summaryrefslogtreecommitdiffstats
path: root/src/select.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 17:28:19 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-05 17:28:19 +0000
commit18657a960e125336f704ea058e25c27bd3900dcb (patch)
tree17b438b680ed45a996d7b59951e6aa34023783f2 /src/select.c
parentInitial commit. (diff)
downloadsqlite3-18657a960e125336f704ea058e25c27bd3900dcb.tar.xz
sqlite3-18657a960e125336f704ea058e25c27bd3900dcb.zip
Adding upstream version 3.40.1.upstream/3.40.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/select.c')
-rw-r--r--src/select.c7908
1 files changed, 7908 insertions, 0 deletions
diff --git a/src/select.c b/src/select.c
new file mode 100644
index 0000000..b0f79f8
--- /dev/null
+++ b/src/select.c
@@ -0,0 +1,7908 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle SELECT statements in SQLite.
+*/
+#include "sqliteInt.h"
+
+/*
+** An instance of the following object is used to record information about
+** how to process the DISTINCT keyword, to simplify passing that information
+** into the selectInnerLoop() routine.
+*/
+typedef struct DistinctCtx DistinctCtx;
+struct DistinctCtx {
+ u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */
+ u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
+ int tabTnct; /* Ephemeral table used for DISTINCT processing */
+ int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
+};
+
+/*
+** An instance of the following object is used to record information about
+** the ORDER BY (or GROUP BY) clause of query is being coded.
+**
+** The aDefer[] array is used by the sorter-references optimization. For
+** example, assuming there is no index that can be used for the ORDER BY,
+** for the query:
+**
+** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
+**
+** it may be more efficient to add just the "a" values to the sorter, and
+** retrieve the associated "bigblob" values directly from table t1 as the
+** 10 smallest "a" values are extracted from the sorter.
+**
+** When the sorter-reference optimization is used, there is one entry in the
+** aDefer[] array for each database table that may be read as values are
+** extracted from the sorter.
+*/
+typedef struct SortCtx SortCtx;
+struct SortCtx {
+ ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
+ int nOBSat; /* Number of ORDER BY terms satisfied by indices */
+ int iECursor; /* Cursor number for the sorter */
+ int regReturn; /* Register holding block-output return address */
+ int labelBkOut; /* Start label for the block-output subroutine */
+ int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
+ int labelDone; /* Jump here when done, ex: LIMIT reached */
+ int labelOBLopt; /* Jump here when sorter is full */
+ u8 sortFlags; /* Zero or more SORTFLAG_* bits */
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ u8 nDefer; /* Number of valid entries in aDefer[] */
+ struct DeferredCsr {
+ Table *pTab; /* Table definition */
+ int iCsr; /* Cursor number for table */
+ int nKey; /* Number of PK columns for table pTab (>=1) */
+ } aDefer[4];
+#endif
+ struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */
+};
+#define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
+
+/*
+** Delete all the content of a Select structure. Deallocate the structure
+** itself depending on the value of bFree
+**
+** If bFree==1, call sqlite3DbFree() on the p object.
+** If bFree==0, Leave the first Select object unfreed
+*/
+static void clearSelect(sqlite3 *db, Select *p, int bFree){
+ assert( db!=0 );
+ while( p ){
+ Select *pPrior = p->pPrior;
+ sqlite3ExprListDelete(db, p->pEList);
+ sqlite3SrcListDelete(db, p->pSrc);
+ sqlite3ExprDelete(db, p->pWhere);
+ sqlite3ExprListDelete(db, p->pGroupBy);
+ sqlite3ExprDelete(db, p->pHaving);
+ sqlite3ExprListDelete(db, p->pOrderBy);
+ sqlite3ExprDelete(db, p->pLimit);
+ if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
+ sqlite3WindowListDelete(db, p->pWinDefn);
+ }
+ while( p->pWin ){
+ assert( p->pWin->ppThis==&p->pWin );
+ sqlite3WindowUnlinkFromSelect(p->pWin);
+ }
+#endif
+ if( bFree ) sqlite3DbNNFreeNN(db, p);
+ p = pPrior;
+ bFree = 1;
+ }
+}
+
+/*
+** Initialize a SelectDest structure.
+*/
+void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
+ pDest->eDest = (u8)eDest;
+ pDest->iSDParm = iParm;
+ pDest->iSDParm2 = 0;
+ pDest->zAffSdst = 0;
+ pDest->iSdst = 0;
+ pDest->nSdst = 0;
+}
+
+
+/*
+** Allocate a new Select structure and return a pointer to that
+** structure.
+*/
+Select *sqlite3SelectNew(
+ Parse *pParse, /* Parsing context */
+ ExprList *pEList, /* which columns to include in the result */
+ SrcList *pSrc, /* the FROM clause -- which tables to scan */
+ Expr *pWhere, /* the WHERE clause */
+ ExprList *pGroupBy, /* the GROUP BY clause */
+ Expr *pHaving, /* the HAVING clause */
+ ExprList *pOrderBy, /* the ORDER BY clause */
+ u32 selFlags, /* Flag parameters, such as SF_Distinct */
+ Expr *pLimit /* LIMIT value. NULL means not used */
+){
+ Select *pNew, *pAllocated;
+ Select standin;
+ pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
+ if( pNew==0 ){
+ assert( pParse->db->mallocFailed );
+ pNew = &standin;
+ }
+ if( pEList==0 ){
+ pEList = sqlite3ExprListAppend(pParse, 0,
+ sqlite3Expr(pParse->db,TK_ASTERISK,0));
+ }
+ pNew->pEList = pEList;
+ pNew->op = TK_SELECT;
+ pNew->selFlags = selFlags;
+ pNew->iLimit = 0;
+ pNew->iOffset = 0;
+ pNew->selId = ++pParse->nSelect;
+ pNew->addrOpenEphm[0] = -1;
+ pNew->addrOpenEphm[1] = -1;
+ pNew->nSelectRow = 0;
+ if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
+ pNew->pSrc = pSrc;
+ pNew->pWhere = pWhere;
+ pNew->pGroupBy = pGroupBy;
+ pNew->pHaving = pHaving;
+ pNew->pOrderBy = pOrderBy;
+ pNew->pPrior = 0;
+ pNew->pNext = 0;
+ pNew->pLimit = pLimit;
+ pNew->pWith = 0;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ pNew->pWin = 0;
+ pNew->pWinDefn = 0;
+#endif
+ if( pParse->db->mallocFailed ) {
+ clearSelect(pParse->db, pNew, pNew!=&standin);
+ pAllocated = 0;
+ }else{
+ assert( pNew->pSrc!=0 || pParse->nErr>0 );
+ }
+ return pAllocated;
+}
+
+
+/*
+** Delete the given Select structure and all of its substructures.
+*/
+void sqlite3SelectDelete(sqlite3 *db, Select *p){
+ if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
+}
+
+/*
+** Return a pointer to the right-most SELECT statement in a compound.
+*/
+static Select *findRightmost(Select *p){
+ while( p->pNext ) p = p->pNext;
+ return p;
+}
+
+/*
+** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
+** type of join. Return an integer constant that expresses that type
+** in terms of the following bit values:
+**
+** JT_INNER
+** JT_CROSS
+** JT_OUTER
+** JT_NATURAL
+** JT_LEFT
+** JT_RIGHT
+**
+** A full outer join is the combination of JT_LEFT and JT_RIGHT.
+**
+** If an illegal or unsupported join type is seen, then still return
+** a join type, but put an error in the pParse structure.
+**
+** These are the valid join types:
+**
+**
+** pA pB pC Return Value
+** ------- ----- ----- ------------
+** CROSS - - JT_CROSS
+** INNER - - JT_INNER
+** LEFT - - JT_LEFT|JT_OUTER
+** LEFT OUTER - JT_LEFT|JT_OUTER
+** RIGHT - - JT_RIGHT|JT_OUTER
+** RIGHT OUTER - JT_RIGHT|JT_OUTER
+** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER
+** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER
+** NATURAL INNER - JT_NATURAL|JT_INNER
+** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER
+** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER
+** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER
+** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER
+** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT
+** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT
+**
+** To preserve historical compatibly, SQLite also accepts a variety
+** of other non-standard and in many cases non-sensical join types.
+** This routine makes as much sense at it can from the nonsense join
+** type and returns a result. Examples of accepted nonsense join types
+** include but are not limited to:
+**
+** INNER CROSS JOIN -> same as JOIN
+** NATURAL CROSS JOIN -> same as NATURAL JOIN
+** OUTER LEFT JOIN -> same as LEFT JOIN
+** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN
+** LEFT RIGHT JOIN -> same as FULL JOIN
+** RIGHT OUTER FULL JOIN -> same as FULL JOIN
+** CROSS CROSS CROSS JOIN -> same as JOIN
+**
+** The only restrictions on the join type name are:
+**
+** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT",
+** or "FULL".
+**
+** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT,
+** or "FULL".
+**
+** * If "OUTER" is present then there must also be one of
+** "LEFT", "RIGHT", or "FULL"
+*/
+int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
+ int jointype = 0;
+ Token *apAll[3];
+ Token *p;
+ /* 0123456789 123456789 123456789 123 */
+ static const char zKeyText[] = "naturaleftouterightfullinnercross";
+ static const struct {
+ u8 i; /* Beginning of keyword text in zKeyText[] */
+ u8 nChar; /* Length of the keyword in characters */
+ u8 code; /* Join type mask */
+ } aKeyword[] = {
+ /* (0) natural */ { 0, 7, JT_NATURAL },
+ /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER },
+ /* (2) outer */ { 10, 5, JT_OUTER },
+ /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER },
+ /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
+ /* (5) inner */ { 23, 5, JT_INNER },
+ /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS },
+ };
+ int i, j;
+ apAll[0] = pA;
+ apAll[1] = pB;
+ apAll[2] = pC;
+ for(i=0; i<3 && apAll[i]; i++){
+ p = apAll[i];
+ for(j=0; j<ArraySize(aKeyword); j++){
+ if( p->n==aKeyword[j].nChar
+ && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
+ jointype |= aKeyword[j].code;
+ break;
+ }
+ }
+ testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
+ if( j>=ArraySize(aKeyword) ){
+ jointype |= JT_ERROR;
+ break;
+ }
+ }
+ if(
+ (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
+ (jointype & JT_ERROR)!=0 ||
+ (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER
+ ){
+ const char *zSp1 = " ";
+ const char *zSp2 = " ";
+ if( pB==0 ){ zSp1++; }
+ if( pC==0 ){ zSp2++; }
+ sqlite3ErrorMsg(pParse, "unknown join type: "
+ "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
+ jointype = JT_INNER;
+ }
+ return jointype;
+}
+
+/*
+** Return the index of a column in a table. Return -1 if the column
+** is not contained in the table.
+*/
+int sqlite3ColumnIndex(Table *pTab, const char *zCol){
+ int i;
+ u8 h = sqlite3StrIHash(zCol);
+ Column *pCol;
+ for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
+ if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
+ }
+ return -1;
+}
+
+/*
+** Mark a subquery result column as having been used.
+*/
+void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){
+ assert( pItem!=0 );
+ assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) );
+ if( pItem->fg.isNestedFrom ){
+ ExprList *pResults;
+ assert( pItem->pSelect!=0 );
+ pResults = pItem->pSelect->pEList;
+ assert( pResults!=0 );
+ assert( iCol>=0 && iCol<pResults->nExpr );
+ pResults->a[iCol].fg.bUsed = 1;
+ }
+}
+
+/*
+** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a
+** table that has a column named zCol. The search is left-to-right.
+** The first match found is returned.
+**
+** When found, set *piTab and *piCol to the table index and column index
+** of the matching column and return TRUE.
+**
+** If not found, return FALSE.
+*/
+static int tableAndColumnIndex(
+ SrcList *pSrc, /* Array of tables to search */
+ int iStart, /* First member of pSrc->a[] to check */
+ int iEnd, /* Last member of pSrc->a[] to check */
+ const char *zCol, /* Name of the column we are looking for */
+ int *piTab, /* Write index of pSrc->a[] here */
+ int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
+ int bIgnoreHidden /* Ignore hidden columns */
+){
+ int i; /* For looping over tables in pSrc */
+ int iCol; /* Index of column matching zCol */
+
+ assert( iEnd<pSrc->nSrc );
+ assert( iStart>=0 );
+ assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
+
+ for(i=iStart; i<=iEnd; i++){
+ iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
+ if( iCol>=0
+ && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
+ ){
+ if( piTab ){
+ sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol);
+ *piTab = i;
+ *piCol = iCol;
+ }
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Set the EP_OuterON property on all terms of the given expression.
+** And set the Expr.w.iJoin to iTable for every term in the
+** expression.
+**
+** The EP_OuterON property is used on terms of an expression to tell
+** the OUTER JOIN processing logic that this term is part of the
+** join restriction specified in the ON or USING clause and not a part
+** of the more general WHERE clause. These terms are moved over to the
+** WHERE clause during join processing but we need to remember that they
+** originated in the ON or USING clause.
+**
+** The Expr.w.iJoin tells the WHERE clause processing that the
+** expression depends on table w.iJoin even if that table is not
+** explicitly mentioned in the expression. That information is needed
+** for cases like this:
+**
+** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
+**
+** The where clause needs to defer the handling of the t1.x=5
+** term until after the t2 loop of the join. In that way, a
+** NULL t2 row will be inserted whenever t1.x!=5. If we do not
+** defer the handling of t1.x=5, it will be processed immediately
+** after the t1 loop and rows with t1.x!=5 will never appear in
+** the output, which is incorrect.
+*/
+void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){
+ assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON );
+ while( p ){
+ ExprSetProperty(p, joinFlag);
+ assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
+ ExprSetVVAProperty(p, EP_NoReduce);
+ p->w.iJoin = iTable;
+ if( p->op==TK_FUNCTION ){
+ assert( ExprUseXList(p) );
+ if( p->x.pList ){
+ int i;
+ for(i=0; i<p->x.pList->nExpr; i++){
+ sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag);
+ }
+ }
+ }
+ sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag);
+ p = p->pRight;
+ }
+}
+
+/* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN
+** is simplified into an ordinary JOIN, and when an ON expression is
+** "pushed down" into the WHERE clause of a subquery.
+**
+** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into
+** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then
+** just clear every EP_OuterON and EP_InnerON mark from the expression tree.
+**
+** If nullable is true, that means that Expr p might evaluate to NULL even
+** if it is a reference to a NOT NULL column. This can happen, for example,
+** if the table that p references is on the left side of a RIGHT JOIN.
+** If nullable is true, then take care to not remove the EP_CanBeNull bit.
+** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c
+*/
+static void unsetJoinExpr(Expr *p, int iTable, int nullable){
+ while( p ){
+ if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){
+ ExprClearProperty(p, EP_OuterON|EP_InnerON);
+ if( iTable>=0 ) ExprSetProperty(p, EP_InnerON);
+ }
+ if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){
+ ExprClearProperty(p, EP_CanBeNull);
+ }
+ if( p->op==TK_FUNCTION ){
+ assert( ExprUseXList(p) );
+ if( p->x.pList ){
+ int i;
+ for(i=0; i<p->x.pList->nExpr; i++){
+ unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable);
+ }
+ }
+ }
+ unsetJoinExpr(p->pLeft, iTable, nullable);
+ p = p->pRight;
+ }
+}
+
+/*
+** This routine processes the join information for a SELECT statement.
+**
+** * A NATURAL join is converted into a USING join. After that, we
+** do not need to be concerned with NATURAL joins and we only have
+** think about USING joins.
+**
+** * ON and USING clauses result in extra terms being added to the
+** WHERE clause to enforce the specified constraints. The extra
+** WHERE clause terms will be tagged with EP_OuterON or
+** EP_InnerON so that we know that they originated in ON/USING.
+**
+** The terms of a FROM clause are contained in the Select.pSrc structure.
+** The left most table is the first entry in Select.pSrc. The right-most
+** table is the last entry. The join operator is held in the entry to
+** the right. Thus entry 1 contains the join operator for the join between
+** entries 0 and 1. Any ON or USING clauses associated with the join are
+** also attached to the right entry.
+**
+** This routine returns the number of errors encountered.
+*/
+static int sqlite3ProcessJoin(Parse *pParse, Select *p){
+ SrcList *pSrc; /* All tables in the FROM clause */
+ int i, j; /* Loop counters */
+ SrcItem *pLeft; /* Left table being joined */
+ SrcItem *pRight; /* Right table being joined */
+
+ pSrc = p->pSrc;
+ pLeft = &pSrc->a[0];
+ pRight = &pLeft[1];
+ for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
+ Table *pRightTab = pRight->pTab;
+ u32 joinType;
+
+ if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
+ joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON;
+
+ /* If this is a NATURAL join, synthesize an approprate USING clause
+ ** to specify which columns should be joined.
+ */
+ if( pRight->fg.jointype & JT_NATURAL ){
+ IdList *pUsing = 0;
+ if( pRight->fg.isUsing || pRight->u3.pOn ){
+ sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
+ "an ON or USING clause", 0);
+ return 1;
+ }
+ for(j=0; j<pRightTab->nCol; j++){
+ char *zName; /* Name of column in the right table */
+
+ if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
+ zName = pRightTab->aCol[j].zCnName;
+ if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){
+ pUsing = sqlite3IdListAppend(pParse, pUsing, 0);
+ if( pUsing ){
+ assert( pUsing->nId>0 );
+ assert( pUsing->a[pUsing->nId-1].zName==0 );
+ pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName);
+ }
+ }
+ }
+ if( pUsing ){
+ pRight->fg.isUsing = 1;
+ pRight->fg.isSynthUsing = 1;
+ pRight->u3.pUsing = pUsing;
+ }
+ if( pParse->nErr ) return 1;
+ }
+
+ /* Create extra terms on the WHERE clause for each column named
+ ** in the USING clause. Example: If the two tables to be joined are
+ ** A and B and the USING clause names X, Y, and Z, then add this
+ ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
+ ** Report an error if any column mentioned in the USING clause is
+ ** not contained in both tables to be joined.
+ */
+ if( pRight->fg.isUsing ){
+ IdList *pList = pRight->u3.pUsing;
+ sqlite3 *db = pParse->db;
+ assert( pList!=0 );
+ for(j=0; j<pList->nId; j++){
+ char *zName; /* Name of the term in the USING clause */
+ int iLeft; /* Table on the left with matching column name */
+ int iLeftCol; /* Column number of matching column on the left */
+ int iRightCol; /* Column number of matching column on the right */
+ Expr *pE1; /* Reference to the column on the LEFT of the join */
+ Expr *pE2; /* Reference to the column on the RIGHT of the join */
+ Expr *pEq; /* Equality constraint. pE1 == pE2 */
+
+ zName = pList->a[j].zName;
+ iRightCol = sqlite3ColumnIndex(pRightTab, zName);
+ if( iRightCol<0
+ || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol,
+ pRight->fg.isSynthUsing)==0
+ ){
+ sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
+ "not present in both tables", zName);
+ return 1;
+ }
+ pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
+ sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
+ if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
+ /* This branch runs if the query contains one or more RIGHT or FULL
+ ** JOINs. If only a single table on the left side of this join
+ ** contains the zName column, then this branch is a no-op.
+ ** But if there are two or more tables on the left side
+ ** of the join, construct a coalesce() function that gathers all
+ ** such tables. Raise an error if more than one of those references
+ ** to zName is not also within a prior USING clause.
+ **
+ ** We really ought to raise an error if there are two or more
+ ** non-USING references to zName on the left of an INNER or LEFT
+ ** JOIN. But older versions of SQLite do not do that, so we avoid
+ ** adding a new error so as to not break legacy applications.
+ */
+ ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */
+ static const Token tkCoalesce = { "coalesce", 8 };
+ while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol,
+ pRight->fg.isSynthUsing)!=0 ){
+ if( pSrc->a[iLeft].fg.isUsing==0
+ || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0
+ ){
+ sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()",
+ zName);
+ break;
+ }
+ pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
+ pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
+ sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
+ }
+ if( pFuncArgs ){
+ pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
+ pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0);
+ }
+ }
+ pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol);
+ sqlite3SrcItemColumnUsed(pRight, iRightCol);
+ pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
+ assert( pE2!=0 || pEq==0 );
+ if( pEq ){
+ ExprSetProperty(pEq, joinType);
+ assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
+ ExprSetVVAProperty(pEq, EP_NoReduce);
+ pEq->w.iJoin = pE2->iTable;
+ }
+ p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq);
+ }
+ }
+
+ /* Add the ON clause to the end of the WHERE clause, connected by
+ ** an AND operator.
+ */
+ else if( pRight->u3.pOn ){
+ sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType);
+ p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn);
+ pRight->u3.pOn = 0;
+ pRight->fg.isOn = 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** An instance of this object holds information (beyond pParse and pSelect)
+** needed to load the next result row that is to be added to the sorter.
+*/
+typedef struct RowLoadInfo RowLoadInfo;
+struct RowLoadInfo {
+ int regResult; /* Store results in array of registers here */
+ u8 ecelFlags; /* Flag argument to ExprCodeExprList() */
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ ExprList *pExtra; /* Extra columns needed by sorter refs */
+ int regExtraResult; /* Where to load the extra columns */
+#endif
+};
+
+/*
+** This routine does the work of loading query data into an array of
+** registers so that it can be added to the sorter.
+*/
+static void innerLoopLoadRow(
+ Parse *pParse, /* Statement under construction */
+ Select *pSelect, /* The query being coded */
+ RowLoadInfo *pInfo /* Info needed to complete the row load */
+){
+ sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
+ 0, pInfo->ecelFlags);
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( pInfo->pExtra ){
+ sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
+ sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
+ }
+#endif
+}
+
+/*
+** Code the OP_MakeRecord instruction that generates the entry to be
+** added into the sorter.
+**
+** Return the register in which the result is stored.
+*/
+static int makeSorterRecord(
+ Parse *pParse,
+ SortCtx *pSort,
+ Select *pSelect,
+ int regBase,
+ int nBase
+){
+ int nOBSat = pSort->nOBSat;
+ Vdbe *v = pParse->pVdbe;
+ int regOut = ++pParse->nMem;
+ if( pSort->pDeferredRowLoad ){
+ innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
+ return regOut;
+}
+
+/*
+** Generate code that will push the record in registers regData
+** through regData+nData-1 onto the sorter.
+*/
+static void pushOntoSorter(
+ Parse *pParse, /* Parser context */
+ SortCtx *pSort, /* Information about the ORDER BY clause */
+ Select *pSelect, /* The whole SELECT statement */
+ int regData, /* First register holding data to be sorted */
+ int regOrigData, /* First register holding data before packing */
+ int nData, /* Number of elements in the regData data array */
+ int nPrefixReg /* No. of reg prior to regData available for use */
+){
+ Vdbe *v = pParse->pVdbe; /* Stmt under construction */
+ int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
+ int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
+ int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
+ int regBase; /* Regs for sorter record */
+ int regRecord = 0; /* Assembled sorter record */
+ int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
+ int op; /* Opcode to add sorter record to sorter */
+ int iLimit; /* LIMIT counter */
+ int iSkip = 0; /* End of the sorter insert loop */
+
+ assert( bSeq==0 || bSeq==1 );
+
+ /* Three cases:
+ ** (1) The data to be sorted has already been packed into a Record
+ ** by a prior OP_MakeRecord. In this case nData==1 and regData
+ ** will be completely unrelated to regOrigData.
+ ** (2) All output columns are included in the sort record. In that
+ ** case regData==regOrigData.
+ ** (3) Some output columns are omitted from the sort record due to
+ ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
+ ** SQLITE_ECEL_OMITREF optimization, or due to the
+ ** SortCtx.pDeferredRowLoad optimiation. In any of these cases
+ ** regOrigData is 0 to prevent this routine from trying to copy
+ ** values that might not yet exist.
+ */
+ assert( nData==1 || regData==regOrigData || regOrigData==0 );
+
+ if( nPrefixReg ){
+ assert( nPrefixReg==nExpr+bSeq );
+ regBase = regData - nPrefixReg;
+ }else{
+ regBase = pParse->nMem + 1;
+ pParse->nMem += nBase;
+ }
+ assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
+ iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
+ pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
+ sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
+ SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
+ if( bSeq ){
+ sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
+ }
+ if( nPrefixReg==0 && nData>0 ){
+ sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
+ }
+ if( nOBSat>0 ){
+ int regPrevKey; /* The first nOBSat columns of the previous row */
+ int addrFirst; /* Address of the OP_IfNot opcode */
+ int addrJmp; /* Address of the OP_Jump opcode */
+ VdbeOp *pOp; /* Opcode that opens the sorter */
+ int nKey; /* Number of sorting key columns, including OP_Sequence */
+ KeyInfo *pKI; /* Original KeyInfo on the sorter table */
+
+ regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
+ regPrevKey = pParse->nMem+1;
+ pParse->nMem += pSort->nOBSat;
+ nKey = nExpr - pSort->nOBSat + bSeq;
+ if( bSeq ){
+ addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
+ }else{
+ addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
+ }
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
+ pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
+ if( pParse->db->mallocFailed ) return;
+ pOp->p2 = nKey + nData;
+ pKI = pOp->p4.pKeyInfo;
+ memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
+ sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
+ testcase( pKI->nAllField > pKI->nKeyField+2 );
+ pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
+ pKI->nAllField-pKI->nKeyField-1);
+ pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
+ addrJmp = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
+ pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
+ pSort->regReturn = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
+ sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
+ if( iLimit ){
+ sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeJumpHere(v, addrFirst);
+ sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
+ sqlite3VdbeJumpHere(v, addrJmp);
+ }
+ if( iLimit ){
+ /* At this point the values for the new sorter entry are stored
+ ** in an array of registers. They need to be composed into a record
+ ** and inserted into the sorter if either (a) there are currently
+ ** less than LIMIT+OFFSET items or (b) the new record is smaller than
+ ** the largest record currently in the sorter. If (b) is true and there
+ ** are already LIMIT+OFFSET items in the sorter, delete the largest
+ ** entry before inserting the new one. This way there are never more
+ ** than LIMIT+OFFSET items in the sorter.
+ **
+ ** If the new record does not need to be inserted into the sorter,
+ ** jump to the next iteration of the loop. If the pSort->labelOBLopt
+ ** value is not zero, then it is a label of where to jump. Otherwise,
+ ** just bypass the row insert logic. See the header comment on the
+ ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
+ */
+ int iCsr = pSort->iECursor;
+ sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
+ iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
+ iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
+ }
+ if( regRecord==0 ){
+ regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
+ }
+ if( pSort->sortFlags & SORTFLAG_UseSorter ){
+ op = OP_SorterInsert;
+ }else{
+ op = OP_IdxInsert;
+ }
+ sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
+ regBase+nOBSat, nBase-nOBSat);
+ if( iSkip ){
+ sqlite3VdbeChangeP2(v, iSkip,
+ pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
+ }
+}
+
+/*
+** Add code to implement the OFFSET
+*/
+static void codeOffset(
+ Vdbe *v, /* Generate code into this VM */
+ int iOffset, /* Register holding the offset counter */
+ int iContinue /* Jump here to skip the current record */
+){
+ if( iOffset>0 ){
+ sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
+ VdbeComment((v, "OFFSET"));
+ }
+}
+
+/*
+** Add code that will check to make sure the array of registers starting at
+** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
+** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
+** are available. Which is used depends on the value of parameter eTnctType,
+** as follows:
+**
+** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
+** Build an ephemeral table that contains all entries seen before and
+** skip entries which have been seen before.
+**
+** Parameter iTab is the cursor number of an ephemeral table that must
+** be opened before the VM code generated by this routine is executed.
+** The ephemeral cursor table is queried for a record identical to the
+** record formed by the current array of registers. If one is found,
+** jump to VM address addrRepeat. Otherwise, insert a new record into
+** the ephemeral cursor and proceed.
+**
+** The returned value in this case is a copy of parameter iTab.
+**
+** WHERE_DISTINCT_ORDERED:
+** In this case rows are being delivered sorted order. The ephermal
+** table is not required. Instead, the current set of values
+** is compared against previous row. If they match, the new row
+** is not distinct and control jumps to VM address addrRepeat. Otherwise,
+** the VM program proceeds with processing the new row.
