diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-05 17:28:19 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-05 17:28:19 +0000 |
commit | 18657a960e125336f704ea058e25c27bd3900dcb (patch) | |
tree | 17b438b680ed45a996d7b59951e6aa34023783f2 /src/expr.c | |
parent | Initial commit. (diff) | |
download | sqlite3-18657a960e125336f704ea058e25c27bd3900dcb.tar.xz sqlite3-18657a960e125336f704ea058e25c27bd3900dcb.zip |
Adding upstream version 3.40.1.upstream/3.40.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/expr.c')
-rw-r--r-- | src/expr.c | 6510 |
1 files changed, 6510 insertions, 0 deletions
diff --git a/src/expr.c b/src/expr.c new file mode 100644 index 0000000..7a4e59f --- /dev/null +++ b/src/expr.c @@ -0,0 +1,6510 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains routines used for analyzing expressions and +** for generating VDBE code that evaluates expressions in SQLite. +*/ +#include "sqliteInt.h" + +/* Forward declarations */ +static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); +static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); + +/* +** Return the affinity character for a single column of a table. +*/ +char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ + if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER; + return pTab->aCol[iCol].affinity; +} + +/* +** Return the 'affinity' of the expression pExpr if any. +** +** If pExpr is a column, a reference to a column via an 'AS' alias, +** or a sub-select with a column as the return value, then the +** affinity of that column is returned. Otherwise, 0x00 is returned, +** indicating no affinity for the expression. +** +** i.e. the WHERE clause expressions in the following statements all +** have an affinity: +** +** CREATE TABLE t1(a); +** SELECT * FROM t1 WHERE a; +** SELECT a AS b FROM t1 WHERE b; +** SELECT * FROM t1 WHERE (select a from t1); +*/ +char sqlite3ExprAffinity(const Expr *pExpr){ + int op; + while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ + assert( pExpr->op==TK_COLLATE + || pExpr->op==TK_IF_NULL_ROW + || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); + pExpr = pExpr->pLeft; + assert( pExpr!=0 ); + } + op = pExpr->op; + if( op==TK_REGISTER ) op = pExpr->op2; + if( op==TK_COLUMN || op==TK_AGG_COLUMN ){ + assert( ExprUseYTab(pExpr) ); + assert( pExpr->y.pTab!=0 ); + return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); + } + if( op==TK_SELECT ){ + assert( ExprUseXSelect(pExpr) ); + assert( pExpr->x.pSelect!=0 ); + assert( pExpr->x.pSelect->pEList!=0 ); + assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); + return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); + } +#ifndef SQLITE_OMIT_CAST + if( op==TK_CAST ){ + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + return sqlite3AffinityType(pExpr->u.zToken, 0); + } +#endif + if( op==TK_SELECT_COLUMN ){ + assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); + assert( pExpr->iColumn < pExpr->iTable ); + assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); + return sqlite3ExprAffinity( + pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr + ); + } + if( op==TK_VECTOR ){ + assert( ExprUseXList(pExpr) ); + return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); + } + return pExpr->affExpr; +} + +/* +** Set the collating sequence for expression pExpr to be the collating +** sequence named by pToken. Return a pointer to a new Expr node that +** implements the COLLATE operator. +** +** If a memory allocation error occurs, that fact is recorded in pParse->db +** and the pExpr parameter is returned unchanged. +*/ +Expr *sqlite3ExprAddCollateToken( + const Parse *pParse, /* Parsing context */ + Expr *pExpr, /* Add the "COLLATE" clause to this expression */ + const Token *pCollName, /* Name of collating sequence */ + int dequote /* True to dequote pCollName */ +){ + if( pCollName->n>0 ){ + Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); + if( pNew ){ + pNew->pLeft = pExpr; + pNew->flags |= EP_Collate|EP_Skip; + pExpr = pNew; + } + } + return pExpr; +} +Expr *sqlite3ExprAddCollateString( + const Parse *pParse, /* Parsing context */ + Expr *pExpr, /* Add the "COLLATE" clause to this expression */ + const char *zC /* The collating sequence name */ +){ + Token s; + assert( zC!=0 ); + sqlite3TokenInit(&s, (char*)zC); + return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); +} + +/* +** Skip over any TK_COLLATE operators. +*/ +Expr *sqlite3ExprSkipCollate(Expr *pExpr){ + while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ + assert( pExpr->op==TK_COLLATE ); + pExpr = pExpr->pLeft; + } + return pExpr; +} + +/* +** Skip over any TK_COLLATE operators and/or any unlikely() +** or likelihood() or likely() functions at the root of an +** expression. +*/ +Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ + while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ + if( ExprHasProperty(pExpr, EP_Unlikely) ){ + assert( ExprUseXList(pExpr) ); + assert( pExpr->x.pList->nExpr>0 ); + assert( pExpr->op==TK_FUNCTION ); + pExpr = pExpr->x.pList->a[0].pExpr; + }else{ + assert( pExpr->op==TK_COLLATE ); + pExpr = pExpr->pLeft; + } + } + return pExpr; +} + +/* +** Return the collation sequence for the expression pExpr. If +** there is no defined collating sequence, return NULL. +** +** See also: sqlite3ExprNNCollSeq() +** +** The sqlite3ExprNNCollSeq() works the same exact that it returns the +** default collation if pExpr has no defined collation. +** +** The collating sequence might be determined by a COLLATE operator +** or by the presence of a column with a defined collating sequence. +** COLLATE operators take first precedence. Left operands take +** precedence over right operands. +*/ +CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ + sqlite3 *db = pParse->db; + CollSeq *pColl = 0; + const Expr *p = pExpr; + while( p ){ + int op = p->op; + if( op==TK_REGISTER ) op = p->op2; + if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){ + int j; + assert( ExprUseYTab(p) ); + assert( p->y.pTab!=0 ); + if( (j = p->iColumn)>=0 ){ + const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); + pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); + } + break; + } + if( op==TK_CAST || op==TK_UPLUS ){ + p = p->pLeft; + continue; + } + if( op==TK_VECTOR ){ + assert( ExprUseXList(p) ); + p = p->x.pList->a[0].pExpr; + continue; + } + if( op==TK_COLLATE ){ + assert( !ExprHasProperty(p, EP_IntValue) ); + pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); + break; + } + if( p->flags & EP_Collate ){ + if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ + p = p->pLeft; + }else{ + Expr *pNext = p->pRight; + /* The Expr.x union is never used at the same time as Expr.pRight */ + assert( ExprUseXList(p) ); + assert( p->x.pList==0 || p->pRight==0 ); + if( p->x.pList!=0 && !db->mallocFailed ){ + int i; + for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ + if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ + pNext = p->x.pList->a[i].pExpr; + break; + } + } + } + p = pNext; + } + }else{ + break; + } + } + if( sqlite3CheckCollSeq(pParse, pColl) ){ + pColl = 0; + } + return pColl; +} + +/* +** Return the collation sequence for the expression pExpr. If +** there is no defined collating sequence, return a pointer to the +** defautl collation sequence. +** +** See also: sqlite3ExprCollSeq() +** +** The sqlite3ExprCollSeq() routine works the same except that it +** returns NULL if there is no defined collation. +*/ +CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ + CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); + if( p==0 ) p = pParse->db->pDfltColl; + assert( p!=0 ); + return p; +} + +/* +** Return TRUE if the two expressions have equivalent collating sequences. +*/ +int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ + CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); + CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); + return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; +} + +/* +** pExpr is an operand of a comparison operator. aff2 is the +** type affinity of the other operand. This routine returns the +** type affinity that should be used for the comparison operator. +*/ +char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ + char aff1 = sqlite3ExprAffinity(pExpr); + if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ + /* Both sides of the comparison are columns. If one has numeric + ** affinity, use that. Otherwise use no affinity. + */ + if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ + return SQLITE_AFF_NUMERIC; + }else{ + return SQLITE_AFF_BLOB; + } + }else{ + /* One side is a column, the other is not. Use the columns affinity. */ + assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); + return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; + } +} + +/* +** pExpr is a comparison operator. Return the type affinity that should +** be applied to both operands prior to doing the comparison. +*/ +static char comparisonAffinity(const Expr *pExpr){ + char aff; + assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || + pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || + pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); + assert( pExpr->pLeft ); + aff = sqlite3ExprAffinity(pExpr->pLeft); + if( pExpr->pRight ){ + aff = sqlite3CompareAffinity(pExpr->pRight, aff); + }else if( ExprUseXSelect(pExpr) ){ + aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); + }else if( aff==0 ){ + aff = SQLITE_AFF_BLOB; + } + return aff; +} + +/* +** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. +** idx_affinity is the affinity of an indexed column. Return true +** if the index with affinity idx_affinity may be used to implement +** the comparison in pExpr. +*/ +int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ + char aff = comparisonAffinity(pExpr); + if( aff<SQLITE_AFF_TEXT ){ + return 1; + } + if( aff==SQLITE_AFF_TEXT ){ + return idx_affinity==SQLITE_AFF_TEXT; + } + return sqlite3IsNumericAffinity(idx_affinity); +} + +/* +** Return the P5 value that should be used for a binary comparison +** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. +*/ +static u8 binaryCompareP5( + const Expr *pExpr1, /* Left operand */ + const Expr *pExpr2, /* Right operand */ + int jumpIfNull /* Extra flags added to P5 */ +){ + u8 aff = (char)sqlite3ExprAffinity(pExpr2); + aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; + return aff; +} + +/* +** Return a pointer to the collation sequence that should be used by +** a binary comparison operator comparing pLeft and pRight. +** +** If the left hand expression has a collating sequence type, then it is +** used. Otherwise the collation sequence for the right hand expression +** is used, or the default (BINARY) if neither expression has a collating +** type. +** +** Argument pRight (but not pLeft) may be a null pointer. In this case, +** it is not considered. +*/ +CollSeq *sqlite3BinaryCompareCollSeq( + Parse *pParse, + const Expr *pLeft, + const Expr *pRight +){ + CollSeq *pColl; + assert( pLeft ); + if( pLeft->flags & EP_Collate ){ + pColl = sqlite3ExprCollSeq(pParse, pLeft); + }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ + pColl = sqlite3ExprCollSeq(pParse, pRight); + }else{ + pColl = sqlite3ExprCollSeq(pParse, pLeft); + if( !pColl ){ + pColl = sqlite3ExprCollSeq(pParse, pRight); + } + } + return pColl; +} + +/* Expresssion p is a comparison operator. Return a collation sequence +** appropriate for the comparison operator. +** +** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). +** However, if the OP_Commuted flag is set, then the order of the operands +** is reversed in the sqlite3BinaryCompareCollSeq() call so that the +** correct collating sequence is found. +*/ +CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ + if( ExprHasProperty(p, EP_Commuted) ){ + return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); + }else{ + return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); + } +} + +/* +** Generate code for a comparison operator. +*/ +static int codeCompare( + Parse *pParse, /* The parsing (and code generating) context */ + Expr *pLeft, /* The left operand */ + Expr *pRight, /* The right operand */ + int opcode, /* The comparison opcode */ + int in1, int in2, /* Register holding operands */ + int dest, /* Jump here if true. */ + int jumpIfNull, /* If true, jump if either operand is NULL */ + int isCommuted /* The comparison has been commuted */ +){ + int p5; + int addr; + CollSeq *p4; + + if( pParse->nErr ) return 0; + if( isCommuted ){ + p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); + }else{ + p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); + } + p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); + addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, + (void*)p4, P4_COLLSEQ); + sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); + return addr; +} + +/* +** Return true if expression pExpr is a vector, or false otherwise. +** +** A vector is defined as any expression that results in two or more +** columns of result. Every TK_VECTOR node is an vector because the +** parser will not generate a TK_VECTOR with fewer than two entries. +** But a TK_SELECT might be either a vector or a scalar. It is only +** considered a vector if it has two or more result columns. +*/ +int sqlite3ExprIsVector(const Expr *pExpr){ + return sqlite3ExprVectorSize(pExpr)>1; +} + +/* +** If the expression passed as the only argument is of type TK_VECTOR +** return the number of expressions in the vector. Or, if the expression +** is a sub-select, return the number of columns in the sub-select. For +** any other type of expression, return 1. +*/ +int sqlite3ExprVectorSize(const Expr *pExpr){ + u8 op = pExpr->op; + if( op==TK_REGISTER ) op = pExpr->op2; + if( op==TK_VECTOR ){ + assert( ExprUseXList(pExpr) ); + return pExpr->x.pList->nExpr; + }else if( op==TK_SELECT ){ + assert( ExprUseXSelect(pExpr) ); + return pExpr->x.pSelect->pEList->nExpr; + }else{ + return 1; + } +} + +/* +** Return a pointer to a subexpression of pVector that is the i-th +** column of the vector (numbered starting with 0). The caller must +** ensure that i is within range. +** +** If pVector is really a scalar (and "scalar" here includes subqueries +** that return a single column!) then return pVector unmodified. +** +** pVector retains ownership of the returned subexpression. +** +** If the vector is a (SELECT ...) then the expression returned is +** just the expression for the i-th term of the result set, and may +** not be ready for evaluation because the table cursor has not yet +** been positioned. +*/ +Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ + assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); + if( sqlite3ExprIsVector(pVector) ){ + assert( pVector->op2==0 || pVector->op==TK_REGISTER ); + if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ + assert( ExprUseXSelect(pVector) ); + return pVector->x.pSelect->pEList->a[i].pExpr; + }else{ + assert( ExprUseXList(pVector) ); + return pVector->x.pList->a[i].pExpr; + } + } + return pVector; +} + +/* +** Compute and return a new Expr object which when passed to +** sqlite3ExprCode() will generate all necessary code to compute +** the iField-th column of the vector expression pVector. +** +** It is ok for pVector to be a scalar (as long as iField==0). +** In that case, this routine works like sqlite3ExprDup(). +** +** The caller owns the returned Expr object and is responsible for +** ensuring that the returned value eventually gets freed. +** +** The caller retains ownership of pVector. If pVector is a TK_SELECT, +** then the returned object will reference pVector and so pVector must remain +** valid for the life of the returned object. If pVector is a TK_VECTOR +** or a scalar expression, then it can be deleted as soon as this routine +** returns. +** +** A trick to cause a TK_SELECT pVector to be deleted together with +** the returned Expr object is to attach the pVector to the pRight field +** of the returned TK_SELECT_COLUMN Expr object. +*/ +Expr *sqlite3ExprForVectorField( + Parse *pParse, /* Parsing context */ + Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ + int iField, /* Which column of the vector to return */ + int nField /* Total number of columns in the vector */ +){ + Expr *pRet; + if( pVector->op==TK_SELECT ){ + assert( ExprUseXSelect(pVector) ); + /* The TK_SELECT_COLUMN Expr node: + ** + ** pLeft: pVector containing TK_SELECT. Not deleted. + ** pRight: not used. But recursively deleted. + ** iColumn: Index of a column in pVector + ** iTable: 0 or the number of columns on the LHS of an assignment + ** pLeft->iTable: First in an array of register holding result, or 0 + ** if the result is not yet computed. + ** + ** sqlite3ExprDelete() specifically skips the recursive delete of + ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector + ** can be attached to pRight to cause this node to take ownership of + ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes + ** with the same pLeft pointer to the pVector, but only one of them + ** will own the pVector. + */ + pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); + if( pRet ){ + pRet->iTable = nField; + pRet->iColumn = iField; + pRet->pLeft = pVector; + } + }else{ + if( pVector->op==TK_VECTOR ){ + Expr **ppVector; + assert( ExprUseXList(pVector) ); + ppVector = &pVector->x.pList->a[iField].pExpr; + pVector = *ppVector; + if( IN_RENAME_OBJECT ){ + /* This must be a vector UPDATE inside a trigger */ + *ppVector = 0; + return pVector; + } + } + pRet = sqlite3ExprDup(pParse->db, pVector, 0); + } + return pRet; +} + +/* +** If expression pExpr is of type TK_SELECT, generate code to evaluate +** it. Return the register in which the result is stored (or, if the +** sub-select returns more than one column, the first in an array +** of registers in which the result is stored). +** +** If pExpr is not a TK_SELECT expression, return 0. +*/ +static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ + int reg = 0; +#ifndef SQLITE_OMIT_SUBQUERY + if( pExpr->op==TK_SELECT ){ + reg = sqlite3CodeSubselect(pParse, pExpr); + } +#endif + return reg; +} + +/* +** Argument pVector points to a vector expression - either a TK_VECTOR +** or TK_SELECT that returns more than one column. This function returns +** the register number of a register that contains the value of +** element iField of the vector. +** +** If pVector is a TK_SELECT expression, then code for it must have +** already been generated using the exprCodeSubselect() routine. In this +** case parameter regSelect should be the first in an array of registers +** containing the results of the sub-select. +** +** If pVector is of type TK_VECTOR, then code for the requested field +** is generated. In this case (*pRegFree) may be set to the number of +** a temporary register to be freed by the caller before returning. +** +** Before returning, output parameter (*ppExpr) is set to point to the +** Expr object corresponding to element iElem of the vector. +*/ +static int exprVectorRegister( + Parse *pParse, /* Parse context */ + Expr *pVector, /* Vector to extract element from */ + int iField, /* Field to extract from pVector */ + int regSelect, /* First in array of registers */ + Expr **ppExpr, /* OUT: Expression element */ + int *pRegFree /* OUT: Temp register to free */ +){ + u8 op = pVector->op; + assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); + if( op==TK_REGISTER ){ + *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); + return pVector->iTable+iField; + } + if( op==TK_SELECT ){ + assert( ExprUseXSelect(pVector) ); + *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; + return regSelect+iField; + } + if( op==TK_VECTOR ){ + assert( ExprUseXList(pVector) ); + *ppExpr = pVector->x.pList->a[iField].pExpr; + return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); + } + return 0; +} + +/* +** Expression pExpr is a comparison between two vector values. Compute +** the result of the comparison (1, 0, or NULL) and write that +** result into register dest. +** +** The caller must satisfy the following preconditions: +** +** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ +** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ +** otherwise: op==pExpr->op and p5==0 +*/ +static void codeVectorCompare( + Parse *pParse, /* Code generator context */ + Expr *pExpr, /* The comparison operation */ + int dest, /* Write results into this register */ + u8 op, /* Comparison operator */ + u8 p5 /* SQLITE_NULLEQ or zero */ +){ + Vdbe *v = pParse->pVdbe; + Expr *pLeft = pExpr->pLeft; + Expr *pRight = pExpr->pRight; + int nLeft = sqlite3ExprVectorSize(pLeft); + int i; + int regLeft = 0; + int regRight = 0; + u8 opx = op; + int addrCmp = 0; + int addrDone = sqlite3VdbeMakeLabel(pParse); + int isCommuted = ExprHasProperty(pExpr,EP_Commuted); + + assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); + if( pParse->nErr ) return; + if( nLeft!=sqlite3ExprVectorSize(pRight) ){ + sqlite3ErrorMsg(pParse, "row value misused"); + return; + } + assert( pExpr->op==TK_EQ || pExpr->op==TK_NE + || pExpr->op==TK_IS || pExpr->op==TK_ISNOT + || pExpr->op==TK_LT || pExpr->op==TK_GT + || pExpr->op==TK_LE || pExpr->op==TK_GE + ); + assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) + || (pExpr->op==TK_ISNOT && op==TK_NE) ); + assert( p5==0 || pExpr->op!=op ); + assert( p5==SQLITE_NULLEQ || pExpr->op==op ); + + if( op==TK_LE ) opx = TK_LT; + if( op==TK_GE ) opx = TK_GT; + if( op==TK_NE ) opx = TK_EQ; + + regLeft = exprCodeSubselect(pParse, pLeft); + regRight = exprCodeSubselect(pParse, pRight); + + sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); + for(i=0; 1 /*Loop exits by "break"*/; i++){ + int regFree1 = 0, regFree2 = 0; + Expr *pL = 0, *pR = 0; + int r1, r2; + assert( i>=0 && i<nLeft ); + if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); + r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); + r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); + addrCmp = sqlite3VdbeCurrentAddr(v); + codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); + testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); + testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); + testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); + testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); + testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); + testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); + sqlite3ReleaseTempReg(pParse, regFree1); + sqlite3ReleaseTempReg(pParse, regFree2); + if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ + addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); + testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); + testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); + } + if( p5==SQLITE_NULLEQ ){ + sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); + }else{ + sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); + } + if( i==nLeft-1 ){ + break; + } + if( opx==TK_EQ ){ + sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); + }else{ + assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); + sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); + if( i==nLeft-2 ) opx = op; + } + } + sqlite3VdbeJumpHere(v, addrCmp); + sqlite3VdbeResolveLabel(v, addrDone); + if( op==TK_NE ){ + sqlite3VdbeAddOp2(v, OP_Not, dest, dest); + } +} + +#if SQLITE_MAX_EXPR_DEPTH>0 +/* +** Check that argument nHeight is less than or equal to the maximum +** expression depth allowed. If it is not, leave an error message in +** pParse. +*/ +int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ + int rc = SQLITE_OK; + int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; + if( nHeight>mxHeight ){ + sqlite3ErrorMsg(pParse, + "Expression tree is too large (maximum depth %d)", mxHeight + ); + rc = SQLITE_ERROR; + } + return rc; +} + +/* The following three functions, heightOfExpr(), heightOfExprList() +** and heightOfSelect(), are used to determine the maximum height +** of any expression tree referenced by the structure passed as the +** first argument. +** +** If this maximum height is greater than the current value pointed +** to by pnHeight, the second parameter, then set *pnHeight to that +** value. +*/ +static void heightOfExpr(const Expr *p, int *pnHeight){ + if( p ){ + if( p->nHeight>*pnHeight ){ + *pnHeight = p->nHeight; + } + } +} +static void heightOfExprList(const ExprList *p, int *pnHeight){ + if( p ){ + int i; + for(i=0; i<p->nExpr; i++){ + heightOfExpr(p->a[i].pExpr, pnHeight); + } + } +} +static void heightOfSelect(const Select *pSelect, int *pnHeight){ + const Select *p; + for(p=pSelect; p; p=p->pPrior){ + heightOfExpr(p->pWhere, pnHeight); + heightOfExpr(p->pHaving, pnHeight); + heightOfExpr(p->pLimit, pnHeight); + heightOfExprList(p->pEList, pnHeight); + heightOfExprList(p->pGroupBy, pnHeight); + heightOfExprList(p->pOrderBy, pnHeight); + } +} + +/* +** Set the Expr.nHeight variable in the structure passed as an +** argument. An expression with no children, Expr.pList or +** Expr.pSelect member has a height of 1. Any other expression +** has a height equal to the maximum height of any other +** referenced Expr plus one. +** +** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, +** if appropriate. +*/ +static void exprSetHeight(Expr *p){ + int nHeight = p->pLeft ? p->pLeft->nHeight : 0; + if( NEVER(p->pRight) && p->pRight->nHeight>nHeight ){ + nHeight = p->pRight->nHeight; + } + if( ExprUseXSelect(p) ){ + heightOfSelect(p->x.pSelect, &nHeight); + }else if( p->x.pList ){ + heightOfExprList(p->x.pList, &nHeight); + p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); + } + p->nHeight = nHeight + 1; +} + +/* +** Set the Expr.nHeight variable using the exprSetHeight() function. If +** the height is greater than the maximum allowed expression depth, +** leave an error in pParse. +** +** Also propagate all EP_Propagate flags from the Expr.x.pList into +** Expr.flags. +*/ +void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ + if( pParse->nErr ) return; + exprSetHeight(p); + sqlite3ExprCheckHeight(pParse, p->nHeight); +} + +/* +** Return the maximum height of any expression tree referenced +** by the select statement passed as an argument. +*/ +int sqlite3SelectExprHeight(const Select *p){ + int nHeight = 0; + heightOfSelect(p, &nHeight); + return nHeight; +} +#else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ +/* +** Propagate all EP_Propagate flags from the Expr.x.pList into +** Expr.flags. +*/ +void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ + if( pParse->nErr ) return; + if( p && ExprUseXList(p) && p->x.pList ){ + p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); + } +} +#define exprSetHeight(y) +#endif /* SQLITE_MAX_EXPR_DEPTH>0 */ + +/* +** This routine is the core allocator for Expr nodes. +** +** Construct a new expression node and return a pointer to it. Memory +** for this node and for the pToken argument is a single allocation +** obtained from sqlite3DbMalloc(). The calling function +** is responsible for making sure the node eventually gets freed. +** +** If dequote is true, then the token (if it exists) is dequoted. +** If dequote is false, no dequoting is performed. The deQuote +** parameter is ignored if pToken is NULL or if the token does not +** appear to be quoted. If the quotes were of the form "..." (double-quotes) +** then the EP_DblQuoted flag is set on the expression node. +** +** Special case: If op==TK_INTEGER and pToken points to a string that +** can be translated into a 32-bit integer, then the token is not +** stored in u.zToken. Instead, the integer values is written +** into u.iValue and the EP_IntValue flag is set. No extra storage +** is allocated to hold the integer text and the dequote flag is ignored. +*/ +Expr *sqlite3ExprAlloc( + sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ + int op, /* Expression opcode */ + const Token *pToken, /* Token argument. Might be NULL */ + int dequote /* True to dequote */ +){ + Expr *pNew; + int nExtra = 0; + int iValue = 0; + + assert( db!