowEst = 0;
+ }
+#endif
+
+ if( rc==SQLITE_NOMEM ){
+ sqlite3OomFault(db);
+ }
+ return rc;
+}
+
+
+#endif /* SQLITE_OMIT_ANALYZE */