+**
+** The returned value in this case is the register number of the first
+** in an array of registers used to store the previous result row so that
+** it can be compared to the next. The caller must ensure that this
+** register is initialized to NULL. (The fixDistinctOpenEph() routine
+** will take care of this initialization.)
+**
+** WHERE_DISTINCT_UNIQUE:
+** In this case it has already been determined that the rows are distinct.
+** No special action is required. The return value is zero.
+**
+** Parameter pEList is the list of expressions used to generated the
+** contents of each row. It is used by this routine to determine (a)
+** how many elements there are in the array of registers and (b) the
+** collation sequences that should be used for the comparisons if
+** eTnctType is WHERE_DISTINCT_ORDERED.
+*/
+static int codeDistinct(
+ Parse *pParse, /* Parsing and code generating context */
+ int eTnctType, /* WHERE_DISTINCT_* value */
+ int iTab, /* A sorting index used to test for distinctness */
+ int addrRepeat, /* Jump to here if not distinct */
+ ExprList *pEList, /* Expression for each element */
+ int regElem /* First element */
+){
+ int iRet = 0;
+ int nResultCol = pEList->nExpr;
+ Vdbe *v = pParse->pVdbe;
+
+ switch( eTnctType ){
+ case WHERE_DISTINCT_ORDERED: {
+ int i;
+ int iJump; /* Jump destination */
+ int regPrev; /* Previous row content */
+
+ /* Allocate space for the previous row */
+ iRet = regPrev = pParse->nMem+1;
+ pParse->nMem += nResultCol;
+
+ iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
+ for(i=0; i<nResultCol; i++){
+ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
+ if( i<nResultCol-1 ){
+ sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
+ VdbeCoverage(v);
+ }else{
+ sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
+ sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
+ }
+ assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
+ sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
+ break;
+ }
+
+ case WHERE_DISTINCT_UNIQUE: {
+ /* nothing to do */
+ break;
+ }
+
+ default: {
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ sqlite3ReleaseTempReg(pParse, r1);
+ iRet = iTab;
+ break;
+ }
+ }
+
+ return iRet;
+}
+
+/*
+** This routine runs after codeDistinct(). It makes necessary
+** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
+** routine made use of. This processing must be done separately since
+** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
+** laid down.
+**
+** WHERE_DISTINCT_NOOP:
+** WHERE_DISTINCT_UNORDERED:
+**
+** No adjustments necessary. This function is a no-op.
+**
+** WHERE_DISTINCT_UNIQUE:
+**
+** The ephemeral table is not needed. So change the
+** OP_OpenEphemeral opcode into an OP_Noop.
+**
+** WHERE_DISTINCT_ORDERED:
+**
+** The ephemeral table is not needed. But we do need register
+** iVal to be initialized to NULL. So change the OP_OpenEphemeral
+** into an OP_Null on the iVal register.
+*/
+static void fixDistinctOpenEph(
+ Parse *pParse, /* Parsing and code generating context */
+ int eTnctType, /* WHERE_DISTINCT_* value */
+ int iVal, /* Value returned by codeDistinct() */
+ int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */
+){
+ if( pParse->nErr==0
+ && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
+ ){
+ Vdbe *v = pParse->pVdbe;
+ sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
+ if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
+ sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
+ }
+ if( eTnctType==WHERE_DISTINCT_ORDERED ){
+ /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
+ ** bit on the first register of the previous value. This will cause the
+ ** OP_Ne added in codeDistinct() to always fail on the first iteration of
+ ** the loop even if the first row is all NULLs. */
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
+ pOp->opcode = OP_Null;
+ pOp->p1 = 1;
+ pOp->p2 = iVal;
+ }
+ }
+}
+
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+/*
+** This function is called as part of inner-loop generation for a SELECT
+** statement with an ORDER BY that is not optimized by an index. It
+** determines the expressions, if any, that the sorter-reference
+** optimization should be used for. The sorter-reference optimization
+** is used for SELECT queries like:
+**
+** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
+**
+** If the optimization is used for expression "bigblob", then instead of
+** storing values read from that column in the sorter records, the PK of
+** the row from table t1 is stored instead. Then, as records are extracted from
+** the sorter to return to the user, the required value of bigblob is
+** retrieved directly from table t1. If the values are very large, this
+** can be more efficient than storing them directly in the sorter records.
+**
+** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList
+** for which the sorter-reference optimization should be enabled.
+** Additionally, the pSort->aDefer[] array is populated with entries
+** for all cursors required to evaluate all selected expressions. Finally.
+** output variable (*ppExtra) is set to an expression list containing
+** expressions for all extra PK values that should be stored in the
+** sorter records.
+*/
+static void selectExprDefer(
+ Parse *pParse, /* Leave any error here */
+ SortCtx *pSort, /* Sorter context */
+ ExprList *pEList, /* Expressions destined for sorter */
+ ExprList **ppExtra /* Expressions to append to sorter record */
+){
+ int i;
+ int nDefer = 0;
+ ExprList *pExtra = 0;
+ for(i=0; i<pEList->nExpr; i++){
+ struct ExprList_item *pItem = &pEList->a[i];
+ if( pItem->u.x.iOrderByCol==0 ){
+ Expr *pExpr = pItem->pExpr;
+ Table *pTab;
+ if( pExpr->op==TK_COLUMN
+ && pExpr->iColumn>=0
+ && ALWAYS( ExprUseYTab(pExpr) )
+ && (pTab = pExpr->y.pTab)!=0
+ && IsOrdinaryTable(pTab)
+ && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
+ ){
+ int j;
+ for(j=0; j<nDefer; j++){
+ if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
+ }
+ if( j==nDefer ){
+ if( nDefer==ArraySize(pSort->aDefer) ){
+ continue;
+ }else{
+ int nKey = 1;
+ int k;
+ Index *pPk = 0;
+ if( !HasRowid(pTab) ){
+ pPk = sqlite3PrimaryKeyIndex(pTab);
+ nKey = pPk->nKeyCol;
+ }
+ for(k=0; k<nKey; k++){
+ Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
+ if( pNew ){
+ pNew->iTable = pExpr->iTable;
+ assert( ExprUseYTab(pNew) );
+ pNew->y.pTab = pExpr->y.pTab;
+ pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
+ pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
+ }
+ }
+ pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
+ pSort->aDefer[nDefer].iCsr = pExpr->iTable;
+ pSort->aDefer[nDefer].nKey = nKey;
+ nDefer++;
+ }
+ }
+ pItem->fg.bSorterRef = 1;
+ }
+ }
+ }
+ pSort->nDefer = (u8)nDefer;
+ *ppExtra = pExtra;
+}
+#endif
+
+/*
+** This routine generates the code for the inside of the inner loop
+** of a SELECT.
+**
+** If srcTab is negative, then the p->pEList expressions
+** are evaluated in order to get the data for this row. If srcTab is
+** zero or more, then data is pulled from srcTab and p->pEList is used only
+** to get the number of columns and the collation sequence for each column.
+*/
+static void selectInnerLoop(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The complete select statement being coded */
+ int srcTab, /* Pull data from this table if non-negative */
+ SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
+ DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
+ SelectDest *pDest, /* How to dispose of the results */
+ int iContinue, /* Jump here to continue with next row */
+ int iBreak /* Jump here to break out of the inner loop */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ int hasDistinct; /* True if the DISTINCT keyword is present */
+ int eDest = pDest->eDest; /* How to dispose of results */
+ int iParm = pDest->iSDParm; /* First argument to disposal method */
+ int nResultCol; /* Number of result columns */
+ int nPrefixReg = 0; /* Number of extra registers before regResult */
+ RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */
+
+ /* Usually, regResult is the first cell in an array of memory cells
+ ** containing the current result row. In this case regOrig is set to the
+ ** same value. However, if the results are being sent to the sorter, the
+ ** values for any expressions that are also part of the sort-key are omitted
+ ** from this array. In this case regOrig is set to zero. */
+ int regResult; /* Start of memory holding current results */
+ int regOrig; /* Start of memory holding full result (or 0) */
+
+ assert( v );
+ assert( p->pEList!=0 );
+ hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
+ if( pSort && pSort->pOrderBy==0 ) pSort = 0;
+ if( pSort==0 && !hasDistinct ){
+ assert( iContinue!=0 );
+ codeOffset(v, p->iOffset, iContinue);
+ }
+
+ /* Pull the requested columns.
+ */
+ nResultCol = p->pEList->nExpr;
+
+ if( pDest->iSdst==0 ){
+ if( pSort ){
+ nPrefixReg = pSort->pOrderBy->nExpr;
+ if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
+ pParse->nMem += nPrefixReg;
+ }
+ pDest->iSdst = pParse->nMem+1;
+ pParse->nMem += nResultCol;
+ }else if( pDest->iSdst+nResultCol > pParse->nMem ){
+ /* This is an error condition that can result, for example, when a SELECT
+ ** on the right-hand side of an INSERT contains more result columns than
+ ** there are columns in the table on the left. The error will be caught
+ ** and reported later. But we need to make sure enough memory is allocated
+ ** to avoid other spurious errors in the meantime. */
+ pParse->nMem += nResultCol;
+ }
+ pDest->nSdst = nResultCol;
+ regOrig = regResult = pDest->iSdst;
+ if( srcTab>=0 ){
+ for(i=0; i<nResultCol; i++){
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
+ VdbeComment((v, "%s", p->pEList->a[i].zEName));
+ }
+ }else if( eDest!=SRT_Exists ){
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ ExprList *pExtra = 0;
+#endif
+ /* If the destination is an EXISTS(...) expression, the actual
+ ** values returned by the SELECT are not required.
+ */
+ u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */
+ ExprList *pEList;
+ if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
+ ecelFlags = SQLITE_ECEL_DUP;
+ }else{
+ ecelFlags = 0;
+ }
+ if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
+ /* For each expression in p->pEList that is a copy of an expression in
+ ** the ORDER BY clause (pSort->pOrderBy), set the associated
+ ** iOrderByCol value to one more than the index of the ORDER BY
+ ** expression within the sort-key that pushOntoSorter() will generate.
+ ** This allows the p->pEList field to be omitted from the sorted record,
+ ** saving space and CPU cycles. */
+ ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
+
+ for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
+ int j;
+ if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
+ p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
+ }
+ }
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ selectExprDefer(pParse, pSort, p->pEList, &pExtra);
+ if( pExtra && pParse->db->mallocFailed==0 ){
+ /* If there are any extra PK columns to add to the sorter records,
+ ** allocate extra memory cells and adjust the OpenEphemeral
+ ** instruction to account for the larger records. This is only
+ ** required if there are one or more WITHOUT ROWID tables with
+ ** composite primary keys in the SortCtx.aDefer[] array. */
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
+ pOp->p2 += (pExtra->nExpr - pSort->nDefer);
+ pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
+ pParse->nMem += pExtra->nExpr;
+ }
+#endif
+
+ /* Adjust nResultCol to account for columns that are omitted
+ ** from the sorter by the optimizations in this branch */
+ pEList = p->pEList;
+ for(i=0; i<pEList->nExpr; i++){
+ if( pEList->a[i].u.x.iOrderByCol>0
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ || pEList->a[i].fg.bSorterRef
+#endif
+ ){
+ nResultCol--;
+ regOrig = 0;
+ }
+ }
+
+ testcase( regOrig );
+ testcase( eDest==SRT_Set );
+ testcase( eDest==SRT_Mem );
+ testcase( eDest==SRT_Coroutine );
+ testcase( eDest==SRT_Output );
+ assert( eDest==SRT_Set || eDest==SRT_Mem
+ || eDest==SRT_Coroutine || eDest==SRT_Output
+ || eDest==SRT_Upfrom );
+ }
+ sRowLoadInfo.regResult = regResult;
+ sRowLoadInfo.ecelFlags = ecelFlags;
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ sRowLoadInfo.pExtra = pExtra;
+ sRowLoadInfo.regExtraResult = regResult + nResultCol;
+ if( pExtra ) nResultCol += pExtra->nExpr;
+#endif
+ if( p->iLimit
+ && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
+ && nPrefixReg>0
+ ){
+ assert( pSort!=0 );
+ assert( hasDistinct==0 );
+ pSort->pDeferredRowLoad = &sRowLoadInfo;
+ regOrig = 0;
+ }else{
+ innerLoopLoadRow(pParse, p, &sRowLoadInfo);
+ }
+ }
+
+ /* If the DISTINCT keyword was present on the SELECT statement
+ ** and this row has been seen before, then do not make this row
+ ** part of the result.
+ */
+ if( hasDistinct ){
+ int eType = pDistinct->eTnctType;
+ int iTab = pDistinct->tabTnct;
+ assert( nResultCol==p->pEList->nExpr );
+ iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
+ fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
+ if( pSort==0 ){
+ codeOffset(v, p->iOffset, iContinue);
+ }
+ }
+
+ switch( eDest ){
+ /* In this mode, write each query result to the key of the temporary
+ ** table iParm.
+ */
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+ case SRT_Union: {
+ int r1;
+ r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+ /* Construct a record from the query result, but instead of
+ ** saving that record, use it as a key to delete elements from
+ ** the temporary table iParm.
+ */
+ case SRT_Except: {
+ sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
+ break;
+ }
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+ /* Store the result as data using a unique key.
+ */
+ case SRT_Fifo:
+ case SRT_DistFifo:
+ case SRT_Table:
+ case SRT_EphemTab: {
+ int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
+ testcase( eDest==SRT_Table );
+ testcase( eDest==SRT_EphemTab );
+ testcase( eDest==SRT_Fifo );
+ testcase( eDest==SRT_DistFifo );
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
+ if( pDest->zAffSdst ){
+ sqlite3VdbeChangeP4(v, -1, pDest->zAffSdst, nResultCol);
+ }
+#ifndef SQLITE_OMIT_CTE
+ if( eDest==SRT_DistFifo ){
+ /* If the destination is DistFifo, then cursor (iParm+1) is open
+ ** on an ephemeral index. If the current row is already present
+ ** in the index, do not write it to the output. If not, add the
+ ** current row to the index and proceed with writing it to the
+ ** output table as well. */
+ int addr = sqlite3VdbeCurrentAddr(v) + 4;
+ sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
+ assert( pSort==0 );
+ }
+#endif
+ if( pSort ){
+ assert( regResult==regOrig );
+ pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
+ }else{
+ int r2 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3ReleaseTempReg(pParse, r2);
+ }
+ sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
+ break;
+ }
+
+ case SRT_Upfrom: {
+ if( pSort ){
+ pushOntoSorter(
+ pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
+ }else{
+ int i2 = pDest->iSDParm2;
+ int r1 = sqlite3GetTempReg(pParse);
+
+ /* If the UPDATE FROM join is an aggregate that matches no rows, it
+ ** might still be trying to return one row, because that is what
+ ** aggregates do. Don't record that empty row in the output table. */
+ sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
+
+ sqlite3VdbeAddOp3(v, OP_MakeRecord,
+ regResult+(i2<0), nResultCol-(i2<0), r1);
+ if( i2<0 ){
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
+ }else{
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
+ }
+ }
+ break;
+ }
+
+#ifndef SQLITE_OMIT_SUBQUERY
+ /* If we are creating a set for an "expr IN (SELECT ...)" construct,
+ ** then there should be a single item on the stack. Write this
+ ** item into the set table with bogus data.
+ */
+ case SRT_Set: {
+ if( pSort ){
+ /* At first glance you would think we could optimize out the
+ ** ORDER BY in this case since the order of entries in the set
+ ** does not matter. But there might be a LIMIT clause, in which
+ ** case the order does matter */
+ pushOntoSorter(
+ pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
+ }else{
+ int r1 = sqlite3GetTempReg(pParse);
+ assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
+ r1, pDest->zAffSdst, nResultCol);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
+ sqlite3ReleaseTempReg(pParse, r1);
+ }
+ break;
+ }
+
+
+ /* If any row exist in the result set, record that fact and abort.
+ */
+ case SRT_Exists: {
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
+ /* The LIMIT clause will terminate the loop for us */
+ break;
+ }
+
+ /* If this is a scalar select that is part of an expression, then
+ ** store the results in the appropriate memory cell or array of
+ ** memory cells and break out of the scan loop.
+ */
+ case SRT_Mem: {
+ if( pSort ){
+ assert( nResultCol<=pDest->nSdst );
+ pushOntoSorter(
+ pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
+ }else{
+ assert( nResultCol==pDest->nSdst );
+ assert( regResult==iParm );
+ /* The LIMIT clause will jump out of the loop for us */
+ }
+ break;
+ }
+#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
+
+ case SRT_Coroutine: /* Send data to a co-routine */
+ case SRT_Output: { /* Return the results */
+ testcase( eDest==SRT_Coroutine );
+ testcase( eDest==SRT_Output );
+ if( pSort ){
+ pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
+ nPrefixReg);
+ }else if( eDest==SRT_Coroutine ){
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
+ }
+ break;
+ }
+
+#ifndef SQLITE_OMIT_CTE
+ /* Write the results into a priority queue that is order according to
+ ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
+ ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
+ ** pSO->nExpr columns, then make sure all keys are unique by adding a
+ ** final OP_Sequence column. The last column is the record as a blob.
+ */
+ case SRT_DistQueue:
+ case SRT_Queue: {
+ int nKey;
+ int r1, r2, r3;
+ int addrTest = 0;
+ ExprList *pSO;
+ pSO = pDest->pOrderBy;
+ assert( pSO );
+ nKey = pSO->nExpr;
+ r1 = sqlite3GetTempReg(pParse);
+ r2 = sqlite3GetTempRange(pParse, nKey+2);
+ r3 = r2+nKey+1;
+ if( eDest==SRT_DistQueue ){
+ /* If the destination is DistQueue, then cursor (iParm+1) is open
+ ** on a second ephemeral index that holds all values every previously
+ ** added to the queue. */
+ addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
+ regResult, nResultCol);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
+ if( eDest==SRT_DistQueue ){
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
+ }
+ for(i=0; i<nKey; i++){
+ sqlite3VdbeAddOp2(v, OP_SCopy,
+ regResult + pSO->a[i].u.x.iOrderByCol - 1,
+ r2+i);
+ }
+ sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
+ if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
+ sqlite3ReleaseTempReg(pParse, r1);
+ sqlite3ReleaseTempRange(pParse, r2, nKey+2);
+ break;
+ }
+#endif /* SQLITE_OMIT_CTE */
+
+
+
+#if !defined(SQLITE_OMIT_TRIGGER)
+ /* Discard the results. This is used for SELECT statements inside
+ ** the body of a TRIGGER. The purpose of such selects is to call
+ ** user-defined functions that have side effects. We do not care
+ ** about the actual results of the select.
+ */
+ default: {
+ assert( eDest==SRT_Discard );
+ break;
+ }
+#endif
+ }
+
+ /* Jump to the end of the loop if the LIMIT is reached. Except, if
+ ** there is a sorter, in which case the sorter has already limited
+ ** the output for us.
+ */
+ if( pSort==0 && p->iLimit ){
+ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
+ }
+}
+
+/*
+** Allocate a KeyInfo object sufficient for an index of N key columns and
+** X extra columns.
+*/
+KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
+ int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
+ KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
+ if( p ){
+ p->aSortFlags = (u8*)&p->aColl[N+X];
+ p->nKeyField = (u16)N;
+ p->nAllField = (u16)(N+X);
+ p->enc = ENC(db);
+ p->db = db;
+ p->nRef = 1;
+ memset(&p[1], 0, nExtra);
+ }else{
+ return (KeyInfo*)sqlite3OomFault(db);
+ }
+ return p;
+}
+
+/*
+** Deallocate a KeyInfo object
+*/
+void sqlite3KeyInfoUnref(KeyInfo *p){
+ if( p ){
+ assert( p->db!=0 );
+ assert( p->nRef>0 );
+ p->nRef--;
+ if( p->nRef==0 ) sqlite3DbNNFreeNN(p->db, p);
+ }
+}
+
+/*
+** Make a new pointer to a KeyInfo object
+*/
+KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
+ if( p ){
+ assert( p->nRef>0 );
+ p->nRef++;
+ }
+ return p;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Return TRUE if a KeyInfo object can be change. The KeyInfo object
+** can only be changed if this is just a single reference to the object.
+**
+** This routine is used only inside of assert() statements.
+*/
+int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
+#endif /* SQLITE_DEBUG */
+
+/*
+** Given an expression list, generate a KeyInfo structure that records
+** the collating sequence for each expression in that expression list.
+**
+** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
+** KeyInfo structure is appropriate for initializing a virtual index to
+** implement that clause. If the ExprList is the result set of a SELECT
+** then the KeyInfo structure is appropriate for initializing a virtual
+** index to implement a DISTINCT test.
+**
+** Space to hold the KeyInfo structure is obtained from malloc. The calling
+** function is responsible for seeing that this structure is eventually
+** freed.
+*/
+KeyInfo *sqlite3KeyInfoFromExprList(
+ Parse *pParse, /* Parsing context */
+ ExprList *pList, /* Form the KeyInfo object from this ExprList */
+ int iStart, /* Begin with this column of pList */
+ int nExtra /* Add this many extra columns to the end */
+){
+ int nExpr;
+ KeyInfo *pInfo;
+ struct ExprList_item *pItem;
+ sqlite3 *db = pParse->db;
+ int i;
+
+ nExpr = pList->nExpr;
+ pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
+ if( pInfo ){
+ assert( sqlite3KeyInfoIsWriteable(pInfo) );
+ for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
+ pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
+ pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags;
+ }
+ }
+ return pInfo;
+}
+
+/*
+** Name of the connection operator, used for error messages.
+*/
+const char *sqlite3SelectOpName(int id){
+ char *z;
+ switch( id ){
+ case TK_ALL: z = "UNION ALL"; break;
+ case TK_INTERSECT: z = "INTERSECT"; break;
+ case TK_EXCEPT: z = "EXCEPT"; break;
+ default: z = "UNION"; break;
+ }
+ return z;
+}
+
+#ifndef SQLITE_OMIT_EXPLAIN
+/*
+** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
+** is a no-op. Otherwise, it adds a single row of output to the EQP result,
+** where the caption is of the form:
+**
+** "USE TEMP B-TREE FOR xxx"
+**
+** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
+** is determined by the zUsage argument.
+*/
+static void explainTempTable(Parse *pParse, const char *zUsage){
+ ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
+}
+
+/*
+** Assign expression b to lvalue a. A second, no-op, version of this macro
+** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
+** in sqlite3Select() to assign values to structure member variables that
+** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
+** code with #ifndef directives.
+*/
+# define explainSetInteger(a, b) a = b
+
+#else
+/* No-op versions of the explainXXX() functions and macros. */
+# define explainTempTable(y,z)
+# define explainSetInteger(y,z)
+#endif
+
+
+/*
+** If the inner loop was generated using a non-null pOrderBy argument,
+** then the results were placed in a sorter. After the loop is terminated
+** we need to run the sorter and output the results. The following
+** routine generates the code needed to do that.
+*/
+static void generateSortTail(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The SELECT statement */
+ SortCtx *pSort, /* Information on the ORDER BY clause */
+ int nColumn, /* Number of columns of data */
+ SelectDest *pDest /* Write the sorted results here */
+){
+ Vdbe *v = pParse->pVdbe; /* The prepared statement */
+ int addrBreak = pSort->labelDone; /* Jump here to exit loop */
+ int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
+ int addr; /* Top of output loop. Jump for Next. */
+ int addrOnce = 0;
+ int iTab;
+ ExprList *pOrderBy = pSort->pOrderBy;
+ int eDest = pDest->eDest;
+ int iParm = pDest->iSDParm;
+ int regRow;
+ int regRowid;
+ int iCol;
+ int nKey; /* Number of key columns in sorter record */
+ int iSortTab; /* Sorter cursor to read from */
+ int i;
+ int bSeq; /* True if sorter record includes seq. no. */
+ int nRefKey = 0;
+ struct ExprList_item *aOutEx = p->pEList->a;
+
+ assert( addrBreak<0 );
+ if( pSort->labelBkOut ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
+ sqlite3VdbeGoto(v, addrBreak);
+ sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
+ }
+
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ /* Open any cursors needed for sorter-reference expressions */
+ for(i=0; i<pSort->nDefer; i++){
+ Table *pTab = pSort->aDefer[i].pTab;
+ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
+ nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
+ }
+#endif
+
+ iTab = pSort->iECursor;
+ if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
+ if( eDest==SRT_Mem && p->iOffset ){
+ sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst);
+ }
+ regRowid = 0;
+ regRow = pDest->iSdst;
+ }else{
+ regRowid = sqlite3GetTempReg(pParse);
+ if( eDest==SRT_EphemTab || eDest==SRT_Table ){
+ regRow = sqlite3GetTempReg(pParse);
+ nColumn = 0;
+ }else{
+ regRow = sqlite3GetTempRange(pParse, nColumn);
+ }
+ }
+ nKey = pOrderBy->nExpr - pSort->nOBSat;
+ if( pSort->sortFlags & SORTFLAG_UseSorter ){
+ int regSortOut = ++pParse->nMem;
+ iSortTab = pParse->nTab++;
+ if( pSort->labelBkOut ){
+ addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
+ nKey+1+nColumn+nRefKey);
+ if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
+ addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
+ VdbeCoverage(v);
+ assert( p->iLimit==0 && p->iOffset==0 );
+ sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
+ bSeq = 0;
+ }else{
+ addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
+ codeOffset(v, p->iOffset, addrContinue);
+ iSortTab = iTab;
+ bSeq = 1;
+ if( p->iOffset>0 ){
+ sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
+ }
+ }
+ for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( aOutEx[i].fg.bSorterRef ) continue;
+#endif
+ if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
+ }
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( pSort->nDefer ){
+ int iKey = iCol+1;
+ int regKey = sqlite3GetTempRange(pParse, nRefKey);
+
+ for(i=0; i<pSort->nDefer; i++){
+ int iCsr = pSort->aDefer[i].iCsr;
+ Table *pTab = pSort->aDefer[i].pTab;
+ int nKey = pSort->aDefer[i].nKey;
+
+ sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
+ sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
+ sqlite3VdbeCurrentAddr(v)+1, regKey);
+ }else{
+ int k;
+ int iJmp;
+ assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
+ for(k=0; k<nKey; k++){
+ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
+ }
+ iJmp = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
+ sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
+ sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
+ }
+ }
+ sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
+ }
+#endif
+ for(i=nColumn-1; i>=0; i--){
+#ifdef SQLITE_ENABLE_SORTER_REFERENCES
+ if( aOutEx[i].fg.bSorterRef ){
+ sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
+ }else
+#endif
+ {
+ int iRead;
+ if( aOutEx[i].u.x.iOrderByCol ){
+ iRead = aOutEx[i].u.x.iOrderByCol-1;
+ }else{
+ iRead = iCol--;
+ }
+ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
+ VdbeComment((v, "%s", aOutEx[i].zEName));
+ }
+ }
+ switch( eDest ){
+ case SRT_Table:
+ case SRT_EphemTab: {
+ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ break;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case SRT_Set: {
+ assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
+ pDest->zAffSdst, nColumn);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
+ break;
+ }
+ case SRT_Mem: {
+ /* The LIMIT clause will terminate the loop for us */
+ break;
+ }
+#endif
+ case SRT_Upfrom: {
+ int i2 = pDest->iSDParm2;
+ int r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
+ if( i2<0 ){
+ sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
+ }else{
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
+ }
+ break;
+ }
+ default: {
+ assert( eDest==SRT_Output || eDest==SRT_Coroutine );
+ testcase( eDest==SRT_Output );
+ testcase( eDest==SRT_Coroutine );
+ if( eDest==SRT_Output ){
+ sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
+ }else{
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
+ }
+ break;
+ }
+ }
+ if( regRowid ){
+ if( eDest==SRT_Set ){
+ sqlite3ReleaseTempRange(pParse, regRow, nColumn);
+ }else{
+ sqlite3ReleaseTempReg(pParse, regRow);
+ }
+ sqlite3ReleaseTempReg(pParse, regRowid);
+ }
+ /* The bottom of the loop
+ */
+ sqlite3VdbeResolveLabel(v, addrContinue);
+ if( pSort->sortFlags & SORTFLAG_UseSorter ){
+ sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
+ }
+ if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
+ sqlite3VdbeResolveLabel(v, addrBreak);
+}
+
+/*
+** Return a pointer to a string containing the 'declaration type' of the
+** expression pExpr. The string may be treated as static by the caller.