=0 ); + if( pToken ){ + if( op!=TK_INTEGER || pToken->z==0 + || sqlite3GetInt32(pToken->z, &iValue)==0 ){ + nExtra = pToken->n+1; + assert( iValue>=0 ); + } + } + pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); + if( pNew ){ + memset(pNew, 0, sizeof(Expr)); + pNew->op = (u8)op; + pNew->iAgg = -1; + if( pToken ){ + if( nExtra==0 ){ + pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); + pNew->u.iValue = iValue; + }else{ + pNew->u.zToken = (char*)&pNew[1]; + assert( pToken->z!=0 || pToken->n==0 ); + if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); + pNew->u.zToken[pToken->n] = 0; + if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ + sqlite3DequoteExpr(pNew); + } + } + } +#if SQLITE_MAX_EXPR_DEPTH>0 + pNew->nHeight = 1; +#endif + } + return pNew; +} + +/* +** Allocate a new expression node from a zero-terminated token that has +** already been dequoted. +*/ +Expr *sqlite3Expr( + sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ + int op, /* Expression opcode */ + const char *zToken /* Token argument. Might be NULL */ +){ + Token x; + x.z = zToken; + x.n = sqlite3Strlen30(zToken); + return sqlite3ExprAlloc(db, op, &x, 0); +} + +/* +** Attach subtrees pLeft and pRight to the Expr node pRoot. +** +** If pRoot==NULL that means that a memory allocation error has occurred. +** In that case, delete the subtrees pLeft and pRight. +*/ +void sqlite3ExprAttachSubtrees( + sqlite3 *db, + Expr *pRoot, + Expr *pLeft, + Expr *pRight +){ + if( pRoot==0 ){ + assert( db->mallocFailed ); + sqlite3ExprDelete(db, pLeft); + sqlite3ExprDelete(db, pRight); + }else{ + assert( ExprUseXList(pRoot) ); + assert( pRoot->x.pSelect==0 ); + if( pRight ){ + pRoot->pRight = pRight; + pRoot->flags |= EP_Propagate & pRight->flags; +#if SQLITE_MAX_EXPR_DEPTH>0 + pRoot->nHeight = pRight->nHeight+1; + }else{ + pRoot->nHeight = 1; +#endif + } + if( pLeft ){ + pRoot->pLeft = pLeft; + pRoot->flags |= EP_Propagate & pLeft->flags; +#if SQLITE_MAX_EXPR_DEPTH>0 + if( pLeft->nHeight>=pRoot->nHeight ){ + pRoot->nHeight = pLeft->nHeight+1; + } +#endif + } + } +} + +/* +** Allocate an Expr node which joins as many as two subtrees. +** +** One or both of the subtrees can be NULL. Return a pointer to the new +** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, +** free the subtrees and return NULL. +*/ +Expr *sqlite3PExpr( + Parse *pParse, /* Parsing context */ + int op, /* Expression opcode */ + Expr *pLeft, /* Left operand */ + Expr *pRight /* Right operand */ +){ + Expr *p; + p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); + if( p ){ + memset(p, 0, sizeof(Expr)); + p->op = op & 0xff; + p->iAgg = -1; + sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); + sqlite3ExprCheckHeight(pParse, p->nHeight); + }else{ + sqlite3ExprDelete(pParse->db, pLeft); + sqlite3ExprDelete(pParse->db, pRight); + } + return p; +} + +/* +** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due +** do a memory allocation failure) then delete the pSelect object. +*/ +void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ + if( pExpr ){ + pExpr->x.pSelect = pSelect; + ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); + sqlite3ExprSetHeightAndFlags(pParse, pExpr); + }else{ + assert( pParse->db->mallocFailed ); + sqlite3SelectDelete(pParse->db, pSelect); + } +} + +/* +** Expression list pEList is a list of vector values. This function +** converts the contents of pEList to a VALUES(...) Select statement +** returning 1 row for each element of the list. For example, the +** expression list: +** +** ( (1,2), (3,4) (5,6) ) +** +** is translated to the equivalent of: +** +** VALUES(1,2), (3,4), (5,6) +** +** Each of the vector values in pEList must contain exactly nElem terms. +** If a list element that is not a vector or does not contain nElem terms, +** an error message is left in pParse. +** +** This is used as part of processing IN(...) expressions with a list +** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". +*/ +Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ + int ii; + Select *pRet = 0; + assert( nElem>1 ); + for(ii=0; ii<pEList->nExpr; ii++){ + Select *pSel; + Expr *pExpr = pEList->a[ii].pExpr; + int nExprElem; + if( pExpr->op==TK_VECTOR ){ + assert( ExprUseXList(pExpr) ); + nExprElem = pExpr->x.pList->nExpr; + }else{ + nExprElem = 1; + } + if( nExprElem!=nElem ){ + sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", + nExprElem, nExprElem>1?"s":"", nElem + ); + break; + } + assert( ExprUseXList(pExpr) ); + pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); + pExpr->x.pList = 0; + if( pSel ){ + if( pRet ){ + pSel->op = TK_ALL; + pSel->pPrior = pRet; + } + pRet = pSel; + } + } + + if( pRet && pRet->pPrior ){ + pRet->selFlags |= SF_MultiValue; + } + sqlite3ExprListDelete(pParse->db, pEList); + return pRet; +} + +/* +** Join two expressions using an AND operator. If either expression is +** NULL, then just return the other expression. +** +** If one side or the other of the AND is known to be false, then instead +** of returning an AND expression, just return a constant expression with +** a value of false. +*/ +Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ + sqlite3 *db = pParse->db; + if( pLeft==0 ){ + return pRight; + }else if( pRight==0 ){ + return pLeft; + }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) + && !IN_RENAME_OBJECT + ){ + sqlite3ExprDeferredDelete(pParse, pLeft); + sqlite3ExprDeferredDelete(pParse, pRight); + return sqlite3Expr(db, TK_INTEGER, "0"); + }else{ + return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); + } +} + +/* +** Construct a new expression node for a function with multiple +** arguments. +*/ +Expr *sqlite3ExprFunction( + Parse *pParse, /* Parsing context */ + ExprList *pList, /* Argument list */ + const Token *pToken, /* Name of the function */ + int eDistinct /* SF_Distinct or SF_ALL or 0 */ +){ + Expr *pNew; + sqlite3 *db = pParse->db; + assert( pToken ); + pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); + if( pNew==0 ){ + sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ + return 0; + } + assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) ); + pNew->w.iOfst = (int)(pToken->z - pParse->zTail); + if( pList + && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] + && !pParse->nested + ){ + sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); + } + pNew->x.pList = pList; + ExprSetProperty(pNew, EP_HasFunc); + assert( ExprUseXList(pNew) ); + sqlite3ExprSetHeightAndFlags(pParse, pNew); + if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); + return pNew; +} + +/* +** Check to see if a function is usable according to current access +** rules: +** +** SQLITE_FUNC_DIRECT - Only usable from top-level SQL +** +** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from +** top-level SQL +** +** If the function is not usable, create an error. +*/ +void sqlite3ExprFunctionUsable( + Parse *pParse, /* Parsing and code generating context */ + const Expr *pExpr, /* The function invocation */ + const FuncDef *pDef /* The function being invoked */ +){ + assert( !IN_RENAME_OBJECT ); + assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); + if( ExprHasProperty(pExpr, EP_FromDDL) ){ + if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 + || (pParse->db->flags & SQLITE_TrustedSchema)==0 + ){ + /* Functions prohibited in triggers and views if: + ** (1) tagged with SQLITE_DIRECTONLY + ** (2) not tagged with SQLITE_INNOCUOUS (which means it + ** is tagged with SQLITE_FUNC_UNSAFE) and + ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning + ** that the schema is possibly tainted). + */ + sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr); + } + } +} + +/* +** Assign a variable number to an expression that encodes a wildcard +** in the original SQL statement. +** +** Wildcards consisting of a single "?" are assigned the next sequential +** variable number. +** +** Wildcards of the form "?nnn" are assigned the number "nnn". We make +** sure "nnn" is not too big to avoid a denial of service attack when +** the SQL statement comes from an external source. +** +** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number +** as the previous instance of the same wildcard. Or if this is the first +** instance of the wildcard, the next sequential variable number is +** assigned. +*/ +void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ + sqlite3 *db = pParse->db; + const char *z; + ynVar x; + + if( pExpr==0 ) return; + assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); + z = pExpr->u.zToken; + assert( z!=0 ); + assert( z[0]!=0 ); + assert( n==(u32)sqlite3Strlen30(z) ); + if( z[1]==0 ){ + /* Wildcard of the form "?". Assign the next variable number */ + assert( z[0]=='?' ); + x = (ynVar)(++pParse->nVar); + }else{ + int doAdd = 0; + if( z[0]=='?' ){ + /* Wildcard of the form "?nnn". Convert "nnn" to an integer and + ** use it as the variable number */ + i64 i; + int bOk; + if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ + i = z[1]-'0'; /* The common case of ?N for a single digit N */ + bOk = 1; + }else{ + bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); + } + testcase( i==0 ); + testcase( i==1 ); + testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); + testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); + if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ + sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", + db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); + sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); + return; + } + x = (ynVar)i; + if( x>pParse->nVar ){ + pParse->nVar = (int)x; + doAdd = 1; + }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ + doAdd = 1; + } + }else{ + /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable + ** number as the prior appearance of the same name, or if the name + ** has never appeared before, reuse the same variable number + */ + x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); + if( x==0 ){ + x = (ynVar)(++pParse->nVar); + doAdd = 1; + } + } + if( doAdd ){ + pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); + } + } + pExpr->iColumn = x; + if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ + sqlite3ErrorMsg(pParse, "too many SQL variables"); + sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); + } +} + +/* +** Recursively delete an expression tree. +*/ +static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ + assert( p!=0 ); + assert( db!=0 ); + assert( !ExprUseUValue(p) || p->u.iValue>=0 ); + assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); + assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); + assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); +#ifdef SQLITE_DEBUG + if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ + assert( p->pLeft==0 ); + assert( p->pRight==0 ); + assert( !ExprUseXSelect(p) || p->x.pSelect==0 ); + assert( !ExprUseXList(p) || p->x.pList==0 ); + } +#endif + if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ + /* The Expr.x union is never used at the same time as Expr.pRight */ + assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 ); + if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); + if( p->pRight ){ + assert( !ExprHasProperty(p, EP_WinFunc) ); + sqlite3ExprDeleteNN(db, p->pRight); + }else if( ExprUseXSelect(p) ){ + assert( !ExprHasProperty(p, EP_WinFunc) ); + sqlite3SelectDelete(db, p->x.pSelect); + }else{ + sqlite3ExprListDelete(db, p->x.pList); +#ifndef SQLITE_OMIT_WINDOWFUNC + if( ExprHasProperty(p, EP_WinFunc) ){ + sqlite3WindowDelete(db, p->y.pWin); + } +#endif + } + } + if( !ExprHasProperty(p, EP_Static) ){ + sqlite3DbNNFreeNN(db, p); + } +} +void sqlite3ExprDelete(sqlite3 *db, Expr *p){ + if( p ) sqlite3ExprDeleteNN(db, p); +} + +/* +** Clear both elements of an OnOrUsing object +*/ +void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){ + if( p==0 ){ + /* Nothing to clear */ + }else if( p->pOn ){ + sqlite3ExprDeleteNN(db, p->pOn); + }else if( p->pUsing ){ + sqlite3IdListDelete(db, p->pUsing); + } +} + +/* +** Arrange to cause pExpr to be deleted when the pParse is deleted. +** This is similar to sqlite3ExprDelete() except that the delete is +** deferred untilthe pParse is deleted. +** +** The pExpr might be deleted immediately on an OOM error. +** +** The deferred delete is (currently) implemented by adding the +** pExpr to the pParse->pConstExpr list with a register number of 0. +*/ +void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ + sqlite3ParserAddCleanup(pParse, + (void(*)(sqlite3*,void*))sqlite3ExprDelete, + pExpr); +} + +/* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the +** expression. +*/ +void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ + if( p ){ + if( IN_RENAME_OBJECT ){ + sqlite3RenameExprUnmap(pParse, p); + } + sqlite3ExprDeleteNN(pParse->db, p); + } +} + +/* +** Return the number of bytes allocated for the expression structure +** passed as the first argument. This is always one of EXPR_FULLSIZE, +** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. +*/ +static int exprStructSize(const Expr *p){ + if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; + if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; + return EXPR_FULLSIZE; +} + +/* +** The dupedExpr*Size() routines each return the number of bytes required +** to store a copy of an expression or expression tree. They differ in +** how much of the tree is measured. +** +** dupedExprStructSize() Size of only the Expr structure +** dupedExprNodeSize() Size of Expr + space for token +** dupedExprSize() Expr + token + subtree components +** +*************************************************************************** +** +** The dupedExprStructSize() function returns two values OR-ed together: +** (1) the space required for a copy of the Expr structure only and +** (2) the EP_xxx flags that indicate what the structure size should be. +** The return values is always one of: +** +** EXPR_FULLSIZE +** EXPR_REDUCEDSIZE | EP_Reduced +** EXPR_TOKENONLYSIZE | EP_TokenOnly +** +** The size of the structure can be found by masking the return value +** of this routine with 0xfff. The flags can be found by masking the +** return value with EP_Reduced|EP_TokenOnly. +** +** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size +** (unreduced) Expr objects as they or originally constructed by the parser. +** During expression analysis, extra information is computed and moved into +** later parts of the Expr object and that extra information might get chopped +** off if the expression is reduced. Note also that it does not work to +** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal +** to reduce a pristine expression tree from the parser. The implementation +** of dupedExprStructSize() contain multiple assert() statements that attempt +** to enforce this constraint. +*/ +static int dupedExprStructSize(const Expr *p, int flags){ + int nSize; + assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ + assert( EXPR_FULLSIZE<=0xfff ); + assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); + if( 0==flags || p->op==TK_SELECT_COLUMN +#ifndef SQLITE_OMIT_WINDOWFUNC + || ExprHasProperty(p, EP_WinFunc) +#endif + ){ + nSize = EXPR_FULLSIZE; + }else{ + assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); + assert( !ExprHasProperty(p, EP_OuterON) ); + assert( !ExprHasVVAProperty(p, EP_NoReduce) ); + if( p->pLeft || p->x.pList ){ + nSize = EXPR_REDUCEDSIZE | EP_Reduced; + }else{ + assert( p->pRight==0 ); + nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; + } + } + return nSize; +} + +/* +** This function returns the space in bytes required to store the copy +** of the Expr structure and a copy of the Expr.u.zToken string (if that +** string is defined.) +*/ +static int dupedExprNodeSize(const Expr *p, int flags){ + int nByte = dupedExprStructSize(p, flags) & 0xfff; + if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ + nByte += sqlite3Strlen30NN(p->u.zToken)+1; + } + return ROUND8(nByte); +} + +/* +** Return the number of bytes required to create a duplicate of the +** expression passed as the first argument. The second argument is a +** mask containing EXPRDUP_XXX flags. +** +** The value returned includes space to create a copy of the Expr struct +** itself and the buffer referred to by Expr.u.zToken, if any. +** +** If the EXPRDUP_REDUCE flag is set, then the return value includes +** space to duplicate all Expr nodes in the tree formed by Expr.pLeft +** and Expr.pRight variables (but not for any structures pointed to or +** descended from the Expr.x.pList or Expr.x.pSelect variables). +*/ +static int dupedExprSize(const Expr *p, int flags){ + int nByte = 0; + if( p ){ + nByte = dupedExprNodeSize(p, flags); + if( flags&EXPRDUP_REDUCE ){ + nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); + } + } + return nByte; +} + +/* +** This function is similar to sqlite3ExprDup(), except that if pzBuffer +** is not NULL then *pzBuffer is assumed to point to a buffer large enough +** to store the copy of expression p, the copies of p->u.zToken +** (if applicable), and the copies of the p->pLeft and p->pRight expressions, +** if any. Before returning, *pzBuffer is set to the first byte past the +** portion of the buffer copied into by this function. +*/ +static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){ + Expr *pNew; /* Value to return */ + u8 *zAlloc; /* Memory space from which to build Expr object */ + u32 staticFlag; /* EP_Static if space not obtained from malloc */ + + assert( db!=0 ); + assert( p ); + assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); + assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); + + /* Figure out where to write the new Expr structure. */ + if( pzBuffer ){ + zAlloc = *pzBuffer; + staticFlag = EP_Static; + assert( zAlloc!=0 ); + }else{ + zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); + staticFlag = 0; + } + pNew = (Expr *)zAlloc; + + if( pNew ){ + /* Set nNewSize to the size allocated for the structure pointed to + ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or + ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed + ** by the copy of the p->u.zToken string (if any). + */ + const unsigned nStructSize = dupedExprStructSize(p, dupFlags); + const int nNewSize = nStructSize & 0xfff; + int nToken; + if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ + nToken = sqlite3Strlen30(p->u.zToken) + 1; + }else{ + nToken = 0; + } + if( dupFlags ){ + assert( ExprHasProperty(p, EP_Reduced)==0 ); + memcpy(zAlloc, p, nNewSize); + }else{ + u32 nSize = (u32)exprStructSize(p); + memcpy(zAlloc, p, nSize); + if( nSize<EXPR_FULLSIZE ){ + memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); + } + } + + /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ + pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); + pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); + pNew->flags |= staticFlag; + ExprClearVVAProperties(pNew); + if( dupFlags ){ + ExprSetVVAProperty(pNew, EP_Immutable); + } + + /* Copy the p->u.zToken string, if any. */ + if( nToken ){ + char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; + memcpy(zToken, p->u.zToken, nToken); + } + + if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ + /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ + if( ExprUseXSelect(p) ){ + pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); + }else{ + pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); + } + } + + /* Fill in pNew->pLeft and pNew->pRight. */ + if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ + zAlloc += dupedExprNodeSize(p, dupFlags); + if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ + pNew->pLeft = p->pLeft ? + exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; + pNew->pRight = p->pRight ? + exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; + } +#ifndef SQLITE_OMIT_WINDOWFUNC + if( ExprHasProperty(p, EP_WinFunc) ){ + pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); + assert( ExprHasProperty(pNew, EP_WinFunc) ); + } +#endif /* SQLITE_OMIT_WINDOWFUNC */ + if( pzBuffer ){ + *pzBuffer = zAlloc; + } + }else{ + if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ + if( pNew->op==TK_SELECT_COLUMN ){ + pNew->pLeft = p->pLeft; + assert( p->pRight==0 || p->pRight==p->pLeft + || ExprHasProperty(p->pLeft, EP_Subquery) ); + }else{ + pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); + } + pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); + } + } + } + return pNew; +} + +/* +** Create and return a deep copy of the object passed as the second +** argument. If an OOM condition is encountered, NULL is returned +** and the db->mallocFailed flag set. +*/ +#ifndef SQLITE_OMIT_CTE +With *sqlite3WithDup(sqlite3 *db, With *p){ + With *pRet = 0; + if( p ){ + sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); + pRet = sqlite3DbMallocZero(db, nByte); + if( pRet ){ + int i; + pRet->nCte = p->nCte; + for(i=0; i<p->nCte; i++){ + pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); + pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); + pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); + pRet->a[i].eM10d = p->a[i].eM10d; + } + } + } + return pRet; +} +#else +# define sqlite3WithDup(x,y) 0 +#endif + +#ifndef SQLITE_OMIT_WINDOWFUNC +/* +** The gatherSelectWindows() procedure and its helper routine +** gatherSelectWindowsCallback() are used to scan all the expressions +** an a newly duplicated SELECT statement and gather all of the Window +** objects found there, assembling them onto the linked list at Select->pWin. +*/ +static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ + if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ + Select *pSelect = pWalker->u.pSelect; + Window *pWin = pExpr->y.pWin; + assert( pWin ); + assert( IsWindowFunc(pExpr) ); + assert( pWin->ppThis==0 ); + sqlite3WindowLink(pSelect, pWin); + } + return WRC_Continue; +} +static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ + return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; +} +static void gatherSelectWindows(Select *p){ + Walker w; + w.xExprCallback = gatherSelectWindowsCallback; + w.xSelectCallback = gatherSelectWindowsSelectCallback; + w.xSelectCallback2 = 0; + w.pParse = 0; + w.u.pSelect = p; + sqlite3WalkSelect(&w, p); +} +#endif + + +/* +** The following group of routines make deep copies of expressions, +** expression lists, ID lists, and select statements. The copies can +** be deleted (by being passed to their respective ...Delete() routines) +** without effecting the originals. +** +** The expression list, ID, and source lists return by sqlite3ExprListDup(), +** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded +** by subsequent calls to sqlite*ListAppend() routines. +** +** Any tables that the SrcList might point to are not duplicated. +** +** The flags parameter contains a combination of the EXPRDUP_XXX flags. +** If the EXPRDUP_REDUCE flag is set, then the structure returned is a +** truncated version of the usual Expr structure that will be stored as +** part of the in-memory representation of the database schema. +*/ +Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ + assert( flags==0 || flags==EXPRDUP_REDUCE ); + return p ? exprDup(db, p, flags, 0) : 0; +} +ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ + ExprList *pNew; + struct ExprList_item *pItem; + const struct ExprList_item *pOldItem; + int i; + Expr *pPriorSelectColOld = 0; + Expr *pPriorSelectColNew = 0; + assert( db!=0 ); + if( p==0 ) return 0; + pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); + if( pNew==0 ) return 0; + pNew->nExpr = p->nExpr; + pNew->nAlloc = p->nAlloc; + pItem = pNew->a; + pOldItem = p->a; + for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ + Expr *pOldExpr = pOldItem->pExpr; + Expr *pNewExpr; + pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); + if( pOldExpr + && pOldExpr->op==TK_SELECT_COLUMN + && (pNewExpr = pItem->pExpr)!=0 + ){ + if( pNewExpr->pRight ){ + pPriorSelectColOld = pOldExpr->pRight; + pPriorSelectColNew = pNewExpr->pRight; + pNewExpr->pLeft = pNewExpr->pRight; + }else{ + if( pOldExpr->pLeft!=pPriorSelectColOld ){ + pPriorSelectColOld = pOldExpr->pLeft; + pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); + pNewExpr->pRight = pPriorSelectColNew; + } + pNewExpr->pLeft = pPriorSelectColNew; + } + } + pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); + pItem->fg = pOldItem->fg; + pItem->fg.done = 0; + pItem->u = pOldItem->u; + } + return pNew; +} + +/* +** If cursors, triggers, views and subqueries are all omitted from +** the build, then none of the following routines, except for +** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes +** called with a NULL argument. +*/ +#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ + || !defined(SQLITE_OMIT_SUBQUERY) +SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ + SrcList *pNew; + int i; + int nByte; + assert( db!=0 ); + if( p==0 ) return 0; + nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); + pNew = sqlite3DbMallocRawNN(db, nByte ); + if( pNew==0 ) return 0; + pNew->nSrc = pNew->nAlloc = p->nSrc; + for(i=0; i<p->nSrc; i++){ + SrcItem *pNewItem = &pNew->a[i]; + const SrcItem *pOldItem = &p->a[i]; + Table *pTab; + pNewItem->pSchema = pOldItem->pSchema; + pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); + pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); + pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); + pNewItem->fg = pOldItem->fg; + pNewItem->iCursor = pOldItem->iCursor; + pNewItem->addrFillSub = pOldItem->addrFillSub; + pNewItem->regReturn = pOldItem->regReturn; + if( pNewItem->fg.isIndexedBy ){ + pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); + } + pNewItem->u2 = pOldItem->u2; + if( pNewItem->fg.isCte ){ + pNewItem->u2.pCteUse->nUse++; + } + if( pNewItem->fg.isTabFunc ){ + pNewItem->u1.pFuncArg = + sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); + } + pTab = pNewItem->pTab = pOldItem->pTab; + if( pTab ){ + pTab->nTabRef++; + } + pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); + if( pOldItem->fg.isUsing ){ + assert( pNewItem->fg.isUsing ); + pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing); + }else{ + pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags); + } + pNewItem->colUsed = pOldItem->colUsed; + } + return pNew; +} +IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ + IdList *pNew; + int i; + assert( db!=0 ); + if( p==0 ) return 0; + assert( p->eU4!=EU4_EXPR ); + pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) ); + if( pNew==0 ) return 0; + pNew->nId = p->nId; + pNew->eU4 = p->eU4; + for(i=0; i<p->nId; i++){ + struct IdList_item *pNewItem = &pNew->a[i]; + const struct IdList_item *pOldItem = &p->a[i]; + pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); + pNewItem->u4 = pOldItem->u4; + } + return pNew; +} +Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ + Select *pRet = 0; + Select *pNext = 0; + Select **pp = &pRet; + const Select *p; + + assert( db!=0 ); + for(p=pDup; p; p=p->pPrior){ + Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); + if( pNew==0 ) break; + pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); + pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); + pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); + pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); + pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); + pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); + pNew->op = p->op; + pNew->pNext = pNext; + pNew->pPrior = 0; + pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); + pNew->iLimit = 0; + pNew->iOffset = 0; + pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; + pNew->addrOpenEphm[0] = -1; + pNew->addrOpenEphm[1] = -1; + pNew->nSelectRow = p->nSelectRow; + pNew->pWith = sqlite3WithDup(db, p->pWith); +#ifndef SQLITE_OMIT_WINDOWFUNC + pNew->pWin = 0; + pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); + if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); +#endif + pNew->selId = p->selId; + if( db->mallocFailed ){ + /* Any prior OOM might have left the Select object incomplete. + ** Delete the whole thing rather than allow an incomplete Select + ** to be used by the code generator. */ + pNew->pNext = 0; + sqlite3SelectDelete(db, pNew); + break; + } + *pp = pNew; + pp = &pNew->pPrior; + pNext = pNew; + } + + return pRet; +} +#else +Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){ + assert( p==0 ); + return 0; +} +#endif + + +/* +** Add a new element to the end of an expression list. If pList is +** initially NULL, then create a new expression list. +** +** The pList argument must be either NULL or a pointer to an ExprList +** obtained from a prior call to sqlite3ExprListAppend(). This routine +** may not be used with an ExprList obtained from sqlite3ExprListDup(). +** Reason: This routine assumes that the number of slots in pList->a[] +** is a power of two. That is true for sqlite3ExprListAppend() returns +** but is not necessarily true from the return value of sqlite3ExprListDup(). +** +** If a memory allocation error occurs, the entire list is freed and +** NULL is returned. If non-NULL is returned, then it is guaranteed +** that the new entry was successfully appended. +*/ +static const struct ExprList_item zeroItem = {0}; +SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( + sqlite3 *db, /* Database handle. Used for memory allocation */ + Expr *pExpr /* Expression to be appended. Might be NULL */ +){ + struct ExprList_item *pItem; + ExprList *pList; + + pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); + if( pList==0 ){ + sqlite3ExprDelete(db, pExpr); + return 0; + } + pList->nAlloc = 4; + pList->nExpr = 1; + pItem = &pList->a[0]; + *pItem = zeroItem; + pItem->pExpr = pExpr; + return pList; +} +SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( + sqlite3 *db, /* Database handle. Used for memory allocation */ + ExprList *pList, /* List to which to append. Might be NULL */ + Expr *pExpr /* Expression to be appended. Might be NULL */ +){ + struct ExprList_item *pItem; + ExprList *pNew; + pList->nAlloc *= 2; + pNew = sqlite3DbRealloc(db, pList, + sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); + if( pNew==0 ){ + sqlite3ExprListDelete(db, pList); + sqlite3ExprDelete(db, pExpr); + return 0; + }else{ + pList = pNew; + } + pItem = &pList->a[pList->nExpr++]; + *pItem = zeroItem; + pItem->pExpr = pExpr; + return pList; +} +ExprList *sqlite3ExprListAppend( + Parse *pParse, /* Parsing context */ + ExprList *pList, /* List to which to append. Might be NULL */ + Expr *pExpr /* Expression to be appended. Might be NULL */ +){ + struct ExprList_item *pItem; + if( pList==0 ){ + return sqlite3ExprListAppendNew(pParse->db,pExpr); + } + if( pList->nAlloc<pList->nExpr+1 ){ + return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); + } + pItem = &pList->a[pList->nExpr++]; + *pItem = zeroItem; + pItem->pExpr = pExpr; + return pList; +} + +/* +** pColumns and pExpr form a vector assignment which is part of the SET +** clause of an UPDATE statement. Like this: +** +** (a,b,c) = (expr1,expr2,expr3) +** Or: (a,b,c) = (SELECT x,y,z FROM ....) +** +** For each term of the vector assignment, append new entries to the +** expression list pList. In the case of a subquery on the RHS, append +** TK_SELECT_COLUMN expressions. +*/ +ExprList *sqlite3ExprListAppendVector( + Parse *pParse, /* Parsing context */ + ExprList *pList, /* List to which to append. Might be NULL */ + IdList *pColumns, /* List of names of LHS of the assignment */ + Expr *pExpr /* Vector expression to be appended. Might be NULL */ +){ + sqlite3 *db = pParse->db; + int n; + int i; + int iFirst = pList ? pList->nExpr : 0; + /* pColumns can only be NULL due to an OOM but an OOM will cause an + ** exit prior to this routine being invoked */ + if( NEVER(pColumns==0) ) goto vector_append_error; + if( pExpr==0 ) goto vector_append_error; + + /* If the RHS is a vector, then we can immediately check to see that + ** the size of the RHS and LHS match. But if the RHS is a SELECT, + ** wildcards ("*") in the result set of the SELECT must be expanded before + ** we can do the size check, so defer the size check until code generation. + */ + if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ + sqlite3ErrorMsg(pParse, "%d columns assigned %d values", + pColumns->nId, n); + goto vector_append_error; + } + + for(i=0; i<pColumns->nId; i++){ + Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); + assert( pSubExpr!=0 || db->mallocFailed ); + if( pSubExpr==0 ) continue; + pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); + if( pList ){ + assert( pList->nExpr==iFirst+i+1 ); + pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; + pColumns->a[i].zName = 0; + } + } + + if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ + Expr *pFirst = pList->a[iFirst].pExpr; + assert( pFirst!=0 ); + assert( pFirst->op==TK_SELECT_COLUMN ); + + /* Store the SELECT statement in pRight so it will be deleted when + ** sqlite3ExprListDelete() is called */ + pFirst->pRight = pExpr; + pExpr = 0; + + /* Remember the size of the LHS in iTable so that we can check that + ** the RHS and LHS sizes match during code generation. */ + pFirst->iTable = pColumns->nId; + } + +vector_append_error: + sqlite3ExprUnmapAndDelete(pParse, pExpr); + sqlite3IdListDelete(db, pColumns); + return pList; +} + +/* +** Set the sort order for the last element on the given ExprList. +*/ +void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ + struct ExprList_item *pItem; + if( p==0 ) return; + assert( p->nExpr>0 ); + + assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); + assert( iSortOrder==SQLITE_SO_UNDEFINED + || iSortOrder==SQLITE_SO_ASC + || iSortOrder==SQLITE_SO_DESC + ); + assert( eNulls==SQLITE_SO_UNDEFINED + || eNulls==SQLITE_SO_ASC + || eNulls==SQLITE_SO_DESC + ); + + pItem = &p->a[p->nExpr-1]; + assert( pItem->fg.bNulls==0 ); + if( iSortOrder==SQLITE_SO_UNDEFINED ){ + iSortOrder = SQLITE_SO_ASC; + } + pItem->fg.sortFlags = (u8)iSortOrder; + + if( eNulls!=SQLITE_SO_UNDEFINED ){ + pItem->fg.bNulls = 1; + if( iSortOrder!=eNulls ){ + pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL; + } + } +} + +/* +** Set the ExprList.a[].zEName element of the most recently added item +** on the expression list. +** +** pList might be NULL following an OOM error. But pName should never be +** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag +** is set. +*/ +void sqlite3ExprListSetName( + Parse *pParse, /* Parsing context */ + ExprList *pList, /* List to which to add the span. */ + const Token *pName, /* Name to be added */ + int dequote /* True to cause the name to be dequoted */ +){ + assert( pList!=0 || pParse->db->mallocFailed!=0 ); + assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); + if( pList ){ + struct ExprList_item *pItem; + assert( pList->nExpr>0 ); + pItem = &pList->a[pList->nExpr-1]; + assert( pItem->zEName==0 ); + assert( pItem->fg.eEName==ENAME_NAME ); + pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); + if( dequote ){ + /* If dequote==0, then pName->z does not point to part of a DDL + ** statement handled by the parser. And so no token need be added + ** to the token-map. */ + sqlite3Dequote(pItem->zEName); + if( IN_RENAME_OBJECT ){ + sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); + } + } + } +} + +/* +** Set the ExprList.a[].zSpan element of the most recently added item +** on the expression list. +** +** pList might be NULL following an OOM error. But pSpan should never be +** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag +** is set. +*/ +void sqlite3ExprListSetSpan( + Parse *pParse, /* Parsing context */ + ExprList *pList, /* List to which to add the span. */ + const char *zStart, /* Start of the span */ + const char *zEnd /* End of the span */ +){ + sqlite3 *db = pParse->db; + assert( pList!=0 || db->mallocFailed!=0 ); + if( pList ){ + struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; + assert( pList->nExpr>0 ); + if( pItem->zEName==0 ){ + pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); + pItem->fg.eEName = ENAME_SPAN; + } + } +} + +/* +** If the expression list pEList contains more than iLimit elements, +** leave an error message in pParse. +*/ +void sqlite3ExprListCheckLength( + Parse *pParse, + ExprList *pEList, + const char *zObject +){ + int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; + testcase( pEList && pEList->nExpr==mx ); + testcase( pEList && pEList->nExpr==mx+1 ); + if( pEList && pEList->nExpr>mx ){ + sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); + } +} + +/* +** Delete an entire expression list. +*/ +static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ + int i = pList->nExpr; + struct ExprList_item *pItem = pList->a; + assert( pList->nExpr>0 ); + assert( db!=0 ); + do{ + sqlite3ExprDelete(db, pItem->pExpr); + if( pItem->zEName ) sqlite3DbNNFreeNN(db, pItem->zEName); + pItem++; + }while( --i>0 ); + sqlite3DbNNFreeNN(db, pList); +} +void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ + if( pList ) exprListDeleteNN(db, pList); +} + +/* +** Return the bitwise-OR of all Expr.flags fields in the given +** ExprList. +*/ +u32 sqlite3ExprListFlags(const ExprList *pList){ + int i; + u32 m = 0; + assert( pList!=0 ); + for(i=0; i<pList->nExpr; i++){ + Expr *pExpr = pList->a[i].pExpr; + assert( pExpr!=0 ); + m |= pExpr->flags; + } + return m; +} + +/* +** This is a SELECT-node callback for the expression walker that +** always "fails". By "fail" in this case, we mean set +** pWalker->eCode to zero and abort. +** +** This callback is used by multiple expression walkers. +*/ +int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ + UNUSED_PARAMETER(NotUsed); + pWalker->eCode = 0; + return WRC_Abort; +} + +/* +** Check the input string to see if it is "true" or "false" (in any case). +** +** If the string is.... Return +** "true" EP_IsTrue +** "false" EP_IsFalse +** anything else 0 +*/ +u32 sqlite3IsTrueOrFalse(const char *zIn){ + if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; + if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; + return 0; +} + + +/* +** If the input expression is an ID with the name "true" or "false" +** then convert it into an TK_TRUEFALSE term. Return non-zero if +** the conversion happened, and zero if the expression is unaltered. +*/ +int sqlite3ExprIdToTrueFalse(Expr *pExpr){ + u32 v; + assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); + if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue) + && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 + ){ + pExpr->op = TK_TRUEFALSE; + ExprSetProperty(pExpr, v); + return 1; + } + return 0; +} + +/* +** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE +** and 0 if it is FALSE. +*/ +int sqlite3ExprTruthValue(const Expr *pExpr){ + pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); + assert( pExpr->op==TK_TRUEFALSE ); + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 + || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); + return pExpr->u.zToken[4]==0; +} + +/* +** If pExpr is an AND or OR expression, try to simplify it by eliminating +** terms that are always true or false. Return the simplified expression. +** Or return the original expression if no simplification is possible. +** +** Examples: +** +** (x<10) AND true => (x<10) +** (x<10) AND false => false +** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) +** (x<10) AND (y=22 OR true) => (x<10) +** (y=22) OR true => true +*/ +Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ + assert( pExpr!=0 ); + if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ + Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); + Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); + if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ + pExpr = pExpr->op==TK_AND ? pRight : pLeft; + }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ + pExpr = pExpr->op==TK_AND ? pLeft : pRight; + } + } + return pExpr; +} + + +/* +** These routines are Walker callbacks used to check expressions to +** see if they are "constant" for some definition of constant. The +** Walker.eCode value determines the type of "constant" we are looking +** for. +** +** These callback routines are used to implement the following: +** +** sqlite3ExprIsConstant() pWalker->eCode==1 +** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 +** sqlite3ExprIsTableConstant() pWalker->eCode==3 +** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 +** +** In all cases, the callbacks set Walker.eCode=0 and abort if the expression +** is found to not be a constant. +** +** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT +** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 +** when parsing an existing schema out of the sqlite_schema table and 4 +** when processing a new CREATE TABLE statement. A bound parameter raises +** an error for new statements, but is silently converted +** to NULL for existing schemas. This allows sqlite_schema tables that +** contain a bound parameter because they were generated by older versions +** of SQLite to be parsed by newer versions of SQLite without raising a +** malformed schema error. +*/ +static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ + + /* If pWalker->eCode is 2 then any term of the expression that comes from + ** the ON or USING clauses of an outer join disqualifies the expression + ** from being considered constant. */ + if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){ + pWalker->eCode = 0; + return WRC_Abort; + } + + switch( pExpr->op ){ + /* Consider functions to be constant if all their arguments are constant + ** and either pWalker->eCode==4 or 5 or the function has the + ** SQLITE_FUNC_CONST flag. */ + case TK_FUNCTION: + if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) + && !ExprHasProperty(pExpr, EP_WinFunc) + ){ + if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); + return WRC_Continue; + }else{ + pWalker->eCode = 0; + return WRC_Abort; + } + case TK_ID: + /* Convert "true" or "false" in a DEFAULT clause into the + ** appropriate TK_TRUEFALSE operator */ + if( sqlite3ExprIdToTrueFalse(pExpr) ){ + return WRC_Prune; + } + /* no break */ deliberate_fall_through + case TK_COLUMN: + case TK_AGG_FUNCTION: + case TK_AGG_COLUMN: + testcase( pExpr->op==TK_ID ); + testcase( pExpr->op==TK_COLUMN ); + testcase( pExpr->op==TK_AGG_FUNCTION ); + testcase( pExpr->op==TK_AGG_COLUMN ); + if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ + return WRC_Continue; + } + if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ + return WRC_Continue; + } + /* no break */ deliberate_fall_through + case TK_IF_NULL_ROW: + case TK_REGISTER: + case TK_DOT: + testcase( pExpr->op==TK_REGISTER ); + testcase( pExpr->op==TK_IF_NULL_ROW ); + testcase( pExpr->op==TK_DOT ); + pWalker->eCode = 0; + return WRC_Abort; + case TK_VARIABLE: + if( pWalker->eCode==5 ){ + /* Silently convert bound parameters that appear inside of CREATE + ** statements into a NULL when parsing the CREATE statement text out + ** of the sqlite_schema table */ + pExpr->op = TK_NULL; + }else if( pWalker->eCode==4 ){ + /* A bound parameter in a CREATE statement that originates from + ** sqlite3_prepare() causes an error */ + pWalker->eCode = 0; + return WRC_Abort; + } + /* no break */ deliberate_fall_through + default: + testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ + testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ + return WRC_Continue; + } +} +static int exprIsConst(Expr *p, int initFlag, int iCur){ + Walker w; + w.eCode = initFlag; + w.xExprCallback = exprNodeIsConstant; + w.xSelectCallback = sqlite3SelectWalkFail; +#ifdef SQLITE_DEBUG + w.xSelectCallback2 = sqlite3SelectWalkAssert2; +#endif + w.u.iCur = iCur; + sqlite3WalkExpr(&w, p); + return w.eCode; +} + +/* +** Walk an expression tree. Return non-zero if the expression is constant +** and 0 if it involves variables or function calls. +** +** For the purposes of this function, a double-quoted string (ex: "abc") +** is considered a variable but a single-quoted string (ex: 'abc') is +** a constant. +*/ +int sqlite3ExprIsConstant(Expr *p){ + return exprIsConst(p, 1, 0); +} + +/* +** Walk an expression tree. Return non-zero if +** +** (1) the expression is constant, and +** (2) the expression does originate in the ON or USING clause +** of a LEFT JOIN, and +** (3) the expression does not contain any EP_FixedCol TK_COLUMN +** operands created by the constant propagation optimization. +** +** When this routine returns true, it indicates that the expression +** can be added to the pParse->pConstExpr list and evaluated once when +** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). +*/ +int sqlite3ExprIsConstantNotJoin(Expr *p){ + return exprIsConst(p, 2, 0); +} + +/* +** Walk an expression tree. Return non-zero if the expression is constant +** for any single row of the table with cursor iCur. In other words, the +** expression must not refer to any non-deterministic function nor any +** table other than iCur. +*/ +int sqlite3ExprIsTableConstant(Expr *p, int iCur){ + return exprIsConst(p, 3, iCur); +} + +/* +** Check pExpr to see if it is an invariant constraint on data source pSrc. +** This is an optimization. False negatives will perhaps cause slower +** queries, but false positives will yield incorrect answers. So when in +** doubt, return 0. +** +** To be an invariant constraint, the following must be true: +** +** (1) pExpr cannot refer to any table other than pSrc->iCursor. +** +** (2) pExpr cannot use subqueries or non-deterministic functions. +** +** (3) pSrc cannot be part of the left operand for a RIGHT JOIN. +** (Is there some way to relax this constraint?) +** +** (4) If pSrc is the right operand of a LEFT JOIN, then... +** (4a) pExpr must come from an ON clause.. + (4b) and specifically the ON clause associated with the LEFT JOIN. +** +** (5) If pSrc is not the right operand of a LEFT JOIN or the left +** operand of a RIGHT JOIN, then pExpr must be from the WHERE +** clause, not an ON clause. +*/ +int sqlite3ExprIsTableConstraint(Expr *pExpr, const SrcItem *pSrc){ + if( pSrc->fg.jointype & JT_LTORJ ){ + return 0; /* rule (3) */ + } + if( pSrc->fg.jointype & JT_LEFT ){ + if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (4a) */ + if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */ + }else{ + if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (5) */ + } + return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */ +} + + +/* +** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). +*/ +static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ + ExprList *pGroupBy = pWalker->u.pGroupBy; + int i; + + /* Check if pExpr is identical to any GROUP BY term. If so, consider + ** it constant. */ + for(i=0; i<pGroupBy->nExpr; i++){ + Expr *p = pGroupBy->a[i].pExpr; + if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ + CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); + if( sqlite3IsBinary(pColl) ){ + return WRC_Prune; + } + } + } + + /* Check if pExpr is a sub-select. If so, consider it variable. */ + if( ExprUseXSelect(pExpr) ){ + pWalker->eCode = 0; + return WRC_Abort; + } + + return exprNodeIsConstant(pWalker, pExpr); +} + +/* +** Walk the expression tree passed as the first argument. Return non-zero +** if the expression consists entirely of constants or copies of terms +** in pGroupBy that sort with the BINARY collation sequence. +** +** This routine is used to determine if a term of the HAVING clause can +** be promoted into the WHERE clause. In order for such a promotion to work, +** the value of the HAVING clause term must be the same for all members of +** a "group". The requirement that the GROUP BY term must be BINARY +** assumes that no other collating sequence will have a finer-grained +** grouping than binary. In other words (A=B COLLATE binary) implies +** A=B in every other collating sequence. The requirement that the +** GROUP BY be BINARY is stricter than necessary. It would also work +** to promote HAVING clauses that use the same alternative collating +** sequence as the GROUP BY term, but that is much harder to check, +** alternative collating sequences are uncommon, and this is only an +** optimization, so we take the easy way out and simply require the +** GROUP BY to use the BINARY collating sequence. +*/ +int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ + Walker w; + w.eCode = 1; + w.xExprCallback = exprNodeIsConstantOrGroupBy; + w.xSelectCallback = 0; + w.u.pGroupBy = pGroupBy; + w.pParse = pParse; + sqlite3WalkExpr(&w, p); + return w.eCode; +} + +/* +** Walk an expression tree for the DEFAULT field of a column definition +** in a CREATE TABLE statement. Return non-zero if the expression is +** acceptable for use as a DEFAULT. That is to say, return non-zero if +** the expression is constant or a function call with constant arguments. +** Return and 0 if there are any variables. +** +** isInit is true when parsing from sqlite_schema. isInit is false when +** processing a new CREATE TABLE statement. When isInit is true, parameters +** (such as ? or $abc) in the expression are converted into NULL. When +** isInit is false, parameters raise an error. Parameters should not be +** allowed in a CREATE TABLE statement, but some legacy versions of SQLite +** allowed it, so we need to support it when reading sqlite_schema for +** backwards compatibility. +** +** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. +** +** For the purposes of this function, a double-quoted string (ex: "abc") +** is considered a variable but a single-quoted string (ex: 'abc') is +** a constant. +*/ +int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ + assert( isInit==0 || isInit==1 ); + return exprIsConst(p, 4+isInit, 0); +} + +#ifdef SQLITE_ENABLE_CURSOR_HINTS +/* +** Walk an expression tree. Return 1 if the expression contains a +** subquery of some kind. Return 0 if there are no subqueries. +*/ +int sqlite3ExprContainsSubquery(Expr *p){ + Walker w; + w.eCode = 1; + w.xExprCallback = sqlite3ExprWalkNoop; + w.xSelectCallback = sqlite3SelectWalkFail; +#ifdef SQLITE_DEBUG + w.xSelectCallback2 = sqlite3SelectWalkAssert2; +#endif + sqlite3WalkExpr(&w, p); + return w.eCode==0; +} +#endif + +/* +** If the expression p codes a constant integer that is small enough +** to fit in a 32-bit integer, return 1 and put the value of the integer +** in *pValue. If the expression is not an integer or if it is too big +** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. +*/ +int sqlite3ExprIsInteger(const Expr *p, int *pValue){ + int rc = 0; + if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ + + /* If an expression is an integer literal that fits in a signed 32-bit + ** integer, then the EP_IntValue flag will have already been set */ + assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 + || sqlite3GetInt32(p->u.zToken, &rc)==0 ); + + if( p->flags & EP_IntValue ){ + *pValue = p->u.iValue; + return 1; + } + switch( p->op ){ + case TK_UPLUS: { + rc = sqlite3ExprIsInteger(p->pLeft, pValue); + break; + } + case TK_UMINUS: { + int v = 0; + if( sqlite3ExprIsInteger(p->pLeft, &v) ){ + assert( ((unsigned int)v)!