+**
+** The declaration type is the exact datatype definition extracted from the
+** original CREATE TABLE statement if the expression is a column. The
+** declaration type for a ROWID field is INTEGER. Exactly when an expression
+** is considered a column can be complex in the presence of subqueries. The
+** result-set expression in all of the following SELECT statements is
+** considered a column by this function.
+**
+** SELECT col FROM tbl;
+** SELECT (SELECT col FROM tbl;
+** SELECT (SELECT col FROM tbl);
+** SELECT abc FROM (SELECT col AS abc FROM tbl);
+**
+** The declaration type for any expression other than a column is NULL.
+**
+** This routine has either 3 or 6 parameters depending on whether or not
+** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
+*/
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+# define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
+#else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
+# define columnType(A,B,C,D,E) columnTypeImpl(A,B)
+#endif
+static const char *columnTypeImpl(
+ NameContext *pNC,
+#ifndef SQLITE_ENABLE_COLUMN_METADATA
+ Expr *pExpr
+#else
+ Expr *pExpr,
+ const char **pzOrigDb,
+ const char **pzOrigTab,
+ const char **pzOrigCol
+#endif
+){
+ char const *zType = 0;
+ int j;
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+ char const *zOrigDb = 0;
+ char const *zOrigTab = 0;
+ char const *zOrigCol = 0;
+#endif
+
+ assert( pExpr!=0 );
+ assert( pNC->pSrcList!=0 );
+ switch( pExpr->op ){
+ case TK_COLUMN: {
+ /* The expression is a column. Locate the table the column is being
+ ** extracted from in NameContext.pSrcList. This table may be real
+ ** database table or a subquery.
+ */
+ Table *pTab = 0; /* Table structure column is extracted from */
+ Select *pS = 0; /* Select the column is extracted from */
+ int iCol = pExpr->iColumn; /* Index of column in pTab */
+ while( pNC && !pTab ){
+ SrcList *pTabList = pNC->pSrcList;
+ for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
+ if( j<pTabList->nSrc ){
+ pTab = pTabList->a[j].pTab;
+ pS = pTabList->a[j].pSelect;
+ }else{
+ pNC = pNC->pNext;
+ }
+ }
+
+ if( pTab==0 ){
+ /* At one time, code such as "SELECT new.x" within a trigger would
+ ** cause this condition to run. Since then, we have restructured how
+ ** trigger code is generated and so this condition is no longer
+ ** possible. However, it can still be true for statements like
+ ** the following:
+ **
+ ** CREATE TABLE t1(col INTEGER);
+ ** SELECT (SELECT t1.col) FROM FROM t1;
+ **
+ ** when columnType() is called on the expression "t1.col" in the
+ ** sub-select. In this case, set the column type to NULL, even
+ ** though it should really be "INTEGER".
+ **
+ ** This is not a problem, as the column type of "t1.col" is never
+ ** used. When columnType() is called on the expression
+ ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
+ ** branch below. */
+ break;
+ }
+
+ assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
+ if( pS ){
+ /* The "table" is actually a sub-select or a view in the FROM clause
+ ** of the SELECT statement. Return the declaration type and origin
+ ** data for the result-set column of the sub-select.
+ */
+ if( iCol<pS->pEList->nExpr
+#ifdef SQLITE_ALLOW_ROWID_IN_VIEW
+ && iCol>=0
+#else
+ && ALWAYS(iCol>=0)
+#endif
+ ){
+ /* If iCol is less than zero, then the expression requests the
+ ** rowid of the sub-select or view. This expression is legal (see
+ ** test case misc2.2.2) - it always evaluates to NULL.
+ */
+ NameContext sNC;
+ Expr *p = pS->pEList->a[iCol].pExpr;
+ sNC.pSrcList = pS->pSrc;
+ sNC.pNext = pNC;
+ sNC.pParse = pNC->pParse;
+ zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
+ }
+ }else{
+ /* A real table or a CTE table */
+ assert( !pS );
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+ if( iCol<0 ) iCol = pTab->iPKey;
+ assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
+ if( iCol<0 ){
+ zType = "INTEGER";
+ zOrigCol = "rowid";
+ }else{
+ zOrigCol = pTab->aCol[iCol].zCnName;
+ zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
+ }
+ zOrigTab = pTab->zName;
+ if( pNC->pParse && pTab->pSchema ){
+ int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
+ zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
+ }
+#else
+ assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
+ if( iCol<0 ){
+ zType = "INTEGER";
+ }else{
+ zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
+ }
+#endif
+ }
+ break;
+ }
+#ifndef SQLITE_OMIT_SUBQUERY
+ case TK_SELECT: {
+ /* The expression is a sub-select. Return the declaration type and
+ ** origin info for the single column in the result set of the SELECT
+ ** statement.
+ */
+ NameContext sNC;
+ Select *pS;
+ Expr *p;
+ assert( ExprUseXSelect(pExpr) );
+ pS = pExpr->x.pSelect;
+ p = pS->pEList->a[0].pExpr;
+ sNC.pSrcList = pS->pSrc;
+ sNC.pNext = pNC;
+ sNC.pParse = pNC->pParse;
+ zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
+ break;
+ }
+#endif
+ }
+
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+ if( pzOrigDb ){
+ assert( pzOrigTab && pzOrigCol );
+ *pzOrigDb = zOrigDb;
+ *pzOrigTab = zOrigTab;
+ *pzOrigCol = zOrigCol;
+ }
+#endif
+ return zType;
+}
+
+/*
+** Generate code that will tell the VDBE the declaration types of columns
+** in the result set.
+*/
+static void generateColumnTypes(
+ Parse *pParse, /* Parser context */
+ SrcList *pTabList, /* List of tables */
+ ExprList *pEList /* Expressions defining the result set */
+){
+#ifndef SQLITE_OMIT_DECLTYPE
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ NameContext sNC;
+ sNC.pSrcList = pTabList;
+ sNC.pParse = pParse;
+ sNC.pNext = 0;
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *p = pEList->a[i].pExpr;
+ const char *zType;
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+ const char *zOrigDb = 0;
+ const char *zOrigTab = 0;
+ const char *zOrigCol = 0;
+ zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
+
+ /* The vdbe must make its own copy of the column-type and other
+ ** column specific strings, in case the schema is reset before this
+ ** virtual machine is deleted.
+ */
+ sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
+ sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
+ sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
+#else
+ zType = columnType(&sNC, p, 0, 0, 0);
+#endif
+ sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
+ }
+#endif /* !defined(SQLITE_OMIT_DECLTYPE) */
+}
+
+
+/*
+** Compute the column names for a SELECT statement.
+**
+** The only guarantee that SQLite makes about column names is that if the
+** column has an AS clause assigning it a name, that will be the name used.
+** That is the only documented guarantee. However, countless applications
+** developed over the years have made baseless assumptions about column names
+** and will break if those assumptions changes. Hence, use extreme caution
+** when modifying this routine to avoid breaking legacy.
+**
+** See Also: sqlite3ColumnsFromExprList()
+**
+** The PRAGMA short_column_names and PRAGMA full_column_names settings are
+** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
+** applications should operate this way. Nevertheless, we need to support the
+** other modes for legacy:
+**
+** short=OFF, full=OFF: Column name is the text of the expression has it
+** originally appears in the SELECT statement. In
+** other words, the zSpan of the result expression.
+**
+** short=ON, full=OFF: (This is the default setting). If the result
+** refers directly to a table column, then the
+** result column name is just the table column
+** name: COLUMN. Otherwise use zSpan.
+**
+** full=ON, short=ANY: If the result refers directly to a table column,
+** then the result column name with the table name
+** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
+*/
+void sqlite3GenerateColumnNames(
+ Parse *pParse, /* Parser context */
+ Select *pSelect /* Generate column names for this SELECT statement */
+){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ Table *pTab;
+ SrcList *pTabList;
+ ExprList *pEList;
+ sqlite3 *db = pParse->db;
+ int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
+ int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
+
+#ifndef SQLITE_OMIT_EXPLAIN
+ /* If this is an EXPLAIN, skip this step */
+ if( pParse->explain ){
+ return;
+ }
+#endif
+
+ if( pParse->colNamesSet ) return;
+ /* Column names are determined by the left-most term of a compound select */
+ while( pSelect->pPrior ) pSelect = pSelect->pPrior;
+ SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
+ pTabList = pSelect->pSrc;
+ pEList = pSelect->pEList;
+ assert( v!=0 );
+ assert( pTabList!=0 );
+ pParse->colNamesSet = 1;
+ fullName = (db->flags & SQLITE_FullColNames)!=0;
+ srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
+ sqlite3VdbeSetNumCols(v, pEList->nExpr);
+ for(i=0; i<pEList->nExpr; i++){
+ Expr *p = pEList->a[i].pExpr;
+
+ assert( p!=0 );
+ assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
+ assert( p->op!=TK_COLUMN
+ || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
+ if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){
+ /* An AS clause always takes first priority */
+ char *zName = pEList->a[i].zEName;
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
+ }else if( srcName && p->op==TK_COLUMN ){
+ char *zCol;
+ int iCol = p->iColumn;
+ pTab = p->y.pTab;
+ assert( pTab!=0 );
+ if( iCol<0 ) iCol = pTab->iPKey;
+ assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
+ if( iCol<0 ){
+ zCol = "rowid";
+ }else{
+ zCol = pTab->aCol[iCol].zCnName;
+ }
+ if( fullName ){
+ char *zName = 0;
+ zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
+ }else{
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
+ }
+ }else{
+ const char *z = pEList->a[i].zEName;
+ z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
+ sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
+ }
+ }
+ generateColumnTypes(pParse, pTabList, pEList);
+}
+
+/*
+** Given an expression list (which is really the list of expressions
+** that form the result set of a SELECT statement) compute appropriate
+** column names for a table that would hold the expression list.
+**
+** All column names will be unique.
+**
+** Only the column names are computed. Column.zType, Column.zColl,
+** and other fields of Column are zeroed.
+**
+** Return SQLITE_OK on success. If a memory allocation error occurs,
+** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
+**
+** The only guarantee that SQLite makes about column names is that if the
+** column has an AS clause assigning it a name, that will be the name used.
+** That is the only documented guarantee. However, countless applications
+** developed over the years have made baseless assumptions about column names
+** and will break if those assumptions changes. Hence, use extreme caution
+** when modifying this routine to avoid breaking legacy.
+**
+** See Also: sqlite3GenerateColumnNames()
+*/
+int sqlite3ColumnsFromExprList(
+ Parse *pParse, /* Parsing context */
+ ExprList *pEList, /* Expr list from which to derive column names */
+ i16 *pnCol, /* Write the number of columns here */
+ Column **paCol /* Write the new column list here */
+){
+ sqlite3 *db = pParse->db; /* Database connection */
+ int i, j; /* Loop counters */
+ u32 cnt; /* Index added to make the name unique */
+ Column *aCol, *pCol; /* For looping over result columns */
+ int nCol; /* Number of columns in the result set */
+ char *zName; /* Column name */
+ int nName; /* Size of name in zName[] */
+ Hash ht; /* Hash table of column names */
+ Table *pTab;
+
+ sqlite3HashInit(&ht);
+ if( pEList ){
+ nCol = pEList->nExpr;
+ aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
+ testcase( aCol==0 );
+ if( NEVER(nCol>32767) ) nCol = 32767;
+ }else{
+ nCol = 0;
+ aCol = 0;
+ }
+ assert( nCol==(i16)nCol );
+ *pnCol = nCol;
+ *paCol = aCol;
+
+ for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
+ struct ExprList_item *pX = &pEList->a[i];
+ struct ExprList_item *pCollide;
+ /* Get an appropriate name for the column
+ */
+ if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){
+ /* If the column contains an "AS <name>" phrase, use <name> as the name */
+ }else{
+ Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr);
+ while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
+ pColExpr = pColExpr->pRight;
+ assert( pColExpr!=0 );
+ }
+ if( pColExpr->op==TK_COLUMN
+ && ALWAYS( ExprUseYTab(pColExpr) )
+ && ALWAYS( pColExpr->y.pTab!=0 )
+ ){
+ /* For columns use the column name name */
+ int iCol = pColExpr->iColumn;
+ pTab = pColExpr->y.pTab;
+ if( iCol<0 ) iCol = pTab->iPKey;
+ zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
+ }else if( pColExpr->op==TK_ID ){
+ assert( !ExprHasProperty(pColExpr, EP_IntValue) );
+ zName = pColExpr->u.zToken;
+ }else{
+ /* Use the original text of the column expression as its name */
+ assert( zName==pX->zEName ); /* pointer comparison intended */
+ }
+ }
+ if( zName && !sqlite3IsTrueOrFalse(zName) ){
+ zName = sqlite3DbStrDup(db, zName);
+ }else{
+ zName = sqlite3MPrintf(db,"column%d",i+1);
+ }
+
+ /* Make sure the column name is unique. If the name is not unique,
+ ** append an integer to the name so that it becomes unique.
+ */
+ cnt = 0;
+ while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){
+ if( pCollide->fg.bUsingTerm ){
+ pCol->colFlags |= COLFLAG_NOEXPAND;
+ }
+ nName = sqlite3Strlen30(zName);
+ if( nName>0 ){
+ for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
+ if( zName[j]==':' ) nName = j;
+ }
+ zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
+ if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
+ }
+ pCol->zCnName = zName;
+ pCol->hName = sqlite3StrIHash(zName);
+ if( pX->fg.bNoExpand ){
+ pCol->colFlags |= COLFLAG_NOEXPAND;
+ }
+ sqlite3ColumnPropertiesFromName(0, pCol);
+ if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){
+ sqlite3OomFault(db);
+ }
+ }
+ sqlite3HashClear(&ht);
+ if( db->mallocFailed ){
+ for(j=0; j<i; j++){
+ sqlite3DbFree(db, aCol[j].zCnName);
+ }
+ sqlite3DbFree(db, aCol);
+ *paCol = 0;
+ *pnCol = 0;
+ return SQLITE_NOMEM_BKPT;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** Add type and collation information to a column list based on
+** a SELECT statement.
+**
+** The column list presumably came from selectColumnNamesFromExprList().
+** The column list has only names, not types or collations. This
+** routine goes through and adds the types and collations.
+**
+** This routine requires that all identifiers in the SELECT
+** statement be resolved.
+*/
+void sqlite3SelectAddColumnTypeAndCollation(
+ Parse *pParse, /* Parsing contexts */
+ Table *pTab, /* Add column type information to this table */
+ Select *pSelect, /* SELECT used to determine types and collations */
+ char aff /* Default affinity for columns */
+){
+ sqlite3 *db = pParse->db;
+ NameContext sNC;
+ Column *pCol;
+ CollSeq *pColl;
+ int i;
+ Expr *p;
+ struct ExprList_item *a;
+
+ assert( pSelect!=0 );
+ assert( (pSelect->selFlags & SF_Resolved)!=0 );
+ assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
+ if( db->mallocFailed ) return;
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pSrcList = pSelect->pSrc;
+ a = pSelect->pEList->a;
+ for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
+ const char *zType;
+ i64 n, m;
+ pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
+ p = a[i].pExpr;
+ zType = columnType(&sNC, p, 0, 0, 0);
+ /* pCol->szEst = ... // Column size est for SELECT tables never used */
+ pCol->affinity = sqlite3ExprAffinity(p);
+ if( zType ){
+ m = sqlite3Strlen30(zType);
+ n = sqlite3Strlen30(pCol->zCnName);
+ pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
+ if( pCol->zCnName ){
+ memcpy(&pCol->zCnName[n+1], zType, m+1);
+ pCol->colFlags |= COLFLAG_HASTYPE;
+ }else{
+ testcase( pCol->colFlags & COLFLAG_HASTYPE );
+ pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
+ }
+ }
+ if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
+ pColl = sqlite3ExprCollSeq(pParse, p);
+ if( pColl ){
+ assert( pTab->pIndex==0 );
+ sqlite3ColumnSetColl(db, pCol, pColl->zName);
+ }
+ }
+ pTab->szTabRow = 1; /* Any non-zero value works */
+}
+
+/*
+** Given a SELECT statement, generate a Table structure that describes
+** the result set of that SELECT.
+*/
+Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
+ Table *pTab;
+ sqlite3 *db = pParse->db;
+ u64 savedFlags;
+
+ savedFlags = db->flags;
+ db->flags &= ~(u64)SQLITE_FullColNames;
+ db->flags |= SQLITE_ShortColNames;
+ sqlite3SelectPrep(pParse, pSelect, 0);
+ db->flags = savedFlags;
+ if( pParse->nErr ) return 0;
+ while( pSelect->pPrior ) pSelect = pSelect->pPrior;
+ pTab = sqlite3DbMallocZero(db, sizeof(Table) );
+ if( pTab==0 ){
+ return 0;
+ }
+ pTab->nTabRef = 1;
+ pTab->zName = 0;
+ pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
+ sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
+ sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
+ pTab->iPKey = -1;
+ if( db->mallocFailed ){
+ sqlite3DeleteTable(db, pTab);
+ return 0;
+ }
+ return pTab;
+}
+
+/*
+** Get a VDBE for the given parser context. Create a new one if necessary.
+** If an error occurs, return NULL and leave a message in pParse.
+*/
+Vdbe *sqlite3GetVdbe(Parse *pParse){
+ if( pParse->pVdbe ){
+ return pParse->pVdbe;
+ }
+ if( pParse->pToplevel==0
+ && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
+ ){
+ pParse->okConstFactor = 1;
+ }
+ return sqlite3VdbeCreate(pParse);
+}
+
+
+/*
+** Compute the iLimit and iOffset fields of the SELECT based on the
+** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
+** that appear in the original SQL statement after the LIMIT and OFFSET
+** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
+** are the integer memory register numbers for counters used to compute
+** the limit and offset. If there is no limit and/or offset, then
+** iLimit and iOffset are negative.
+**
+** This routine changes the values of iLimit and iOffset only if
+** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
+** and iOffset should have been preset to appropriate default values (zero)
+** prior to calling this routine.
+**
+** The iOffset register (if it exists) is initialized to the value
+** of the OFFSET. The iLimit register is initialized to LIMIT. Register
+** iOffset+1 is initialized to LIMIT+OFFSET.
+**
+** Only if pLimit->pLeft!=0 do the limit registers get
+** redefined. The UNION ALL operator uses this property to force
+** the reuse of the same limit and offset registers across multiple
+** SELECT statements.
+*/
+static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
+ Vdbe *v = 0;
+ int iLimit = 0;
+ int iOffset;
+ int n;
+ Expr *pLimit = p->pLimit;
+
+ if( p->iLimit ) return;
+
+ /*
+ ** "LIMIT -1" always shows all rows. There is some
+ ** controversy about what the correct behavior should be.
+ ** The current implementation interprets "LIMIT 0" to mean
+ ** no rows.
+ */
+ if( pLimit ){
+ assert( pLimit->op==TK_LIMIT );
+ assert( pLimit->pLeft!=0 );
+ p->iLimit = iLimit = ++pParse->nMem;
+ v = sqlite3GetVdbe(pParse);
+ assert( v!=0 );
+ if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
+ sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
+ VdbeComment((v, "LIMIT counter"));
+ if( n==0 ){
+ sqlite3VdbeGoto(v, iBreak);
+ }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
+ p->nSelectRow = sqlite3LogEst((u64)n);
+ p->selFlags |= SF_FixedLimit;
+ }
+ }else{
+ sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
+ VdbeComment((v, "LIMIT counter"));
+ sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
+ }
+ if( pLimit->pRight ){
+ p->iOffset = iOffset = ++pParse->nMem;
+ pParse->nMem++; /* Allocate an extra register for limit+offset */
+ sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
+ VdbeComment((v, "OFFSET counter"));
+ sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
+ VdbeComment((v, "LIMIT+OFFSET"));
+ }
+ }
+}
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+/*
+** Return the appropriate collating sequence for the iCol-th column of
+** the result set for the compound-select statement "p". Return NULL if
+** the column has no default collating sequence.
+**
+** The collating sequence for the compound select is taken from the
+** left-most term of the select that has a collating sequence.
+*/
+static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
+ CollSeq *pRet;
+ if( p->pPrior ){
+ pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
+ }else{
+ pRet = 0;
+ }
+ assert( iCol>=0 );
+ /* iCol must be less than p->pEList->nExpr. Otherwise an error would
+ ** have been thrown during name resolution and we would not have gotten
+ ** this far */
+ if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
+ pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
+ }
+ return pRet;
+}
+
+/*
+** The select statement passed as the second parameter is a compound SELECT
+** with an ORDER BY clause. This function allocates and returns a KeyInfo
+** structure suitable for implementing the ORDER BY.
+**
+** Space to hold the KeyInfo structure is obtained from malloc. The calling
+** function is responsible for ensuring that this structure is eventually
+** freed.
+*/
+static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
+ ExprList *pOrderBy = p->pOrderBy;
+ int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
+ sqlite3 *db = pParse->db;
+ KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
+ if( pRet ){
+ int i;
+ for(i=0; i<nOrderBy; i++){
+ struct ExprList_item *pItem = &pOrderBy->a[i];
+ Expr *pTerm = pItem->pExpr;
+ CollSeq *pColl;
+
+ if( pTerm->flags & EP_Collate ){
+ pColl = sqlite3ExprCollSeq(pParse, pTerm);
+ }else{
+ pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
+ if( pColl==0 ) pColl = db->pDfltColl;
+ pOrderBy->a[i].pExpr =
+ sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
+ }
+ assert( sqlite3KeyInfoIsWriteable(pRet) );
+ pRet->aColl[i] = pColl;
+ pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags;
+ }
+ }
+
+ return pRet;
+}
+
+#ifndef SQLITE_OMIT_CTE
+/*
+** This routine generates VDBE code to compute the content of a WITH RECURSIVE
+** query of the form:
+**
+** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
+** \___________/ \_______________/
+** p->pPrior p
+**
+**
+** There is exactly one reference to the recursive-table in the FROM clause
+** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
+**
+** The setup-query runs once to generate an initial set of rows that go
+** into a Queue table. Rows are extracted from the Queue table one by
+** one. Each row extracted from Queue is output to pDest. Then the single
+** extracted row (now in the iCurrent table) becomes the content of the
+** recursive-table for a recursive-query run. The output of the recursive-query
+** is added back into the Queue table. Then another row is extracted from Queue
+** and the iteration continues until the Queue table is empty.
+**
+** If the compound query operator is UNION then no duplicate rows are ever
+** inserted into the Queue table. The iDistinct table keeps a copy of all rows
+** that have ever been inserted into Queue and causes duplicates to be
+** discarded. If the operator is UNION ALL, then duplicates are allowed.
+**
+** If the query has an ORDER BY, then entries in the Queue table are kept in
+** ORDER BY order and the first entry is extracted for each cycle. Without
+** an ORDER BY, the Queue table is just a FIFO.
+**
+** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
+** have been output to pDest. A LIMIT of zero means to output no rows and a
+** negative LIMIT means to output all rows. If there is also an OFFSET clause
+** with a positive value, then the first OFFSET outputs are discarded rather
+** than being sent to pDest. The LIMIT count does not begin until after OFFSET
+** rows have been skipped.
+*/
+static void generateWithRecursiveQuery(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The recursive SELECT to be coded */
+ SelectDest *pDest /* What to do with query results */
+){
+ SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
+ int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
+ Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
+ Select *pSetup; /* The setup query */
+ Select *pFirstRec; /* Left-most recursive term */
+ int addrTop; /* Top of the loop */
+ int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
+ int iCurrent = 0; /* The Current table */
+ int regCurrent; /* Register holding Current table */
+ int iQueue; /* The Queue table */
+ int iDistinct = 0; /* To ensure unique results if UNION */
+ int eDest = SRT_Fifo; /* How to write to Queue */
+ SelectDest destQueue; /* SelectDest targetting the Queue table */
+ int i; /* Loop counter */
+ int rc; /* Result code */
+ ExprList *pOrderBy; /* The ORDER BY clause */
+ Expr *pLimit; /* Saved LIMIT and OFFSET */
+ int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( p->pWin ){
+ sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
+ return;
+ }
+#endif
+
+ /* Obtain authorization to do a recursive query */
+ if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
+
+ /* Process the LIMIT and OFFSET clauses, if they exist */
+ addrBreak = sqlite3VdbeMakeLabel(pParse);
+ p->nSelectRow = 320; /* 4 billion rows */
+ computeLimitRegisters(pParse, p, addrBreak);
+ pLimit = p->pLimit;
+ regLimit = p->iLimit;
+ regOffset = p->iOffset;
+ p->pLimit = 0;
+ p->iLimit = p->iOffset = 0;
+ pOrderBy = p->pOrderBy;
+
+ /* Locate the cursor number of the Current table */
+ for(i=0; ALWAYS(i<pSrc->nSrc); i++){
+ if( pSrc->a[i].fg.isRecursive ){
+ iCurrent = pSrc->a[i].iCursor;
+ break;
+ }
+ }
+
+ /* Allocate cursors numbers for Queue and Distinct. The cursor number for
+ ** the Distinct table must be exactly one greater than Queue in order
+ ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
+ iQueue = pParse->nTab++;
+ if( p->op==TK_UNION ){
+ eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
+ iDistinct = pParse->nTab++;
+ }else{
+ eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
+ }
+ sqlite3SelectDestInit(&destQueue, eDest, iQueue);
+
+ /* Allocate cursors for Current, Queue, and Distinct. */
+ regCurrent = ++pParse->nMem;
+ sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
+ if( pOrderBy ){
+ KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
+ (char*)pKeyInfo, P4_KEYINFO);
+ destQueue.pOrderBy = pOrderBy;
+ }else{
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
+ }
+ VdbeComment((v, "Queue table"));
+ if( iDistinct ){
+ p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
+ p->selFlags |= SF_UsesEphemeral;
+ }
+
+ /* Detach the ORDER BY clause from the compound SELECT */
+ p->pOrderBy = 0;
+
+ /* Figure out how many elements of the compound SELECT are part of the
+ ** recursive query. Make sure no recursive elements use aggregate
+ ** functions. Mark the recursive elements as UNION ALL even if they
+ ** are really UNION because the distinctness will be enforced by the
+ ** iDistinct table. pFirstRec is left pointing to the left-most
+ ** recursive term of the CTE.
+ */
+ for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
+ if( pFirstRec->selFlags & SF_Aggregate ){
+ sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
+ goto end_of_recursive_query;
+ }
+ pFirstRec->op = TK_ALL;
+ if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
+ }
+
+ /* Store the results of the setup-query in Queue. */
+ pSetup = pFirstRec->pPrior;
+ pSetup->pNext = 0;
+ ExplainQueryPlan((pParse, 1, "SETUP"));
+ rc = sqlite3Select(pParse, pSetup, &destQueue);
+ pSetup->pNext = p;
+ if( rc ) goto end_of_recursive_query;
+
+ /* Find the next row in the Queue and output that row */
+ addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
+
+ /* Transfer the next row in Queue over to Current */
+ sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
+ if( pOrderBy ){
+ sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
+ }else{
+ sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
+ }
+ sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
+
+ /* Output the single row in Current */
+ addrCont = sqlite3VdbeMakeLabel(pParse);
+ codeOffset(v, regOffset, addrCont);
+ selectInnerLoop(pParse, p, iCurrent,
+ 0, 0, pDest, addrCont, addrBreak);
+ if( regLimit ){
+ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeResolveLabel(v, addrCont);
+
+ /* Execute the recursive SELECT taking the single row in Current as
+ ** the value for the recursive-table. Store the results in the Queue.