=0x80000000 ); + *pValue = -v; + rc = 1; + } + break; + } + default: break; + } + return rc; +} + +/* +** Return FALSE if there is no chance that the expression can be NULL. +** +** If the expression might be NULL or if the expression is too complex +** to tell return TRUE. +** +** This routine is used as an optimization, to skip OP_IsNull opcodes +** when we know that a value cannot be NULL. Hence, a false positive +** (returning TRUE when in fact the expression can never be NULL) might +** be a small performance hit but is otherwise harmless. On the other +** hand, a false negative (returning FALSE when the result could be NULL) +** will likely result in an incorrect answer. So when in doubt, return +** TRUE. +*/ +int sqlite3ExprCanBeNull(const Expr *p){ + u8 op; + assert( p!=0 ); + while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ + p = p->pLeft; + assert( p!=0 ); + } + op = p->op; + if( op==TK_REGISTER ) op = p->op2; + switch( op ){ + case TK_INTEGER: + case TK_STRING: + case TK_FLOAT: + case TK_BLOB: + return 0; + case TK_COLUMN: + assert( ExprUseYTab(p) ); + return ExprHasProperty(p, EP_CanBeNull) || + p->y.pTab==0 || /* Reference to column of index on expression */ + (p->iColumn>=0 + && p->y.pTab->aCol!=0 /* Possible due to prior error */ + && p->y.pTab->aCol[p->iColumn].notNull==0); + default: + return 1; + } +} + +/* +** Return TRUE if the given expression is a constant which would be +** unchanged by OP_Affinity with the affinity given in the second +** argument. +** +** This routine is used to determine if the OP_Affinity operation +** can be omitted. When in doubt return FALSE. A false negative +** is harmless. A false positive, however, can result in the wrong +** answer. +*/ +int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ + u8 op; + int unaryMinus = 0; + if( aff==SQLITE_AFF_BLOB ) return 1; + while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ + if( p->op==TK_UMINUS ) unaryMinus = 1; + p = p->pLeft; + } + op = p->op; + if( op==TK_REGISTER ) op = p->op2; + switch( op ){ + case TK_INTEGER: { + return aff>=SQLITE_AFF_NUMERIC; + } + case TK_FLOAT: { + return aff>=SQLITE_AFF_NUMERIC; + } + case TK_STRING: { + return !unaryMinus && aff==SQLITE_AFF_TEXT; + } + case TK_BLOB: { + return !unaryMinus; + } + case TK_COLUMN: { + assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ + return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; + } + default: { + return 0; + } + } +} + +/* +** Return TRUE if the given string is a row-id column name. +*/ +int sqlite3IsRowid(const char *z){ + if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; + if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; + if( sqlite3StrICmp(z, "OID")==0 ) return 1; + return 0; +} + +/* +** pX is the RHS of an IN operator. If pX is a SELECT statement +** that can be simplified to a direct table access, then return +** a pointer to the SELECT statement. If pX is not a SELECT statement, +** or if the SELECT statement needs to be manifested into a transient +** table, then return NULL. +*/ +#ifndef SQLITE_OMIT_SUBQUERY +static Select *isCandidateForInOpt(const Expr *pX){ + Select *p; + SrcList *pSrc; + ExprList *pEList; + Table *pTab; + int i; + if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */ + if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ + p = pX->x.pSelect; + if( p->pPrior ) return 0; /* Not a compound SELECT */ + if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ + testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); + testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); + return 0; /* No DISTINCT keyword and no aggregate functions */ + } + assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ + if( p->pLimit ) return 0; /* Has no LIMIT clause */ + if( p->pWhere ) return 0; /* Has no WHERE clause */ + pSrc = p->pSrc; + assert( pSrc!=0 ); + if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ + if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ + pTab = pSrc->a[0].pTab; + assert( pTab!=0 ); + assert( !IsView(pTab) ); /* FROM clause is not a view */ + if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ + pEList = p->pEList; + assert( pEList!=0 ); + /* All SELECT results must be columns. */ + for(i=0; i<pEList->nExpr; i++){ + Expr *pRes = pEList->a[i].pExpr; + if( pRes->op!=TK_COLUMN ) return 0; + assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ + } + return p; +} +#endif /* SQLITE_OMIT_SUBQUERY */ + +#ifndef SQLITE_OMIT_SUBQUERY +/* +** Generate code that checks the left-most column of index table iCur to see if +** it contains any NULL entries. Cause the register at regHasNull to be set +** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull +** to be set to NULL if iCur contains one or more NULL values. +*/ +static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ + int addr1; + sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); + addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); + sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); + sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); + VdbeComment((v, "first_entry_in(%d)", iCur)); + sqlite3VdbeJumpHere(v, addr1); +} +#endif + + +#ifndef SQLITE_OMIT_SUBQUERY +/* +** The argument is an IN operator with a list (not a subquery) on the +** right-hand side. Return TRUE if that list is constant. +*/ +static int sqlite3InRhsIsConstant(Expr *pIn){ + Expr *pLHS; + int res; + assert( !ExprHasProperty(pIn, EP_xIsSelect) ); + pLHS = pIn->pLeft; + pIn->pLeft = 0; + res = sqlite3ExprIsConstant(pIn); + pIn->pLeft = pLHS; + return res; +} +#endif + +/* +** This function is used by the implementation of the IN (...) operator. +** The pX parameter is the expression on the RHS of the IN operator, which +** might be either a list of expressions or a subquery. +** +** The job of this routine is to find or create a b-tree object that can +** be used either to test for membership in the RHS set or to iterate through +** all members of the RHS set, skipping duplicates. +** +** A cursor is opened on the b-tree object that is the RHS of the IN operator +** and the *piTab parameter is set to the index of that cursor. +** +** The returned value of this function indicates the b-tree type, as follows: +** +** IN_INDEX_ROWID - The cursor was opened on a database table. +** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. +** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. +** IN_INDEX_EPH - The cursor was opened on a specially created and +** populated epheremal table. +** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be +** implemented as a sequence of comparisons. +** +** An existing b-tree might be used if the RHS expression pX is a simple +** subquery such as: +** +** SELECT <column1>, <column2>... FROM <table> +** +** If the RHS of the IN operator is a list or a more complex subquery, then +** an ephemeral table might need to be generated from the RHS and then +** pX->iTable made to point to the ephemeral table instead of an +** existing table. In this case, the creation and initialization of the +** ephmeral table might be put inside of a subroutine, the EP_Subrtn flag +** will be set on pX and the pX->y.sub fields will be set to show where +** the subroutine is coded. +** +** The inFlags parameter must contain, at a minimum, one of the bits +** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains +** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast +** membership test. When the IN_INDEX_LOOP bit is set, the IN index will +** be used to loop over all values of the RHS of the IN operator. +** +** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate +** through the set members) then the b-tree must not contain duplicates. +** An epheremal table will be created unless the selected columns are guaranteed +** to be unique - either because it is an INTEGER PRIMARY KEY or due to +** a UNIQUE constraint or index. +** +** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used +** for fast set membership tests) then an epheremal table must +** be used unless <columns> is a single INTEGER PRIMARY KEY column or an +** index can be found with the specified <columns> as its left-most. +** +** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and +** if the RHS of the IN operator is a list (not a subquery) then this +** routine might decide that creating an ephemeral b-tree for membership +** testing is too expensive and return IN_INDEX_NOOP. In that case, the +** calling routine should implement the IN operator using a sequence +** of Eq or Ne comparison operations. +** +** When the b-tree is being used for membership tests, the calling function +** might need to know whether or not the RHS side of the IN operator +** contains a NULL. If prRhsHasNull is not a NULL pointer and +** if there is any chance that the (...) might contain a NULL value at +** runtime, then a register is allocated and the register number written +** to *prRhsHasNull. If there is no chance that the (...) contains a +** NULL value, then *prRhsHasNull is left unchanged. +** +** If a register is allocated and its location stored in *prRhsHasNull, then +** the value in that register will be NULL if the b-tree contains one or more +** NULL values, and it will be some non-NULL value if the b-tree contains no +** NULL values. +** +** If the aiMap parameter is not NULL, it must point to an array containing +** one element for each column returned by the SELECT statement on the RHS +** of the IN(...) operator. The i'th entry of the array is populated with the +** offset of the index column that matches the i'th column returned by the +** SELECT. For example, if the expression and selected index are: +** +** (?,?,?) IN (SELECT a, b, c FROM t1) +** CREATE INDEX i1 ON t1(b, c, a); +** +** then aiMap[] is populated with {2, 0, 1}. +*/ +#ifndef SQLITE_OMIT_SUBQUERY +int sqlite3FindInIndex( + Parse *pParse, /* Parsing context */ + Expr *pX, /* The IN expression */ + u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ + int *prRhsHasNull, /* Register holding NULL status. See notes */ + int *aiMap, /* Mapping from Index fields to RHS fields */ + int *piTab /* OUT: index to use */ +){ + Select *p; /* SELECT to the right of IN operator */ + int eType = 0; /* Type of RHS table. IN_INDEX_* */ + int iTab; /* Cursor of the RHS table */ + int mustBeUnique; /* True if RHS must be unique */ + Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ + + assert( pX->op==TK_IN ); + mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; + iTab = pParse->nTab++; + + /* If the RHS of this IN(...) operator is a SELECT, and if it matters + ** whether or not the SELECT result contains NULL values, check whether + ** or not NULL is actually possible (it may not be, for example, due + ** to NOT NULL constraints in the schema). If no NULL values are possible, + ** set prRhsHasNull to 0 before continuing. */ + if( prRhsHasNull && ExprUseXSelect(pX) ){ + int i; + ExprList *pEList = pX->x.pSelect->pEList; + for(i=0; i<pEList->nExpr; i++){ + if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; + } + if( i==pEList->nExpr ){ + prRhsHasNull = 0; + } + } + + /* Check to see if an existing table or index can be used to + ** satisfy the query. This is preferable to generating a new + ** ephemeral table. */ + if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ + sqlite3 *db = pParse->db; /* Database connection */ + Table *pTab; /* Table <table>. */ + int iDb; /* Database idx for pTab */ + ExprList *pEList = p->pEList; + int nExpr = pEList->nExpr; + + assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ + assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ + assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ + pTab = p->pSrc->a[0].pTab; + + /* Code an OP_Transaction and OP_TableLock for <table>. */ + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + assert( iDb>=0 && iDb<SQLITE_MAX_DB ); + sqlite3CodeVerifySchema(pParse, iDb); + sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); + + assert(v); /* sqlite3GetVdbe() has always been previously called */ + if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ + /* The "x IN (SELECT rowid FROM table)" case */ + int iAddr = sqlite3VdbeAddOp0(v, OP_Once); + VdbeCoverage(v); + + sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); + eType = IN_INDEX_ROWID; + ExplainQueryPlan((pParse, 0, + "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); + sqlite3VdbeJumpHere(v, iAddr); + }else{ + Index *pIdx; /* Iterator variable */ + int affinity_ok = 1; + int i; + + /* Check that the affinity that will be used to perform each + ** comparison is the same as the affinity of each column in table + ** on the RHS of the IN operator. If it not, it is not possible to + ** use any index of the RHS table. */ + for(i=0; i<nExpr && affinity_ok; i++){ + Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); + int iCol = pEList->a[i].pExpr->iColumn; + char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ + char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); + testcase( cmpaff==SQLITE_AFF_BLOB ); + testcase( cmpaff==SQLITE_AFF_TEXT ); + switch( cmpaff ){ + case SQLITE_AFF_BLOB: + break; + case SQLITE_AFF_TEXT: + /* sqlite3CompareAffinity() only returns TEXT if one side or the + ** other has no affinity and the other side is TEXT. Hence, + ** the only way for cmpaff to be TEXT is for idxaff to be TEXT + ** and for the term on the LHS of the IN to have no affinity. */ + assert( idxaff==SQLITE_AFF_TEXT ); + break; + default: + affinity_ok = sqlite3IsNumericAffinity(idxaff); + } + } + + if( affinity_ok ){ + /* Search for an existing index that will work for this IN operator */ + for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ + Bitmask colUsed; /* Columns of the index used */ + Bitmask mCol; /* Mask for the current column */ + if( pIdx->nColumn<nExpr ) continue; + if( pIdx->pPartIdxWhere!=0 ) continue; + /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute + ** BITMASK(nExpr) without overflowing */ + testcase( pIdx->nColumn==BMS-2 ); + testcase( pIdx->nColumn==BMS-1 ); + if( pIdx->nColumn>=BMS-1 ) continue; + if( mustBeUnique ){ + if( pIdx->nKeyCol>nExpr + ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) + ){ + continue; /* This index is not unique over the IN RHS columns */ + } + } + + colUsed = 0; /* Columns of index used so far */ + for(i=0; i<nExpr; i++){ + Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); + Expr *pRhs = pEList->a[i].pExpr; + CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); + int j; + + assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); + for(j=0; j<nExpr; j++){ + if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; + assert( pIdx->azColl[j] ); + if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ + continue; + } + break; + } + if( j==nExpr ) break; + mCol = MASKBIT(j); + if( mCol & colUsed ) break; /* Each column used only once */ + colUsed |= mCol; + if( aiMap ) aiMap[i] = j; + } + + assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); + if( colUsed==(MASKBIT(nExpr)-1) ){ + /* If we reach this point, that means the index pIdx is usable */ + int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); + ExplainQueryPlan((pParse, 0, + "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); + sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); + sqlite3VdbeSetP4KeyInfo(pParse, pIdx); + VdbeComment((v, "%s", pIdx->zName)); + assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); + eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; + + if( prRhsHasNull ){ +#ifdef SQLITE_ENABLE_COLUMN_USED_MASK + i64 mask = (1<<nExpr)-1; + sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, + iTab, 0, 0, (u8*)&mask, P4_INT64); +#endif + *prRhsHasNull = ++pParse->nMem; + if( nExpr==1 ){ + sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); + } + } + sqlite3VdbeJumpHere(v, iAddr); + } + } /* End loop over indexes */ + } /* End if( affinity_ok ) */ + } /* End if not an rowid index */ + } /* End attempt to optimize using an index */ + + /* If no preexisting index is available for the IN clause + ** and IN_INDEX_NOOP is an allowed reply + ** and the RHS of the IN operator is a list, not a subquery + ** and the RHS is not constant or has two or fewer terms, + ** then it is not worth creating an ephemeral table to evaluate + ** the IN operator so return IN_INDEX_NOOP. + */ + if( eType==0 + && (inFlags & IN_INDEX_NOOP_OK) + && ExprUseXList(pX) + && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) + ){ + pParse->nTab--; /* Back out the allocation of the unused cursor */ + iTab = -1; /* Cursor is not allocated */ + eType = IN_INDEX_NOOP; + } + + if( eType==0 ){ + /* Could not find an existing table or index to use as the RHS b-tree. + ** We will have to generate an ephemeral table to do the job. + */ + u32 savedNQueryLoop = pParse->nQueryLoop; + int rMayHaveNull = 0; + eType = IN_INDEX_EPH; + if( inFlags & IN_INDEX_LOOP ){ + pParse->nQueryLoop = 0; + }else if( prRhsHasNull ){ + *prRhsHasNull = rMayHaveNull = ++pParse->nMem; + } + assert( pX->op==TK_IN ); + sqlite3CodeRhsOfIN(pParse, pX, iTab); + if( rMayHaveNull ){ + sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); + } + pParse->nQueryLoop = savedNQueryLoop; + } + + if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ + int i, n; + n = sqlite3ExprVectorSize(pX->pLeft); + for(i=0; i<n; i++) aiMap[i] = i; + } + *piTab = iTab; + return eType; +} +#endif + +#ifndef SQLITE_OMIT_SUBQUERY +/* +** Argument pExpr is an (?, ?...) IN(...) expression. This +** function allocates and returns a nul-terminated string containing +** the affinities to be used for each column of the comparison. +** +** It is the responsibility of the caller to ensure that the returned +** string is eventually freed using sqlite3DbFree(). +*/ +static char *exprINAffinity(Parse *pParse, const Expr *pExpr){ + Expr *pLeft = pExpr->pLeft; + int nVal = sqlite3ExprVectorSize(pLeft); + Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0; + char *zRet; + + assert( pExpr->op==TK_IN ); + zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); + if( zRet ){ + int i; + for(i=0; i<nVal; i++){ + Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); + char a = sqlite3ExprAffinity(pA); + if( pSelect ){ + zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); + }else{ + zRet[i] = a; + } + } + zRet[nVal] = '\0'; + } + return zRet; +} +#endif + +#ifndef SQLITE_OMIT_SUBQUERY +/* +** Load the Parse object passed as the first argument with an error +** message of the form: +** +** "sub-select returns N columns - expected M" +*/ +void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ + if( pParse->nErr==0 ){ + const char *zFmt = "sub-select returns %d columns - expected %d"; + sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); + } +} +#endif + +/* +** Expression pExpr is a vector that has been used in a context where +** it is not permitted. If pExpr is a sub-select vector, this routine +** loads the Parse object with a message of the form: +** +** "sub-select returns N columns - expected 1" +** +** Or, if it is a regular scalar vector: +** +** "row value misused" +*/ +void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ +#ifndef SQLITE_OMIT_SUBQUERY + if( ExprUseXSelect(pExpr) ){ + sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); + }else +#endif + { + sqlite3ErrorMsg(pParse, "row value misused"); + } +} + +#ifndef SQLITE_OMIT_SUBQUERY +/* +** Generate code that will construct an ephemeral table containing all terms +** in the RHS of an IN operator. The IN operator can be in either of two +** forms: +** +** x IN (4,5,11) -- IN operator with list on right-hand side +** x IN (SELECT a FROM b) -- IN operator with subquery on the right +** +** The pExpr parameter is the IN operator. The cursor number for the +** constructed ephermeral table is returned. The first time the ephemeral +** table is computed, the cursor number is also stored in pExpr->iTable, +** however the cursor number returned might not be the same, as it might +** have been duplicated using OP_OpenDup. +** +** If the LHS expression ("x" in the examples) is a column value, or +** the SELECT statement returns a column value, then the affinity of that +** column is used to build the index keys. If both 'x' and the +** SELECT... statement are columns, then numeric affinity is used +** if either column has NUMERIC or INTEGER affinity. If neither +** 'x' nor the SELECT... statement are columns, then numeric affinity +** is used. +*/ +void sqlite3CodeRhsOfIN( + Parse *pParse, /* Parsing context */ + Expr *pExpr, /* The IN operator */ + int iTab /* Use this cursor number */ +){ + int addrOnce = 0; /* Address of the OP_Once instruction at top */ + int addr; /* Address of OP_OpenEphemeral instruction */ + Expr *pLeft; /* the LHS of the IN operator */ + KeyInfo *pKeyInfo = 0; /* Key information */ + int nVal; /* Size of vector pLeft */ + Vdbe *v; /* The prepared statement under construction */ + + v = pParse->pVdbe; + assert( v!=0 ); + + /* The evaluation of the IN must be repeated every time it + ** is encountered if any of the following is true: + ** + ** * The right-hand side is a correlated subquery + ** * The right-hand side is an expression list containing variables + ** * We are inside a trigger + ** + ** If all of the above are false, then we can compute the RHS just once + ** and reuse it many names. + */ + if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ + /* Reuse of the RHS is allowed */ + /* If this routine has already been coded, but the previous code + ** might not have been invoked yet, so invoke it now as a subroutine. + */ + if( ExprHasProperty(pExpr, EP_Subrtn) ){ + addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); + if( ExprUseXSelect(pExpr) ){ + ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", + pExpr->x.pSelect->selId)); + } + assert( ExprUseYSub(pExpr) ); + sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, + pExpr->y.sub.iAddr); + assert( iTab!=pExpr->iTable ); + sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); + sqlite3VdbeJumpHere(v, addrOnce); + return; + } + + /* Begin coding the subroutine */ + assert( !ExprUseYWin(pExpr) ); + ExprSetProperty(pExpr, EP_Subrtn); + assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); + pExpr->y.sub.regReturn = ++pParse->nMem; + pExpr->y.sub.iAddr = + sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; + + addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); + } + + /* Check to see if this is a vector IN operator */ + pLeft = pExpr->pLeft; + nVal = sqlite3ExprVectorSize(pLeft); + + /* Construct the ephemeral table that will contain the content of + ** RHS of the IN operator. + */ + pExpr->iTable = iTab; + addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS + if( ExprUseXSelect(pExpr) ){ + VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); + }else{ + VdbeComment((v, "RHS of IN operator")); + } +#endif + pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); + + if( ExprUseXSelect(pExpr) ){ + /* Case 1: expr IN (SELECT ...) + ** + ** Generate code to write the results of the select into the temporary + ** table allocated and opened above. + */ + Select *pSelect = pExpr->x.pSelect; + ExprList *pEList = pSelect->pEList; + + ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", + addrOnce?"":"CORRELATED ", pSelect->selId + )); + /* If the LHS and RHS of the IN operator do not match, that + ** error will have been caught long before we reach this point. */ + if( ALWAYS(pEList->nExpr==nVal) ){ + Select *pCopy; + SelectDest dest; + int i; + int rc; + sqlite3SelectDestInit(&dest, SRT_Set, iTab); + dest.zAffSdst = exprINAffinity(pParse, pExpr); + pSelect->iLimit = 0; + testcase( pSelect->selFlags & SF_Distinct ); + testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ + pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); + rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); + sqlite3SelectDelete(pParse->db, pCopy); + sqlite3DbFree(pParse->db, dest.zAffSdst); + if( rc ){ + sqlite3KeyInfoUnref(pKeyInfo); + return; + } + assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ + assert( pEList!=0 ); + assert( pEList->nExpr>0 ); + assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); + for(i=0; i<nVal; i++){ + Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); + pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( + pParse, p, pEList->a[i].pExpr + ); + } + } + }else if( ALWAYS(pExpr->x.pList!=0) ){ + /* Case 2: expr IN (exprlist) + ** + ** For each expression, build an index key from the evaluation and + ** store it in the temporary table. If <expr> is a column, then use + ** that columns affinity when building index keys. If <expr> is not + ** a column, use numeric affinity. + */ + char affinity; /* Affinity of the LHS of the IN */ + int i; + ExprList *pList = pExpr->x.pList; + struct ExprList_item *pItem; + int r1, r2; + affinity = sqlite3ExprAffinity(pLeft); + if( affinity<=SQLITE_AFF_NONE ){ + affinity = SQLITE_AFF_BLOB; + }else if( affinity==SQLITE_AFF_REAL ){ + affinity = SQLITE_AFF_NUMERIC; + } + if( pKeyInfo ){ + assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); + pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); + } + + /* Loop through each expression in <exprlist>. */ + r1 = sqlite3GetTempReg(pParse); + r2 = sqlite3GetTempReg(pParse); + for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ + Expr *pE2 = pItem->pExpr; + + /* If the expression is not constant then we will need to + ** disable the test that was generated above that makes sure + ** this code only executes once. Because for a non-constant + ** expression we need to rerun this code each time. + */ + if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ + sqlite3VdbeChangeToNoop(v, addrOnce-1); + sqlite3VdbeChangeToNoop(v, addrOnce); + ExprClearProperty(pExpr, EP_Subrtn); + addrOnce = 0; + } + + /* Evaluate the expression and insert it into the temp table */ + sqlite3ExprCode(pParse, pE2, r1); + sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); + sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); + } + sqlite3ReleaseTempReg(pParse, r1); + sqlite3ReleaseTempReg(pParse, r2); + } + if( pKeyInfo ){ + sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); + } + if( addrOnce ){ + sqlite3VdbeAddOp1(v, OP_NullRow, iTab); + sqlite3VdbeJumpHere(v, addrOnce); + /* Subroutine return */ + assert( ExprUseYSub(pExpr) ); + assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn + || pParse->nErr ); + sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, + pExpr->y.sub.iAddr, 1); + VdbeCoverage(v); + sqlite3ClearTempRegCache(pParse); + } +} +#endif /* SQLITE_OMIT_SUBQUERY */ + +/* +** Generate code for scalar subqueries used as a subquery expression +** or EXISTS operator: +** +** (SELECT a FROM b) -- subquery +** EXISTS (SELECT a FROM b) -- EXISTS subquery +** +** The pExpr parameter is the SELECT or EXISTS operator to be coded. +** +** Return the register that holds the result. For a multi-column SELECT, +** the result is stored in a contiguous array of registers and the +** return value is the register of the left-most result column. +** Return 0 if an error occurs. +*/ +#ifndef SQLITE_OMIT_SUBQUERY +int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ + int addrOnce = 0; /* Address of OP_Once at top of subroutine */ + int rReg = 0; /* Register storing resulting */ + Select *pSel; /* SELECT statement to encode */ + SelectDest dest; /* How to deal with SELECT result */ + int nReg; /* Registers to allocate */ + Expr *pLimit; /* New limit expression */ + + Vdbe *v = pParse->pVdbe; + assert( v!=0 ); + if( pParse->nErr ) return 0; + testcase( pExpr->op==TK_EXISTS ); + testcase( pExpr->op==TK_SELECT ); + assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); + assert( ExprUseXSelect(pExpr) ); + pSel = pExpr->x.pSelect; + + /* If this routine has already been coded, then invoke it as a + ** subroutine. */ + if( ExprHasProperty(pExpr, EP_Subrtn) ){ + ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); + assert( ExprUseYSub(pExpr) ); + sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, + pExpr->y.sub.iAddr); + return pExpr->iTable; + } + + /* Begin coding the subroutine */ + assert( !ExprUseYWin(pExpr) ); + assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) ); + ExprSetProperty(pExpr, EP_Subrtn); + pExpr->y.sub.regReturn = ++pParse->nMem; + pExpr->y.sub.iAddr = + sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; + + /* The evaluation of the EXISTS/SELECT must be repeated every time it + ** is encountered if any of the following is true: + ** + ** * The right-hand side is a correlated subquery + ** * The right-hand side is an expression list containing variables + ** * We are inside a trigger + ** + ** If all of the above are false, then we can run this code just once + ** save the results, and reuse the same result on subsequent invocations. + */ + if( !ExprHasProperty(pExpr, EP_VarSelect) ){ + addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); + } + + /* For a SELECT, generate code to put the values for all columns of + ** the first row into an array of registers and return the index of + ** the first register. + ** + ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) + ** into a register and return that register number. + ** + ** In both cases, the query is augmented with "LIMIT 1". Any + ** preexisting limit is discarded in place of the new LIMIT 1. + */ + ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", + addrOnce?"":"CORRELATED ", pSel->selId)); + nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; + sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); + pParse->nMem += nReg; + if( pExpr->op==TK_SELECT ){ + dest.eDest = SRT_Mem; + dest.iSdst = dest.iSDParm; + dest.nSdst = nReg; + sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); + VdbeComment((v, "Init subquery result")); + }else{ + dest.eDest = SRT_Exists; + sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); + VdbeComment((v, "Init EXISTS result")); + } + if( pSel->pLimit ){ + /* The subquery already has a limit. If the pre-existing limit is X + ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ + sqlite3 *db = pParse->db; + pLimit = sqlite3Expr(db, TK_INTEGER, "0"); + if( pLimit ){ + pLimit->affExpr = SQLITE_AFF_NUMERIC; + pLimit = sqlite3PExpr(pParse, TK_NE, + sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); + } + sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft); + pSel->pLimit->pLeft = pLimit; + }else{ + /* If there is no pre-existing limit add a limit of 1 */ + pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); + pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); + } + pSel->iLimit = 0; + if( sqlite3Select(pParse, pSel, &dest) ){ + pExpr->op2 = pExpr->op; + pExpr->op = TK_ERROR; + return 0; + } + pExpr->iTable = rReg = dest.iSDParm; + ExprSetVVAProperty(pExpr, EP_NoReduce); + if( addrOnce ){ + sqlite3VdbeJumpHere(v, addrOnce); + } + + /* Subroutine return */ + assert( ExprUseYSub(pExpr) ); + assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn + || pParse->nErr ); + sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, + pExpr->y.sub.iAddr, 1); + VdbeCoverage(v); + sqlite3ClearTempRegCache(pParse); + return rReg; +} +#endif /* SQLITE_OMIT_SUBQUERY */ + +#ifndef SQLITE_OMIT_SUBQUERY +/* +** Expr pIn is an IN(...) expression. This function checks that the +** sub-select on the RHS of the IN() operator has the same number of +** columns as the vector on the LHS. Or, if the RHS of the IN() is not +** a sub-query, that the LHS is a vector of size 1. +*/ +int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ + int nVector = sqlite3ExprVectorSize(pIn->pLeft); + if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){ + if( nVector!=pIn->x.pSelect->pEList->nExpr ){ + sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); + return 1; + } + }else if( nVector!=1 ){ + sqlite3VectorErrorMsg(pParse, pIn->pLeft); + return 1; + } + return 0; +} +#endif + +#ifndef SQLITE_OMIT_SUBQUERY +/* +** Generate code for an IN expression. +** +** x IN (SELECT ...) +** x IN (value, value, ...) +** +** The left-hand side (LHS) is a scalar or vector expression. The +** right-hand side (RHS) is an array of zero or more scalar values, or a +** subquery. If the RHS is a subquery, the number of result columns must +** match the number of columns in the vector on the LHS. If the RHS is +** a list of values, the LHS must be a scalar. +** +** The IN operator is true if the LHS value is contained within the RHS. +** The result is false if the LHS is definitely not in the RHS. The +** result is NULL if the presence of the LHS in the RHS cannot be +** determined due to NULLs. +** +** This routine generates code that jumps to destIfFalse if the LHS is not +** contained within the RHS. If due to NULLs we cannot determine if the LHS +** is contained in the RHS then jump to destIfNull. If the LHS is contained +** within the RHS then fall through. +** +** See the separate in-operator.md documentation file in the canonical +** SQLite source tree for additional information. +*/ +static void sqlite3ExprCodeIN( + Parse *pParse, /* Parsing and code generating context */ + Expr *pExpr, /* The IN expression */ + int destIfFalse, /* Jump here if LHS is not contained in the RHS */ + int destIfNull /* Jump here if the results are unknown due to NULLs */ +){ + int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ + int eType; /* Type of the RHS */ + int rLhs; /* Register(s) holding the LHS values */ + int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ + Vdbe *v; /* Statement under construction */ + int *aiMap = 0; /* Map from vector field to index column */ + char *zAff = 0; /* Affinity string for comparisons */ + int nVector; /* Size of vectors for this IN operator */ + int iDummy; /* Dummy parameter to exprCodeVector() */ + Expr *pLeft; /* The LHS of the IN operator */ + int i; /* loop counter */ + int destStep2; /* Where to jump when NULLs seen in step 2 */ + int destStep6 = 0; /* Start of code for Step 6 */ + int addrTruthOp; /* Address of opcode that determines the IN is true */ + int destNotNull; /* Jump here if a comparison is not true in step 6 */ + int addrTop; /* Top of the step-6 loop */ + int iTab = 0; /* Index to use */ + u8 okConstFactor = pParse->okConstFactor; + + assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); + pLeft = pExpr->pLeft; + if( sqlite3ExprCheckIN(pParse, pExpr) ) return; + zAff = exprINAffinity(pParse, pExpr); + nVector = sqlite3ExprVectorSize(pExpr->pLeft); + aiMap = (int*)sqlite3DbMallocZero( + pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 + ); + if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; + + /* Attempt to compute the RHS. After this step, if anything other than + ** IN_INDEX_NOOP is returned, the table opened with cursor iTab + ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, + ** the RHS has not yet been coded. */ + v = pParse->pVdbe; + assert( v!=0 ); /* OOM detected prior to this routine */ + VdbeNoopComment((v, "begin IN expr")); + eType = sqlite3FindInIndex(pParse, pExpr, + IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, + destIfFalse==destIfNull ? 0 : &rRhsHasNull, + aiMap, &iTab); + + assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH + || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC + ); +#ifdef SQLITE_DEBUG + /* Confirm that aiMap[] contains nVector integer values between 0 and + ** nVector-1. */ + for(i=0; i<nVector; i++){ + int j, cnt; + for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; + assert( cnt==1 ); + } +#endif + + /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a + ** vector, then it is stored in an array of nVector registers starting + ** at r1. + ** + ** sqlite3FindInIndex() might have reordered the fields of the LHS vector + ** so that the fields are in the same order as an existing index. The + ** aiMap[] array contains a mapping from the original LHS field order to + ** the field order that matches the RHS index. + ** + ** Avoid factoring the LHS of the IN(...) expression out of the loop, + ** even if it is constant, as OP_Affinity may be used on the register + ** by code generated below. */ + assert( pParse->okConstFactor==okConstFactor ); + pParse->okConstFactor = 0; + rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); + pParse->okConstFactor = okConstFactor; + for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ + if( i==nVector ){ + /* LHS fields are not reordered */ + rLhs = rLhsOrig; + }else{ + /* Need to reorder the LHS fields according to aiMap */ + rLhs = sqlite3GetTempRange(pParse, nVector); + for(i=0; i<nVector; i++){ + sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); + } + } + + /* If sqlite3FindInIndex() did not find or create an index that is + ** suitable for evaluating the IN operator, then evaluate using a + ** sequence of comparisons. + ** + ** This is step (1) in the in-operator.md optimized algorithm. + */ + if( eType==IN_INDEX_NOOP ){ + ExprList *pList; + CollSeq *pColl; + int labelOk = sqlite3VdbeMakeLabel(pParse); + int r2, regToFree; + int regCkNull = 0; + int ii; + assert( ExprUseXList(pExpr) ); + pList = pExpr->x.pList; + pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); + if( destIfNull!=destIfFalse ){ + regCkNull = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); + } + for(ii=0; ii<pList->nExpr; ii++){ + r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); + if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ + sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); + } + sqlite3ReleaseTempReg(pParse, regToFree); + if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ + int op = rLhs!=r2 ? OP_Eq : OP_NotNull; + sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, + (void*)pColl, P4_COLLSEQ); + VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); + VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); + VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); + VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); + sqlite3VdbeChangeP5(v, zAff[0]); + }else{ + int op = rLhs!=r2 ? OP_Ne : OP_IsNull; + assert( destIfNull==destIfFalse ); + sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, + (void*)pColl, P4_COLLSEQ); + VdbeCoverageIf(v, op==OP_Ne); + VdbeCoverageIf(v, op==OP_IsNull); + sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); + } + } + if( regCkNull ){ + sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); + sqlite3VdbeGoto(v, destIfFalse); + } + sqlite3VdbeResolveLabel(v, labelOk); + sqlite3ReleaseTempReg(pParse, regCkNull); + goto sqlite3ExprCodeIN_finished; + } + + /* Step 2: Check to see if the LHS contains any NULL columns. If the + ** LHS does contain NULLs then the result must be either FALSE or NULL. + ** We will then skip the binary search of the RHS. + */ + if( destIfNull==destIfFalse ){ + destStep2 = destIfFalse; + }else{ + destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); + } + for(i=0; i<nVector; i++){ + Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); + if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error; + if( sqlite3ExprCanBeNull(p) ){ + sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); + VdbeCoverage(v); + } + } + + /* Step 3. The LHS is now known to be non-NULL. Do the binary search + ** of the RHS using the LHS as a probe. If found, the result is + ** true. + */ + if( eType==IN_INDEX_ROWID ){ + /* In this case, the RHS is the ROWID of table b-tree and so we also + ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 + ** into a single opcode. */ + sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); + VdbeCoverage(v); + addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ + }else{ + sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); + if( destIfFalse==destIfNull ){ + /* Combine Step 3 and Step 5 into a single opcode */ + sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, + rLhs, nVector); VdbeCoverage(v); + goto sqlite3ExprCodeIN_finished; + } + /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ + addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, + rLhs, nVector); VdbeCoverage(v); + } + + /* Step 4. If the RHS is known to be non-NULL and we did not find + ** an match on the search above, then the result must be FALSE. + */ + if( rRhsHasNull && nVector==1 ){ + sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); + VdbeCoverage(v); + } + + /* Step 5. If we do not care about the difference between NULL and + ** FALSE, then just return false. + */ + if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); + + /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. + ** If any comparison is NULL, then the result is NULL. If all + ** comparisons are FALSE then the final result is FALSE. + ** + ** For a scalar LHS, it is sufficient to check just the first row + ** of the RHS. + */ + if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); + addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); + VdbeCoverage(v); + if( nVector>1 ){ + destNotNull = sqlite3VdbeMakeLabel(pParse); + }else{ + /* For nVector==1, combine steps 6 and 7 by immediately returning + ** FALSE if the first comparison is not NULL */ + destNotNull = destIfFalse; + } + for(i=0; i<nVector; i++){ + Expr *p; + CollSeq *pColl; + int r3 = sqlite3GetTempReg(pParse); + p = sqlite3VectorFieldSubexpr(pLeft, i); + pColl = sqlite3ExprCollSeq(pParse, p); + sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); + sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, + (void*)pColl, P4_COLLSEQ); + VdbeCoverage(v); + sqlite3ReleaseTempReg(pParse, r3); + } + sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); + if( nVector>1 ){ + sqlite3VdbeResolveLabel(v, destNotNull); + sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); + VdbeCoverage(v); + + /* Step 7: If we reach this point, we know that the result must + ** be false. */ + sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); + } + + /* Jumps here in order to return true. */ + sqlite3VdbeJumpHere(v, addrTruthOp); + +sqlite3ExprCodeIN_finished: + if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); + VdbeComment((v, "end IN expr")); +sqlite3ExprCodeIN_oom_error: + sqlite3DbFree(pParse->db, aiMap); + sqlite3DbFree(pParse->db, zAff); +} +#endif /* SQLITE_OMIT_SUBQUERY */ + +#ifndef SQLITE_OMIT_FLOATING_POINT +/* +** Generate an instruction that will put the floating point +** value described by z[0..n-1] into register iMem. +** +** The z[] string will probably not be zero-terminated. But the +** z[n] character is guaranteed to be something that does not look +** like the continuation of the number. +*/ +static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ + if( ALWAYS(z!=0) ){ + double value; + sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); + assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ + if( negateFlag ) value = -value; + sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); + } +} +#endif + + +/* +** Generate an instruction that will put the integer describe by +** text z[0..n-1] into register iMem. +** +** Expr.u.zToken is always UTF8 and zero-terminated. +*/ +static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ + Vdbe *v = pParse->pVdbe; + if( pExpr->flags & EP_IntValue ){ + int i = pExpr->u.iValue; + assert( i>=0 ); + if( negFlag ) i = -i; + sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); + }else{ + int c; + i64 value; + const char *z = pExpr->u.zToken; + assert( z!=0 ); + c = sqlite3DecOrHexToI64(z, &value); + if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ +#ifdef SQLITE_OMIT_FLOATING_POINT + sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr); +#else +#ifndef SQLITE_OMIT_HEX_INTEGER + if( sqlite3_strnicmp(z,"0x",2)==0 ){ + sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T", + negFlag?"-":"",pExpr); + }else +#endif + { + codeReal(v, z, negFlag, iMem); + } +#endif + }else{ + if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } + sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); + } + } +} + + +/* Generate code that will load into register regOut a value that is +** appropriate for the iIdxCol-th column of index pIdx. +*/ +void sqlite3ExprCodeLoadIndexColumn( + Parse *pParse, /* The parsing context */ + Index *pIdx, /* The index whose column is to be loaded */ + int iTabCur, /* Cursor pointing to a table row */ + int iIdxCol, /* The column of the index to be loaded */ + int regOut /* Store the index column value in this register */ +){ + i16 iTabCol = pIdx->aiColumn[iIdxCol]; + if( iTabCol==XN_EXPR ){ + assert( pIdx->aColExpr ); + assert( pIdx->aColExpr->nExpr>iIdxCol ); + pParse->iSelfTab = iTabCur + 1; + sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); + pParse->iSelfTab = 0; + }else{ + sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, + iTabCol, regOut); + } +} + +#ifndef SQLITE_OMIT_GENERATED_COLUMNS +/* +** Generate code that will compute the value of generated column pCol +** and store the result in register regOut +*/ +void sqlite3ExprCodeGeneratedColumn( + Parse *pParse, /* Parsing context */ + Table *pTab, /* Table containing the generated column */ + Column *pCol, /* The generated column */ + int regOut /* Put the result in this register */ +){ + int iAddr; + Vdbe *v = pParse->pVdbe; + assert( v!=0 ); + assert( pParse->iSelfTab!=0 ); + if( pParse->iSelfTab>0 ){ + iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); + }else{ + iAddr = 0; + } + sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); + if( pCol->affinity>=SQLITE_AFF_TEXT ){ + sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); + } + if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); +} +#endif /* SQLITE_OMIT_GENERATED_COLUMNS */ + +/* +** Generate code to extract the value of the iCol-th column of a table. +*/ +void sqlite3ExprCodeGetColumnOfTable( + Vdbe *v, /* Parsing context */ + Table *pTab, /* The table containing the value */ + int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ + int iCol, /* Index of the column to extract */ + int regOut /* Extract the value into this register */ +){ + Column *pCol; + assert( v!=0 ); + assert( pTab!=0 ); + if( iCol<0 || iCol==pTab->iPKey ){ + sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); + VdbeComment((v, "%s.rowid", pTab->zName)); + }else{ + int op; + int x; + if( IsVirtual(pTab) ){ + op = OP_VColumn; + x = iCol; +#ifndef SQLITE_OMIT_GENERATED_COLUMNS + }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ + Parse *pParse = sqlite3VdbeParser(v); + if( pCol->colFlags & COLFLAG_BUSY ){ + sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", + pCol->zCnName); + }else{ + int savedSelfTab = pParse->iSelfTab; + pCol->colFlags |= COLFLAG_BUSY; + pParse->iSelfTab = iTabCur+1; + sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); + pParse->iSelfTab = savedSelfTab; + pCol->colFlags &= ~COLFLAG_BUSY; + } + return; +#endif + }else if( !HasRowid(pTab) ){ + testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); + x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); + op = OP_Column; + }else{ + x = sqlite3TableColumnToStorage(pTab,iCol); + testcase( x!=iCol ); + op = OP_Column; + } + sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); + sqlite3ColumnDefault(v, pTab, iCol, regOut); + } +} + +/* +** Generate code that will extract the iColumn-th column from +** table pTab and store the column value in register iReg. +** +** There must be an open cursor to pTab in iTable when this routine +** is called. If iColumn<0 then code is generated that extracts the rowid. +*/ +int sqlite3ExprCodeGetColumn( + Parse *pParse, /* Parsing and code generating context */ + Table *pTab, /* Description of the table we are reading from */ + int iColumn, /* Index of the table column */ + int iTable, /* The cursor pointing to the table */ + int iReg, /* Store results here */ + u8 p5 /* P5 value for OP_Column + FLAGS */ +){ + assert( pParse->pVdbe!=0 ); + sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); + if( p5 ){ + VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); + if( pOp->opcode==OP_Column ) pOp->p5 = p5; + } + return iReg; +} + +/* +** Generate code to move content from registers iFrom...iFrom+nReg-1 +** over to iTo..iTo+nReg-1. +*/ +void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ + sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); +} + +/* +** Convert a scalar expression node to a TK_REGISTER referencing +** register iReg. The caller must ensure that iReg already contains +** the correct value for the expression. +*/ +static void exprToRegister(Expr *pExpr, int iReg){ + Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); + if( NEVER(p==0) ) return; + p->op2 = p->op; + p->op = TK_REGISTER; + p->iTable = iReg; + ExprClearProperty(p, EP_Skip); +} + +/* +** Evaluate an expression (either a vector or a scalar expression) and store +** the result in continguous temporary registers. Return the index of +** the first register used to store the result. +** +** If the returned result register is a temporary scalar, then also write +** that register number into *piFreeable. If the returned result register +** is not a temporary or if the expression is a vector set *piFreeable +** to 0. +*/ +static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ + int iResult; + int nResult = sqlite3ExprVectorSize(p); + if( nResult==1 ){ + iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); + }else{ + *piFreeable = 0; + if( p->op==TK_SELECT ){ +#if SQLITE_OMIT_SUBQUERY + iResult = 0; +#else + iResult = sqlite3CodeSubselect(pParse, p); +#endif + }else{ + int i; + iResult = pParse->nMem+1; + pParse->nMem += nResult; + assert( ExprUseXList(p) ); + for(i=0; i<nResult; i++){ + sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); + } + } + } + return iResult; +} + +/* +** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) +** so that a subsequent copy will not be merged into this one. +*/ +static void setDoNotMergeFlagOnCopy(Vdbe *v){ + if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){ + sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ + } +} + +/* +** Generate code to implement special SQL functions that are implemented +** in-line rather than by using the usual callbacks. +*/ +static int exprCodeInlineFunction( + Parse *pParse, /* Parsing context */ + ExprList *pFarg, /* List of function arguments */ + int iFuncId, /* Function ID. One of the INTFUNC_... values */ + int target /* Store function result in this register */ +){ + int nFarg; + Vdbe *v = pParse->pVdbe; + assert( v!=0 ); + assert( pFarg!