+ */
+ pFirstRec->pPrior = 0;
+ ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
+ sqlite3Select(pParse, p, &destQueue);
+ assert( pFirstRec->pPrior==0 );
+ pFirstRec->pPrior = pSetup;
+
+ /* Keep running the loop until the Queue is empty */
+ sqlite3VdbeGoto(v, addrTop);
+ sqlite3VdbeResolveLabel(v, addrBreak);
+
+end_of_recursive_query:
+ sqlite3ExprListDelete(pParse->db, p->pOrderBy);
+ p->pOrderBy = pOrderBy;
+ p->pLimit = pLimit;
+ return;
+}
+#endif /* SQLITE_OMIT_CTE */
+
+/* Forward references */
+static int multiSelectOrderBy(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+);
+
+/*
+** Handle the special case of a compound-select that originates from a
+** VALUES clause. By handling this as a special case, we avoid deep
+** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
+** on a VALUES clause.
+**
+** Because the Select object originates from a VALUES clause:
+** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
+** (2) All terms are UNION ALL
+** (3) There is no ORDER BY clause
+**
+** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
+** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
+** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
+** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
+*/
+static int multiSelectValues(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+){
+ int nRow = 1;
+ int rc = 0;
+ int bShowAll = p->pLimit==0;
+ assert( p->selFlags & SF_MultiValue );
+ do{
+ assert( p->selFlags & SF_Values );
+ assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
+ assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( p->pWin ) return -1;
+#endif
+ if( p->pPrior==0 ) break;
+ assert( p->pPrior->pNext==p );
+ p = p->pPrior;
+ nRow += bShowAll;
+ }while(1);
+ ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
+ nRow==1 ? "" : "S"));
+ while( p ){
+ selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
+ if( !bShowAll ) break;
+ p->nSelectRow = nRow;
+ p = p->pNext;
+ }
+ return rc;
+}
+
+/*
+** Return true if the SELECT statement which is known to be the recursive
+** part of a recursive CTE still has its anchor terms attached. If the
+** anchor terms have already been removed, then return false.
+*/
+static int hasAnchor(Select *p){
+ while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
+ return p!=0;
+}
+
+/*
+** This routine is called to process a compound query form from
+** two or more separate queries using UNION, UNION ALL, EXCEPT, or
+** INTERSECT
+**
+** "p" points to the right-most of the two queries. the query on the
+** left is p->pPrior. The left query could also be a compound query
+** in which case this routine will be called recursively.
+**
+** The results of the total query are to be written into a destination
+** of type eDest with parameter iParm.
+**
+** Example 1: Consider a three-way compound SQL statement.
+**
+** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
+**
+** This statement is parsed up as follows:
+**
+** SELECT c FROM t3
+** |
+** `-----> SELECT b FROM t2
+** |
+** `------> SELECT a FROM t1
+**
+** The arrows in the diagram above represent the Select.pPrior pointer.
+** So if this routine is called with p equal to the t3 query, then
+** pPrior will be the t2 query. p->op will be TK_UNION in this case.
+**
+** Notice that because of the way SQLite parses compound SELECTs, the
+** individual selects always group from left to right.
+*/
+static int multiSelect(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+){
+ int rc = SQLITE_OK; /* Success code from a subroutine */
+ Select *pPrior; /* Another SELECT immediately to our left */
+ Vdbe *v; /* Generate code to this VDBE */
+ SelectDest dest; /* Alternative data destination */
+ Select *pDelete = 0; /* Chain of simple selects to delete */
+ sqlite3 *db; /* Database connection */
+
+ /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
+ ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
+ */
+ assert( p && p->pPrior ); /* Calling function guarantees this much */
+ assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
+ assert( p->selFlags & SF_Compound );
+ db = pParse->db;
+ pPrior = p->pPrior;
+ dest = *pDest;
+ assert( pPrior->pOrderBy==0 );
+ assert( pPrior->pLimit==0 );
+
+ v = sqlite3GetVdbe(pParse);
+ assert( v!=0 ); /* The VDBE already created by calling function */
+
+ /* Create the destination temporary table if necessary
+ */
+ if( dest.eDest==SRT_EphemTab ){
+ assert( p->pEList );
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
+ dest.eDest = SRT_Table;
+ }
+
+ /* Special handling for a compound-select that originates as a VALUES clause.
+ */
+ if( p->selFlags & SF_MultiValue ){
+ rc = multiSelectValues(pParse, p, &dest);
+ if( rc>=0 ) goto multi_select_end;
+ rc = SQLITE_OK;
+ }
+
+ /* Make sure all SELECTs in the statement have the same number of elements
+ ** in their result sets.
+ */
+ assert( p->pEList && pPrior->pEList );
+ assert( p->pEList->nExpr==pPrior->pEList->nExpr );
+
+#ifndef SQLITE_OMIT_CTE
+ if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
+ generateWithRecursiveQuery(pParse, p, &dest);
+ }else
+#endif
+
+ /* Compound SELECTs that have an ORDER BY clause are handled separately.
+ */
+ if( p->pOrderBy ){
+ return multiSelectOrderBy(pParse, p, pDest);
+ }else{
+
+#ifndef SQLITE_OMIT_EXPLAIN
+ if( pPrior->pPrior==0 ){
+ ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
+ ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
+ }
+#endif
+
+ /* Generate code for the left and right SELECT statements.
+ */
+ switch( p->op ){
+ case TK_ALL: {
+ int addr = 0;
+ int nLimit = 0; /* Initialize to suppress harmless compiler warning */
+ assert( !pPrior->pLimit );
+ pPrior->iLimit = p->iLimit;
+ pPrior->iOffset = p->iOffset;
+ pPrior->pLimit = p->pLimit;
+ SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n"));
+ rc = sqlite3Select(pParse, pPrior, &dest);
+ pPrior->pLimit = 0;
+ if( rc ){
+ goto multi_select_end;
+ }
+ p->pPrior = 0;
+ p->iLimit = pPrior->iLimit;
+ p->iOffset = pPrior->iOffset;
+ if( p->iLimit ){
+ addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
+ VdbeComment((v, "Jump ahead if LIMIT reached"));
+ if( p->iOffset ){
+ sqlite3VdbeAddOp3(v, OP_OffsetLimit,
+ p->iLimit, p->iOffset+1, p->iOffset);
+ }
+ }
+ ExplainQueryPlan((pParse, 1, "UNION ALL"));
+ SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n"));
+ rc = sqlite3Select(pParse, p, &dest);
+ testcase( rc!=SQLITE_OK );
+ pDelete = p->pPrior;
+ p->pPrior = pPrior;
+ p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
+ if( p->pLimit
+ && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
+ && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
+ ){
+ p->nSelectRow = sqlite3LogEst((u64)nLimit);
+ }
+ if( addr ){
+ sqlite3VdbeJumpHere(v, addr);
+ }
+ break;
+ }
+ case TK_EXCEPT:
+ case TK_UNION: {
+ int unionTab; /* Cursor number of the temp table holding result */
+ u8 op = 0; /* One of the SRT_ operations to apply to self */
+ int priorOp; /* The SRT_ operation to apply to prior selects */
+ Expr *pLimit; /* Saved values of p->nLimit */
+ int addr;
+ SelectDest uniondest;
+
+ testcase( p->op==TK_EXCEPT );
+ testcase( p->op==TK_UNION );
+ priorOp = SRT_Union;
+ if( dest.eDest==priorOp ){
+ /* We can reuse a temporary table generated by a SELECT to our
+ ** right.
+ */
+ assert( p->pLimit==0 ); /* Not allowed on leftward elements */
+ unionTab = dest.iSDParm;
+ }else{
+ /* We will need to create our own temporary table to hold the
+ ** intermediate results.
+ */
+ unionTab = pParse->nTab++;
+ assert( p->pOrderBy==0 );
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
+ assert( p->addrOpenEphm[0] == -1 );
+ p->addrOpenEphm[0] = addr;
+ findRightmost(p)->selFlags |= SF_UsesEphemeral;
+ assert( p->pEList );
+ }
+
+
+ /* Code the SELECT statements to our left
+ */
+ assert( !pPrior->pOrderBy );
+ sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
+ SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
+ rc = sqlite3Select(pParse, pPrior, &uniondest);
+ if( rc ){
+ goto multi_select_end;
+ }
+
+ /* Code the current SELECT statement
+ */
+ if( p->op==TK_EXCEPT ){
+ op = SRT_Except;
+ }else{
+ assert( p->op==TK_UNION );
+ op = SRT_Union;
+ }
+ p->pPrior = 0;
+ pLimit = p->pLimit;
+ p->pLimit = 0;
+ uniondest.eDest = op;
+ ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
+ sqlite3SelectOpName(p->op)));
+ SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
+ rc = sqlite3Select(pParse, p, &uniondest);
+ testcase( rc!=SQLITE_OK );
+ assert( p->pOrderBy==0 );
+ pDelete = p->pPrior;
+ p->pPrior = pPrior;
+ p->pOrderBy = 0;
+ if( p->op==TK_UNION ){
+ p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
+ }
+ sqlite3ExprDelete(db, p->pLimit);
+ p->pLimit = pLimit;
+ p->iLimit = 0;
+ p->iOffset = 0;
+
+ /* Convert the data in the temporary table into whatever form
+ ** it is that we currently need.
+ */
+ assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
+ assert( p->pEList || db->mallocFailed );
+ if( dest.eDest!=priorOp && db->mallocFailed==0 ){
+ int iCont, iBreak, iStart;
+ iBreak = sqlite3VdbeMakeLabel(pParse);
+ iCont = sqlite3VdbeMakeLabel(pParse);
+ computeLimitRegisters(pParse, p, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
+ iStart = sqlite3VdbeCurrentAddr(v);
+ selectInnerLoop(pParse, p, unionTab,
+ 0, 0, &dest, iCont, iBreak);
+ sqlite3VdbeResolveLabel(v, iCont);
+ sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
+ sqlite3VdbeResolveLabel(v, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
+ }
+ break;
+ }
+ default: assert( p->op==TK_INTERSECT ); {
+ int tab1, tab2;
+ int iCont, iBreak, iStart;
+ Expr *pLimit;
+ int addr;
+ SelectDest intersectdest;
+ int r1;
+
+ /* INTERSECT is different from the others since it requires
+ ** two temporary tables. Hence it has its own case. Begin
+ ** by allocating the tables we will need.
+ */
+ tab1 = pParse->nTab++;
+ tab2 = pParse->nTab++;
+ assert( p->pOrderBy==0 );
+
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
+ assert( p->addrOpenEphm[0] == -1 );
+ p->addrOpenEphm[0] = addr;
+ findRightmost(p)->selFlags |= SF_UsesEphemeral;
+ assert( p->pEList );
+
+ /* Code the SELECTs to our left into temporary table "tab1".
+ */
+ sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
+ SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n"));
+ rc = sqlite3Select(pParse, pPrior, &intersectdest);
+ if( rc ){
+ goto multi_select_end;
+ }
+
+ /* Code the current SELECT into temporary table "tab2"
+ */
+ addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
+ assert( p->addrOpenEphm[1] == -1 );
+ p->addrOpenEphm[1] = addr;
+ p->pPrior = 0;
+ pLimit = p->pLimit;
+ p->pLimit = 0;
+ intersectdest.iSDParm = tab2;
+ ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
+ sqlite3SelectOpName(p->op)));
+ SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n"));
+ rc = sqlite3Select(pParse, p, &intersectdest);
+ testcase( rc!=SQLITE_OK );
+ pDelete = p->pPrior;
+ p->pPrior = pPrior;
+ if( p->nSelectRow>pPrior->nSelectRow ){
+ p->nSelectRow = pPrior->nSelectRow;
+ }
+ sqlite3ExprDelete(db, p->pLimit);
+ p->pLimit = pLimit;
+
+ /* Generate code to take the intersection of the two temporary
+ ** tables.
+ */
+ if( rc ) break;
+ assert( p->pEList );
+ iBreak = sqlite3VdbeMakeLabel(pParse);
+ iCont = sqlite3VdbeMakeLabel(pParse);
+ computeLimitRegisters(pParse, p, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
+ r1 = sqlite3GetTempReg(pParse);
+ iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
+ sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
+ VdbeCoverage(v);
+ sqlite3ReleaseTempReg(pParse, r1);
+ selectInnerLoop(pParse, p, tab1,
+ 0, 0, &dest, iCont, iBreak);
+ sqlite3VdbeResolveLabel(v, iCont);
+ sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
+ sqlite3VdbeResolveLabel(v, iBreak);
+ sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
+ sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
+ break;
+ }
+ }
+
+ #ifndef SQLITE_OMIT_EXPLAIN
+ if( p->pNext==0 ){
+ ExplainQueryPlanPop(pParse);
+ }
+ #endif
+ }
+ if( pParse->nErr ) goto multi_select_end;
+
+ /* Compute collating sequences used by
+ ** temporary tables needed to implement the compound select.
+ ** Attach the KeyInfo structure to all temporary tables.
+ **
+ ** This section is run by the right-most SELECT statement only.
+ ** SELECT statements to the left always skip this part. The right-most
+ ** SELECT might also skip this part if it has no ORDER BY clause and
+ ** no temp tables are required.
+ */
+ if( p->selFlags & SF_UsesEphemeral ){
+ int i; /* Loop counter */
+ KeyInfo *pKeyInfo; /* Collating sequence for the result set */
+ Select *pLoop; /* For looping through SELECT statements */
+ CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
+ int nCol; /* Number of columns in result set */
+
+ assert( p->pNext==0 );
+ assert( p->pEList!=0 );
+ nCol = p->pEList->nExpr;
+ pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
+ if( !pKeyInfo ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto multi_select_end;
+ }
+ for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
+ *apColl = multiSelectCollSeq(pParse, p, i);
+ if( 0==*apColl ){
+ *apColl = db->pDfltColl;
+ }
+ }
+
+ for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
+ for(i=0; i<2; i++){
+ int addr = pLoop->addrOpenEphm[i];
+ if( addr<0 ){
+ /* If [0] is unused then [1] is also unused. So we can
+ ** always safely abort as soon as the first unused slot is found */
+ assert( pLoop->addrOpenEphm[1]<0 );
+ break;
+ }
+ sqlite3VdbeChangeP2(v, addr, nCol);
+ sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
+ P4_KEYINFO);
+ pLoop->addrOpenEphm[i] = -1;
+ }
+ }
+ sqlite3KeyInfoUnref(pKeyInfo);
+ }
+
+multi_select_end:
+ pDest->iSdst = dest.iSdst;
+ pDest->nSdst = dest.nSdst;
+ if( pDelete ){
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3SelectDelete,
+ pDelete);
+ }
+ return rc;
+}
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+/*
+** Error message for when two or more terms of a compound select have different
+** size result sets.
+*/
+void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
+ if( p->selFlags & SF_Values ){
+ sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
+ }else{
+ sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
+ " do not have the same number of result columns",
+ sqlite3SelectOpName(p->op));
+ }
+}
+
+/*
+** Code an output subroutine for a coroutine implementation of a
+** SELECT statment.
+**
+** The data to be output is contained in pIn->iSdst. There are
+** pIn->nSdst columns to be output. pDest is where the output should
+** be sent.
+**
+** regReturn is the number of the register holding the subroutine
+** return address.
+**
+** If regPrev>0 then it is the first register in a vector that
+** records the previous output. mem[regPrev] is a flag that is false
+** if there has been no previous output. If regPrev>0 then code is
+** generated to suppress duplicates. pKeyInfo is used for comparing
+** keys.
+**
+** If the LIMIT found in p->iLimit is reached, jump immediately to
+** iBreak.
+*/
+static int generateOutputSubroutine(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The SELECT statement */
+ SelectDest *pIn, /* Coroutine supplying data */
+ SelectDest *pDest, /* Where to send the data */
+ int regReturn, /* The return address register */
+ int regPrev, /* Previous result register. No uniqueness if 0 */
+ KeyInfo *pKeyInfo, /* For comparing with previous entry */
+ int iBreak /* Jump here if we hit the LIMIT */
+){
+ Vdbe *v = pParse->pVdbe;
+ int iContinue;
+ int addr;
+
+ addr = sqlite3VdbeCurrentAddr(v);
+ iContinue = sqlite3VdbeMakeLabel(pParse);
+
+ /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
+ */
+ if( regPrev ){
+ int addr1, addr2;
+ addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
+ addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
+ (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
+ sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
+ sqlite3VdbeJumpHere(v, addr1);
+ sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
+ }
+ if( pParse->db->mallocFailed ) return 0;
+
+ /* Suppress the first OFFSET entries if there is an OFFSET clause
+ */
+ codeOffset(v, p->iOffset, iContinue);
+
+ assert( pDest->eDest!=SRT_Exists );
+ assert( pDest->eDest!=SRT_Table );
+ switch( pDest->eDest ){
+ /* Store the result as data using a unique key.
+ */
+ case SRT_EphemTab: {
+ int r1 = sqlite3GetTempReg(pParse);
+ int r2 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
+ sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+ sqlite3ReleaseTempReg(pParse, r2);
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+#ifndef SQLITE_OMIT_SUBQUERY
+ /* If we are creating a set for an "expr IN (SELECT ...)".
+ */
+ case SRT_Set: {
+ int r1;
+ testcase( pIn->nSdst>1 );
+ r1 = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
+ r1, pDest->zAffSdst, pIn->nSdst);
+ sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
+ pIn->iSdst, pIn->nSdst);
+ sqlite3ReleaseTempReg(pParse, r1);
+ break;
+ }
+
+ /* If this is a scalar select that is part of an expression, then
+ ** store the results in the appropriate memory cell and break out
+ ** of the scan loop. Note that the select might return multiple columns
+ ** if it is the RHS of a row-value IN operator.
+ */
+ case SRT_Mem: {
+ testcase( pIn->nSdst>1 );
+ sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
+ /* The LIMIT clause will jump out of the loop for us */
+ break;
+ }
+#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
+
+ /* The results are stored in a sequence of registers
+ ** starting at pDest->iSdst. Then the co-routine yields.
+ */
+ case SRT_Coroutine: {
+ if( pDest->iSdst==0 ){
+ pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
+ pDest->nSdst = pIn->nSdst;
+ }
+ sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
+ sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
+ break;
+ }
+
+ /* If none of the above, then the result destination must be
+ ** SRT_Output. This routine is never called with any other
+ ** destination other than the ones handled above or SRT_Output.
+ **
+ ** For SRT_Output, results are stored in a sequence of registers.
+ ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
+ ** return the next row of result.
+ */
+ default: {
+ assert( pDest->eDest==SRT_Output );
+ sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
+ break;
+ }
+ }
+
+ /* Jump to the end of the loop if the LIMIT is reached.
+ */
+ if( p->iLimit ){
+ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
+ }
+
+ /* Generate the subroutine return
+ */
+ sqlite3VdbeResolveLabel(v, iContinue);
+ sqlite3VdbeAddOp1(v, OP_Return, regReturn);
+
+ return addr;
+}
+
+/*
+** Alternative compound select code generator for cases when there
+** is an ORDER BY clause.
+**
+** We assume a query of the following form:
+**
+** <selectA> <operator> <selectB> ORDER BY <orderbylist>
+**
+** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
+** is to code both <selectA> and <selectB> with the ORDER BY clause as
+** co-routines. Then run the co-routines in parallel and merge the results
+** into the output. In addition to the two coroutines (called selectA and
+** selectB) there are 7 subroutines:
+**
+** outA: Move the output of the selectA coroutine into the output
+** of the compound query.
+**
+** outB: Move the output of the selectB coroutine into the output
+** of the compound query. (Only generated for UNION and
+** UNION ALL. EXCEPT and INSERTSECT never output a row that
+** appears only in B.)
+**
+** AltB: Called when there is data from both coroutines and A<B.
+**
+** AeqB: Called when there is data from both coroutines and A==B.
+**
+** AgtB: Called when there is data from both coroutines and A>B.
+**
+** EofA: Called when data is exhausted from selectA.
+**
+** EofB: Called when data is exhausted from selectB.
+**
+** The implementation of the latter five subroutines depend on which
+** <operator> is used:
+**
+**
+** UNION ALL UNION EXCEPT INTERSECT
+** ------------- ----------------- -------------- -----------------
+** AltB: outA, nextA outA, nextA outA, nextA nextA
+**
+** AeqB: outA, nextA nextA nextA outA, nextA
+**
+** AgtB: outB, nextB outB, nextB nextB nextB
+**
+** EofA: outB, nextB outB, nextB halt halt
+**
+** EofB: outA, nextA outA, nextA outA, nextA halt
+**
+** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
+** causes an immediate jump to EofA and an EOF on B following nextB causes
+** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
+** following nextX causes a jump to the end of the select processing.
+**
+** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
+** within the output subroutine. The regPrev register set holds the previously
+** output value. A comparison is made against this value and the output
+** is skipped if the next results would be the same as the previous.
+**
+** The implementation plan is to implement the two coroutines and seven
+** subroutines first, then put the control logic at the bottom. Like this:
+**
+** goto Init
+** coA: coroutine for left query (A)
+** coB: coroutine for right query (B)
+** outA: output one row of A
+** outB: output one row of B (UNION and UNION ALL only)
+** EofA: ...
+** EofB: ...
+** AltB: ...
+** AeqB: ...
+** AgtB: ...
+** Init: initialize coroutine registers
+** yield coA
+** if eof(A) goto EofA
+** yield coB
+** if eof(B) goto EofB
+** Cmpr: Compare A, B
+** Jump AltB, AeqB, AgtB
+** End: ...
+**
+** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
+** actually called using Gosub and they do not Return. EofA and EofB loop
+** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
+** and AgtB jump to either L2 or to one of EofA or EofB.
+*/
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+static int multiSelectOrderBy(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The right-most of SELECTs to be coded */
+ SelectDest *pDest /* What to do with query results */
+){
+ int i, j; /* Loop counters */
+ Select *pPrior; /* Another SELECT immediately to our left */
+ Select *pSplit; /* Left-most SELECT in the right-hand group */
+ int nSelect; /* Number of SELECT statements in the compound */
+ Vdbe *v; /* Generate code to this VDBE */
+ SelectDest destA; /* Destination for coroutine A */
+ SelectDest destB; /* Destination for coroutine B */
+ int regAddrA; /* Address register for select-A coroutine */
+ int regAddrB; /* Address register for select-B coroutine */
+ int addrSelectA; /* Address of the select-A coroutine */
+ int addrSelectB; /* Address of the select-B coroutine */
+ int regOutA; /* Address register for the output-A subroutine */
+ int regOutB; /* Address register for the output-B subroutine */
+ int addrOutA; /* Address of the output-A subroutine */
+ int addrOutB = 0; /* Address of the output-B subroutine */
+ int addrEofA; /* Address of the select-A-exhausted subroutine */
+ int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
+ int addrEofB; /* Address of the select-B-exhausted subroutine */
+ int addrAltB; /* Address of the A<B subroutine */
+ int addrAeqB; /* Address of the A==B subroutine */
+ int addrAgtB; /* Address of the A>B subroutine */
+ int regLimitA; /* Limit register for select-A */
+ int regLimitB; /* Limit register for select-A */
+ int regPrev; /* A range of registers to hold previous output */
+ int savedLimit; /* Saved value of p->iLimit */
+ int savedOffset; /* Saved value of p->iOffset */
+ int labelCmpr; /* Label for the start of the merge algorithm */
+ int labelEnd; /* Label for the end of the overall SELECT stmt */
+ int addr1; /* Jump instructions that get retargetted */
+ int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
+ KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
+ KeyInfo *pKeyMerge; /* Comparison information for merging rows */
+ sqlite3 *db; /* Database connection */
+ ExprList *pOrderBy; /* The ORDER BY clause */
+ int nOrderBy; /* Number of terms in the ORDER BY clause */
+ u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */
+
+ assert( p->pOrderBy!=0 );
+ assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
+ db = pParse->db;
+ v = pParse->pVdbe;
+ assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
+ labelEnd = sqlite3VdbeMakeLabel(pParse);
+ labelCmpr = sqlite3VdbeMakeLabel(pParse);
+
+
+ /* Patch up the ORDER BY clause
+ */
+ op = p->op;
+ assert( p->pPrior->pOrderBy==0 );
+ pOrderBy = p->pOrderBy;
+ assert( pOrderBy );
+ nOrderBy = pOrderBy->nExpr;
+
+ /* For operators other than UNION ALL we have to make sure that
+ ** the ORDER BY clause covers every term of the result set. Add
+ ** terms to the ORDER BY clause as necessary.
+ */
+ if( op!=TK_ALL ){
+ for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
+ struct ExprList_item *pItem;
+ for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
+ assert( pItem!=0 );
+ assert( pItem->u.x.iOrderByCol>0 );
+ if( pItem->u.x.iOrderByCol==i ) break;
+ }
+ if( j==nOrderBy ){
+ Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
+ if( pNew==0 ) return SQLITE_NOMEM_BKPT;
+ pNew->flags |= EP_IntValue;
+ pNew->u.iValue = i;
+ p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
+ if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
+ }
+ }
+ }
+
+ /* Compute the comparison permutation and keyinfo that is used with
+ ** the permutation used to determine if the next
+ ** row of results comes from selectA or selectB. Also add explicit
+ ** collations to the ORDER BY clause terms so that when the subqueries
+ ** to the right and the left are evaluated, they use the correct
+ ** collation.
+ */
+ aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
+ if( aPermute ){
+ struct ExprList_item *pItem;
+ aPermute[0] = nOrderBy;
+ for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
+ assert( pItem!=0 );
+ assert( pItem->u.x.iOrderByCol>0 );
+ assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
+ aPermute[i] = pItem->u.x.iOrderByCol - 1;
+ }
+ pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
+ }else{
+ pKeyMerge = 0;
+ }
+
+ /* Allocate a range of temporary registers and the KeyInfo needed
+ ** for the logic that removes duplicate result rows when the
+ ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
+ */
+ if( op==TK_ALL ){
+ regPrev = 0;
+ }else{
+ int nExpr = p->pEList->nExpr;
+ assert( nOrderBy>=nExpr || db->mallocFailed );
+ regPrev = pParse->nMem+1;
+ pParse->nMem += nExpr+1;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
+ pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
+ if( pKeyDup ){
+ assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
+ for(i=0; i<nExpr; i++){
+ pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
+ pKeyDup->aSortFlags[i] = 0;
+ }
+ }
+ }
+
+ /* Separate the left and the right query from one another
+ */
+ nSelect = 1;
+ if( (op==TK_ALL || op==TK_UNION)
+ && OptimizationEnabled(db, SQLITE_BalancedMerge)
+ ){
+ for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
+ nSelect++;
+ assert( pSplit->pPrior->pNext==pSplit );
+ }
+ }
+ if( nSelect<=3 ){
+ pSplit = p;
+ }else{
+ pSplit = p;
+ for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
+ }
+ pPrior = pSplit->pPrior;
+ assert( pPrior!=0 );
+ pSplit->pPrior = 0;
+ pPrior->pNext = 0;
+ assert( p->pOrderBy == pOrderBy );
+ assert( pOrderBy!=0 || db->mallocFailed );
+ pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
+ sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
+ sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
+
+ /* Compute the limit registers */
+ computeLimitRegisters(pParse, p, labelEnd);
+ if( p->iLimit && op==TK_ALL ){
+ regLimitA = ++pParse->nMem;
+ regLimitB = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
+ regLimitA);
+ sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
+ }else{
+ regLimitA = regLimitB = 0;
+ }
+ sqlite3ExprDelete(db, p->pLimit);
+ p->pLimit = 0;
+
+ regAddrA = ++pParse->nMem;
+ regAddrB = ++pParse->nMem;
+ regOutA = ++pParse->nMem;
+ regOutB = ++pParse->nMem;
+ sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
+ sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
+
+ ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
+
+ /* Generate a coroutine to evaluate the SELECT statement to the
+ ** left of the compound operator - the "A" select.