=0 ); + nFarg = pFarg->nExpr; + assert( nFarg>0 ); /* All in-line functions have at least one argument */ + switch( iFuncId ){ + case INLINEFUNC_coalesce: { + /* Attempt a direct implementation of the built-in COALESCE() and + ** IFNULL() functions. This avoids unnecessary evaluation of + ** arguments past the first non-NULL argument. + */ + int endCoalesce = sqlite3VdbeMakeLabel(pParse); + int i; + assert( nFarg>=2 ); + sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); + for(i=1; i<nFarg; i++){ + sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); + VdbeCoverage(v); + sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); + } + setDoNotMergeFlagOnCopy(v); + sqlite3VdbeResolveLabel(v, endCoalesce); + break; + } + case INLINEFUNC_iif: { + Expr caseExpr; + memset(&caseExpr, 0, sizeof(caseExpr)); + caseExpr.op = TK_CASE; + caseExpr.x.pList = pFarg; + return sqlite3ExprCodeTarget(pParse, &caseExpr, target); + } +#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC + case INLINEFUNC_sqlite_offset: { + Expr *pArg = pFarg->a[0].pExpr; + if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){ + sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); + }else{ + sqlite3VdbeAddOp2(v, OP_Null, 0, target); + } + break; + } +#endif + default: { + /* The UNLIKELY() function is a no-op. The result is the value + ** of the first argument. + */ + assert( nFarg==1 || nFarg==2 ); + target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); + break; + } + + /*********************************************************************** + ** Test-only SQL functions that are only usable if enabled + ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS + */ +#if !defined(SQLITE_UNTESTABLE) + case INLINEFUNC_expr_compare: { + /* Compare two expressions using sqlite3ExprCompare() */ + assert( nFarg==2 ); + sqlite3VdbeAddOp2(v, OP_Integer, + sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), + target); + break; + } + + case INLINEFUNC_expr_implies_expr: { + /* Compare two expressions using sqlite3ExprImpliesExpr() */ + assert( nFarg==2 ); + sqlite3VdbeAddOp2(v, OP_Integer, + sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), + target); + break; + } + + case INLINEFUNC_implies_nonnull_row: { + /* REsult of sqlite3ExprImpliesNonNullRow() */ + Expr *pA1; + assert( nFarg==2 ); + pA1 = pFarg->a[1].pExpr; + if( pA1->op==TK_COLUMN ){ + sqlite3VdbeAddOp2(v, OP_Integer, + sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), + target); + }else{ + sqlite3VdbeAddOp2(v, OP_Null, 0, target); + } + break; + } + + case INLINEFUNC_affinity: { + /* The AFFINITY() function evaluates to a string that describes + ** the type affinity of the argument. This is used for testing of + ** the SQLite type logic. + */ + const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; + char aff; + assert( nFarg==1 ); + aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); + sqlite3VdbeLoadString(v, target, + (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); + break; + } +#endif /* !defined(SQLITE_UNTESTABLE) */ + } + return target; +} + +/* +** Check to see if pExpr is one of the indexed expressions on pParse->pIdxExpr. +** If it is, then resolve the expression by reading from the index and +** return the register into which the value has been read. If pExpr is +** not an indexed expression, then return negative. +*/ +static SQLITE_NOINLINE int sqlite3IndexedExprLookup( + Parse *pParse, /* The parsing context */ + Expr *pExpr, /* The expression to potentially bypass */ + int target /* Where to store the result of the expression */ +){ + IndexedExpr *p; + Vdbe *v; + for(p=pParse->pIdxExpr; p; p=p->pIENext){ + int iDataCur = p->iDataCur; + if( iDataCur<0 ) continue; + if( pParse->iSelfTab ){ + if( p->iDataCur!=pParse->iSelfTab-1 ) continue; + iDataCur = -1; + } + if( sqlite3ExprCompare(0, pExpr, p->pExpr, iDataCur)!=0 ) continue; + v = pParse->pVdbe; + assert( v!=0 ); + if( p->bMaybeNullRow ){ + /* If the index is on a NULL row due to an outer join, then we + ** cannot extract the value from the index. The value must be + ** computed using the original expression. */ + int addr = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp3(v, OP_IfNullRow, p->iIdxCur, addr+3, target); + VdbeCoverage(v); + sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target); + VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol)); + sqlite3VdbeGoto(v, 0); + p = pParse->pIdxExpr; + pParse->pIdxExpr = 0; + sqlite3ExprCode(pParse, pExpr, target); + pParse->pIdxExpr = p; + sqlite3VdbeJumpHere(v, addr+2); + }else{ + sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target); + VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol)); + } + return target; + } + return -1; /* Not found */ +} + + +/* +** Generate code into the current Vdbe to evaluate the given +** expression. Attempt to store the results in register "target". +** Return the register where results are stored. +** +** With this routine, there is no guarantee that results will +** be stored in target. The result might be stored in some other +** register if it is convenient to do so. The calling function +** must check the return code and move the results to the desired +** register. +*/ +int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ + Vdbe *v = pParse->pVdbe; /* The VM under construction */ + int op; /* The opcode being coded */ + int inReg = target; /* Results stored in register inReg */ + int regFree1 = 0; /* If non-zero free this temporary register */ + int regFree2 = 0; /* If non-zero free this temporary register */ + int r1, r2; /* Various register numbers */ + Expr tempX; /* Temporary expression node */ + int p5 = 0; + + assert( target>0 && target<=pParse->nMem ); + assert( v!=0 ); + +expr_code_doover: + if( pExpr==0 ){ + op = TK_NULL; + }else if( pParse->pIdxExpr!=0 + && !ExprHasProperty(pExpr, EP_Leaf) + && (r1 = sqlite3IndexedExprLookup(pParse, pExpr, target))>=0 + ){ + return r1; + }else{ + assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); + op = pExpr->op; + } + switch( op ){ + case TK_AGG_COLUMN: { + AggInfo *pAggInfo = pExpr->pAggInfo; + struct AggInfo_col *pCol; + assert( pAggInfo!=0 ); + assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); + pCol = &pAggInfo->aCol[pExpr->iAgg]; + if( !pAggInfo->directMode ){ + assert( pCol->iMem>0 ); + return pCol->iMem; + }else if( pAggInfo->useSortingIdx ){ + Table *pTab = pCol->pTab; + sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, + pCol->iSorterColumn, target); + if( pCol->iColumn<0 ){ + VdbeComment((v,"%s.rowid",pTab->zName)); + }else if( ALWAYS(pTab!=0) ){ + VdbeComment((v,"%s.%s", + pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); + if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ + sqlite3VdbeAddOp1(v, OP_RealAffinity, target); + } + } + return target; + } + /* Otherwise, fall thru into the TK_COLUMN case */ + /* no break */ deliberate_fall_through + } + case TK_COLUMN: { + int iTab = pExpr->iTable; + int iReg; + if( ExprHasProperty(pExpr, EP_FixedCol) ){ + /* This COLUMN expression is really a constant due to WHERE clause + ** constraints, and that constant is coded by the pExpr->pLeft + ** expresssion. However, make sure the constant has the correct + ** datatype by applying the Affinity of the table column to the + ** constant. + */ + int aff; + iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); + assert( ExprUseYTab(pExpr) ); + assert( pExpr->y.pTab!=0 ); + aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); + if( aff>SQLITE_AFF_BLOB ){ + static const char zAff[] = "B\000C\000D\000E"; + assert( SQLITE_AFF_BLOB=='A' ); + assert( SQLITE_AFF_TEXT=='B' ); + sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, + &zAff[(aff-'B')*2], P4_STATIC); + } + return iReg; + } + if( iTab<0 ){ + if( pParse->iSelfTab<0 ){ + /* Other columns in the same row for CHECK constraints or + ** generated columns or for inserting into partial index. + ** The row is unpacked into registers beginning at + ** 0-(pParse->iSelfTab). The rowid (if any) is in a register + ** immediately prior to the first column. + */ + Column *pCol; + Table *pTab; + int iSrc; + int iCol = pExpr->iColumn; + assert( ExprUseYTab(pExpr) ); + pTab = pExpr->y.pTab; + assert( pTab!=0 ); + assert( iCol>=XN_ROWID ); + assert( iCol<pTab->nCol ); + if( iCol<0 ){ + return -1-pParse->iSelfTab; + } + pCol = pTab->aCol + iCol; + testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); + iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; +#ifndef SQLITE_OMIT_GENERATED_COLUMNS + if( pCol->colFlags & COLFLAG_GENERATED ){ + if( pCol->colFlags & COLFLAG_BUSY ){ + sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", + pCol->zCnName); + return 0; + } + pCol->colFlags |= COLFLAG_BUSY; + if( pCol->colFlags & COLFLAG_NOTAVAIL ){ + sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); + } + pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); + return iSrc; + }else +#endif /* SQLITE_OMIT_GENERATED_COLUMNS */ + if( pCol->affinity==SQLITE_AFF_REAL ){ + sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); + sqlite3VdbeAddOp1(v, OP_RealAffinity, target); + return target; + }else{ + return iSrc; + } + }else{ + /* Coding an expression that is part of an index where column names + ** in the index refer to the table to which the index belongs */ + iTab = pParse->iSelfTab - 1; + } + } + assert( ExprUseYTab(pExpr) ); + assert( pExpr->y.pTab!=0 ); + iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, + pExpr->iColumn, iTab, target, + pExpr->op2); + return iReg; + } + case TK_INTEGER: { + codeInteger(pParse, pExpr, 0, target); + return target; + } + case TK_TRUEFALSE: { + sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); + return target; + } +#ifndef SQLITE_OMIT_FLOATING_POINT + case TK_FLOAT: { + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + codeReal(v, pExpr->u.zToken, 0, target); + return target; + } +#endif + case TK_STRING: { + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + sqlite3VdbeLoadString(v, target, pExpr->u.zToken); + return target; + } + default: { + /* Make NULL the default case so that if a bug causes an illegal + ** Expr node to be passed into this function, it will be handled + ** sanely and not crash. But keep the assert() to bring the problem + ** to the attention of the developers. */ + assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); + sqlite3VdbeAddOp2(v, OP_Null, 0, target); + return target; + } +#ifndef SQLITE_OMIT_BLOB_LITERAL + case TK_BLOB: { + int n; + const char *z; + char *zBlob; + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); + assert( pExpr->u.zToken[1]=='\'' ); + z = &pExpr->u.zToken[2]; + n = sqlite3Strlen30(z) - 1; + assert( z[n]=='\'' ); + zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); + sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); + return target; + } +#endif + case TK_VARIABLE: { + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + assert( pExpr->u.zToken!=0 ); + assert( pExpr->u.zToken[0]!=0 ); + sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); + if( pExpr->u.zToken[1]!=0 ){ + const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); + assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); + pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ + sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); + } + return target; + } + case TK_REGISTER: { + return pExpr->iTable; + } +#ifndef SQLITE_OMIT_CAST + case TK_CAST: { + /* Expressions of the form: CAST(pLeft AS token) */ + inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); + if( inReg!=target ){ + sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); + inReg = target; + } + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + sqlite3VdbeAddOp2(v, OP_Cast, target, + sqlite3AffinityType(pExpr->u.zToken, 0)); + return inReg; + } +#endif /* SQLITE_OMIT_CAST */ + case TK_IS: + case TK_ISNOT: + op = (op==TK_IS) ? TK_EQ : TK_NE; + p5 = SQLITE_NULLEQ; + /* fall-through */ + case TK_LT: + case TK_LE: + case TK_GT: + case TK_GE: + case TK_NE: + case TK_EQ: { + Expr *pLeft = pExpr->pLeft; + if( sqlite3ExprIsVector(pLeft) ){ + codeVectorCompare(pParse, pExpr, target, op, p5); + }else{ + r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); + sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); + codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, + sqlite3VdbeCurrentAddr(v)+2, p5, + ExprHasProperty(pExpr,EP_Commuted)); + assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); + assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); + assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); + assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); + assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); + assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); + if( p5==SQLITE_NULLEQ ){ + sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); + }else{ + sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); + } + testcase( regFree1==0 ); + testcase( regFree2==0 ); + } + break; + } + case TK_AND: + case TK_OR: + case TK_PLUS: + case TK_STAR: + case TK_MINUS: + case TK_REM: + case TK_BITAND: + case TK_BITOR: + case TK_SLASH: + case TK_LSHIFT: + case TK_RSHIFT: + case TK_CONCAT: { + assert( TK_AND==OP_And ); testcase( op==TK_AND ); + assert( TK_OR==OP_Or ); testcase( op==TK_OR ); + assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); + assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); + assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); + assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); + assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); + assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); + assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); + assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); + assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); + sqlite3VdbeAddOp3(v, op, r2, r1, target); + testcase( regFree1==0 ); + testcase( regFree2==0 ); + break; + } + case TK_UMINUS: { + Expr *pLeft = pExpr->pLeft; + assert( pLeft ); + if( pLeft->op==TK_INTEGER ){ + codeInteger(pParse, pLeft, 1, target); + return target; +#ifndef SQLITE_OMIT_FLOATING_POINT + }else if( pLeft->op==TK_FLOAT ){ + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + codeReal(v, pLeft->u.zToken, 1, target); + return target; +#endif + }else{ + tempX.op = TK_INTEGER; + tempX.flags = EP_IntValue|EP_TokenOnly; + tempX.u.iValue = 0; + ExprClearVVAProperties(&tempX); + r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); + sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); + testcase( regFree2==0 ); + } + break; + } + case TK_BITNOT: + case TK_NOT: { + assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); + assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + testcase( regFree1==0 ); + sqlite3VdbeAddOp2(v, op, r1, inReg); + break; + } + case TK_TRUTH: { + int isTrue; /* IS TRUE or IS NOT TRUE */ + int bNormal; /* IS TRUE or IS FALSE */ + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + testcase( regFree1==0 ); + isTrue = sqlite3ExprTruthValue(pExpr->pRight); + bNormal = pExpr->op2==TK_IS; + testcase( isTrue && bNormal); + testcase( !isTrue && bNormal); + sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); + break; + } + case TK_ISNULL: + case TK_NOTNULL: { + int addr; + assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); + assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); + sqlite3VdbeAddOp2(v, OP_Integer, 1, target); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + testcase( regFree1==0 ); + addr = sqlite3VdbeAddOp1(v, op, r1); + VdbeCoverageIf(v, op==TK_ISNULL); + VdbeCoverageIf(v, op==TK_NOTNULL); + sqlite3VdbeAddOp2(v, OP_Integer, 0, target); + sqlite3VdbeJumpHere(v, addr); + break; + } + case TK_AGG_FUNCTION: { + AggInfo *pInfo = pExpr->pAggInfo; + if( pInfo==0 + || NEVER(pExpr->iAgg<0) + || NEVER(pExpr->iAgg>=pInfo->nFunc) + ){ + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr); + }else{ + return pInfo->aFunc[pExpr->iAgg].iMem; + } + break; + } + case TK_FUNCTION: { + ExprList *pFarg; /* List of function arguments */ + int nFarg; /* Number of function arguments */ + FuncDef *pDef; /* The function definition object */ + const char *zId; /* The function name */ + u32 constMask = 0; /* Mask of function arguments that are constant */ + int i; /* Loop counter */ + sqlite3 *db = pParse->db; /* The database connection */ + u8 enc = ENC(db); /* The text encoding used by this database */ + CollSeq *pColl = 0; /* A collating sequence */ + +#ifndef SQLITE_OMIT_WINDOWFUNC + if( ExprHasProperty(pExpr, EP_WinFunc) ){ + return pExpr->y.pWin->regResult; + } +#endif + + if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ + /* SQL functions can be expensive. So try to avoid running them + ** multiple times if we know they always give the same result */ + return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); + } + assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); + assert( ExprUseXList(pExpr) ); + pFarg = pExpr->x.pList; + nFarg = pFarg ? pFarg->nExpr : 0; + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + zId = pExpr->u.zToken; + pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); +#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION + if( pDef==0 && pParse->explain ){ + pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); + } +#endif + if( pDef==0 || pDef->xFinalize!=0 ){ + sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr); + break; + } + if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ + assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); + assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); + return exprCodeInlineFunction(pParse, pFarg, + SQLITE_PTR_TO_INT(pDef->pUserData), target); + }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ + sqlite3ExprFunctionUsable(pParse, pExpr, pDef); + } + + for(i=0; i<nFarg; i++){ + if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ + testcase( i==31 ); + constMask |= MASKBIT32(i); + } + if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ + pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); + } + } + if( pFarg ){ + if( constMask ){ + r1 = pParse->nMem+1; + pParse->nMem += nFarg; + }else{ + r1 = sqlite3GetTempRange(pParse, nFarg); + } + + /* For length() and typeof() functions with a column argument, + ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG + ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data + ** loading. + */ + if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ + u8 exprOp; + assert( nFarg==1 ); + assert( pFarg->a[0].pExpr!=0 ); + exprOp = pFarg->a[0].pExpr->op; + if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ + assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); + assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); + testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); + pFarg->a[0].pExpr->op2 = + pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); + } + } + + sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, + SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); + }else{ + r1 = 0; + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + /* Possibly overload the function if the first argument is + ** a virtual table column. + ** + ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the + ** second argument, not the first, as the argument to test to + ** see if it is a column in a virtual table. This is done because + ** the left operand of infix functions (the operand we want to + ** control overloading) ends up as the second argument to the + ** function. The expression "A glob B" is equivalent to + ** "glob(B,A). We want to use the A in "A glob B" to test + ** for function overloading. But we use the B term in "glob(B,A)". + */ + if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ + pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); + }else if( nFarg>0 ){ + pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); + } +#endif + if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ + if( !pColl ) pColl = db->pDfltColl; + sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); + } + sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, + pDef, pExpr->op2); + if( nFarg ){ + if( constMask==0 ){ + sqlite3ReleaseTempRange(pParse, r1, nFarg); + }else{ + sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); + } + } + return target; + } +#ifndef SQLITE_OMIT_SUBQUERY + case TK_EXISTS: + case TK_SELECT: { + int nCol; + testcase( op==TK_EXISTS ); + testcase( op==TK_SELECT ); + if( pParse->db->mallocFailed ){ + return 0; + }else if( op==TK_SELECT + && ALWAYS( ExprUseXSelect(pExpr) ) + && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 + ){ + sqlite3SubselectError(pParse, nCol, 1); + }else{ + return sqlite3CodeSubselect(pParse, pExpr); + } + break; + } + case TK_SELECT_COLUMN: { + int n; + Expr *pLeft = pExpr->pLeft; + if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){ + pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft); + pLeft->op2 = pParse->withinRJSubrtn; + } + assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR ); + n = sqlite3ExprVectorSize(pLeft); + if( pExpr->iTable!=n ){ + sqlite3ErrorMsg(pParse, "%d columns assigned %d values", + pExpr->iTable, n); + } + return pLeft->iTable + pExpr->iColumn; + } + case TK_IN: { + int destIfFalse = sqlite3VdbeMakeLabel(pParse); + int destIfNull = sqlite3VdbeMakeLabel(pParse); + sqlite3VdbeAddOp2(v, OP_Null, 0, target); + sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); + sqlite3VdbeAddOp2(v, OP_Integer, 1, target); + sqlite3VdbeResolveLabel(v, destIfFalse); + sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); + sqlite3VdbeResolveLabel(v, destIfNull); + return target; + } +#endif /* SQLITE_OMIT_SUBQUERY */ + + + /* + ** x BETWEEN y AND z + ** + ** This is equivalent to + ** + ** x>=y AND x<=z + ** + ** X is stored in pExpr->pLeft. + ** Y is stored in pExpr->pList->a[0].pExpr. + ** Z is stored in pExpr->pList->a[1].pExpr. + */ + case TK_BETWEEN: { + exprCodeBetween(pParse, pExpr, target, 0, 0); + return target; + } + case TK_COLLATE: { + if( !ExprHasProperty(pExpr, EP_Collate) + && ALWAYS(pExpr->pLeft) + && pExpr->pLeft->op==TK_FUNCTION + ){ + inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); + if( inReg!=target ){ + sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); + inReg = target; + } + sqlite3VdbeAddOp1(v, OP_ClrSubtype, inReg); + return inReg; + }else{ + pExpr = pExpr->pLeft; + goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */ + } + } + case TK_SPAN: + case TK_UPLUS: { + pExpr = pExpr->pLeft; + goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ + } + + case TK_TRIGGER: { + /* If the opcode is TK_TRIGGER, then the expression is a reference + ** to a column in the new.* or old.* pseudo-tables available to + ** trigger programs. In this case Expr.iTable is set to 1 for the + ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn + ** is set to the column of the pseudo-table to read, or to -1 to + ** read the rowid field. + ** + ** The expression is implemented using an OP_Param opcode. The p1 + ** parameter is set to 0 for an old.rowid reference, or to (i+1) + ** to reference another column of the old.* pseudo-table, where + ** i is the index of the column. For a new.rowid reference, p1 is + ** set to (n+1), where n is the number of columns in each pseudo-table. + ** For a reference to any other column in the new.* pseudo-table, p1 + ** is set to (n+2+i), where n and i are as defined previously. For + ** example, if the table on which triggers are being fired is + ** declared as: + ** + ** CREATE TABLE t1(a, b); + ** + ** Then p1 is interpreted as follows: + ** + ** p1==0 -> old.rowid p1==3 -> new.rowid + ** p1==1 -> old.a p1==4 -> new.a + ** p1==2 -> old.b p1==5 -> new.b + */ + Table *pTab; + int iCol; + int p1; + + assert( ExprUseYTab(pExpr) ); + pTab = pExpr->y.pTab; + iCol = pExpr->iColumn; + p1 = pExpr->iTable * (pTab->nCol+1) + 1 + + sqlite3TableColumnToStorage(pTab, iCol); + + assert( pExpr->iTable==0 || pExpr->iTable==1 ); + assert( iCol>=-1 && iCol<pTab->nCol ); + assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); + assert( p1>=0 && p1<(pTab->nCol*2+2) ); + + sqlite3VdbeAddOp2(v, OP_Param, p1, target); + VdbeComment((v, "r[%d]=%s.%s", target, + (pExpr->iTable ? "new" : "old"), + (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) + )); + +#ifndef SQLITE_OMIT_FLOATING_POINT + /* If the column has REAL affinity, it may currently be stored as an + ** integer. Use OP_RealAffinity to make sure it is really real. + ** + ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to + ** floating point when extracting it from the record. */ + if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ + sqlite3VdbeAddOp1(v, OP_RealAffinity, target); + } +#endif + break; + } + + case TK_VECTOR: { + sqlite3ErrorMsg(pParse, "row value misused"); + break; + } + + /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions + ** that derive from the right-hand table of a LEFT JOIN. The + ** Expr.iTable value is the table number for the right-hand table. + ** The expression is only evaluated if that table is not currently + ** on a LEFT JOIN NULL row. + */ + case TK_IF_NULL_ROW: { + int addrINR; + u8 okConstFactor = pParse->okConstFactor; + AggInfo *pAggInfo = pExpr->pAggInfo; + if( pAggInfo ){ + assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); + if( !pAggInfo->directMode ){ + inReg = pAggInfo->aCol[pExpr->iAgg].iMem; + break; + } + if( pExpr->pAggInfo->useSortingIdx ){ + sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, + pAggInfo->aCol[pExpr->iAgg].iSorterColumn, + target); + inReg = target; + break; + } + } + addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); + /* Temporarily disable factoring of constant expressions, since + ** even though expressions may appear to be constant, they are not + ** really constant because they originate from the right-hand side + ** of a LEFT JOIN. */ + pParse->okConstFactor = 0; + inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); + pParse->okConstFactor = okConstFactor; + sqlite3VdbeJumpHere(v, addrINR); + sqlite3VdbeChangeP3(v, addrINR, inReg); + break; + } + + /* + ** Form A: + ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END + ** + ** Form B: + ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END + ** + ** Form A is can be transformed into the equivalent form B as follows: + ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... + ** WHEN x=eN THEN rN ELSE y END + ** + ** X (if it exists) is in pExpr->pLeft. + ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is + ** odd. The Y is also optional. If the number of elements in x.pList + ** is even, then Y is omitted and the "otherwise" result is NULL. + ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. + ** + ** The result of the expression is the Ri for the first matching Ei, + ** or if there is no matching Ei, the ELSE term Y, or if there is + ** no ELSE term, NULL. + */ + case TK_CASE: { + int endLabel; /* GOTO label for end of CASE stmt */ + int nextCase; /* GOTO label for next WHEN clause */ + int nExpr; /* 2x number of WHEN terms */ + int i; /* Loop counter */ + ExprList *pEList; /* List of WHEN terms */ + struct ExprList_item *aListelem; /* Array of WHEN terms */ + Expr opCompare; /* The X==Ei expression */ + Expr *pX; /* The X expression */ + Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ + Expr *pDel = 0; + sqlite3 *db = pParse->db; + + assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 ); + assert(pExpr->x.pList->nExpr > 0); + pEList = pExpr->x.pList; + aListelem = pEList->a; + nExpr = pEList->nExpr; + endLabel = sqlite3VdbeMakeLabel(pParse); + if( (pX = pExpr->pLeft)!