+ */
+ addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
+ addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
+ VdbeComment((v, "left SELECT"));
+ pPrior->iLimit = regLimitA;
+ ExplainQueryPlan((pParse, 1, "LEFT"));
+ sqlite3Select(pParse, pPrior, &destA);
+ sqlite3VdbeEndCoroutine(v, regAddrA);
+ sqlite3VdbeJumpHere(v, addr1);
+
+ /* Generate a coroutine to evaluate the SELECT statement on
+ ** the right - the "B" select
+ */
+ addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
+ addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
+ VdbeComment((v, "right SELECT"));
+ savedLimit = p->iLimit;
+ savedOffset = p->iOffset;
+ p->iLimit = regLimitB;
+ p->iOffset = 0;
+ ExplainQueryPlan((pParse, 1, "RIGHT"));
+ sqlite3Select(pParse, p, &destB);
+ p->iLimit = savedLimit;
+ p->iOffset = savedOffset;
+ sqlite3VdbeEndCoroutine(v, regAddrB);
+
+ /* Generate a subroutine that outputs the current row of the A
+ ** select as the next output row of the compound select.
+ */
+ VdbeNoopComment((v, "Output routine for A"));
+ addrOutA = generateOutputSubroutine(pParse,
+ p, &destA, pDest, regOutA,
+ regPrev, pKeyDup, labelEnd);
+
+ /* Generate a subroutine that outputs the current row of the B
+ ** select as the next output row of the compound select.
+ */
+ if( op==TK_ALL || op==TK_UNION ){
+ VdbeNoopComment((v, "Output routine for B"));
+ addrOutB = generateOutputSubroutine(pParse,
+ p, &destB, pDest, regOutB,
+ regPrev, pKeyDup, labelEnd);
+ }
+ sqlite3KeyInfoUnref(pKeyDup);
+
+ /* Generate a subroutine to run when the results from select A
+ ** are exhausted and only data in select B remains.
+ */
+ if( op==TK_EXCEPT || op==TK_INTERSECT ){
+ addrEofA_noB = addrEofA = labelEnd;
+ }else{
+ VdbeNoopComment((v, "eof-A subroutine"));
+ addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
+ addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
+ VdbeCoverage(v);
+ sqlite3VdbeGoto(v, addrEofA);
+ p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
+ }
+
+ /* Generate a subroutine to run when the results from select B
+ ** are exhausted and only data in select A remains.
+ */
+ if( op==TK_INTERSECT ){
+ addrEofB = addrEofA;
+ if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
+ }else{
+ VdbeNoopComment((v, "eof-B subroutine"));
+ addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, addrEofB);
+ }
+
+ /* Generate code to handle the case of A<B
+ */
+ VdbeNoopComment((v, "A-lt-B subroutine"));
+ addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, labelCmpr);
+
+ /* Generate code to handle the case of A==B
+ */
+ if( op==TK_ALL ){
+ addrAeqB = addrAltB;
+ }else if( op==TK_INTERSECT ){
+ addrAeqB = addrAltB;
+ addrAltB++;
+ }else{
+ VdbeNoopComment((v, "A-eq-B subroutine"));
+ addrAeqB =
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, labelCmpr);
+ }
+
+ /* Generate code to handle the case of A>B
+ */
+ VdbeNoopComment((v, "A-gt-B subroutine"));
+ addrAgtB = sqlite3VdbeCurrentAddr(v);
+ if( op==TK_ALL || op==TK_UNION ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
+ }
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
+ sqlite3VdbeGoto(v, labelCmpr);
+
+ /* This code runs once to initialize everything.
+ */
+ sqlite3VdbeJumpHere(v, addr1);
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
+
+ /* Implement the main merge loop
+ */
+ sqlite3VdbeResolveLabel(v, labelCmpr);
+ sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
+ sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
+ (char*)pKeyMerge, P4_KEYINFO);
+ sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
+ sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
+
+ /* Jump to the this point in order to terminate the query.
+ */
+ sqlite3VdbeResolveLabel(v, labelEnd);
+
+ /* Make arrangements to free the 2nd and subsequent arms of the compound
+ ** after the parse has finished */
+ if( pSplit->pPrior ){
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3SelectDelete, pSplit->pPrior);
+ }
+ pSplit->pPrior = pPrior;
+ pPrior->pNext = pSplit;
+ sqlite3ExprListDelete(db, pPrior->pOrderBy);
+ pPrior->pOrderBy = 0;
+
+ /*** TBD: Insert subroutine calls to close cursors on incomplete
+ **** subqueries ****/
+ ExplainQueryPlanPop(pParse);
+ return pParse->nErr!=0;
+}
+#endif
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+
+/* An instance of the SubstContext object describes an substitution edit
+** to be performed on a parse tree.
+**
+** All references to columns in table iTable are to be replaced by corresponding
+** expressions in pEList.
+**
+** ## About "isOuterJoin":
+**
+** The isOuterJoin column indicates that the replacement will occur into a
+** position in the parent that NULL-able due to an OUTER JOIN. Either the
+** target slot in the parent is the right operand of a LEFT JOIN, or one of
+** the left operands of a RIGHT JOIN. In either case, we need to potentially
+** bypass the substituted expression with OP_IfNullRow.
+**
+** Suppose the original expression is an integer constant. Even though the table
+** has the nullRow flag set, because the expression is an integer constant,
+** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode
+** that checks to see if the nullRow flag is set on the table. If the nullRow
+** flag is set, then the value in the register is set to NULL and the original
+** expression is bypassed. If the nullRow flag is not set, then the original
+** expression runs to populate the register.
+**
+** Example where this is needed:
+**
+** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT);
+** CREATE TABLE t2(x INT UNIQUE);
+**
+** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x;
+**
+** When the subquery on the right side of the LEFT JOIN is flattened, we
+** have to add OP_IfNullRow in front of the OP_Integer that implements the
+** "m" value of the subquery so that a NULL will be loaded instead of 59
+** when processing a non-matched row of the left.
+*/
+typedef struct SubstContext {
+ Parse *pParse; /* The parsing context */
+ int iTable; /* Replace references to this table */
+ int iNewTable; /* New table number */
+ int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
+ ExprList *pEList; /* Replacement expressions */
+ ExprList *pCList; /* Collation sequences for replacement expr */
+} SubstContext;
+
+/* Forward Declarations */
+static void substExprList(SubstContext*, ExprList*);
+static void substSelect(SubstContext*, Select*, int);
+
+/*
+** Scan through the expression pExpr. Replace every reference to
+** a column in table number iTable with a copy of the iColumn-th
+** entry in pEList. (But leave references to the ROWID column
+** unchanged.)
+**
+** This routine is part of the flattening procedure. A subquery
+** whose result set is defined by pEList appears as entry in the
+** FROM clause of a SELECT such that the VDBE cursor assigned to that
+** FORM clause entry is iTable. This routine makes the necessary
+** changes to pExpr so that it refers directly to the source table
+** of the subquery rather the result set of the subquery.
+*/
+static Expr *substExpr(
+ SubstContext *pSubst, /* Description of the substitution */
+ Expr *pExpr /* Expr in which substitution occurs */
+){
+ if( pExpr==0 ) return 0;
+ if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON)
+ && pExpr->w.iJoin==pSubst->iTable
+ ){
+ testcase( ExprHasProperty(pExpr, EP_InnerON) );
+ pExpr->w.iJoin = pSubst->iNewTable;
+ }
+ if( pExpr->op==TK_COLUMN
+ && pExpr->iTable==pSubst->iTable
+ && !ExprHasProperty(pExpr, EP_FixedCol)
+ ){
+#ifdef SQLITE_ALLOW_ROWID_IN_VIEW
+ if( pExpr->iColumn<0 ){
+ pExpr->op = TK_NULL;
+ }else
+#endif
+ {
+ Expr *pNew;
+ int iColumn = pExpr->iColumn;
+ Expr *pCopy = pSubst->pEList->a[iColumn].pExpr;
+ Expr ifNullRow;
+ assert( pSubst->pEList!=0 && iColumn<pSubst->pEList->nExpr );
+ assert( pExpr->pRight==0 );
+ if( sqlite3ExprIsVector(pCopy) ){
+ sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
+ }else{
+ sqlite3 *db = pSubst->pParse->db;
+ if( pSubst->isOuterJoin && pCopy->op!=TK_COLUMN ){
+ memset(&ifNullRow, 0, sizeof(ifNullRow));
+ ifNullRow.op = TK_IF_NULL_ROW;
+ ifNullRow.pLeft = pCopy;
+ ifNullRow.iTable = pSubst->iNewTable;
+ ifNullRow.iColumn = -99;
+ ifNullRow.flags = EP_IfNullRow;
+ pCopy = &ifNullRow;
+ }
+ testcase( ExprHasProperty(pCopy, EP_Subquery) );
+ pNew = sqlite3ExprDup(db, pCopy, 0);
+ if( db->mallocFailed ){
+ sqlite3ExprDelete(db, pNew);
+ return pExpr;
+ }
+ if( pSubst->isOuterJoin ){
+ ExprSetProperty(pNew, EP_CanBeNull);
+ }
+ if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){
+ sqlite3SetJoinExpr(pNew, pExpr->w.iJoin,
+ pExpr->flags & (EP_OuterON|EP_InnerON));
+ }
+ sqlite3ExprDelete(db, pExpr);
+ pExpr = pNew;
+ if( pExpr->op==TK_TRUEFALSE ){
+ pExpr->u.iValue = sqlite3ExprTruthValue(pExpr);
+ pExpr->op = TK_INTEGER;
+ ExprSetProperty(pExpr, EP_IntValue);
+ }
+
+ /* Ensure that the expression now has an implicit collation sequence,
+ ** just as it did when it was a column of a view or sub-query. */
+ {
+ CollSeq *pNat = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
+ CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse,
+ pSubst->pCList->a[iColumn].pExpr
+ );
+ if( pNat!=pColl || (pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE) ){
+ pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
+ (pColl ? pColl->zName : "BINARY")
+ );
+ }
+ }
+ ExprClearProperty(pExpr, EP_Collate);
+ }
+ }
+ }else{
+ if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
+ pExpr->iTable = pSubst->iNewTable;
+ }
+ pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
+ pExpr->pRight = substExpr(pSubst, pExpr->pRight);
+ if( ExprUseXSelect(pExpr) ){
+ substSelect(pSubst, pExpr->x.pSelect, 1);
+ }else{
+ substExprList(pSubst, pExpr->x.pList);
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ Window *pWin = pExpr->y.pWin;
+ pWin->pFilter = substExpr(pSubst, pWin->pFilter);
+ substExprList(pSubst, pWin->pPartition);
+ substExprList(pSubst, pWin->pOrderBy);
+ }
+#endif
+ }
+ return pExpr;
+}
+static void substExprList(
+ SubstContext *pSubst, /* Description of the substitution */
+ ExprList *pList /* List to scan and in which to make substitutes */
+){
+ int i;
+ if( pList==0 ) return;
+ for(i=0; i<pList->nExpr; i++){
+ pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
+ }
+}
+static void substSelect(
+ SubstContext *pSubst, /* Description of the substitution */
+ Select *p, /* SELECT statement in which to make substitutions */
+ int doPrior /* Do substitutes on p->pPrior too */
+){
+ SrcList *pSrc;
+ SrcItem *pItem;
+ int i;
+ if( !p ) return;
+ do{
+ substExprList(pSubst, p->pEList);
+ substExprList(pSubst, p->pGroupBy);
+ substExprList(pSubst, p->pOrderBy);
+ p->pHaving = substExpr(pSubst, p->pHaving);
+ p->pWhere = substExpr(pSubst, p->pWhere);
+ pSrc = p->pSrc;
+ assert( pSrc!=0 );
+ for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
+ substSelect(pSubst, pItem->pSelect, 1);
+ if( pItem->fg.isTabFunc ){
+ substExprList(pSubst, pItem->u1.pFuncArg);
+ }
+ }
+ }while( doPrior && (p = p->pPrior)!=0 );
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+/*
+** pSelect is a SELECT statement and pSrcItem is one item in the FROM
+** clause of that SELECT.
+**
+** This routine scans the entire SELECT statement and recomputes the
+** pSrcItem->colUsed mask.
+*/
+static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
+ SrcItem *pItem;
+ if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
+ pItem = pWalker->u.pSrcItem;
+ if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
+ if( pExpr->iColumn<0 ) return WRC_Continue;
+ pItem->colUsed |= sqlite3ExprColUsed(pExpr);
+ return WRC_Continue;
+}
+static void recomputeColumnsUsed(
+ Select *pSelect, /* The complete SELECT statement */
+ SrcItem *pSrcItem /* Which FROM clause item to recompute */
+){
+ Walker w;
+ if( NEVER(pSrcItem->pTab==0) ) return;
+ memset(&w, 0, sizeof(w));
+ w.xExprCallback = recomputeColumnsUsedExpr;
+ w.xSelectCallback = sqlite3SelectWalkNoop;
+ w.u.pSrcItem = pSrcItem;
+ pSrcItem->colUsed = 0;
+ sqlite3WalkSelect(&w, pSelect);
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+/*
+** Assign new cursor numbers to each of the items in pSrc. For each
+** new cursor number assigned, set an entry in the aCsrMap[] array
+** to map the old cursor number to the new:
+**
+** aCsrMap[iOld+1] = iNew;
+**
+** The array is guaranteed by the caller to be large enough for all
+** existing cursor numbers in pSrc. aCsrMap[0] is the array size.
+**
+** If pSrc contains any sub-selects, call this routine recursively
+** on the FROM clause of each such sub-select, with iExcept set to -1.
+*/
+static void srclistRenumberCursors(
+ Parse *pParse, /* Parse context */
+ int *aCsrMap, /* Array to store cursor mappings in */
+ SrcList *pSrc, /* FROM clause to renumber */
+ int iExcept /* FROM clause item to skip */
+){
+ int i;
+ SrcItem *pItem;
+ for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
+ if( i!=iExcept ){
+ Select *p;
+ assert( pItem->iCursor < aCsrMap[0] );
+ if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
+ aCsrMap[pItem->iCursor+1] = pParse->nTab++;
+ }
+ pItem->iCursor = aCsrMap[pItem->iCursor+1];
+ for(p=pItem->pSelect; p; p=p->pPrior){
+ srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
+ }
+ }
+ }
+}
+
+/*
+** *piCursor is a cursor number. Change it if it needs to be mapped.
+*/
+static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
+ int *aCsrMap = pWalker->u.aiCol;
+ int iCsr = *piCursor;
+ if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
+ *piCursor = aCsrMap[iCsr+1];
+ }
+}
+
+/*
+** Expression walker callback used by renumberCursors() to update
+** Expr objects to match newly assigned cursor numbers.
+*/
+static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
+ int op = pExpr->op;
+ if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
+ renumberCursorDoMapping(pWalker, &pExpr->iTable);
+ }
+ if( ExprHasProperty(pExpr, EP_OuterON) ){
+ renumberCursorDoMapping(pWalker, &pExpr->w.iJoin);
+ }
+ return WRC_Continue;
+}
+
+/*
+** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
+** of the SELECT statement passed as the second argument, and to each
+** cursor in the FROM clause of any FROM clause sub-selects, recursively.
+** Except, do not assign a new cursor number to the iExcept'th element in
+** the FROM clause of (*p). Update all expressions and other references
+** to refer to the new cursor numbers.
+**
+** Argument aCsrMap is an array that may be used for temporary working
+** space. Two guarantees are made by the caller:
+**
+** * the array is larger than the largest cursor number used within the
+** select statement passed as an argument, and
+**
+** * the array entries for all cursor numbers that do *not* appear in
+** FROM clauses of the select statement as described above are
+** initialized to zero.
+*/
+static void renumberCursors(
+ Parse *pParse, /* Parse context */
+ Select *p, /* Select to renumber cursors within */
+ int iExcept, /* FROM clause item to skip */
+ int *aCsrMap /* Working space */
+){
+ Walker w;
+ srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
+ memset(&w, 0, sizeof(w));
+ w.u.aiCol = aCsrMap;
+ w.xExprCallback = renumberCursorsCb;
+ w.xSelectCallback = sqlite3SelectWalkNoop;
+ sqlite3WalkSelect(&w, p);
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+/*
+** If pSel is not part of a compound SELECT, return a pointer to its
+** expression list. Otherwise, return a pointer to the expression list
+** of the leftmost SELECT in the compound.
+*/
+static ExprList *findLeftmostExprlist(Select *pSel){
+ while( pSel->pPrior ){
+ pSel = pSel->pPrior;
+ }
+ return pSel->pEList;
+}
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+/*
+** This routine attempts to flatten subqueries as a performance optimization.
+** This routine returns 1 if it makes changes and 0 if no flattening occurs.
+**
+** To understand the concept of flattening, consider the following
+** query:
+**
+** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
+**
+** The default way of implementing this query is to execute the
+** subquery first and store the results in a temporary table, then
+** run the outer query on that temporary table. This requires two
+** passes over the data. Furthermore, because the temporary table
+** has no indices, the WHERE clause on the outer query cannot be
+** optimized.
+**
+** This routine attempts to rewrite queries such as the above into
+** a single flat select, like this:
+**
+** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
+**
+** The code generated for this simplification gives the same result
+** but only has to scan the data once. And because indices might
+** exist on the table t1, a complete scan of the data might be
+** avoided.
+**
+** Flattening is subject to the following constraints:
+**
+** (**) We no longer attempt to flatten aggregate subqueries. Was:
+** The subquery and the outer query cannot both be aggregates.
+**
+** (**) We no longer attempt to flatten aggregate subqueries. Was:
+** (2) If the subquery is an aggregate then
+** (2a) the outer query must not be a join and
+** (2b) the outer query must not use subqueries
+** other than the one FROM-clause subquery that is a candidate
+** for flattening. (This is due to ticket [2f7170d73bf9abf80]
+** from 2015-02-09.)
+**
+** (3) If the subquery is the right operand of a LEFT JOIN then
+** (3a) the subquery may not be a join and
+** (3b) the FROM clause of the subquery may not contain a virtual
+** table and
+** (**) Was: "The outer query may not have a GROUP BY." This case
+** is now managed correctly
+** (3d) the outer query may not be DISTINCT.
+** See also (26) for restrictions on RIGHT JOIN.
+**
+** (4) The subquery can not be DISTINCT.
+**
+** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
+** sub-queries that were excluded from this optimization. Restriction
+** (4) has since been expanded to exclude all DISTINCT subqueries.
+**
+** (**) We no longer attempt to flatten aggregate subqueries. Was:
+** If the subquery is aggregate, the outer query may not be DISTINCT.
+**
+** (7) The subquery must have a FROM clause. TODO: For subqueries without
+** A FROM clause, consider adding a FROM clause with the special
+** table sqlite_once that consists of a single row containing a
+** single NULL.
+**
+** (8) If the subquery uses LIMIT then the outer query may not be a join.
+**
+** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
+**
+** (**) Restriction (10) was removed from the code on 2005-02-05 but we
+** accidently carried the comment forward until 2014-09-15. Original
+** constraint: "If the subquery is aggregate then the outer query
+** may not use LIMIT."
+**
+** (11) The subquery and the outer query may not both have ORDER BY clauses.
+**
+** (**) Not implemented. Subsumed into restriction (3). Was previously
+** a separate restriction deriving from ticket #350.
+**
+** (13) The subquery and outer query may not both use LIMIT.
+**
+** (14) The subquery may not use OFFSET.
+**
+** (15) If the outer query is part of a compound select, then the
+** subquery may not use LIMIT.
+** (See ticket #2339 and ticket [02a8e81d44]).
+**
+** (16) If the outer query is aggregate, then the subquery may not
+** use ORDER BY. (Ticket #2942) This used to not matter
+** until we introduced the group_concat() function.
+**
+** (17) If the subquery is a compound select, then
+** (17a) all compound operators must be a UNION ALL, and
+** (17b) no terms within the subquery compound may be aggregate
+** or DISTINCT, and
+** (17c) every term within the subquery compound must have a FROM clause
+** (17d) the outer query may not be
+** (17d1) aggregate, or
+** (17d2) DISTINCT
+** (17e) the subquery may not contain window functions, and
+** (17f) the subquery must not be the RHS of a LEFT JOIN.
+** (17g) either the subquery is the first element of the outer
+** query or there are no RIGHT or FULL JOINs in any arm
+** of the subquery. (This is a duplicate of condition (27b).)
+** (17h) The corresponding result set expressions in all arms of the
+** compound must have the same affinity.
+**
+** The parent and sub-query may contain WHERE clauses. Subject to
+** rules (11), (13) and (14), they may also contain ORDER BY,
+** LIMIT and OFFSET clauses. The subquery cannot use any compound
+** operator other than UNION ALL because all the other compound
+** operators have an implied DISTINCT which is disallowed by
+** restriction (4).
+**
+** Also, each component of the sub-query must return the same number
+** of result columns. This is actually a requirement for any compound
+** SELECT statement, but all the code here does is make sure that no
+** such (illegal) sub-query is flattened. The caller will detect the
+** syntax error and return a detailed message.
+**
+** (18) If the sub-query is a compound select, then all terms of the
+** ORDER BY clause of the parent must be copies of a term returned
+** by the parent query.
+**
+** (19) If the subquery uses LIMIT then the outer query may not
+** have a WHERE clause.
+**
+** (20) If the sub-query is a compound select, then it must not use
+** an ORDER BY clause. Ticket #3773. We could relax this constraint
+** somewhat by saying that the terms of the ORDER BY clause must
+** appear as unmodified result columns in the outer query. But we
+** have other optimizations in mind to deal with that case.
+**
+** (21) If the subquery uses LIMIT then the outer query may not be
+** DISTINCT. (See ticket [752e1646fc]).
+**
+** (22) The subquery may not be a recursive CTE.
+**
+** (23) If the outer query is a recursive CTE, then the sub-query may not be
+** a compound query. This restriction is because transforming the
+** parent to a compound query confuses the code that handles
+** recursive queries in multiSelect().
+**
+** (**) We no longer attempt to flatten aggregate subqueries. Was:
+** The subquery may not be an aggregate that uses the built-in min() or
+** or max() functions. (Without this restriction, a query like:
+** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
+** return the value X for which Y was maximal.)
+**
+** (25) If either the subquery or the parent query contains a window
+** function in the select list or ORDER BY clause, flattening
+** is not attempted.
+**
+** (26) The subquery may not be the right operand of a RIGHT JOIN.
+** See also (3) for restrictions on LEFT JOIN.
+**
+** (27) The subquery may not contain a FULL or RIGHT JOIN unless it
+** is the first element of the parent query. Two subcases:
+** (27a) the subquery is not a compound query.
+** (27b) the subquery is a compound query and the RIGHT JOIN occurs
+** in any arm of the compound query. (See also (17g).)
+**
+** (28) The subquery is not a MATERIALIZED CTE.
+**
+**
+** In this routine, the "p" parameter is a pointer to the outer query.
+** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
+** uses aggregates.
+**
+** If flattening is not attempted, this routine is a no-op and returns 0.
+** If flattening is attempted this routine returns 1.
+**
+** All of the expression analysis must occur on both the outer query and
+** the subquery before this routine runs.
+*/
+static int flattenSubquery(
+ Parse *pParse, /* Parsing context */
+ Select *p, /* The parent or outer SELECT statement */
+ int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
+ int isAgg /* True if outer SELECT uses aggregate functions */
+){
+ const char *zSavedAuthContext = pParse->zAuthContext;
+ Select *pParent; /* Current UNION ALL term of the other query */
+ Select *pSub; /* The inner query or "subquery" */
+ Select *pSub1; /* Pointer to the rightmost select in sub-query */
+ SrcList *pSrc; /* The FROM clause of the outer query */
+ SrcList *pSubSrc; /* The FROM clause of the subquery */
+ int iParent; /* VDBE cursor number of the pSub result set temp table */
+ int iNewParent = -1;/* Replacement table for iParent */
+ int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
+ int i; /* Loop counter */
+ Expr *pWhere; /* The WHERE clause */
+ SrcItem *pSubitem; /* The subquery */
+ sqlite3 *db = pParse->db;
+ Walker w; /* Walker to persist agginfo data */
+ int *aCsrMap = 0;
+
+ /* Check to see if flattening is permitted. Return 0 if not.
+ */
+ assert( p!=0 );
+ assert( p->pPrior==0 );
+ if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
+ pSrc = p->pSrc;
+ assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
+ pSubitem = &pSrc->a[iFrom];
+ iParent = pSubitem->iCursor;
+ pSub = pSubitem->pSelect;
+ assert( pSub!=0 );
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */
+#endif
+
+ pSubSrc = pSub->pSrc;
+ assert( pSubSrc );
+ /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
+ ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
+ ** because they could be computed at compile-time. But when LIMIT and OFFSET
+ ** became arbitrary expressions, we were forced to add restrictions (13)
+ ** and (14). */
+ if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
+ if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
+ if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
+ return 0; /* Restriction (15) */
+ }
+ if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
+ if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
+ if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
+ return 0; /* Restrictions (8)(9) */
+ }
+ if( p->pOrderBy && pSub->pOrderBy ){
+ return 0; /* Restriction (11) */
+ }
+ if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
+ if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
+ if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
+ return 0; /* Restriction (21) */
+ }
+ if( pSub->selFlags & (SF_Recursive) ){
+ return 0; /* Restrictions (22) */
+ }
+
+ /*
+ ** If the subquery is the right operand of a LEFT JOIN, then the
+ ** subquery may not be a join itself (3a). Example of why this is not
+ ** allowed:
+ **
+ ** t1 LEFT OUTER JOIN (t2 JOIN t3)
+ **
+ ** If we flatten the above, we would get
+ **
+ ** (t1 LEFT OUTER JOIN t2) JOIN t3
+ **
+ ** which is not at all the same thing.
+ **
+ ** See also tickets #306, #350, and #3300.
+ */
+ if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){
+ if( pSubSrc->nSrc>1 /* (3a) */
+ || IsVirtual(pSubSrc->a[0].pTab) /* (3b) */
+ || (p->selFlags & SF_Distinct)!=0 /* (3d) */
+ || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */
+ ){
+ return 0;
+ }
+ isOuterJoin = 1;
+ }
+
+ assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */
+ if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
+ return 0; /* Restriction (27a) */
+ }
+ if( pSubitem->fg.isCte && pSubitem->u2.pCteUse->eM10d==M10d_Yes ){
+ return 0; /* (28) */
+ }
+
+ /* Restriction (17): If the sub-query is a compound SELECT, then it must
+ ** use only the UNION ALL operator. And none of the simple select queries
+ ** that make up the compound SELECT are allowed to be aggregate or distinct
+ ** queries.
+ */
+ if( pSub->pPrior ){
+ int ii;
+ if( pSub->pOrderBy ){
+ return 0; /* Restriction (20) */
+ }
+ if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){
+ return 0; /* (17d1), (17d2), or (17f) */
+ }
+ for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
+ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
+ testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
+ assert( pSub->pSrc!=0 );
+ assert( (pSub->selFlags & SF_Recursive)==0 );
+ assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
+ if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
+ || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
+ || pSub1->pSrc->nSrc<1 /* (17c) */
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ || pSub1->pWin /* (17e) */
+#endif
+ ){
+ return 0;
+ }
+ if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
+ /* Without this restriction, the JT_LTORJ flag would end up being
+ ** omitted on left-hand tables of the right join that is being
+ ** flattened. */
+ return 0; /* Restrictions (17g), (27b) */
+ }
+ testcase( pSub1->pSrc->nSrc>1 );
+ }
+
+ /* Restriction (18). */
+ if( p->pOrderBy ){
+ for(ii=0; ii<p->pOrderBy->nExpr; ii++){
+ if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
+ }
+ }
+
+ /* Restriction (23) */
+ if( (p->selFlags & SF_Recursive) ) return 0;
+
+ /* Restriction (17h) */
+ for(ii=0; ii<pSub->pEList->nExpr; ii++){
+ char aff;
+ assert( pSub->pEList->a[ii].pExpr!=0 );
+ aff = sqlite3ExprAffinity(pSub->pEList->a[ii].pExpr);
+ for(pSub1=pSub->pPrior; pSub1; pSub1=pSub1->pPrior){
+ assert( pSub1->pEList!=0 );
+ assert( pSub1->pEList->nExpr>ii );
+ assert( pSub1->pEList->a[ii].pExpr!=0 );
+ if( sqlite3ExprAffinity(pSub1->pEList->a[ii].pExpr)!=aff ){
+ return 0;
+ }
+ }
+ }
+
+ if( pSrc->nSrc>1 ){
+ if( pParse->nSelect>500 ) return 0;
+ if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0;
+ aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
+ if( aCsrMap ) aCsrMap[0] = pParse->nTab;
+ }
+ }
+
+ /***** If we reach this point, flattening is permitted. *****/
+ SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
+ pSub->selId, pSub, iFrom));
+
+ /* Authorize the subquery */
+ pParse->zAuthContext = pSubitem->zName;
+ TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
+ testcase( i==SQLITE_DENY );
+ pParse->zAuthContext = zSavedAuthContext;
+
+ /* Delete the transient structures associated with thesubquery */
+ pSub1 = pSubitem->pSelect;
+ sqlite3DbFree(db, pSubitem->zDatabase);
+ sqlite3DbFree(db, pSubitem->zName);
+ sqlite3DbFree(db, pSubitem->zAlias);
+ pSubitem->zDatabase = 0;
+ pSubitem->zName = 0;
+ pSubitem->zAlias = 0;
+ pSubitem->pSelect = 0;
+ assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 );
+
+ /* If the sub-query is a compound SELECT statement, then (by restrictions
+ ** 17 and 18 above) it must be a UNION ALL and the parent query must
+ ** be of the form:
+ **
+ ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
+ **
+ ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
+ ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
+ ** OFFSET clauses and joins them to the left-hand-side of the original
+ ** using UNION ALL operators. In this case N is the number of simple
+ ** select statements in the compound sub-query.