=0 ){ + pDel = sqlite3ExprDup(db, pX, 0); + if( db->mallocFailed ){ + sqlite3ExprDelete(db, pDel); + break; + } + testcase( pX->op==TK_COLUMN ); + exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); + testcase( regFree1==0 ); + memset(&opCompare, 0, sizeof(opCompare)); + opCompare.op = TK_EQ; + opCompare.pLeft = pDel; + pTest = &opCompare; + /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: + ** The value in regFree1 might get SCopy-ed into the file result. + ** So make sure that the regFree1 register is not reused for other + ** purposes and possibly overwritten. */ + regFree1 = 0; + } + for(i=0; i<nExpr-1; i=i+2){ + if( pX ){ + assert( pTest!=0 ); + opCompare.pRight = aListelem[i].pExpr; + }else{ + pTest = aListelem[i].pExpr; + } + nextCase = sqlite3VdbeMakeLabel(pParse); + testcase( pTest->op==TK_COLUMN ); + sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); + testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); + sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); + sqlite3VdbeGoto(v, endLabel); + sqlite3VdbeResolveLabel(v, nextCase); + } + if( (nExpr&1)!=0 ){ + sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); + }else{ + sqlite3VdbeAddOp2(v, OP_Null, 0, target); + } + sqlite3ExprDelete(db, pDel); + setDoNotMergeFlagOnCopy(v); + sqlite3VdbeResolveLabel(v, endLabel); + break; + } +#ifndef SQLITE_OMIT_TRIGGER + case TK_RAISE: { + assert( pExpr->affExpr==OE_Rollback + || pExpr->affExpr==OE_Abort + || pExpr->affExpr==OE_Fail + || pExpr->affExpr==OE_Ignore + ); + if( !pParse->pTriggerTab && !pParse->nested ){ + sqlite3ErrorMsg(pParse, + "RAISE() may only be used within a trigger-program"); + return 0; + } + if( pExpr->affExpr==OE_Abort ){ + sqlite3MayAbort(pParse); + } + assert( !ExprHasProperty(pExpr, EP_IntValue) ); + if( pExpr->affExpr==OE_Ignore ){ + sqlite3VdbeAddOp4( + v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); + VdbeCoverage(v); + }else{ + sqlite3HaltConstraint(pParse, + pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, + pExpr->affExpr, pExpr->u.zToken, 0, 0); + } + + break; + } +#endif + } + sqlite3ReleaseTempReg(pParse, regFree1); + sqlite3ReleaseTempReg(pParse, regFree2); + return inReg; +} + +/* +** Generate code that will evaluate expression pExpr just one time +** per prepared statement execution. +** +** If the expression uses functions (that might throw an exception) then +** guard them with an OP_Once opcode to ensure that the code is only executed +** once. If no functions are involved, then factor the code out and put it at +** the end of the prepared statement in the initialization section. +** +** If regDest>=0 then the result is always stored in that register and the +** result is not reusable. If regDest<0 then this routine is free to +** store the value whereever it wants. The register where the expression +** is stored is returned. When regDest<0, two identical expressions might +** code to the same register, if they do not contain function calls and hence +** are factored out into the initialization section at the end of the +** prepared statement. +*/ +int sqlite3ExprCodeRunJustOnce( + Parse *pParse, /* Parsing context */ + Expr *pExpr, /* The expression to code when the VDBE initializes */ + int regDest /* Store the value in this register */ +){ + ExprList *p; + assert( ConstFactorOk(pParse) ); + p = pParse->pConstExpr; + if( regDest<0 && p ){ + struct ExprList_item *pItem; + int i; + for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ + if( pItem->fg.reusable + && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 + ){ + return pItem->u.iConstExprReg; + } + } + } + pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); + if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ + Vdbe *v = pParse->pVdbe; + int addr; + assert( v ); + addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); + pParse->okConstFactor = 0; + if( !pParse->db->mallocFailed ){ + if( regDest<0 ) regDest = ++pParse->nMem; + sqlite3ExprCode(pParse, pExpr, regDest); + } + pParse->okConstFactor = 1; + sqlite3ExprDelete(pParse->db, pExpr); + sqlite3VdbeJumpHere(v, addr); + }else{ + p = sqlite3ExprListAppend(pParse, p, pExpr); + if( p ){ + struct ExprList_item *pItem = &p->a[p->nExpr-1]; + pItem->fg.reusable = regDest<0; + if( regDest<0 ) regDest = ++pParse->nMem; + pItem->u.iConstExprReg = regDest; + } + pParse->pConstExpr = p; + } + return regDest; +} + +/* +** Generate code to evaluate an expression and store the results +** into a register. Return the register number where the results +** are stored. +** +** If the register is a temporary register that can be deallocated, +** then write its number into *pReg. If the result register is not +** a temporary, then set *pReg to zero. +** +** If pExpr is a constant, then this routine might generate this +** code to fill the register in the initialization section of the +** VDBE program, in order to factor it out of the evaluation loop. +*/ +int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ + int r2; + pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); + if( ConstFactorOk(pParse) + && ALWAYS(pExpr!=0) + && pExpr->op!=TK_REGISTER + && sqlite3ExprIsConstantNotJoin(pExpr) + ){ + *pReg = 0; + r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); + }else{ + int r1 = sqlite3GetTempReg(pParse); + r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); + if( r2==r1 ){ + *pReg = r1; + }else{ + sqlite3ReleaseTempReg(pParse, r1); + *pReg = 0; + } + } + return r2; +} + +/* +** Generate code that will evaluate expression pExpr and store the +** results in register target. The results are guaranteed to appear +** in register target. +*/ +void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ + int inReg; + + assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); + assert( target>0 && target<=pParse->nMem ); + assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); + if( pParse->pVdbe==0 ) return; + inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); + if( inReg!=target ){ + u8 op; + if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){ + op = OP_Copy; + }else{ + op = OP_SCopy; + } + sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); + } +} + +/* +** Make a transient copy of expression pExpr and then code it using +** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() +** except that the input expression is guaranteed to be unchanged. +*/ +void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ + sqlite3 *db = pParse->db; + pExpr = sqlite3ExprDup(db, pExpr, 0); + if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); + sqlite3ExprDelete(db, pExpr); +} + +/* +** Generate code that will evaluate expression pExpr and store the +** results in register target. The results are guaranteed to appear +** in register target. If the expression is constant, then this routine +** might choose to code the expression at initialization time. +*/ +void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ + if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ + sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); + }else{ + sqlite3ExprCodeCopy(pParse, pExpr, target); + } +} + +/* +** Generate code that pushes the value of every element of the given +** expression list into a sequence of registers beginning at target. +** +** Return the number of elements evaluated. The number returned will +** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF +** is defined. +** +** The SQLITE_ECEL_DUP flag prevents the arguments from being +** filled using OP_SCopy. OP_Copy must be used instead. +** +** The SQLITE_ECEL_FACTOR argument allows constant arguments to be +** factored out into initialization code. +** +** The SQLITE_ECEL_REF flag means that expressions in the list with +** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored +** in registers at srcReg, and so the value can be copied from there. +** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 +** are simply omitted rather than being copied from srcReg. +*/ +int sqlite3ExprCodeExprList( + Parse *pParse, /* Parsing context */ + ExprList *pList, /* The expression list to be coded */ + int target, /* Where to write results */ + int srcReg, /* Source registers if SQLITE_ECEL_REF */ + u8 flags /* SQLITE_ECEL_* flags */ +){ + struct ExprList_item *pItem; + int i, j, n; + u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; + Vdbe *v = pParse->pVdbe; + assert( pList!=0 ); + assert( target>0 ); + assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ + n = pList->nExpr; + if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; + for(pItem=pList->a, i=0; i<n; i++, pItem++){ + Expr *pExpr = pItem->pExpr; +#ifdef SQLITE_ENABLE_SORTER_REFERENCES + if( pItem->fg.bSorterRef ){ + i--; + n--; + }else +#endif + if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ + if( flags & SQLITE_ECEL_OMITREF ){ + i--; + n--; + }else{ + sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); + } + }else if( (flags & SQLITE_ECEL_FACTOR)!=0 + && sqlite3ExprIsConstantNotJoin(pExpr) + ){ + sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); + }else{ + int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); + if( inReg!=target+i ){ + VdbeOp *pOp; + if( copyOp==OP_Copy + && (pOp=sqlite3VdbeGetLastOp(v))->opcode==OP_Copy + && pOp->p1+pOp->p3+1==inReg + && pOp->p2+pOp->p3+1==target+i + && pOp->p5==0 /* The do-not-merge flag must be clear */ + ){ + pOp->p3++; + }else{ + sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); + } + } + } + } + return n; +} + +/* +** Generate code for a BETWEEN operator. +** +** x BETWEEN y AND z +** +** The above is equivalent to +** +** x>=y AND x<=z +** +** Code it as such, taking care to do the common subexpression +** elimination of x. +** +** The xJumpIf parameter determines details: +** +** NULL: Store the boolean result in reg[dest] +** sqlite3ExprIfTrue: Jump to dest if true +** sqlite3ExprIfFalse: Jump to dest if false +** +** The jumpIfNull parameter is ignored if xJumpIf is NULL. +*/ +static void exprCodeBetween( + Parse *pParse, /* Parsing and code generating context */ + Expr *pExpr, /* The BETWEEN expression */ + int dest, /* Jump destination or storage location */ + void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ + int jumpIfNull /* Take the jump if the BETWEEN is NULL */ +){ + Expr exprAnd; /* The AND operator in x>=y AND x<=z */ + Expr compLeft; /* The x>=y term */ + Expr compRight; /* The x<=z term */ + int regFree1 = 0; /* Temporary use register */ + Expr *pDel = 0; + sqlite3 *db = pParse->db; + + memset(&compLeft, 0, sizeof(Expr)); + memset(&compRight, 0, sizeof(Expr)); + memset(&exprAnd, 0, sizeof(Expr)); + + assert( ExprUseXList(pExpr) ); + pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); + if( db->mallocFailed==0 ){ + exprAnd.op = TK_AND; + exprAnd.pLeft = &compLeft; + exprAnd.pRight = &compRight; + compLeft.op = TK_GE; + compLeft.pLeft = pDel; + compLeft.pRight = pExpr->x.pList->a[0].pExpr; + compRight.op = TK_LE; + compRight.pLeft = pDel; + compRight.pRight = pExpr->x.pList->a[1].pExpr; + exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); + if( xJump ){ + xJump(pParse, &exprAnd, dest, jumpIfNull); + }else{ + /* Mark the expression is being from the ON or USING clause of a join + ** so that the sqlite3ExprCodeTarget() routine will not attempt to move + ** it into the Parse.pConstExpr list. We should use a new bit for this, + ** for clarity, but we are out of bits in the Expr.flags field so we + ** have to reuse the EP_OuterON bit. Bummer. */ + pDel->flags |= EP_OuterON; + sqlite3ExprCodeTarget(pParse, &exprAnd, dest); + } + sqlite3ReleaseTempReg(pParse, regFree1); + } + sqlite3ExprDelete(db, pDel); + + /* Ensure adequate test coverage */ + testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); + testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); + testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); + testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); + testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); + testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); + testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); + testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); + testcase( xJump==0 ); +} + +/* +** Generate code for a boolean expression such that a jump is made +** to the label "dest" if the expression is true but execution +** continues straight thru if the expression is false. +** +** If the expression evaluates to NULL (neither true nor false), then +** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. +** +** This code depends on the fact that certain token values (ex: TK_EQ) +** are the same as opcode values (ex: OP_Eq) that implement the corresponding +** operation. Special comments in vdbe.c and the mkopcodeh.awk script in +** the make process cause these values to align. Assert()s in the code +** below verify that the numbers are aligned correctly. +*/ +void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ + Vdbe *v = pParse->pVdbe; + int op = 0; + int regFree1 = 0; + int regFree2 = 0; + int r1, r2; + + assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); + if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ + if( NEVER(pExpr==0) ) return; /* No way this can happen */ + assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); + op = pExpr->op; + switch( op ){ + case TK_AND: + case TK_OR: { + Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); + if( pAlt!=pExpr ){ + sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); + }else if( op==TK_AND ){ + int d2 = sqlite3VdbeMakeLabel(pParse); + testcase( jumpIfNull==0 ); + sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, + jumpIfNull^SQLITE_JUMPIFNULL); + sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); + sqlite3VdbeResolveLabel(v, d2); + }else{ + testcase( jumpIfNull==0 ); + sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); + sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); + } + break; + } + case TK_NOT: { + testcase( jumpIfNull==0 ); + sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); + break; + } + case TK_TRUTH: { + int isNot; /* IS NOT TRUE or IS NOT FALSE */ + int isTrue; /* IS TRUE or IS NOT TRUE */ + testcase( jumpIfNull==0 ); + isNot = pExpr->op2==TK_ISNOT; + isTrue = sqlite3ExprTruthValue(pExpr->pRight); + testcase( isTrue && isNot ); + testcase( !isTrue && isNot ); + if( isTrue ^ isNot ){ + sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, + isNot ? SQLITE_JUMPIFNULL : 0); + }else{ + sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, + isNot ? SQLITE_JUMPIFNULL : 0); + } + break; + } + case TK_IS: + case TK_ISNOT: + testcase( op==TK_IS ); + testcase( op==TK_ISNOT ); + op = (op==TK_IS) ? TK_EQ : TK_NE; + jumpIfNull = SQLITE_NULLEQ; + /* no break */ deliberate_fall_through + case TK_LT: + case TK_LE: + case TK_GT: + case TK_GE: + case TK_NE: + case TK_EQ: { + if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; + testcase( jumpIfNull==0 ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, + r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); + assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); + assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); + assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); + assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); + assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); + VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); + VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); + assert(TK_NE==OP_Ne); testcase(op==OP_Ne); + VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); + VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); + testcase( regFree1==0 ); + testcase( regFree2==0 ); + break; + } + case TK_ISNULL: + case TK_NOTNULL: { + assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); + assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + sqlite3VdbeTypeofColumn(v, r1); + sqlite3VdbeAddOp2(v, op, r1, dest); + VdbeCoverageIf(v, op==TK_ISNULL); + VdbeCoverageIf(v, op==TK_NOTNULL); + testcase( regFree1==0 ); + break; + } + case TK_BETWEEN: { + testcase( jumpIfNull==0 ); + exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); + break; + } +#ifndef SQLITE_OMIT_SUBQUERY + case TK_IN: { + int destIfFalse = sqlite3VdbeMakeLabel(pParse); + int destIfNull = jumpIfNull ? dest : destIfFalse; + sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); + sqlite3VdbeGoto(v, dest); + sqlite3VdbeResolveLabel(v, destIfFalse); + break; + } +#endif + default: { + default_expr: + if( ExprAlwaysTrue(pExpr) ){ + sqlite3VdbeGoto(v, dest); + }else if( ExprAlwaysFalse(pExpr) ){ + /* No-op */ + }else{ + r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); + sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); + VdbeCoverage(v); + testcase( regFree1==0 ); + testcase( jumpIfNull==0 ); + } + break; + } + } + sqlite3ReleaseTempReg(pParse, regFree1); + sqlite3ReleaseTempReg(pParse, regFree2); +} + +/* +** Generate code for a boolean expression such that a jump is made +** to the label "dest" if the expression is false but execution +** continues straight thru if the expression is true. +** +** If the expression evaluates to NULL (neither true nor false) then +** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull +** is 0. +*/ +void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ + Vdbe *v = pParse->pVdbe; + int op = 0; + int regFree1 = 0; + int regFree2 = 0; + int r1, r2; + + assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); + if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ + if( pExpr==0 ) return; + assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); + + /* The value of pExpr->op and op are related as follows: + ** + ** pExpr->op op + ** --------- ---------- + ** TK_ISNULL OP_NotNull + ** TK_NOTNULL OP_IsNull + ** TK_NE OP_Eq + ** TK_EQ OP_Ne + ** TK_GT OP_Le + ** TK_LE OP_Gt + ** TK_GE OP_Lt + ** TK_LT OP_Ge + ** + ** For other values of pExpr->op, op is undefined and unused. + ** The value of TK_ and OP_ constants are arranged such that we + ** can compute the mapping above using the following expression. + ** Assert()s verify that the computation is correct. + */ + op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); + + /* Verify correct alignment of TK_ and OP_ constants + */ + assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); + assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); + assert( pExpr->op!=TK_NE || op==OP_Eq ); + assert( pExpr->op!=TK_EQ || op==OP_Ne ); + assert( pExpr->op!=TK_LT || op==OP_Ge ); + assert( pExpr->op!=TK_LE || op==OP_Gt ); + assert( pExpr->op!=TK_GT || op==OP_Le ); + assert( pExpr->op!=TK_GE || op==OP_Lt ); + + switch( pExpr->op ){ + case TK_AND: + case TK_OR: { + Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); + if( pAlt!=pExpr ){ + sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); + }else if( pExpr->op==TK_AND ){ + testcase( jumpIfNull==0 ); + sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); + sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); + }else{ + int d2 = sqlite3VdbeMakeLabel(pParse); + testcase( jumpIfNull==0 ); + sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, + jumpIfNull^SQLITE_JUMPIFNULL); + sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); + sqlite3VdbeResolveLabel(v, d2); + } + break; + } + case TK_NOT: { + testcase( jumpIfNull==0 ); + sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); + break; + } + case TK_TRUTH: { + int isNot; /* IS NOT TRUE or IS NOT FALSE */ + int isTrue; /* IS TRUE or IS NOT TRUE */ + testcase( jumpIfNull==0 ); + isNot = pExpr->op2==TK_ISNOT; + isTrue = sqlite3ExprTruthValue(pExpr->pRight); + testcase( isTrue && isNot ); + testcase( !isTrue && isNot ); + if( isTrue ^ isNot ){ + /* IS TRUE and IS NOT FALSE */ + sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, + isNot ? 0 : SQLITE_JUMPIFNULL); + + }else{ + /* IS FALSE and IS NOT TRUE */ + sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, + isNot ? 0 : SQLITE_JUMPIFNULL); + } + break; + } + case TK_IS: + case TK_ISNOT: + testcase( pExpr->op==TK_IS ); + testcase( pExpr->op==TK_ISNOT ); + op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; + jumpIfNull = SQLITE_NULLEQ; + /* no break */ deliberate_fall_through + case TK_LT: + case TK_LE: + case TK_GT: + case TK_GE: + case TK_NE: + case TK_EQ: { + if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; + testcase( jumpIfNull==0 ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, + r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); + assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); + assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); + assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); + assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); + assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); + VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); + VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); + assert(TK_NE==OP_Ne); testcase(op==OP_Ne); + VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); + VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); + testcase( regFree1==0 ); + testcase( regFree2==0 ); + break; + } + case TK_ISNULL: + case TK_NOTNULL: { + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + sqlite3VdbeTypeofColumn(v, r1); + sqlite3VdbeAddOp2(v, op, r1, dest); + testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); + testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); + testcase( regFree1==0 ); + break; + } + case TK_BETWEEN: { + testcase( jumpIfNull==0 ); + exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); + break; + } +#ifndef SQLITE_OMIT_SUBQUERY + case TK_IN: { + if( jumpIfNull ){ + sqlite3ExprCodeIN(pParse, pExpr, dest, dest); + }else{ + int destIfNull = sqlite3VdbeMakeLabel(pParse); + sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); + sqlite3VdbeResolveLabel(v, destIfNull); + } + break; + } +#endif + default: { + default_expr: + if( ExprAlwaysFalse(pExpr) ){ + sqlite3VdbeGoto(v, dest); + }else if( ExprAlwaysTrue(pExpr) ){ + /* no-op */ + }else{ + r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); + sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); + VdbeCoverage(v); + testcase( regFree1==0 ); + testcase( jumpIfNull==0 ); + } + break; + } + } + sqlite3ReleaseTempReg(pParse, regFree1); + sqlite3ReleaseTempReg(pParse, regFree2); +} + +/* +** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before +** code generation, and that copy is deleted after code generation. This +** ensures that the original pExpr is unchanged. +*/ +void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ + sqlite3 *db = pParse->db; + Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); + if( db->mallocFailed==0 ){ + sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); + } + sqlite3ExprDelete(db, pCopy); +} + +/* +** Expression pVar is guaranteed to be an SQL variable. pExpr may be any +** type of expression. +** +** If pExpr is a simple SQL value - an integer, real, string, blob +** or NULL value - then the VDBE currently being prepared is configured +** to re-prepare each time a new value is bound to variable pVar. +** +** Additionally, if pExpr is a simple SQL value and the value is the +** same as that currently bound to variable pVar, non-zero is returned. +** Otherwise, if the values are not the same or if pExpr is not a simple +** SQL value, zero is returned. +*/ +static int exprCompareVariable( + const Parse *pParse, + const Expr *pVar, + const Expr *pExpr +){ + int res = 0; + int iVar; + sqlite3_value *pL, *pR = 0; + + sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); + if( pR ){ + iVar = pVar->iColumn; + sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); + pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); + if( pL ){ + if( sqlite3_value_type(pL)==SQLITE_TEXT ){ + sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ + } + res = 0==sqlite3MemCompare(pL, pR, 0); + } + sqlite3ValueFree(pR); + sqlite3ValueFree(pL); + } + + return res; +} + +/* +** Do a deep comparison of two expression trees. Return 0 if the two +** expressions are completely identical. Return 1 if they differ only +** by a COLLATE operator at the top level. Return 2 if there are differences +** other than the top-level COLLATE operator. +** +** If any subelement of pB has Expr.iTable==(-1) then it is allowed +** to compare equal to an equivalent element in pA with Expr.iTable==iTab. +** +** The pA side might be using TK_REGISTER. If that is the case and pB is +** not using TK_REGISTER but is otherwise equivalent, then still return 0. +** +** Sometimes this routine will return 2 even if the two expressions +** really are equivalent. If we cannot prove that the expressions are +** identical, we return 2 just to be safe. So if this routine +** returns 2, then you do not really know for certain if the two +** expressions are the same. But if you get a 0 or 1 return, then you +** can be sure the expressions are the same. In the places where +** this routine is used, it does not hurt to get an extra 2 - that +** just might result in some slightly slower code. But returning +** an incorrect 0 or 1 could lead to a malfunction. +** +** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in +** pParse->pReprepare can be matched against literals in pB. The +** pParse->pVdbe->expmask bitmask is updated for each variable referenced. +** If pParse is NULL (the normal case) then any TK_VARIABLE term in +** Argument pParse should normally be NULL. If it is not NULL and pA or +** pB causes a return value of 2. +*/ +int sqlite3ExprCompare( + const Parse *pParse, + const Expr *pA, + const Expr *pB, + int iTab +){ + u32 combinedFlags; + if( pA==0 || pB==0 ){ + return pB==pA ? 0 : 2; + } + if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ + return 0; + } + combinedFlags = pA->flags | pB->flags; + if( combinedFlags & EP_IntValue ){ + if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ + return 0; + } + return 2; + } + if( pA->op!