+ **
+ ** Example:
+ **
+ ** SELECT a+1 FROM (
+ ** SELECT x FROM tab
+ ** UNION ALL
+ ** SELECT y FROM tab
+ ** UNION ALL
+ ** SELECT abs(z*2) FROM tab2
+ ** ) WHERE a!=5 ORDER BY 1
+ **
+ ** Transformed into:
+ **
+ ** SELECT x+1 FROM tab WHERE x+1!=5
+ ** UNION ALL
+ ** SELECT y+1 FROM tab WHERE y+1!=5
+ ** UNION ALL
+ ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
+ ** ORDER BY 1
+ **
+ ** We call this the "compound-subquery flattening".
+ */
+ for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
+ Select *pNew;
+ ExprList *pOrderBy = p->pOrderBy;
+ Expr *pLimit = p->pLimit;
+ Select *pPrior = p->pPrior;
+ Table *pItemTab = pSubitem->pTab;
+ pSubitem->pTab = 0;
+ p->pOrderBy = 0;
+ p->pPrior = 0;
+ p->pLimit = 0;
+ pNew = sqlite3SelectDup(db, p, 0);
+ p->pLimit = pLimit;
+ p->pOrderBy = pOrderBy;
+ p->op = TK_ALL;
+ pSubitem->pTab = pItemTab;
+ if( pNew==0 ){
+ p->pPrior = pPrior;
+ }else{
+ pNew->selId = ++pParse->nSelect;
+ if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
+ renumberCursors(pParse, pNew, iFrom, aCsrMap);
+ }
+ pNew->pPrior = pPrior;
+ if( pPrior ) pPrior->pNext = pNew;
+ pNew->pNext = p;
+ p->pPrior = pNew;
+ SELECTTRACE(2,pParse,p,("compound-subquery flattener"
+ " creates %u as peer\n",pNew->selId));
+ }
+ assert( pSubitem->pSelect==0 );
+ }
+ sqlite3DbFree(db, aCsrMap);
+ if( db->mallocFailed ){
+ pSubitem->pSelect = pSub1;
+ return 1;
+ }
+
+ /* Defer deleting the Table object associated with the
+ ** subquery until code generation is
+ ** complete, since there may still exist Expr.pTab entries that
+ ** refer to the subquery even after flattening. Ticket #3346.
+ **
+ ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
+ */
+ if( ALWAYS(pSubitem->pTab!=0) ){
+ Table *pTabToDel = pSubitem->pTab;
+ if( pTabToDel->nTabRef==1 ){
+ Parse *pToplevel = sqlite3ParseToplevel(pParse);
+ sqlite3ParserAddCleanup(pToplevel,
+ (void(*)(sqlite3*,void*))sqlite3DeleteTable,
+ pTabToDel);
+ testcase( pToplevel->earlyCleanup );
+ }else{
+ pTabToDel->nTabRef--;
+ }
+ pSubitem->pTab = 0;
+ }
+
+ /* The following loop runs once for each term in a compound-subquery
+ ** flattening (as described above). If we are doing a different kind
+ ** of flattening - a flattening other than a compound-subquery flattening -
+ ** then this loop only runs once.
+ **
+ ** This loop moves all of the FROM elements of the subquery into the
+ ** the FROM clause of the outer query. Before doing this, remember
+ ** the cursor number for the original outer query FROM element in
+ ** iParent. The iParent cursor will never be used. Subsequent code
+ ** will scan expressions looking for iParent references and replace
+ ** those references with expressions that resolve to the subquery FROM
+ ** elements we are now copying in.
+ */
+ pSub = pSub1;
+ for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
+ int nSubSrc;
+ u8 jointype = 0;
+ u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ;
+ assert( pSub!=0 );
+ pSubSrc = pSub->pSrc; /* FROM clause of subquery */
+ nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
+ pSrc = pParent->pSrc; /* FROM clause of the outer query */
+
+ if( pParent==p ){
+ jointype = pSubitem->fg.jointype; /* First time through the loop */
+ }
+
+ /* The subquery uses a single slot of the FROM clause of the outer
+ ** query. If the subquery has more than one element in its FROM clause,
+ ** then expand the outer query to make space for it to hold all elements
+ ** of the subquery.
+ **
+ ** Example:
+ **
+ ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
+ **
+ ** The outer query has 3 slots in its FROM clause. One slot of the
+ ** outer query (the middle slot) is used by the subquery. The next
+ ** block of code will expand the outer query FROM clause to 4 slots.
+ ** The middle slot is expanded to two slots in order to make space
+ ** for the two elements in the FROM clause of the subquery.
+ */
+ if( nSubSrc>1 ){
+ pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
+ if( pSrc==0 ) break;
+ pParent->pSrc = pSrc;
+ }
+
+ /* Transfer the FROM clause terms from the subquery into the
+ ** outer query.
+ */
+ for(i=0; i<nSubSrc; i++){
+ SrcItem *pItem = &pSrc->a[i+iFrom];
+ if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing);
+ assert( pItem->fg.isTabFunc==0 );
+ *pItem = pSubSrc->a[i];
+ pItem->fg.jointype |= ltorj;
+ iNewParent = pSubSrc->a[i].iCursor;
+ memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
+ }
+ pSrc->a[iFrom].fg.jointype &= JT_LTORJ;
+ pSrc->a[iFrom].fg.jointype |= jointype | ltorj;
+
+ /* Now begin substituting subquery result set expressions for
+ ** references to the iParent in the outer query.
+ **
+ ** Example:
+ **
+ ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
+ ** \ \_____________ subquery __________/ /
+ ** \_____________________ outer query ______________________________/
+ **
+ ** We look at every expression in the outer query and every place we see
+ ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
+ */
+ if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
+ /* At this point, any non-zero iOrderByCol values indicate that the
+ ** ORDER BY column expression is identical to the iOrderByCol'th
+ ** expression returned by SELECT statement pSub. Since these values
+ ** do not necessarily correspond to columns in SELECT statement pParent,
+ ** zero them before transfering the ORDER BY clause.
+ **
+ ** Not doing this may cause an error if a subsequent call to this
+ ** function attempts to flatten a compound sub-query into pParent
+ ** (the only way this can happen is if the compound sub-query is
+ ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
+ ExprList *pOrderBy = pSub->pOrderBy;
+ for(i=0; i<pOrderBy->nExpr; i++){
+ pOrderBy->a[i].u.x.iOrderByCol = 0;
+ }
+ assert( pParent->pOrderBy==0 );
+ pParent->pOrderBy = pOrderBy;
+ pSub->pOrderBy = 0;
+ }
+ pWhere = pSub->pWhere;
+ pSub->pWhere = 0;
+ if( isOuterJoin>0 ){
+ sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON);
+ }
+ if( pWhere ){
+ if( pParent->pWhere ){
+ pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
+ }else{
+ pParent->pWhere = pWhere;
+ }
+ }
+ if( db->mallocFailed==0 ){
+ SubstContext x;
+ x.pParse = pParse;
+ x.iTable = iParent;
+ x.iNewTable = iNewParent;
+ x.isOuterJoin = isOuterJoin;
+ x.pEList = pSub->pEList;
+ x.pCList = findLeftmostExprlist(pSub);
+ substSelect(&x, pParent, 0);
+ }
+
+ /* The flattened query is a compound if either the inner or the
+ ** outer query is a compound. */
+ pParent->selFlags |= pSub->selFlags & SF_Compound;
+ assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
+
+ /*
+ ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
+ **
+ ** One is tempted to try to add a and b to combine the limits. But this
+ ** does not work if either limit is negative.
+ */
+ if( pSub->pLimit ){
+ pParent->pLimit = pSub->pLimit;
+ pSub->pLimit = 0;
+ }
+
+ /* Recompute the SrcItem.colUsed masks for the flattened
+ ** tables. */
+ for(i=0; i<nSubSrc; i++){
+ recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
+ }
+ }
+
+ /* Finially, delete what is left of the subquery and return
+ ** success.
+ */
+ sqlite3AggInfoPersistWalkerInit(&w, pParse);
+ sqlite3WalkSelect(&w,pSub1);
+ sqlite3SelectDelete(db, pSub1);
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x100 ){
+ SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+
+ return 1;
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+/*
+** A structure to keep track of all of the column values that are fixed to
+** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
+*/
+typedef struct WhereConst WhereConst;
+struct WhereConst {
+ Parse *pParse; /* Parsing context */
+ u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */
+ int nConst; /* Number for COLUMN=CONSTANT terms */
+ int nChng; /* Number of times a constant is propagated */
+ int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
+ u32 mExcludeOn; /* Which ON expressions to exclude from considertion.
+ ** Either EP_OuterON or EP_InnerON|EP_OuterON */
+ Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */
+};
+
+/*
+** Add a new entry to the pConst object. Except, do not add duplicate
+** pColumn entires. Also, do not add if doing so would not be appropriate.
+**
+** The caller guarantees the pColumn is a column and pValue is a constant.
+** This routine has to do some additional checks before completing the
+** insert.
+*/
+static void constInsert(
+ WhereConst *pConst, /* The WhereConst into which we are inserting */
+ Expr *pColumn, /* The COLUMN part of the constraint */
+ Expr *pValue, /* The VALUE part of the constraint */
+ Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
+){
+ int i;
+ assert( pColumn->op==TK_COLUMN );
+ assert( sqlite3ExprIsConstant(pValue) );
+
+ if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
+ if( sqlite3ExprAffinity(pValue)!=0 ) return;
+ if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
+ return;
+ }
+
+ /* 2018-10-25 ticket [cf5ed20f]
+ ** Make sure the same pColumn is not inserted more than once */
+ for(i=0; i<pConst->nConst; i++){
+ const Expr *pE2 = pConst->apExpr[i*2];
+ assert( pE2->op==TK_COLUMN );
+ if( pE2->iTable==pColumn->iTable
+ && pE2->iColumn==pColumn->iColumn
+ ){
+ return; /* Already present. Return without doing anything. */
+ }
+ }
+ if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
+ pConst->bHasAffBlob = 1;
+ }
+
+ pConst->nConst++;
+ pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
+ pConst->nConst*2*sizeof(Expr*));
+ if( pConst->apExpr==0 ){
+ pConst->nConst = 0;
+ }else{
+ pConst->apExpr[pConst->nConst*2-2] = pColumn;
+ pConst->apExpr[pConst->nConst*2-1] = pValue;
+ }
+}
+
+/*
+** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
+** is a constant expression and where the term must be true because it
+** is part of the AND-connected terms of the expression. For each term
+** found, add it to the pConst structure.
+*/
+static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
+ Expr *pRight, *pLeft;
+ if( NEVER(pExpr==0) ) return;
+ if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){
+ testcase( ExprHasProperty(pExpr, EP_OuterON) );
+ testcase( ExprHasProperty(pExpr, EP_InnerON) );
+ return;
+ }
+ if( pExpr->op==TK_AND ){
+ findConstInWhere(pConst, pExpr->pRight);
+ findConstInWhere(pConst, pExpr->pLeft);
+ return;
+ }
+ if( pExpr->op!=TK_EQ ) return;
+ pRight = pExpr->pRight;
+ pLeft = pExpr->pLeft;
+ assert( pRight!=0 );
+ assert( pLeft!=0 );
+ if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
+ constInsert(pConst,pRight,pLeft,pExpr);
+ }
+ if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
+ constInsert(pConst,pLeft,pRight,pExpr);
+ }
+}
+
+/*
+** This is a helper function for Walker callback propagateConstantExprRewrite().
+**
+** Argument pExpr is a candidate expression to be replaced by a value. If
+** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
+** then overwrite it with the corresponding value. Except, do not do so
+** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
+** is SQLITE_AFF_BLOB.
+*/
+static int propagateConstantExprRewriteOne(
+ WhereConst *pConst,
+ Expr *pExpr,
+ int bIgnoreAffBlob
+){
+ int i;
+ if( pConst->pOomFault[0] ) return WRC_Prune;
+ if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
+ if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){
+ testcase( ExprHasProperty(pExpr, EP_FixedCol) );
+ testcase( ExprHasProperty(pExpr, EP_OuterON) );
+ testcase( ExprHasProperty(pExpr, EP_InnerON) );
+ return WRC_Continue;
+ }
+ for(i=0; i<pConst->nConst; i++){
+ Expr *pColumn = pConst->apExpr[i*2];
+ if( pColumn==pExpr ) continue;
+ if( pColumn->iTable!=pExpr->iTable ) continue;
+ if( pColumn->iColumn!=pExpr->iColumn ) continue;
+ if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
+ break;
+ }
+ /* A match is found. Add the EP_FixedCol property */
+ pConst->nChng++;
+ ExprClearProperty(pExpr, EP_Leaf);
+ ExprSetProperty(pExpr, EP_FixedCol);
+ assert( pExpr->pLeft==0 );
+ pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
+ if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
+ break;
+ }
+ return WRC_Prune;
+}
+
+/*
+** This is a Walker expression callback. pExpr is a node from the WHERE
+** clause of a SELECT statement. This function examines pExpr to see if
+** any substitutions based on the contents of pWalker->u.pConst should
+** be made to pExpr or its immediate children.
+**
+** A substitution is made if:
+**
+** + pExpr is a column with an affinity other than BLOB that matches
+** one of the columns in pWalker->u.pConst, or
+**
+** + pExpr is a binary comparison operator (=, <=, >=, <, >) that
+** uses an affinity other than TEXT and one of its immediate
+** children is a column that matches one of the columns in
+** pWalker->u.pConst.
+*/
+static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
+ WhereConst *pConst = pWalker->u.pConst;
+ assert( TK_GT==TK_EQ+1 );
+ assert( TK_LE==TK_EQ+2 );
+ assert( TK_LT==TK_EQ+3 );
+ assert( TK_GE==TK_EQ+4 );
+ if( pConst->bHasAffBlob ){
+ if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
+ || pExpr->op==TK_IS
+ ){
+ propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
+ if( pConst->pOomFault[0] ) return WRC_Prune;
+ if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
+ propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
+ }
+ }
+ }
+ return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
+}
+
+/*
+** The WHERE-clause constant propagation optimization.
+**
+** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
+** CONSTANT=COLUMN that are top-level AND-connected terms that are not
+** part of a ON clause from a LEFT JOIN, then throughout the query
+** replace all other occurrences of COLUMN with CONSTANT.
+**
+** For example, the query:
+**
+** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
+**
+** Is transformed into
+**
+** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
+**
+** Return true if any transformations where made and false if not.
+**
+** Implementation note: Constant propagation is tricky due to affinity
+** and collating sequence interactions. Consider this example:
+**
+** CREATE TABLE t1(a INT,b TEXT);
+** INSERT INTO t1 VALUES(123,'0123');
+** SELECT * FROM t1 WHERE a=123 AND b=a;
+** SELECT * FROM t1 WHERE a=123 AND b=123;
+**
+** The two SELECT statements above should return different answers. b=a
+** is alway true because the comparison uses numeric affinity, but b=123
+** is false because it uses text affinity and '0123' is not the same as '123'.
+** To work around this, the expression tree is not actually changed from
+** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
+** and the "123" value is hung off of the pLeft pointer. Code generator
+** routines know to generate the constant "123" instead of looking up the
+** column value. Also, to avoid collation problems, this optimization is
+** only attempted if the "a=123" term uses the default BINARY collation.
+**
+** 2021-05-25 forum post 6a06202608: Another troublesome case is...
+**
+** CREATE TABLE t1(x);
+** INSERT INTO t1 VALUES(10.0);
+** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
+**
+** The query should return no rows, because the t1.x value is '10.0' not '10'
+** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE
+** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
+** resulting in a false positive. To avoid this, constant propagation for
+** columns with BLOB affinity is only allowed if the constant is used with
+** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
+** type conversions to occur. See logic associated with the bHasAffBlob flag
+** for details.
+*/
+static int propagateConstants(
+ Parse *pParse, /* The parsing context */
+ Select *p /* The query in which to propagate constants */
+){
+ WhereConst x;
+ Walker w;
+ int nChng = 0;
+ x.pParse = pParse;
+ x.pOomFault = &pParse->db->mallocFailed;
+ do{
+ x.nConst = 0;
+ x.nChng = 0;
+ x.apExpr = 0;
+ x.bHasAffBlob = 0;
+ if( ALWAYS(p->pSrc!=0)
+ && p->pSrc->nSrc>0
+ && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0
+ ){
+ /* Do not propagate constants on any ON clause if there is a
+ ** RIGHT JOIN anywhere in the query */
+ x.mExcludeOn = EP_InnerON | EP_OuterON;
+ }else{
+ /* Do not propagate constants through the ON clause of a LEFT JOIN */
+ x.mExcludeOn = EP_OuterON;
+ }
+ findConstInWhere(&x, p->pWhere);
+ if( x.nConst ){
+ memset(&w, 0, sizeof(w));
+ w.pParse = pParse;
+ w.xExprCallback = propagateConstantExprRewrite;
+ w.xSelectCallback = sqlite3SelectWalkNoop;
+ w.xSelectCallback2 = 0;
+ w.walkerDepth = 0;
+ w.u.pConst = &x;
+ sqlite3WalkExpr(&w, p->pWhere);
+ sqlite3DbFree(x.pParse->db, x.apExpr);
+ nChng += x.nChng;
+ }
+ }while( x.nChng );
+ return nChng;
+}
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+# if !defined(SQLITE_OMIT_WINDOWFUNC)
+/*
+** This function is called to determine whether or not it is safe to
+** push WHERE clause expression pExpr down to FROM clause sub-query
+** pSubq, which contains at least one window function. Return 1
+** if it is safe and the expression should be pushed down, or 0
+** otherwise.
+**
+** It is only safe to push the expression down if it consists only
+** of constants and copies of expressions that appear in the PARTITION
+** BY clause of all window function used by the sub-query. It is safe
+** to filter out entire partitions, but not rows within partitions, as
+** this may change the results of the window functions.
+**
+** At the time this function is called it is guaranteed that
+**
+** * the sub-query uses only one distinct window frame, and
+** * that the window frame has a PARTITION BY clase.
+*/
+static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
+ assert( pSubq->pWin->pPartition );
+ assert( (pSubq->selFlags & SF_MultiPart)==0 );
+ assert( pSubq->pPrior==0 );
+ return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
+}
+# endif /* SQLITE_OMIT_WINDOWFUNC */
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+/*
+** Make copies of relevant WHERE clause terms of the outer query into
+** the WHERE clause of subquery. Example:
+**
+** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
+**
+** Transformed into:
+**
+** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
+** WHERE x=5 AND y=10;
+**
+** The hope is that the terms added to the inner query will make it more
+** efficient.
+**
+** Do not attempt this optimization if:
+**
+** (1) (** This restriction was removed on 2017-09-29. We used to
+** disallow this optimization for aggregate subqueries, but now
+** it is allowed by putting the extra terms on the HAVING clause.
+** The added HAVING clause is pointless if the subquery lacks
+** a GROUP BY clause. But such a HAVING clause is also harmless
+** so there does not appear to be any reason to add extra logic
+** to suppress it. **)
+**
+** (2) The inner query is the recursive part of a common table expression.
+**
+** (3) The inner query has a LIMIT clause (since the changes to the WHERE
+** clause would change the meaning of the LIMIT).
+**
+** (4) The inner query is the right operand of a LEFT JOIN and the
+** expression to be pushed down does not come from the ON clause
+** on that LEFT JOIN.
+**
+** (5) The WHERE clause expression originates in the ON or USING clause
+** of a LEFT JOIN where iCursor is not the right-hand table of that
+** left join. An example:
+**
+** SELECT *
+** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
+** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
+** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
+**
+** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
+** But if the (b2=2) term were to be pushed down into the bb subquery,
+** then the (1,1,NULL) row would be suppressed.
+**
+** (6) Window functions make things tricky as changes to the WHERE clause
+** of the inner query could change the window over which window
+** functions are calculated. Therefore, do not attempt the optimization
+** if:
+**
+** (6a) The inner query uses multiple incompatible window partitions.
+**
+** (6b) The inner query is a compound and uses window-functions.
+**
+** (6c) The WHERE clause does not consist entirely of constants and
+** copies of expressions found in the PARTITION BY clause of
+** all window-functions used by the sub-query. It is safe to
+** filter out entire partitions, as this does not change the
+** window over which any window-function is calculated.
+**
+** (7) The inner query is a Common Table Expression (CTE) that should
+** be materialized. (This restriction is implemented in the calling
+** routine.)
+**
+** (8) The subquery may not be a compound that uses UNION, INTERSECT,
+** or EXCEPT. (We could, perhaps, relax this restriction to allow
+** this case if none of the comparisons operators between left and
+** right arms of the compound use a collation other than BINARY.
+** But it is a lot of work to check that case for an obscure and
+** minor optimization, so we omit it for now.)
+**
+** Return 0 if no changes are made and non-zero if one or more WHERE clause
+** terms are duplicated into the subquery.
+*/
+static int pushDownWhereTerms(
+ Parse *pParse, /* Parse context (for malloc() and error reporting) */
+ Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
+ Expr *pWhere, /* The WHERE clause of the outer query */
+ SrcItem *pSrc /* The subquery term of the outer FROM clause */
+){
+ Expr *pNew;
+ int nChng = 0;
+ if( pWhere==0 ) return 0;
+ if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
+ if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ) return 0;
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pSubq->pPrior ){
+ Select *pSel;
+ for(pSel=pSubq; pSel; pSel=pSel->pPrior){
+ u8 op = pSel->op;
+ assert( op==TK_ALL || op==TK_SELECT
+ || op==TK_UNION || op==TK_INTERSECT || op==TK_EXCEPT );
+ if( op!=TK_ALL && op!=TK_SELECT ) return 0; /* restriction (8) */
+ if( pSel->pWin ) return 0; /* restriction (6b) */
+ }
+ }else{
+ if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
+ }
+#endif
+
+#ifdef SQLITE_DEBUG
+ /* Only the first term of a compound can have a WITH clause. But make
+ ** sure no other terms are marked SF_Recursive in case something changes
+ ** in the future.
+ */
+ {
+ Select *pX;
+ for(pX=pSubq; pX; pX=pX->pPrior){
+ assert( (pX->selFlags & (SF_Recursive))==0 );
+ }
+ }
+#endif
+
+ if( pSubq->pLimit!=0 ){
+ return 0; /* restriction (3) */
+ }
+ while( pWhere->op==TK_AND ){
+ nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrc);
+ pWhere = pWhere->pLeft;
+ }
+
+#if 0 /* Legacy code. Checks now done by sqlite3ExprIsTableConstraint() */
+ if( isLeftJoin
+ && (ExprHasProperty(pWhere,EP_OuterON)==0
+ || pWhere->w.iJoin!=iCursor)
+ ){
+ return 0; /* restriction (4) */
+ }
+ if( ExprHasProperty(pWhere,EP_OuterON)
+ && pWhere->w.iJoin!=iCursor
+ ){
+ return 0; /* restriction (5) */
+ }
+#endif
+
+ if( sqlite3ExprIsTableConstraint(pWhere, pSrc) ){
+ nChng++;
+ pSubq->selFlags |= SF_PushDown;
+ while( pSubq ){
+ SubstContext x;
+ pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
+ unsetJoinExpr(pNew, -1, 1);
+ x.pParse = pParse;
+ x.iTable = pSrc->iCursor;
+ x.iNewTable = pSrc->iCursor;
+ x.isOuterJoin = 0;
+ x.pEList = pSubq->pEList;
+ x.pCList = findLeftmostExprlist(pSubq);
+ pNew = substExpr(&x, pNew);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
+ /* Restriction 6c has prevented push-down in this case */
+ sqlite3ExprDelete(pParse->db, pNew);
+ nChng--;
+ break;
+ }
+#endif
+ if( pSubq->selFlags & SF_Aggregate ){
+ pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
+ }else{
+ pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
+ }
+ pSubq = pSubq->pPrior;
+ }
+ }
+ return nChng;
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+/*
+** The pFunc is the only aggregate function in the query. Check to see
+** if the query is a candidate for the min/max optimization.
+**
+** If the query is a candidate for the min/max optimization, then set
+** *ppMinMax to be an ORDER BY clause to be used for the optimization
+** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
+** whether pFunc is a min() or max() function.
+**
+** If the query is not a candidate for the min/max optimization, return
+** WHERE_ORDERBY_NORMAL (which must be zero).
+**
+** This routine must be called after aggregate functions have been
+** located but before their arguments have been subjected to aggregate
+** analysis.
+*/
+static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
+ int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
+ ExprList *pEList; /* Arguments to agg function */
+ const char *zFunc; /* Name of aggregate function pFunc */
+ ExprList *pOrderBy;
+ u8 sortFlags = 0;
+
+ assert( *ppMinMax==0 );
+ assert( pFunc->op==TK_AGG_FUNCTION );
+ assert( !IsWindowFunc(pFunc) );
+ assert( ExprUseXList(pFunc) );
+ pEList = pFunc->x.pList;
+ if( pEList==0
+ || pEList->nExpr!=1
+ || ExprHasProperty(pFunc, EP_WinFunc)
+ || OptimizationDisabled(db, SQLITE_MinMaxOpt)
+ ){
+ return eRet;
+ }
+ assert( !ExprHasProperty(pFunc, EP_IntValue) );
+ zFunc = pFunc->u.zToken;
+ if( sqlite3StrICmp(zFunc, "min")==0 ){
+ eRet = WHERE_ORDERBY_MIN;
+ if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
+ sortFlags = KEYINFO_ORDER_BIGNULL;
+ }
+ }else if( sqlite3StrICmp(zFunc, "max")==0 ){
+ eRet = WHERE_ORDERBY_MAX;
+ sortFlags = KEYINFO_ORDER_DESC;
+ }else{
+ return eRet;
+ }
+ *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
+ assert( pOrderBy!=0 || db->mallocFailed );
+ if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags;
+ return eRet;
+}
+
+/*
+** The select statement passed as the first argument is an aggregate query.
+** The second argument is the associated aggregate-info object. This
+** function tests if the SELECT is of the form:
+**
+** SELECT count(*) FROM <tbl>
+**
+** where table is a database table, not a sub-select or view. If the query
+** does match this pattern, then a pointer to the Table object representing
+** <tbl> is returned. Otherwise, NULL is returned.
+**
+** This routine checks to see if it is safe to use the count optimization.
+** A correct answer is still obtained (though perhaps more slowly) if
+** this routine returns NULL when it could have returned a table pointer.
+** But returning the pointer when NULL should have been returned can
+** result in incorrect answers and/or crashes. So, when in doubt, return NULL.
+*/
+static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
+ Table *pTab;
+ Expr *pExpr;
+
+ assert( !p->pGroupBy );
+
+ if( p->pWhere
+ || p->pEList->nExpr!=1
+ || p->pSrc->nSrc!=1
+ || p->pSrc->a[0].pSelect
+ || pAggInfo->nFunc!=1
+ || p->pHaving
+ ){
+ return 0;
+ }
+ pTab = p->pSrc->a[0].pTab;
+ assert( pTab!=0 );
+ assert( !IsView(pTab) );
+ if( !IsOrdinaryTable(pTab) ) return 0;
+ pExpr = p->pEList->a[0].pExpr;
+ assert( pExpr!=0 );
+ if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
+ if( pExpr->pAggInfo!=pAggInfo ) return 0;
+ if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
+ assert( pAggInfo->aFunc[0].pFExpr==pExpr );
+ testcase( ExprHasProperty(pExpr, EP_Distinct) );
+ testcase( ExprHasProperty(pExpr, EP_WinFunc) );
+ if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
+
+ return pTab;
+}
+
+/*
+** If the source-list item passed as an argument was augmented with an
+** INDEXED BY clause, then try to locate the specified index. If there
+** was such a clause and the named index cannot be found, return
+** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
+** pFrom->pIndex and return SQLITE_OK.
+*/
+int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
+ Table *pTab = pFrom->pTab;
+ char *zIndexedBy = pFrom->u1.zIndexedBy;
+ Index *pIdx;
+ assert( pTab!=0 );
+ assert( pFrom->fg.isIndexedBy!=0 );
+
+ for(pIdx=pTab->pIndex;
+ pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
+ pIdx=pIdx->pNext
+ );
+ if( !pIdx ){
+ sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
+ pParse->checkSchema = 1;
+ return SQLITE_ERROR;
+ }
+ assert( pFrom->fg.isCte==0 );
+ pFrom->u2.pIBIndex = pIdx;
+ return SQLITE_OK;
+}
+
+/*
+** Detect compound SELECT statements that use an ORDER BY clause with
+** an alternative collating sequence.
+**
+** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
+**
+** These are rewritten as a subquery:
+**
+** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
+** ORDER BY ... COLLATE ...
+**
+** This transformation is necessary because the multiSelectOrderBy() routine
+** above that generates the code for a compound SELECT with an ORDER BY clause
+** uses a merge algorithm that requires the same collating sequence on the
+** result columns as on the ORDER BY clause. See ticket
+** http://www.sqlite.org/src/info/6709574d2a
+**
+** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
+** The UNION ALL operator works fine with multiSelectOrderBy() even when
+** there are COLLATE terms in the ORDER BY.
+*/
+static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
+ int i;
+ Select *pNew;
+ Select *pX;
+ sqlite3 *db;
+ struct ExprList_item *a;
+ SrcList *pNewSrc;
+ Parse *pParse;
+ Token dummy;
+
+ if( p->pPrior==0 ) return WRC_Continue;
+ if( p->pOrderBy==0 ) return WRC_Continue;
+ for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
+ if( pX==0 ) return WRC_Continue;
+ a = p->pOrderBy->a;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ /* If iOrderByCol is already non-zero, then it has already been matched
+ ** to a result column of the SELECT statement. This occurs when the
+ ** SELECT is rewritten for window-functions processing and then passed
+ ** to sqlite3SelectPrep() and similar a second time. The rewriting done
+ ** by this function is not required in this case. */
+ if( a[0].u.x.iOrderByCol ) return WRC_Continue;
+#endif
+ for(i=p->pOrderBy->nExpr-1; i>=0; i--){
+ if( a[i].pExpr->flags & EP_Collate ) break;
+ }
+ if( i<0 ) return WRC_Continue;
+
+ /* If we reach this point, that means the transformation is required. */
+
+ pParse = pWalker->pParse;
+ db = pParse->db;
+ pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
+ if( pNew==0 ) return WRC_Abort;
+ memset(&dummy, 0, sizeof(dummy));
+ pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0);
+ if( pNewSrc==0 ) return WRC_Abort;
+ *pNew = *p;
+ p->pSrc = pNewSrc;
+ p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
+ p->op = TK_SELECT;
+ p->pWhere = 0;
+ pNew->pGroupBy = 0;
+ pNew->pHaving = 0;
+ pNew->pOrderBy = 0;
+ p->pPrior = 0;
+ p->pNext = 0;
+ p->pWith = 0;
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ p->pWinDefn = 0;
+#endif
+ p->selFlags &= ~SF_Compound;
+ assert( (p->selFlags & SF_Converted)==0 );
+ p->selFlags |= SF_Converted;
+ assert( pNew->pPrior!=0 );
+ pNew->pPrior->pNext = pNew;
+ pNew->pLimit = 0;
+ return WRC_Continue;
+}
+
+/*
+** Check to see if the FROM clause term pFrom has table-valued function
+** arguments. If it does, leave an error message in pParse and return
+** non-zero, since pFrom is not allowed to be a table-valued function.
+*/
+static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
+ if( pFrom->fg.isTabFunc ){
+ sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
+ return 1;
+ }
+ return 0;
+}
+
+#ifndef SQLITE_OMIT_CTE
+/*
+** Argument pWith (which may be NULL) points to a linked list of nested
+** WITH contexts, from inner to outermost. If the table identified by
+** FROM clause element pItem is really a common-table-expression (CTE)
+** then return a pointer to the CTE definition for that table. Otherwise
+** return NULL.
+**
+** If a non-NULL value is returned, set *ppContext to point to the With
+** object that the returned CTE belongs to.
+*/
+static struct Cte *searchWith(
+ With *pWith, /* Current innermost WITH clause */
+ SrcItem *pItem, /* FROM clause element to resolve */
+ With **ppContext /* OUT: WITH clause return value belongs to */
+){
+ const char *zName = pItem->zName;
+ With *p;
+ assert( pItem->zDatabase==0 );
+ assert( zName!=0 );
+ for(p=pWith; p; p=p->pOuter){
+ int i;
+ for(i=0; i<p->nCte; i++){
+ if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
+ *ppContext = p;
+ return &p->a[i];
+ }
+ }
+ if( p->bView ) break;
+ }
+ return 0;
+}
+
+/* The code generator maintains a stack of active WITH clauses
+** with the inner-most WITH clause being at the top of the stack.
+**
+** This routine pushes the WITH clause passed as the second argument
+** onto the top of the stack. If argument bFree is true, then this
+** WITH clause will never be popped from the stack but should instead
+** be freed along with the Parse object. In other cases, when
+** bFree==0, the With object will be freed along with the SELECT
+** statement with which it is associated.
+**
+** This routine returns a copy of pWith. Or, if bFree is true and
+** the pWith object is destroyed immediately due to an OOM condition,
+** then this routine return NULL.
+**
+** If bFree is true, do not continue to use the pWith pointer after
+** calling this routine, Instead, use only the return value.
+*/
+With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
+ if( pWith ){
+ if( bFree ){
+ pWith = (With*)sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3WithDelete,
+ pWith);
+ if( pWith==0 ) return 0;
+ }
+ if( pParse->nErr==0 ){
+ assert( pParse->pWith!=pWith );
+ pWith->pOuter = pParse->pWith;
+ pParse->pWith = pWith;
+ }
+ }
+ return pWith;
+}
+
+/*
+** This function checks if argument pFrom refers to a CTE declared by
+** a WITH clause on the stack currently maintained by the parser (on the
+** pParse->pWith linked list). And if currently processing a CTE
+** CTE expression, through routine checks to see if the reference is
+** a recursive reference to the CTE.
+**
+** If pFrom matches a CTE according to either of these two above, pFrom->pTab
+** and other fields are populated accordingly.
+**
+** Return 0 if no match is found.
+** Return 1 if a match is found.
+** Return 2 if an error condition is detected.
+*/
+static int resolveFromTermToCte(
+ Parse *pParse, /* The parsing context */
+ Walker *pWalker, /* Current tree walker */
+ SrcItem *pFrom /* The FROM clause term to check */
+){
+ Cte *pCte; /* Matched CTE (or NULL if no match) */
+ With *pWith; /* The matching WITH */
+
+ assert( pFrom->pTab==0 );
+ if( pParse->pWith==0 ){
+ /* There are no WITH clauses in the stack. No match is possible */
+ return 0;
+ }
+ if( pParse->nErr ){
+ /* Prior errors might have left pParse->pWith in a goofy state, so
+ ** go no further. */
+ return 0;
+ }
+ if( pFrom->zDatabase!=0 ){
+ /* The FROM term contains a schema qualifier (ex: main.t1) and so
+ ** it cannot possibly be a CTE reference. */
+ return 0;
+ }
+ if( pFrom->fg.notCte ){
+ /* The FROM term is specifically excluded from matching a CTE.
+ ** (1) It is part of a trigger that used to have zDatabase but had
+ ** zDatabase removed by sqlite3FixTriggerStep().
+ ** (2) This is the first term in the FROM clause of an UPDATE.
+ */
+ return 0;
+ }
+ pCte = searchWith(pParse->pWith, pFrom, &pWith);
+ if( pCte ){
+ sqlite3 *db = pParse->db;
+ Table *pTab;
+ ExprList *pEList;
+ Select *pSel;
+ Select *pLeft; /* Left-most SELECT statement */
+ Select *pRecTerm; /* Left-most recursive term */
+ int bMayRecursive; /* True if compound joined by UNION [ALL] */
+ With *pSavedWith; /* Initial value of pParse->pWith */
+ int iRecTab = -1; /* Cursor for recursive table */
+ CteUse *pCteUse;
+
+ /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
+ ** recursive reference to CTE pCte. Leave an error in pParse and return
+ ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
+ ** In this case, proceed. */
+ if( pCte->zCteErr ){
+ sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
+ return 2;
+ }
+ if( cannotBeFunction(pParse, pFrom) ) return 2;
+
+ assert( pFrom->pTab==0 );
+ pTab = sqlite3DbMallocZero(db, sizeof(Table));
+ if( pTab==0 ) return 2;
+ pCteUse = pCte->pUse;
+ if( pCteUse==0 ){
+ pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
+ if( pCteUse==0
+ || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
+ ){
+ sqlite3DbFree(db, pTab);
+ return 2;
+ }
+ pCteUse->eM10d = pCte->eM10d;
+ }
+ pFrom->pTab = pTab;
+ pTab->nTabRef = 1;
+ pTab->zName = sqlite3DbStrDup(db, pCte->zName);
+ pTab->iPKey = -1;
+ pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
+ pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
+ pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
+ if( db->mallocFailed ) return 2;
+ pFrom->pSelect->selFlags |= SF_CopyCte;
+ assert( pFrom->pSelect );
+ if( pFrom->fg.isIndexedBy ){
+ sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
+ return 2;
+ }
+ pFrom->fg.isCte = 1;
+ pFrom->u2.pCteUse = pCteUse;
+ pCteUse->nUse++;
+ if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
+ pCteUse->eM10d = M10d_Yes;
+ }
+
+ /* Check if this is a recursive CTE. */
+ pRecTerm = pSel = pFrom->pSelect;
+ bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
+ while( bMayRecursive && pRecTerm->op==pSel->op ){
+ int i;
+ SrcList *pSrc = pRecTerm->pSrc;
+ assert( pRecTerm->pPrior!=0 );
+ for(i=0; i<pSrc->nSrc; i++){
+ SrcItem *pItem = &pSrc->a[i];
+ if( pItem->zDatabase==0
+ && pItem->zName!=0
+ && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
+ ){
+ pItem->pTab = pTab;
+ pTab->nTabRef++;
+ pItem->fg.isRecursive = 1;
+ if( pRecTerm->selFlags & SF_Recursive ){
+ sqlite3ErrorMsg(pParse,
+ "multiple references to recursive table: %s", pCte->zName
+ );
+ return 2;
+ }
+ pRecTerm->selFlags |= SF_Recursive;
+ if( iRecTab<0 ) iRecTab = pParse->nTab++;
+ pItem->iCursor = iRecTab;
+ }
+ }
+ if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
+ pRecTerm = pRecTerm->pPrior;
+ }
+
+ pCte->zCteErr = "circular reference: %s";
+ pSavedWith = pParse->pWith;
+ pParse->pWith = pWith;
+ if( pSel->selFlags & SF_Recursive ){
+ int rc;
+ assert( pRecTerm!=0 );
+ assert( (pRecTerm->selFlags & SF_Recursive)==0 );
+ assert( pRecTerm->pNext!=0 );
+ assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
+ assert( pRecTerm->pWith==0 );
+ pRecTerm->pWith = pSel->pWith;
+ rc = sqlite3WalkSelect(pWalker, pRecTerm);
+ pRecTerm->pWith = 0;
+ if( rc ){
+ pParse->pWith = pSavedWith;
+ return 2;
+ }
+ }else{
+ if( sqlite3WalkSelect(pWalker, pSel) ){
+ pParse->pWith = pSavedWith;
+ return 2;
+ }
+ }
+ pParse->pWith = pWith;
+
+ for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
+ pEList = pLeft->pEList;
+ if( pCte->pCols ){
+ if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
+ sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
+ pCte->zName, pEList->nExpr, pCte->pCols->nExpr
+ );
+ pParse->pWith = pSavedWith;
+ return 2;
+ }
+ pEList = pCte->pCols;
+ }
+
+ sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
+ if( bMayRecursive ){
+ if( pSel->selFlags & SF_Recursive ){
+ pCte->zCteErr = "multiple recursive references: %s";
+ }else{
+ pCte->zCteErr = "recursive reference in a subquery: %s";
+ }
+ sqlite3WalkSelect(pWalker, pSel);
+ }
+ pCte->zCteErr = 0;
+ pParse->pWith = pSavedWith;
+ return 1; /* Success */
+ }
+ return 0; /* No match */
+}
+#endif
+
+#ifndef SQLITE_OMIT_CTE
+/*
+** If the SELECT passed as the second argument has an associated WITH
+** clause, pop it from the stack stored as part of the Parse object.
+**
+** This function is used as the xSelectCallback2() callback by
+** sqlite3SelectExpand() when walking a SELECT tree to resolve table
+** names and other FROM clause elements.
+*/
+void sqlite3SelectPopWith(Walker *pWalker, Select *p){
+ Parse *pParse = pWalker->pParse;
+ if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
+ With *pWith = findRightmost(p)->pWith;
+ if( pWith!=0 ){
+ assert( pParse->pWith==pWith || pParse->nErr );
+ pParse->pWith = pWith->pOuter;
+ }
+ }
+}
+#endif
+
+/*
+** The SrcItem structure passed as the second argument represents a
+** sub-query in the FROM clause of a SELECT statement. This function
+** allocates and populates the SrcItem.pTab object. If successful,
+** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
+** SQLITE_NOMEM.
+*/
+int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
+ Select *pSel = pFrom->pSelect;
+ Table *pTab;
+
+ assert( pSel );
+ pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
+ if( pTab==0 ) return SQLITE_NOMEM;
+ pTab->nTabRef = 1;
+ if( pFrom->zAlias ){
+ pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
+ }else{
+ pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom);
+ }
+ while( pSel->pPrior ){ pSel = pSel->pPrior; }
+ sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
+ pTab->iPKey = -1;
+ pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
+#ifndef SQLITE_ALLOW_ROWID_IN_VIEW
+ /* The usual case - do not allow ROWID on a subquery */
+ pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
+#else
+ pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */
+#endif
+ return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
+}
+
+
+/*
+** Check the N SrcItem objects to the right of pBase. (N might be zero!)
+** If any of those SrcItem objects have a USING clause containing zName
+** then return true.
+**
+** If N is zero, or none of the N SrcItem objects to the right of pBase
+** contains a USING clause, or if none of the USING clauses contain zName,
+** then return false.
+*/
+static int inAnyUsingClause(
+ const char *zName, /* Name we are looking for */
+ SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */
+ int N /* How many SrcItems to check */
+){
+ while( N>0 ){
+ N--;
+ pBase++;
+ if( pBase->fg.isUsing==0 ) continue;
+ if( NEVER(pBase->u3.pUsing==0) ) continue;
+ if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1;
+ }
+ return 0;
+}
+
+
+/*
+** This routine is a Walker callback for "expanding" a SELECT statement.
+** "Expanding" means to do the following:
+**
+** (1) Make sure VDBE cursor numbers have been assigned to every
+** element of the FROM clause.
+**
+** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
+** defines FROM clause. When views appear in the FROM clause,
+** fill pTabList->a[].pSelect with a copy of the SELECT statement
+** that implements the view. A copy is made of the view's SELECT
+** statement so that we can freely modify or delete that statement
+** without worrying about messing up the persistent representation
+** of the view.
+**
+** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
+** on joins and the ON and USING clause of joins.
+**
+** (4) Scan the list of columns in the result set (pEList) looking
+** for instances of the "*" operator or the TABLE.* operator.
+** If found, expand each "*" to be every column in every table
+** and TABLE.* to be every column in TABLE.
+**
+*/
+static int selectExpander(Walker *pWalker, Select *p){
+ Parse *pParse = pWalker->pParse;
+ int i, j, k, rc;
+ SrcList *pTabList;
+ ExprList *pEList;
+ SrcItem *pFrom;
+ sqlite3 *db = pParse->db;
+ Expr *pE, *pRight, *pExpr;
+ u16 selFlags = p->selFlags;
+ u32 elistFlags = 0;
+
+ p->selFlags |= SF_Expanded;
+ if( db->mallocFailed ){
+ return WRC_Abort;
+ }
+ assert( p->pSrc!=0 );
+ if( (selFlags & SF_Expanded)!=0 ){
+ return WRC_Prune;
+ }
+ if( pWalker->eCode ){
+ /* Renumber selId because it has been copied from a view */
+ p->selId = ++pParse->nSelect;
+ }
+ pTabList = p->pSrc;
+ pEList = p->pEList;
+ if( pParse->pWith && (p->selFlags & SF_View) ){
+ if( p->pWith==0 ){
+ p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
+ if( p->pWith==0 ){
+ return WRC_Abort;
+ }
+ }
+ p->pWith->bView = 1;
+ }
+ sqlite3WithPush(pParse, p->pWith, 0);
+
+ /* Make sure cursor numbers have been assigned to all entries in
+ ** the FROM clause of the SELECT statement.
+ */
+ sqlite3SrcListAssignCursors(pParse, pTabList);
+
+ /* Look up every table named in the FROM clause of the select. If
+ ** an entry of the FROM clause is a subquery instead of a table or view,
+ ** then create a transient table structure to describe the subquery.
+ */
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+ Table *pTab;
+ assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
+ if( pFrom->pTab ) continue;
+ assert( pFrom->fg.isRecursive==0 );
+ if( pFrom->zName==0 ){
+#ifndef SQLITE_OMIT_SUBQUERY
+ Select *pSel = pFrom->pSelect;
+ /* A sub-query in the FROM clause of a SELECT */
+ assert( pSel!=0 );
+ assert( pFrom->pTab==0 );
+ if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
+ if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
+#endif
+#ifndef SQLITE_OMIT_CTE
+ }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
+ if( rc>1 ) return WRC_Abort;
+ pTab = pFrom->pTab;
+ assert( pTab!=0 );
+#endif
+ }else{
+ /* An ordinary table or view name in the FROM clause */
+ assert( pFrom->pTab==0 );
+ pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
+ if( pTab==0 ) return WRC_Abort;
+ if( pTab->nTabRef>=0xffff ){
+ sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
+ pTab->zName);
+ pFrom->pTab = 0;
+ return WRC_Abort;
+ }
+ pTab->nTabRef++;
+ if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
+ return WRC_Abort;
+ }
+#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
+ if( !IsOrdinaryTable(pTab) ){
+ i16 nCol;
+ u8 eCodeOrig = pWalker->eCode;
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
+ assert( pFrom->pSelect==0 );
+ if( IsView(pTab) ){
+ if( (db->flags & SQLITE_EnableView)==0
+ && pTab->pSchema!=db->aDb[1].pSchema
+ ){
+ sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
+ pTab->zName);
+ }
+ pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ else if( ALWAYS(IsVirtual(pTab))
+ && pFrom->fg.fromDDL
+ && ALWAYS(pTab->u.vtab.p!=0)
+ && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
+ ){
+ sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
+ pTab->zName);
+ }
+ assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
+#endif
+ nCol = pTab->nCol;
+ pTab->nCol = -1;
+ pWalker->eCode = 1; /* Turn on Select.selId renumbering */
+ sqlite3WalkSelect(pWalker, pFrom->pSelect);
+ pWalker->eCode = eCodeOrig;
+ pTab->nCol = nCol;
+ }
+#endif
+ }
+
+ /* Locate the index named by the INDEXED BY clause, if any. */
+ if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
+ return WRC_Abort;
+ }
+ }
+
+ /* Process NATURAL keywords, and ON and USING clauses of joins.
+ */
+ assert( db->mallocFailed==0 || pParse->nErr!=0 );
+ if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){
+ return WRC_Abort;
+ }
+
+ /* For every "*" that occurs in the column list, insert the names of
+ ** all columns in all tables. And for every TABLE.* insert the names
+ ** of all columns in TABLE. The parser inserted a special expression
+ ** with the TK_ASTERISK operator for each "*" that it found in the column
+ ** list. The following code just has to locate the TK_ASTERISK
+ ** expressions and expand each one to the list of all columns in
+ ** all tables.
+ **
+ ** The first loop just checks to see if there are any "*" operators
+ ** that need expanding.
+ */
+ for(k=0; k<pEList->nExpr; k++){
+ pE = pEList->a[k].pExpr;
+ if( pE->op==TK_ASTERISK ) break;
+ assert( pE->op!=TK_DOT || pE->pRight!=0 );
+ assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
+ if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
+ elistFlags |= pE->flags;
+ }
+ if( k<pEList->nExpr ){
+ /*
+ ** If we get here it means the result set contains one or more "*"
+ ** operators that need to be expanded. Loop through each expression
+ ** in the result set and expand them one by one.
+ */
+ struct ExprList_item *a = pEList->a;
+ ExprList *pNew = 0;
+ int flags = pParse->db->flags;
+ int longNames = (flags & SQLITE_FullColNames)!=0
+ && (flags & SQLITE_ShortColNames)==0;
+
+ for(k=0; k<pEList->nExpr; k++){
+ pE = a[k].pExpr;
+ elistFlags |= pE->flags;
+ pRight = pE->pRight;
+ assert( pE->op!=TK_DOT || pRight!=0 );
+ if( pE->op!=TK_ASTERISK
+ && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
+ ){
+ /* This particular expression does not need to be expanded.
+ */
+ pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
+ if( pNew ){
+ pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
+ pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName;
+ a[k].zEName = 0;
+ }
+ a[k].pExpr = 0;
+ }else{
+ /* This expression is a "*" or a "TABLE.*" and needs to be
+ ** expanded. */
+ int tableSeen = 0; /* Set to 1 when TABLE matches */
+ char *zTName = 0; /* text of name of TABLE */
+ if( pE->op==TK_DOT ){
+ assert( pE->pLeft!=0 );
+ assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
+ zTName = pE->pLeft->u.zToken;
+ }
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+ Table *pTab = pFrom->pTab; /* Table for this data source */
+ ExprList *pNestedFrom; /* Result-set of a nested FROM clause */
+ char *zTabName; /* AS name for this data source */
+ const char *zSchemaName = 0; /* Schema name for this data source */
+ int iDb; /* Schema index for this data src */
+ IdList *pUsing; /* USING clause for pFrom[1] */
+
+ if( (zTabName = pFrom->zAlias)==0 ){
+ zTabName = pTab->zName;
+ }
+ if( db->mallocFailed ) break;
+ assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) );
+ if( pFrom->fg.isNestedFrom ){
+ assert( pFrom->pSelect!=0 );
+ pNestedFrom = pFrom->pSelect->pEList;
+ assert( pNestedFrom!=0 );
+ assert( pNestedFrom->nExpr==pTab->nCol );
+ }else{
+ if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
+ continue;
+ }
+ pNestedFrom = 0;
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
+ zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
+ }
+ if( i+1<pTabList->nSrc
+ && pFrom[1].fg.isUsing
+ && (selFlags & SF_NestedFrom)!=0
+ ){
+ int ii;
+ pUsing = pFrom[1].u3.pUsing;
+ for(ii=0; ii<pUsing->nId; ii++){
+ const char *zUName = pUsing->a[ii].zName;
+ pRight = sqlite3Expr(db, TK_ID, zUName);
+ pNew = sqlite3ExprListAppend(pParse, pNew, pRight);
+ if( pNew ){
+ struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
+ assert( pX->zEName==0 );
+ pX->zEName = sqlite3MPrintf(db,"..%s", zUName);
+ pX->fg.eEName = ENAME_TAB;
+ pX->fg.bUsingTerm = 1;
+ }
+ }
+ }else{
+ pUsing = 0;
+ }
+ for(j=0; j<pTab->nCol; j++){
+ char *zName = pTab->aCol[j].zCnName;
+ struct ExprList_item *pX; /* Newly added ExprList term */
+
+ assert( zName );
+ if( zTName
+ && pNestedFrom
+ && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0)==0
+ ){
+ continue;
+ }
+
+ /* If a column is marked as 'hidden', omit it from the expanded
+ ** result-set list unless the SELECT has the SF_IncludeHidden
+ ** bit set.
+ */
+ if( (p->selFlags & SF_IncludeHidden)==0
+ && IsHiddenColumn(&pTab->aCol[j])
+ ){
+ continue;
+ }
+ if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
+ && zTName==0
+ && (selFlags & (SF_NestedFrom))==0
+ ){
+ continue;
+ }
+ tableSeen = 1;
+
+ if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){
+ if( pFrom->fg.isUsing
+ && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0
+ ){
+ /* In a join with a USING clause, omit columns in the
+ ** using clause from the table on the right. */
+ continue;
+ }
+ }
+ pRight = sqlite3Expr(db, TK_ID, zName);
+ if( (pTabList->nSrc>1
+ && ( (pFrom->fg.jointype & JT_LTORJ)==0
+ || (selFlags & SF_NestedFrom)!=0
+ || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1)
+ )
+ )
+ || IN_RENAME_OBJECT
+ ){
+ Expr *pLeft;
+ pLeft = sqlite3Expr(db, TK_ID, zTabName);
+ pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
+ if( IN_RENAME_OBJECT && pE->pLeft ){
+ sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft);
+ }
+ if( zSchemaName ){
+ pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
+ pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
+ }
+ }else{
+ pExpr = pRight;
+ }
+ pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
+ if( pNew==0 ){
+ break; /* OOM */
+ }
+ pX = &pNew->a[pNew->nExpr-1];
+ assert( pX->zEName==0 );
+ if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
+ if( pNestedFrom ){
+ pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName);
+ testcase( pX->zEName==0 );
+ }else{
+ pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
+ zSchemaName, zTabName, zName);
+ testcase( pX->zEName==0 );
+ }
+ pX->fg.eEName = ENAME_TAB;
+ if( (pFrom->fg.isUsing
+ && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0)
+ || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0)
+ || (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
+ ){
+ pX->fg.bNoExpand = 1;
+ }
+ }else if( longNames ){
+ pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
+ pX->fg.eEName = ENAME_NAME;
+ }else{
+ pX->zEName = sqlite3DbStrDup(db, zName);
+ pX->fg.eEName = ENAME_NAME;
+ }
+ }
+ }
+ if( !tableSeen ){
+ if( zTName ){
+ sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
+ }else{
+ sqlite3ErrorMsg(pParse, "no tables specified");
+ }
+ }
+ }
+ }
+ sqlite3ExprListDelete(db, pEList);
+ p->pEList = pNew;
+ }
+ if( p->pEList ){
+ if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+ sqlite3ErrorMsg(pParse, "too many columns in result set");
+ return WRC_Abort;
+ }
+ if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
+ p->selFlags |= SF_ComplexResult;
+ }
+ }
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x100 ){
+ SELECTTRACE(0x100,pParse,p,("After result-set wildcard expansion:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ return WRC_Continue;
+}
+
+#if SQLITE_DEBUG
+/*
+** Always assert. This xSelectCallback2 implementation proves that the
+** xSelectCallback2 is never invoked.
+*/
+void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ assert( 0 );
+}
+#endif
+/*
+** This routine "expands" a SELECT statement and all of its subqueries.