=pB->op || pA->op==TK_RAISE ){ + if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ + return 1; + } + if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ + return 1; + } + if( pA->op==TK_AGG_COLUMN && pB->op==TK_COLUMN + && pB->iTable<0 && pA->iTable==iTab + ){ + /* fall through */ + }else{ + return 2; + } + } + assert( !ExprHasProperty(pA, EP_IntValue) ); + assert( !ExprHasProperty(pB, EP_IntValue) ); + if( pA->u.zToken ){ + if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ + if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; +#ifndef SQLITE_OMIT_WINDOWFUNC + assert( pA->op==pB->op ); + if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ + return 2; + } + if( ExprHasProperty(pA,EP_WinFunc) ){ + if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ + return 2; + } + } +#endif + }else if( pA->op==TK_NULL ){ + return 0; + }else if( pA->op==TK_COLLATE ){ + if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; + }else + if( pB->u.zToken!=0 + && pA->op!=TK_COLUMN + && pA->op!=TK_AGG_COLUMN + && strcmp(pA->u.zToken,pB->u.zToken)!=0 + ){ + return 2; + } + } + if( (pA->flags & (EP_Distinct|EP_Commuted)) + != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; + if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ + if( combinedFlags & EP_xIsSelect ) return 2; + if( (combinedFlags & EP_FixedCol)==0 + && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; + if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; + if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; + if( pA->op!=TK_STRING + && pA->op!=TK_TRUEFALSE + && ALWAYS((combinedFlags & EP_Reduced)==0) + ){ + if( pA->iColumn!=pB->iColumn ) return 2; + if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; + if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ + return 2; + } + } + } + return 0; +} + +/* +** Compare two ExprList objects. Return 0 if they are identical, 1 +** if they are certainly different, or 2 if it is not possible to +** determine if they are identical or not. +** +** If any subelement of pB has Expr.iTable==(-1) then it is allowed +** to compare equal to an equivalent element in pA with Expr.iTable==iTab. +** +** This routine might return non-zero for equivalent ExprLists. The +** only consequence will be disabled optimizations. But this routine +** must never return 0 if the two ExprList objects are different, or +** a malfunction will result. +** +** Two NULL pointers are considered to be the same. But a NULL pointer +** always differs from a non-NULL pointer. +*/ +int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ + int i; + if( pA==0 && pB==0 ) return 0; + if( pA==0 || pB==0 ) return 1; + if( pA->nExpr!=pB->nExpr ) return 1; + for(i=0; i<pA->nExpr; i++){ + int res; + Expr *pExprA = pA->a[i].pExpr; + Expr *pExprB = pB->a[i].pExpr; + if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1; + if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; + } + return 0; +} + +/* +** Like sqlite3ExprCompare() except COLLATE operators at the top-level +** are ignored. +*/ +int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ + return sqlite3ExprCompare(0, + sqlite3ExprSkipCollateAndLikely(pA), + sqlite3ExprSkipCollateAndLikely(pB), + iTab); +} + +/* +** Return non-zero if Expr p can only be true if pNN is not NULL. +** +** Or if seenNot is true, return non-zero if Expr p can only be +** non-NULL if pNN is not NULL +*/ +static int exprImpliesNotNull( + const Parse *pParse,/* Parsing context */ + const Expr *p, /* The expression to be checked */ + const Expr *pNN, /* The expression that is NOT NULL */ + int iTab, /* Table being evaluated */ + int seenNot /* Return true only if p can be any non-NULL value */ +){ + assert( p ); + assert( pNN ); + if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ + return pNN->op!=TK_NULL; + } + switch( p->op ){ + case TK_IN: { + if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; + assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) ); + return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); + } + case TK_BETWEEN: { + ExprList *pList; + assert( ExprUseXList(p) ); + pList = p->x.pList; + assert( pList!=0 ); + assert( pList->nExpr==2 ); + if( seenNot ) return 0; + if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) + || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) + ){ + return 1; + } + return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); + } + case TK_EQ: + case TK_NE: + case TK_LT: + case TK_LE: + case TK_GT: + case TK_GE: + case TK_PLUS: + case TK_MINUS: + case TK_BITOR: + case TK_LSHIFT: + case TK_RSHIFT: + case TK_CONCAT: + seenNot = 1; + /* no break */ deliberate_fall_through + case TK_STAR: + case TK_REM: + case TK_BITAND: + case TK_SLASH: { + if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; + /* no break */ deliberate_fall_through + } + case TK_SPAN: + case TK_COLLATE: + case TK_UPLUS: + case TK_UMINUS: { + return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); + } + case TK_TRUTH: { + if( seenNot ) return 0; + if( p->op2!=TK_IS ) return 0; + return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); + } + case TK_BITNOT: + case TK_NOT: { + return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); + } + } + return 0; +} + +/* +** Return true if we can prove the pE2 will always be true if pE1 is +** true. Return false if we cannot complete the proof or if pE2 might +** be false. Examples: +** +** pE1: x==5 pE2: x==5 Result: true +** pE1: x>0 pE2: x==5 Result: false +** pE1: x=21 pE2: x=21 OR y=43 Result: true +** pE1: x!=123 pE2: x IS NOT NULL Result: true +** pE1: x!=?1 pE2: x IS NOT NULL Result: true +** pE1: x IS NULL pE2: x IS NOT NULL Result: false +** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false +** +** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has +** Expr.iTable<0 then assume a table number given by iTab. +** +** If pParse is not NULL, then the values of bound variables in pE1 are +** compared against literal values in pE2 and pParse->pVdbe->expmask is +** modified to record which bound variables are referenced. If pParse +** is NULL, then false will be returned if pE1 contains any bound variables. +** +** When in doubt, return false. Returning true might give a performance +** improvement. Returning false might cause a performance reduction, but +** it will always give the correct answer and is hence always safe. +*/ +int sqlite3ExprImpliesExpr( + const Parse *pParse, + const Expr *pE1, + const Expr *pE2, + int iTab +){ + if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ + return 1; + } + if( pE2->op==TK_OR + && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) + || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) + ){ + return 1; + } + if( pE2->op==TK_NOTNULL + && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) + ){ + return 1; + } + return 0; +} + +/* +** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). +** If the expression node requires that the table at pWalker->iCur +** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. +** +** This routine controls an optimization. False positives (setting +** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives +** (never setting pWalker->eCode) is a harmless missed optimization. +*/ +static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ + testcase( pExpr->op==TK_AGG_COLUMN ); + testcase( pExpr->op==TK_AGG_FUNCTION ); + if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune; + switch( pExpr->op ){ + case TK_ISNOT: + case TK_ISNULL: + case TK_NOTNULL: + case TK_IS: + case TK_OR: + case TK_VECTOR: + case TK_CASE: + case TK_IN: + case TK_FUNCTION: + case TK_TRUTH: + testcase( pExpr->op==TK_ISNOT ); + testcase( pExpr->op==TK_ISNULL ); + testcase( pExpr->op==TK_NOTNULL ); + testcase( pExpr->op==TK_IS ); + testcase( pExpr->op==TK_OR ); + testcase( pExpr->op==TK_VECTOR ); + testcase( pExpr->op==TK_CASE ); + testcase( pExpr->op==TK_IN ); + testcase( pExpr->op==TK_FUNCTION ); + testcase( pExpr->op==TK_TRUTH ); + return WRC_Prune; + case TK_COLUMN: + if( pWalker->u.iCur==pExpr->iTable ){ + pWalker->eCode = 1; + return WRC_Abort; + } + return WRC_Prune; + + case TK_AND: + if( pWalker->eCode==0 ){ + sqlite3WalkExpr(pWalker, pExpr->pLeft); + if( pWalker->eCode ){ + pWalker->eCode = 0; + sqlite3WalkExpr(pWalker, pExpr->pRight); + } + } + return WRC_Prune; + + case TK_BETWEEN: + if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ + assert( pWalker->eCode ); + return WRC_Abort; + } + return WRC_Prune; + + /* Virtual tables are allowed to use constraints like x=NULL. So + ** a term of the form x=y does not prove that y is not null if x + ** is the column of a virtual table */ + case TK_EQ: + case TK_NE: + case TK_LT: + case TK_LE: + case TK_GT: + case TK_GE: { + Expr *pLeft = pExpr->pLeft; + Expr *pRight = pExpr->pRight; + testcase( pExpr->op==TK_EQ ); + testcase( pExpr->op==TK_NE ); + testcase( pExpr->op==TK_LT ); + testcase( pExpr->op==TK_LE ); + testcase( pExpr->op==TK_GT ); + testcase( pExpr->op==TK_GE ); + /* The y.pTab=0 assignment in wherecode.c always happens after the + ** impliesNotNullRow() test */ + assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) ); + assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) ); + if( (pLeft->op==TK_COLUMN + && ALWAYS(pLeft->y.pTab!=0) + && IsVirtual(pLeft->y.pTab)) + || (pRight->op==TK_COLUMN + && ALWAYS(pRight->y.pTab!=0) + && IsVirtual(pRight->y.pTab)) + ){ + return WRC_Prune; + } + /* no break */ deliberate_fall_through + } + default: + return WRC_Continue; + } +} + +/* +** Return true (non-zero) if expression p can only be true if at least +** one column of table iTab is non-null. In other words, return true +** if expression p will always be NULL or false if every column of iTab +** is NULL. +** +** False negatives are acceptable. In other words, it is ok to return +** zero even if expression p will never be true of every column of iTab +** is NULL. A false negative is merely a missed optimization opportunity. +** +** False positives are not allowed, however. A false positive may result +** in an incorrect answer. +** +** Terms of p that are marked with EP_OuterON (and hence that come from +** the ON or USING clauses of OUTER JOINS) are excluded from the analysis. +** +** This routine is used to check if a LEFT JOIN can be converted into +** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE +** clause requires that some column of the right table of the LEFT JOIN +** be non-NULL, then the LEFT JOIN can be safely converted into an +** ordinary join. +*/ +int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ + Walker w; + p = sqlite3ExprSkipCollateAndLikely(p); + if( p==0 ) return 0; + if( p->op==TK_NOTNULL ){ + p = p->pLeft; + }else{ + while( p->op==TK_AND ){ + if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; + p = p->pRight; + } + } + w.xExprCallback = impliesNotNullRow; + w.xSelectCallback = 0; + w.xSelectCallback2 = 0; + w.eCode = 0; + w.u.iCur = iTab; + sqlite3WalkExpr(&w, p); + return w.eCode; +} + +/* +** An instance of the following structure is used by the tree walker +** to determine if an expression can be evaluated by reference to the +** index only, without having to do a search for the corresponding +** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur +** is the cursor for the table. +*/ +struct IdxCover { + Index *pIdx; /* The index to be tested for coverage */ + int iCur; /* Cursor number for the table corresponding to the index */ +}; + +/* +** Check to see if there are references to columns in table +** pWalker->u.pIdxCover->iCur can be satisfied using the index +** pWalker->u.pIdxCover->pIdx. +*/ +static int exprIdxCover(Walker *pWalker, Expr *pExpr){ + if( pExpr->op==TK_COLUMN + && pExpr->iTable==pWalker->u.pIdxCover->iCur + && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 + ){ + pWalker->eCode = 1; + return WRC_Abort; + } + return WRC_Continue; +} + +/* +** Determine if an index pIdx on table with cursor iCur contains will +** the expression pExpr. Return true if the index does cover the +** expression and false if the pExpr expression references table columns +** that are not found in the index pIdx. +** +** An index covering an expression means that the expression can be +** evaluated using only the index and without having to lookup the +** corresponding table entry. +*/ +int sqlite3ExprCoveredByIndex( + Expr *pExpr, /* The index to be tested */ + int iCur, /* The cursor number for the corresponding table */ + Index *pIdx /* The index that might be used for coverage */ +){ + Walker w; + struct IdxCover xcov; + memset(&w, 0, sizeof(w)); + xcov.iCur = iCur; + xcov.pIdx = pIdx; + w.xExprCallback = exprIdxCover; + w.u.pIdxCover = &xcov; + sqlite3WalkExpr(&w, pExpr); + return !w.eCode; +} + + +/* Structure used to pass information throught the Walker in order to +** implement sqlite3ReferencesSrcList(). +*/ +struct RefSrcList { + sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */ + SrcList *pRef; /* Looking for references to these tables */ + i64 nExclude; /* Number of tables to exclude from the search */ + int *aiExclude; /* Cursor IDs for tables to exclude from the search */ +}; + +/* +** Walker SELECT callbacks for sqlite3ReferencesSrcList(). +** +** When entering a new subquery on the pExpr argument, add all FROM clause +** entries for that subquery to the exclude list. +** +** When leaving the subquery, remove those entries from the exclude list. +*/ +static int selectRefEnter(Walker *pWalker, Select *pSelect){ + struct RefSrcList *p = pWalker->u.pRefSrcList; + SrcList *pSrc = pSelect->pSrc; + i64 i, j; + int *piNew; + if( pSrc->nSrc==0 ) return WRC_Continue; + j = p->nExclude; + p->nExclude += pSrc->nSrc; + piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int)); + if( piNew==0 ){ + p->nExclude = 0; + return WRC_Abort; + }else{ + p->aiExclude = piNew; + } + for(i=0; i<pSrc->nSrc; i++, j++){ + p->aiExclude[j] = pSrc->a[i].iCursor; + } + return WRC_Continue; +} +static void selectRefLeave(Walker *pWalker, Select *pSelect){ + struct RefSrcList *p = pWalker->u.pRefSrcList; + SrcList *pSrc = pSelect->pSrc; + if( p->nExclude ){ + assert( p->nExclude>=pSrc->nSrc ); + p->nExclude -= pSrc->nSrc; + } +} + +/* This is the Walker EXPR callback for sqlite3ReferencesSrcList(). +** +** Set the 0x01 bit of pWalker->eCode if there is a reference to any +** of the tables shown in RefSrcList.pRef. +** +** Set the 0x02 bit of pWalker->eCode if there is a reference to a +** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude. +*/ +static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){ + if( pExpr->op==TK_COLUMN + || pExpr->op==TK_AGG_COLUMN + ){ + int i; + struct RefSrcList *p = pWalker->u.pRefSrcList; + SrcList *pSrc = p->pRef; + int nSrc = pSrc ? pSrc->nSrc : 0; + for(i=0; i<nSrc; i++){ + if( pExpr->iTable==pSrc->a[i].iCursor ){ + pWalker->eCode |= 1; + return WRC_Continue; + } + } + for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){} + if( i>=p->nExclude ){ + pWalker->eCode |= 2; + } + } + return WRC_Continue; +} + +/* +** Check to see if pExpr references any tables in pSrcList. +** Possible return values: +** +** 1 pExpr does references a table in pSrcList. +** +** 0 pExpr references some table that is not defined in either +** pSrcList or in subqueries of pExpr itself. +** +** -1 pExpr only references no tables at all, or it only +** references tables defined in subqueries of pExpr itself. +** +** As currently used, pExpr is always an aggregate function call. That +** fact is exploited for efficiency. +*/ +int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ + Walker w; + struct RefSrcList x; + assert( pParse->db!=0 ); + memset(&w, 0, sizeof(w)); + memset(&x, 0, sizeof(x)); + w.xExprCallback = exprRefToSrcList; + w.xSelectCallback = selectRefEnter; + w.xSelectCallback2 = selectRefLeave; + w.u.pRefSrcList = &x; + x.db = pParse->db; + x.pRef = pSrcList; + assert( pExpr->op==TK_AGG_FUNCTION ); + assert( ExprUseXList(pExpr) ); + sqlite3WalkExprList(&w, pExpr->x.pList); +#ifndef SQLITE_OMIT_WINDOWFUNC + if( ExprHasProperty(pExpr, EP_WinFunc) ){ + sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); + } +#endif + if( x.aiExclude ) sqlite3DbNNFreeNN(pParse->db, x.aiExclude); + if( w.eCode & 0x01 ){ + return 1; + }else if( w.eCode ){ + return 0; + }else{ + return -1; + } +} + +/* +** This is a Walker expression node callback. +** +** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo +** object that is referenced does not refer directly to the Expr. If +** it does, make a copy. This is done because the pExpr argument is +** subject to change. +** +** The copy is stored on pParse->pConstExpr with a register number of 0. +** This will cause the expression to be deleted automatically when the +** Parse object is destroyed, but the zero register number means that it +** will not generate any code in the preamble. +*/ +static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ + if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) + && pExpr->pAggInfo!=0 + ){ + AggInfo *pAggInfo = pExpr->pAggInfo; + int iAgg = pExpr->iAgg; + Parse *pParse = pWalker->pParse; + sqlite3 *db = pParse->db; + if( pExpr->op!=TK_AGG_FUNCTION ){ + assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_IF_NULL_ROW ); + assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); + if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ + pExpr = sqlite3ExprDup(db, pExpr, 0); + if( pExpr ){ + pAggInfo->aCol[iAgg].pCExpr = pExpr; + sqlite3ExprDeferredDelete(pParse, pExpr); + } + } + }else{ + assert( pExpr->op==TK_AGG_FUNCTION ); + assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); + if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ + pExpr = sqlite3ExprDup(db, pExpr, 0); + if( pExpr ){ + pAggInfo->aFunc[iAgg].pFExpr = pExpr; + sqlite3ExprDeferredDelete(pParse, pExpr); + } + } + } + } + return WRC_Continue; +} + +/* +** Initialize a Walker object so that will persist AggInfo entries referenced +** by the tree that is walked. +*/ +void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ + memset(pWalker, 0, sizeof(*pWalker)); + pWalker->pParse = pParse; + pWalker->xExprCallback = agginfoPersistExprCb; + pWalker->xSelectCallback = sqlite3SelectWalkNoop; +} + +/* +** Add a new element to the pAggInfo->aCol[] array. Return the index of +** the new element. Return a negative number if malloc fails. +*/ +static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ + int i; + pInfo->aCol = sqlite3ArrayAllocate( + db, + pInfo->aCol, + sizeof(pInfo->aCol[0]), + &pInfo->nColumn, + &i + ); + return i; +} + +/* +** Add a new element to the pAggInfo->aFunc[] array. Return the index of +** the new element. Return a negative number if malloc fails. +*/ +static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ + int i; + pInfo->aFunc = sqlite3ArrayAllocate( + db, + pInfo->aFunc, + sizeof(pInfo->aFunc[0]), + &pInfo->nFunc, + &i + ); + return i; +} + +/* +** This is the xExprCallback for a tree walker. It is used to +** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates +** for additional information. +*/ +static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ + int i; + NameContext *pNC = pWalker->u.pNC; + Parse *pParse = pNC->pParse; + SrcList *pSrcList = pNC->pSrcList; + AggInfo *pAggInfo = pNC->uNC.pAggInfo; + + assert( pNC->ncFlags & NC_UAggInfo ); + switch( pExpr->op ){ + case TK_IF_NULL_ROW: + case TK_AGG_COLUMN: + case TK_COLUMN: { + testcase( pExpr->op==TK_AGG_COLUMN ); + testcase( pExpr->op==TK_COLUMN ); + testcase( pExpr->op==TK_IF_NULL_ROW ); + /* Check to see if the column is in one of the tables in the FROM + ** clause of the aggregate query */ + if( ALWAYS(pSrcList!=0) ){ + SrcItem *pItem = pSrcList->a; + for(i=0; i<pSrcList->nSrc; i++, pItem++){ + struct AggInfo_col *pCol; + assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); + if( pExpr->iTable==pItem->iCursor ){ + /* If we reach this point, it means that pExpr refers to a table + ** that is in the FROM clause of the aggregate query. + ** + ** Make an entry for the column in pAggInfo->aCol[] if there + ** is not an entry there already. + */ + int k; + pCol = pAggInfo->aCol; + for(k=0; k<pAggInfo->nColumn; k++, pCol++){ + if( pCol->iTable==pExpr->iTable + && pCol->iColumn==pExpr->iColumn + && pExpr->op!=TK_IF_NULL_ROW + ){ + break; + } + } + if( (k>=pAggInfo->nColumn) + && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 + ){ + pCol = &pAggInfo->aCol[k]; + assert( ExprUseYTab(pExpr) ); + pCol->pTab = pExpr->y.pTab; + pCol->iTable = pExpr->iTable; + pCol->iColumn = pExpr->iColumn; + pCol->iMem = ++pParse->nMem; + pCol->iSorterColumn = -1; + pCol->pCExpr = pExpr; + if( pAggInfo->pGroupBy && pExpr->op!=TK_IF_NULL_ROW ){ + int j, n; + ExprList *pGB = pAggInfo->pGroupBy; + struct ExprList_item *pTerm = pGB->a; + n = pGB->nExpr; + for(j=0; j<n; j++, pTerm++){ + Expr *pE = pTerm->pExpr; + if( pE->op==TK_COLUMN + && pE->iTable==pExpr->iTable + && pE->iColumn==pExpr->iColumn + ){ + pCol->iSorterColumn = j; + break; + } + } + } + if( pCol->iSorterColumn<0 ){ + pCol->iSorterColumn = pAggInfo->nSortingColumn++; + } + } + /* There is now an entry for pExpr in pAggInfo->aCol[] (either + ** because it was there before or because we just created it). + ** Convert the pExpr to be a TK_AGG_COLUMN referring to that + ** pAggInfo->aCol[] entry. + */ + ExprSetVVAProperty(pExpr, EP_NoReduce); + pExpr->pAggInfo = pAggInfo; + if( pExpr->op==TK_COLUMN ){ + pExpr->op = TK_AGG_COLUMN; + } + pExpr->iAgg = (i16)k; + break; + } /* endif pExpr->iTable==pItem->iCursor */ + } /* end loop over pSrcList */ + } + return WRC_Prune; + } + case TK_AGG_FUNCTION: { + if( (pNC->ncFlags & NC_InAggFunc)==0 + && pWalker->walkerDepth==pExpr->op2 + ){ + /* Check to see if pExpr is a duplicate of another aggregate + ** function that is already in the pAggInfo structure + */ + struct AggInfo_func *pItem = pAggInfo->aFunc; + for(i=0; i<pAggInfo->nFunc; i++, pItem++){ + if( pItem->pFExpr==pExpr ) break; + if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ + break; + } + } + if( i>=pAggInfo->nFunc ){ + /* pExpr is original. Make a new entry in pAggInfo->aFunc[] + */ + u8 enc = ENC(pParse->db); + i = addAggInfoFunc(pParse->db, pAggInfo); + if( i>=0 ){ + assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); + pItem = &pAggInfo->aFunc[i]; + pItem->pFExpr = pExpr; + pItem->iMem = ++pParse->nMem; + assert( ExprUseUToken(pExpr) ); + pItem->pFunc = sqlite3FindFunction(pParse->db, + pExpr->u.zToken, + pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); + if( pExpr->flags & EP_Distinct ){ + pItem->iDistinct = pParse->nTab++; + }else{ + pItem->iDistinct = -1; + } + } + } + /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry + */ + assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); + ExprSetVVAProperty(pExpr, EP_NoReduce); + pExpr->iAgg = (i16)i; + pExpr->pAggInfo = pAggInfo; + return WRC_Prune; + }else{ + return WRC_Continue; + } + } + } + return WRC_Continue; +} + +/* +** Analyze the pExpr expression looking for aggregate functions and +** for variables that need to be added to AggInfo object that pNC->pAggInfo +** points to. Additional entries are made on the AggInfo object as +** necessary. +** +** This routine should only be called after the expression has been +** analyzed by sqlite3ResolveExprNames(). +*/ +void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ + Walker w; + w.xExprCallback = analyzeAggregate; + w.xSelectCallback = sqlite3WalkerDepthIncrease; + w.xSelectCallback2 = sqlite3WalkerDepthDecrease; + w.walkerDepth = 0; + w.u.pNC = pNC; + w.pParse = 0; + assert( pNC->pSrcList!=0 ); + sqlite3WalkExpr(&w, pExpr); +} + +/* +** Call sqlite3ExprAnalyzeAggregates() for every expression in an +** expression list. Return the number of errors. +** +** If an error is found, the analysis is cut short. +*/ +void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ + struct ExprList_item *pItem; + int i; + if( pList ){ + for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ + sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); + } + } +} + +/* +** Allocate a single new register for use to hold some intermediate result. +*/ +int sqlite3GetTempReg(Parse *pParse){ + if( pParse->nTempReg==0 ){ + return ++pParse->nMem; + } + return pParse->aTempReg[--pParse->nTempReg]; +} + +/* +** Deallocate a register, making available for reuse for some other +** purpose. +*/ +void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ + if( iReg ){ + sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); + if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ + pParse->aTempReg[pParse->nTempReg++] = iReg; + } + } +} + +/* +** Allocate or deallocate a block of nReg consecutive registers. +*/ +int sqlite3GetTempRange(Parse *pParse, int nReg){ + int i, n; + if( nReg==1 ) return sqlite3GetTempReg(pParse); + i = pParse->iRangeReg; + n = pParse->nRangeReg; + if( nReg<=n ){ + pParse->iRangeReg += nReg; + pParse->nRangeReg -= nReg; + }else{ + i = pParse->nMem+1; + pParse->nMem += nReg; + } + return i; +} +void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ + if( nReg==1 ){ + sqlite3ReleaseTempReg(pParse, iReg); + return; + } + sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); + if( nReg>pParse->nRangeReg ){ + pParse->nRangeReg = nReg; + pParse->iRangeReg = iReg; + } +} + +/* +** Mark all temporary registers as being unavailable for reuse. +** +** Always invoke this procedure after coding a subroutine or co-routine +** that might be invoked from other parts of the code, to ensure that +** the sub/co-routine does not use registers in common with the code that +** invokes the sub/co-routine. +*/ +void sqlite3ClearTempRegCache(Parse *pParse){ + pParse->nTempReg = 0; + pParse->nRangeReg = 0; +} + +/* +** Validate that no temporary register falls within the range of +** iFirst..iLast, inclusive. This routine is only call from within assert() +** statements. +*/ +#ifdef SQLITE_DEBUG +int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ + int i; + if( pParse->nRangeReg>0 + && pParse->iRangeReg+pParse->nRangeReg > iFirst + && pParse->iRangeReg <= iLast + ){ + return 0; + } + for(i=0; i<pParse->nTempReg; i++){ + if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ + return 0; + } + } + return 1; +} +#endif /* SQLITE_DEBUG */ |