+** For additional information on what it means to "expand" a SELECT
+** statement, see the comment on the selectExpand worker callback above.
+**
+** Expanding a SELECT statement is the first step in processing a
+** SELECT statement. The SELECT statement must be expanded before
+** name resolution is performed.
+**
+** If anything goes wrong, an error message is written into pParse.
+** The calling function can detect the problem by looking at pParse->nErr
+** and/or pParse->db->mallocFailed.
+*/
+static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
+ Walker w;
+ w.xExprCallback = sqlite3ExprWalkNoop;
+ w.pParse = pParse;
+ if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
+ w.xSelectCallback = convertCompoundSelectToSubquery;
+ w.xSelectCallback2 = 0;
+ sqlite3WalkSelect(&w, pSelect);
+ }
+ w.xSelectCallback = selectExpander;
+ w.xSelectCallback2 = sqlite3SelectPopWith;
+ w.eCode = 0;
+ sqlite3WalkSelect(&w, pSelect);
+}
+
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
+** interface.
+**
+** For each FROM-clause subquery, add Column.zType and Column.zColl
+** information to the Table structure that represents the result set
+** of that subquery.
+**
+** The Table structure that represents the result set was constructed
+** by selectExpander() but the type and collation information was omitted
+** at that point because identifiers had not yet been resolved. This
+** routine is called after identifier resolution.
+*/
+static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
+ Parse *pParse;
+ int i;
+ SrcList *pTabList;
+ SrcItem *pFrom;
+
+ assert( p->selFlags & SF_Resolved );
+ if( p->selFlags & SF_HasTypeInfo ) return;
+ p->selFlags |= SF_HasTypeInfo;
+ pParse = pWalker->pParse;
+ pTabList = p->pSrc;
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+ Table *pTab = pFrom->pTab;
+ assert( pTab!=0 );
+ if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
+ /* A sub-query in the FROM clause of a SELECT */
+ Select *pSel = pFrom->pSelect;
+ if( pSel ){
+ while( pSel->pPrior ) pSel = pSel->pPrior;
+ sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
+ SQLITE_AFF_NONE);
+ }
+ }
+ }
+}
+#endif
+
+
+/*
+** This routine adds datatype and collating sequence information to
+** the Table structures of all FROM-clause subqueries in a
+** SELECT statement.
+**
+** Use this routine after name resolution.
+*/
+static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
+#ifndef SQLITE_OMIT_SUBQUERY
+ Walker w;
+ w.xSelectCallback = sqlite3SelectWalkNoop;
+ w.xSelectCallback2 = selectAddSubqueryTypeInfo;
+ w.xExprCallback = sqlite3ExprWalkNoop;
+ w.pParse = pParse;
+ sqlite3WalkSelect(&w, pSelect);
+#endif
+}
+
+
+/*
+** This routine sets up a SELECT statement for processing. The
+** following is accomplished:
+**
+** * VDBE Cursor numbers are assigned to all FROM-clause terms.
+** * Ephemeral Table objects are created for all FROM-clause subqueries.
+** * ON and USING clauses are shifted into WHERE statements
+** * Wildcards "*" and "TABLE.*" in result sets are expanded.
+** * Identifiers in expression are matched to tables.
+**
+** This routine acts recursively on all subqueries within the SELECT.
+*/
+void sqlite3SelectPrep(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The SELECT statement being coded. */
+ NameContext *pOuterNC /* Name context for container */
+){
+ assert( p!=0 || pParse->db->mallocFailed );
+ assert( pParse->db->pParse==pParse );
+ if( pParse->db->mallocFailed ) return;
+ if( p->selFlags & SF_HasTypeInfo ) return;
+ sqlite3SelectExpand(pParse, p);
+ if( pParse->nErr ) return;
+ sqlite3ResolveSelectNames(pParse, p, pOuterNC);
+ if( pParse->nErr ) return;
+ sqlite3SelectAddTypeInfo(pParse, p);
+}
+
+/*
+** Reset the aggregate accumulator.
+**
+** The aggregate accumulator is a set of memory cells that hold
+** intermediate results while calculating an aggregate. This
+** routine generates code that stores NULLs in all of those memory
+** cells.
+*/
+static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ struct AggInfo_func *pFunc;
+ int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
+ assert( pParse->db->pParse==pParse );
+ assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
+ if( nReg==0 ) return;
+ if( pParse->nErr ) return;
+#ifdef SQLITE_DEBUG
+ /* Verify that all AggInfo registers are within the range specified by
+ ** AggInfo.mnReg..AggInfo.mxReg */
+ assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
+ for(i=0; i<pAggInfo->nColumn; i++){
+ assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
+ && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
+ }
+ for(i=0; i<pAggInfo->nFunc; i++){
+ assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
+ && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
+ }
+#endif
+ sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
+ for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
+ if( pFunc->iDistinct>=0 ){
+ Expr *pE = pFunc->pFExpr;
+ assert( ExprUseXList(pE) );
+ if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
+ sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
+ "argument");
+ pFunc->iDistinct = -1;
+ }else{
+ KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
+ pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
+ pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
+ ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
+ pFunc->pFunc->zName));
+ }
+ }
+ }
+}
+
+/*
+** Invoke the OP_AggFinalize opcode for every aggregate function
+** in the AggInfo structure.
+*/
+static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ struct AggInfo_func *pF;
+ for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
+ ExprList *pList;
+ assert( ExprUseXList(pF->pFExpr) );
+ pList = pF->pFExpr->x.pList;
+ sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
+ sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
+ }
+}
+
+
+/*
+** Update the accumulator memory cells for an aggregate based on
+** the current cursor position.
+**
+** If regAcc is non-zero and there are no min() or max() aggregates
+** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
+** registers if register regAcc contains 0. The caller will take care
+** of setting and clearing regAcc.
+*/
+static void updateAccumulator(
+ Parse *pParse,
+ int regAcc,
+ AggInfo *pAggInfo,
+ int eDistinctType
+){
+ Vdbe *v = pParse->pVdbe;
+ int i;
+ int regHit = 0;
+ int addrHitTest = 0;
+ struct AggInfo_func *pF;
+ struct AggInfo_col *pC;
+
+ pAggInfo->directMode = 1;
+ for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
+ int nArg;
+ int addrNext = 0;
+ int regAgg;
+ ExprList *pList;
+ assert( ExprUseXList(pF->pFExpr) );
+ assert( !IsWindowFunc(pF->pFExpr) );
+ pList = pF->pFExpr->x.pList;
+ if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
+ Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
+ if( pAggInfo->nAccumulator
+ && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
+ && regAcc
+ ){
+ /* If regAcc==0, there there exists some min() or max() function
+ ** without a FILTER clause that will ensure the magnet registers
+ ** are populated. */
+ if( regHit==0 ) regHit = ++pParse->nMem;
+ /* If this is the first row of the group (regAcc contains 0), clear the
+ ** "magnet" register regHit so that the accumulator registers
+ ** are populated if the FILTER clause jumps over the the
+ ** invocation of min() or max() altogether. Or, if this is not
+ ** the first row (regAcc contains 1), set the magnet register so that
+ ** the accumulators are not populated unless the min()/max() is invoked
+ ** and indicates that they should be. */
+ sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
+ }
+ addrNext = sqlite3VdbeMakeLabel(pParse);
+ sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
+ }
+ if( pList ){
+ nArg = pList->nExpr;
+ regAgg = sqlite3GetTempRange(pParse, nArg);
+ sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
+ }else{
+ nArg = 0;
+ regAgg = 0;
+ }
+ if( pF->iDistinct>=0 && pList ){
+ if( addrNext==0 ){
+ addrNext = sqlite3VdbeMakeLabel(pParse);
+ }
+ pF->iDistinct = codeDistinct(pParse, eDistinctType,
+ pF->iDistinct, addrNext, pList, regAgg);
+ }
+ if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
+ CollSeq *pColl = 0;
+ struct ExprList_item *pItem;
+ int j;
+ assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
+ for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
+ pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
+ }
+ if( !pColl ){
+ pColl = pParse->db->pDfltColl;
+ }
+ if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
+ sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
+ }
+ sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
+ sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
+ sqlite3VdbeChangeP5(v, (u8)nArg);
+ sqlite3ReleaseTempRange(pParse, regAgg, nArg);
+ if( addrNext ){
+ sqlite3VdbeResolveLabel(v, addrNext);
+ }
+ }
+ if( regHit==0 && pAggInfo->nAccumulator ){
+ regHit = regAcc;
+ }
+ if( regHit ){
+ addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
+ }
+ for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
+ sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
+ }
+
+ pAggInfo->directMode = 0;
+ if( addrHitTest ){
+ sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
+ }
+}
+
+/*
+** Add a single OP_Explain instruction to the VDBE to explain a simple
+** count(*) query ("SELECT count(*) FROM pTab").
+*/
+#ifndef SQLITE_OMIT_EXPLAIN
+static void explainSimpleCount(
+ Parse *pParse, /* Parse context */
+ Table *pTab, /* Table being queried */
+ Index *pIdx /* Index used to optimize scan, or NULL */
+){
+ if( pParse->explain==2 ){
+ int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
+ sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
+ pTab->zName,
+ bCover ? " USING COVERING INDEX " : "",
+ bCover ? pIdx->zName : ""
+ );
+ }
+}
+#else
+# define explainSimpleCount(a,b,c)
+#endif
+
+/*
+** sqlite3WalkExpr() callback used by havingToWhere().
+**
+** If the node passed to the callback is a TK_AND node, return
+** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
+**
+** Otherwise, return WRC_Prune. In this case, also check if the
+** sub-expression matches the criteria for being moved to the WHERE
+** clause. If so, add it to the WHERE clause and replace the sub-expression
+** within the HAVING expression with a constant "1".
+*/
+static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
+ if( pExpr->op!=TK_AND ){
+ Select *pS = pWalker->u.pSelect;
+ /* This routine is called before the HAVING clause of the current
+ ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
+ ** here, it indicates that the expression is a correlated reference to a
+ ** column from an outer aggregate query, or an aggregate function that
+ ** belongs to an outer query. Do not move the expression to the WHERE
+ ** clause in this obscure case, as doing so may corrupt the outer Select
+ ** statements AggInfo structure. */
+ if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
+ && ExprAlwaysFalse(pExpr)==0
+ && pExpr->pAggInfo==0
+ ){
+ sqlite3 *db = pWalker->pParse->db;
+ Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
+ if( pNew ){
+ Expr *pWhere = pS->pWhere;
+ SWAP(Expr, *pNew, *pExpr);
+ pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
+ pS->pWhere = pNew;
+ pWalker->eCode = 1;
+ }
+ }
+ return WRC_Prune;
+ }
+ return WRC_Continue;
+}
+
+/*
+** Transfer eligible terms from the HAVING clause of a query, which is
+** processed after grouping, to the WHERE clause, which is processed before
+** grouping. For example, the query:
+**
+** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
+**
+** can be rewritten as:
+**
+** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
+**
+** A term of the HAVING expression is eligible for transfer if it consists
+** entirely of constants and expressions that are also GROUP BY terms that
+** use the "BINARY" collation sequence.
+*/
+static void havingToWhere(Parse *pParse, Select *p){
+ Walker sWalker;
+ memset(&sWalker, 0, sizeof(sWalker));
+ sWalker.pParse = pParse;
+ sWalker.xExprCallback = havingToWhereExprCb;
+ sWalker.u.pSelect = p;
+ sqlite3WalkExpr(&sWalker, p->pHaving);
+#if TREETRACE_ENABLED
+ if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){
+ SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+}
+
+/*
+** Check to see if the pThis entry of pTabList is a self-join of a prior view.
+** If it is, then return the SrcItem for the prior view. If it is not,
+** then return 0.
+*/
+static SrcItem *isSelfJoinView(
+ SrcList *pTabList, /* Search for self-joins in this FROM clause */
+ SrcItem *pThis /* Search for prior reference to this subquery */
+){
+ SrcItem *pItem;
+ assert( pThis->pSelect!=0 );
+ if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
+ for(pItem = pTabList->a; pItem<pThis; pItem++){
+ Select *pS1;
+ if( pItem->pSelect==0 ) continue;
+ if( pItem->fg.viaCoroutine ) continue;
+ if( pItem->zName==0 ) continue;
+ assert( pItem->pTab!=0 );
+ assert( pThis->pTab!=0 );
+ if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
+ if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
+ pS1 = pItem->pSelect;
+ if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
+ /* The query flattener left two different CTE tables with identical
+ ** names in the same FROM clause. */
+ continue;
+ }
+ if( pItem->pSelect->selFlags & SF_PushDown ){
+ /* The view was modified by some other optimization such as
+ ** pushDownWhereTerms() */
+ continue;
+ }
+ return pItem;
+ }
+ return 0;
+}
+
+/*
+** Deallocate a single AggInfo object
+*/
+static void agginfoFree(sqlite3 *db, AggInfo *p){
+ sqlite3DbFree(db, p->aCol);
+ sqlite3DbFree(db, p->aFunc);
+ sqlite3DbFreeNN(db, p);
+}
+
+#ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
+/*
+** Attempt to transform a query of the form
+**
+** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
+**
+** Into this:
+**
+** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
+**
+** The transformation only works if all of the following are true:
+**
+** * The subquery is a UNION ALL of two or more terms
+** * The subquery does not have a LIMIT clause
+** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
+** * The outer query is a simple count(*) with no WHERE clause or other
+** extraneous syntax.
+**
+** Return TRUE if the optimization is undertaken.
+*/
+static int countOfViewOptimization(Parse *pParse, Select *p){
+ Select *pSub, *pPrior;
+ Expr *pExpr;
+ Expr *pCount;
+ sqlite3 *db;
+ if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
+ if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
+ if( p->pWhere ) return 0;
+ if( p->pGroupBy ) return 0;
+ pExpr = p->pEList->a[0].pExpr;
+ if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
+ assert( ExprUseUToken(pExpr) );
+ if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
+ assert( ExprUseXList(pExpr) );
+ if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
+ if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
+ pSub = p->pSrc->a[0].pSelect;
+ if( pSub==0 ) return 0; /* The FROM is a subquery */
+ if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */
+ do{
+ if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
+ if( pSub->pWhere ) return 0; /* No WHERE clause */
+ if( pSub->pLimit ) return 0; /* No LIMIT clause */
+ if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
+ pSub = pSub->pPrior; /* Repeat over compound */
+ }while( pSub );
+
+ /* If we reach this point then it is OK to perform the transformation */
+
+ db = pParse->db;
+ pCount = pExpr;
+ pExpr = 0;
+ pSub = p->pSrc->a[0].pSelect;
+ p->pSrc->a[0].pSelect = 0;
+ sqlite3SrcListDelete(db, p->pSrc);
+ p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
+ while( pSub ){
+ Expr *pTerm;
+ pPrior = pSub->pPrior;
+ pSub->pPrior = 0;
+ pSub->pNext = 0;
+ pSub->selFlags |= SF_Aggregate;
+ pSub->selFlags &= ~SF_Compound;
+ pSub->nSelectRow = 0;
+ sqlite3ExprListDelete(db, pSub->pEList);
+ pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
+ pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
+ pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
+ sqlite3PExprAddSelect(pParse, pTerm, pSub);
+ if( pExpr==0 ){
+ pExpr = pTerm;
+ }else{
+ pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
+ }
+ pSub = pPrior;
+ }
+ p->pEList->a[0].pExpr = pExpr;
+ p->selFlags &= ~SF_Aggregate;
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x400 ){
+ SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ return 1;
+}
+#endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
+
+/*
+** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same
+** as pSrcItem but has the same alias as p0, then return true.
+** Otherwise return false.
+*/
+static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){
+ int i;
+ for(i=0; i<pSrc->nSrc; i++){
+ SrcItem *p1 = &pSrc->a[i];
+ if( p1==p0 ) continue;
+ if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
+ return 1;
+ }
+ if( p1->pSelect
+ && (p1->pSelect->selFlags & SF_NestedFrom)!=0
+ && sameSrcAlias(p0, p1->pSelect->pSrc)
+ ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/*
+** Generate code for the SELECT statement given in the p argument.
+**
+** The results are returned according to the SelectDest structure.
+** See comments in sqliteInt.h for further information.
+**
+** This routine returns the number of errors. If any errors are
+** encountered, then an appropriate error message is left in
+** pParse->zErrMsg.
+**
+** This routine does NOT free the Select structure passed in. The
+** calling function needs to do that.
+*/
+int sqlite3Select(
+ Parse *pParse, /* The parser context */
+ Select *p, /* The SELECT statement being coded. */
+ SelectDest *pDest /* What to do with the query results */
+){
+ int i, j; /* Loop counters */
+ WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
+ Vdbe *v; /* The virtual machine under construction */
+ int isAgg; /* True for select lists like "count(*)" */
+ ExprList *pEList = 0; /* List of columns to extract. */
+ SrcList *pTabList; /* List of tables to select from */
+ Expr *pWhere; /* The WHERE clause. May be NULL */
+ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
+ Expr *pHaving; /* The HAVING clause. May be NULL */
+ AggInfo *pAggInfo = 0; /* Aggregate information */
+ int rc = 1; /* Value to return from this function */
+ DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
+ SortCtx sSort; /* Info on how to code the ORDER BY clause */
+ int iEnd; /* Address of the end of the query */
+ sqlite3 *db; /* The database connection */
+ ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
+ u8 minMaxFlag; /* Flag for min/max queries */
+
+ db = pParse->db;
+ assert( pParse==db->pParse );
+ v = sqlite3GetVdbe(pParse);
+ if( p==0 || pParse->nErr ){
+ return 1;
+ }
+ assert( db->mallocFailed==0 );
+ if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
+#if TREETRACE_ENABLED
+ SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
+ if( sqlite3TreeTrace & 0x10100 ){
+ if( (sqlite3TreeTrace & 0x10001)==0x10000 ){
+ sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d",
+ __FILE__, __LINE__);
+ }
+ sqlite3ShowSelect(p);
+ }
+#endif
+
+ assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
+ assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
+ assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
+ assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
+ if( IgnorableDistinct(pDest) ){
+ assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
+ pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
+ pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo );
+ /* All of these destinations are also able to ignore the ORDER BY clause */
+ if( p->pOrderBy ){
+#if TREETRACE_ENABLED
+ SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
+ if( sqlite3TreeTrace & 0x100 ){
+ sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
+ }
+#endif
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
+ p->pOrderBy);
+ testcase( pParse->earlyCleanup );
+ p->pOrderBy = 0;
+ }
+ p->selFlags &= ~SF_Distinct;
+ p->selFlags |= SF_NoopOrderBy;
+ }
+ sqlite3SelectPrep(pParse, p, 0);
+ if( pParse->nErr ){
+ goto select_end;
+ }
+ assert( db->mallocFailed==0 );
+ assert( p->pEList!=0 );
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x104 ){
+ SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+
+ /* If the SF_UFSrcCheck flag is set, then this function is being called
+ ** as part of populating the temp table for an UPDATE...FROM statement.
+ ** In this case, it is an error if the target object (pSrc->a[0]) name
+ ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
+ **
+ ** Postgres disallows this case too. The reason is that some other
+ ** systems handle this case differently, and not all the same way,
+ ** which is just confusing. To avoid this, we follow PG's lead and
+ ** disallow it altogether. */
+ if( p->selFlags & SF_UFSrcCheck ){
+ SrcItem *p0 = &p->pSrc->a[0];
+ if( sameSrcAlias(p0, p->pSrc) ){
+ sqlite3ErrorMsg(pParse,
+ "target object/alias may not appear in FROM clause: %s",
+ p0->zAlias ? p0->zAlias : p0->pTab->zName
+ );
+ goto select_end;
+ }
+
+ /* Clear the SF_UFSrcCheck flag. The check has already been performed,
+ ** and leaving this flag set can cause errors if a compound sub-query
+ ** in p->pSrc is flattened into this query and this function called
+ ** again as part of compound SELECT processing. */
+ p->selFlags &= ~SF_UFSrcCheck;
+ }
+
+ if( pDest->eDest==SRT_Output ){
+ sqlite3GenerateColumnNames(pParse, p);
+ }
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( sqlite3WindowRewrite(pParse, p) ){
+ assert( pParse->nErr );
+ goto select_end;
+ }
+#if TREETRACE_ENABLED
+ if( p->pWin && (sqlite3TreeTrace & 0x108)!=0 ){
+ SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+ pTabList = p->pSrc;
+ isAgg = (p->selFlags & SF_Aggregate)!=0;
+ memset(&sSort, 0, sizeof(sSort));
+ sSort.pOrderBy = p->pOrderBy;
+
+ /* Try to do various optimizations (flattening subqueries, and strength
+ ** reduction of join operators) in the FROM clause up into the main query
+ */
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+ for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
+ SrcItem *pItem = &pTabList->a[i];
+ Select *pSub = pItem->pSelect;
+ Table *pTab = pItem->pTab;
+
+ /* The expander should have already created transient Table objects
+ ** even for FROM clause elements such as subqueries that do not correspond
+ ** to a real table */
+ assert( pTab!=0 );
+
+ /* Convert LEFT JOIN into JOIN if there are terms of the right table
+ ** of the LEFT JOIN used in the WHERE clause.
+ */
+ if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==JT_LEFT
+ && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
+ && OptimizationEnabled(db, SQLITE_SimplifyJoin)
+ ){
+ SELECTTRACE(0x100,pParse,p,
+ ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
+ pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
+ assert( pItem->iCursor>=0 );
+ unsetJoinExpr(p->pWhere, pItem->iCursor,
+ pTabList->a[0].fg.jointype & JT_LTORJ);
+ }
+
+ /* No futher action if this term of the FROM clause is no a subquery */
+ if( pSub==0 ) continue;
+
+ /* Catch mismatch in the declared columns of a view and the number of
+ ** columns in the SELECT on the RHS */
+ if( pTab->nCol!=pSub->pEList->nExpr ){
+ sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
+ pTab->nCol, pTab->zName, pSub->pEList->nExpr);
+ goto select_end;
+ }
+
+ /* Do not try to flatten an aggregate subquery.
+ **
+ ** Flattening an aggregate subquery is only possible if the outer query
+ ** is not a join. But if the outer query is not a join, then the subquery
+ ** will be implemented as a co-routine and there is no advantage to
+ ** flattening in that case.
+ */
+ if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
+ assert( pSub->pGroupBy==0 );
+
+ /* If a FROM-clause subquery has an ORDER BY clause that is not
+ ** really doing anything, then delete it now so that it does not
+ ** interfere with query flattening. See the discussion at
+ ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
+ **
+ ** Beware of these cases where the ORDER BY clause may not be safely
+ ** omitted:
+ **
+ ** (1) There is also a LIMIT clause
+ ** (2) The subquery was added to help with window-function
+ ** processing
+ ** (3) The subquery is in the FROM clause of an UPDATE
+ ** (4) The outer query uses an aggregate function other than
+ ** the built-in count(), min(), or max().
+ ** (5) The ORDER BY isn't going to accomplish anything because
+ ** one of:
+ ** (a) The outer query has a different ORDER BY clause
+ ** (b) The subquery is part of a join
+ ** See forum post 062d576715d277c8
+ */
+ if( pSub->pOrderBy!=0
+ && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */
+ && pSub->pLimit==0 /* Condition (1) */
+ && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */
+ && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */
+ && OptimizationEnabled(db, SQLITE_OmitOrderBy)
+ ){
+ SELECTTRACE(0x100,pParse,p,
+ ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
+ pSub->pOrderBy);
+ pSub->pOrderBy = 0;
+ }
+
+ /* If the outer query contains a "complex" result set (that is,
+ ** if the result set of the outer query uses functions or subqueries)
+ ** and if the subquery contains an ORDER BY clause and if
+ ** it will be implemented as a co-routine, then do not flatten. This
+ ** restriction allows SQL constructs like this:
+ **
+ ** SELECT expensive_function(x)
+ ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
+ **
+ ** The expensive_function() is only computed on the 10 rows that
+ ** are output, rather than every row of the table.
+ **
+ ** The requirement that the outer query have a complex result set
+ ** means that flattening does occur on simpler SQL constraints without
+ ** the expensive_function() like:
+ **
+ ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
+ */
+ if( pSub->pOrderBy!=0
+ && i==0
+ && (p->selFlags & SF_ComplexResult)!=0
+ && (pTabList->nSrc==1
+ || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)
+ ){
+ continue;
+ }
+
+ if( flattenSubquery(pParse, p, i, isAgg) ){
+ if( pParse->nErr ) goto select_end;
+ /* This subquery can be absorbed into its parent. */
+ i = -1;
+ }
+ pTabList = p->pSrc;
+ if( db->mallocFailed ) goto select_end;
+ if( !IgnorableOrderby(pDest) ){
+ sSort.pOrderBy = p->pOrderBy;
+ }
+ }
+#endif
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+ /* Handle compound SELECT statements using the separate multiSelect()
+ ** procedure.
+ */
+ if( p->pPrior ){
+ rc = multiSelect(pParse, p, pDest);
+#if TREETRACE_ENABLED
+ SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
+ if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
+ return rc;
+ }
+#endif
+
+ /* Do the WHERE-clause constant propagation optimization if this is
+ ** a join. No need to speed time on this operation for non-join queries
+ ** as the equivalent optimization will be handled by query planner in
+ ** sqlite3WhereBegin().
+ */
+ if( p->pWhere!=0
+ && p->pWhere->op==TK_AND
+ && OptimizationEnabled(db, SQLITE_PropagateConst)
+ && propagateConstants(pParse, p)
+ ){
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x100 ){
+ SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ }else{
+ SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
+ }
+
+#ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
+ if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
+ && countOfViewOptimization(pParse, p)
+ ){
+ if( db->mallocFailed ) goto select_end;
+ pEList = p->pEList;
+ pTabList = p->pSrc;
+ }
+#endif
+
+ /* For each term in the FROM clause, do two things:
+ ** (1) Authorized unreferenced tables
+ ** (2) Generate code for all sub-queries
+ */
+ for(i=0; i<pTabList->nSrc; i++){
+ SrcItem *pItem = &pTabList->a[i];
+ SrcItem *pPrior;
+ SelectDest dest;
+ Select *pSub;
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+ const char *zSavedAuthContext;
+#endif
+
+ /* Issue SQLITE_READ authorizations with a fake column name for any
+ ** tables that are referenced but from which no values are extracted.
+ ** Examples of where these kinds of null SQLITE_READ authorizations
+ ** would occur:
+ **
+ ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
+ ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
+ **
+ ** The fake column name is an empty string. It is possible for a table to
+ ** have a column named by the empty string, in which case there is no way to
+ ** distinguish between an unreferenced table and an actual reference to the
+ ** "" column. The original design was for the fake column name to be a NULL,
+ ** which would be unambiguous. But legacy authorization callbacks might
+ ** assume the column name is non-NULL and segfault. The use of an empty
+ ** string for the fake column name seems safer.
+ */
+ if( pItem->colUsed==0 && pItem->zName!=0 ){
+ sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
+ }
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+ /* Generate code for all sub-queries in the FROM clause
+ */
+ pSub = pItem->pSelect;
+ if( pSub==0 ) continue;
+
+ /* The code for a subquery should only be generated once. */
+ assert( pItem->addrFillSub==0 );
+
+ /* Increment Parse.nHeight by the height of the largest expression
+ ** tree referred to by this, the parent select. The child select
+ ** may contain expression trees of at most
+ ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
+ ** more conservative than necessary, but much easier than enforcing
+ ** an exact limit.
+ */
+ pParse->nHeight += sqlite3SelectExprHeight(p);
+
+ /* Make copies of constant WHERE-clause terms in the outer query down
+ ** inside the subquery. This can help the subquery to run more efficiently.
+ */
+ if( OptimizationEnabled(db, SQLITE_PushDown)
+ && (pItem->fg.isCte==0
+ || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
+ && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem)
+ ){
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x100 ){
+ SELECTTRACE(0x100,pParse,p,
+ ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
+ }else{
+ SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
+ }
+
+ zSavedAuthContext = pParse->zAuthContext;
+ pParse->zAuthContext = pItem->zName;
+
+ /* Generate code to implement the subquery
+ **
+ ** The subquery is implemented as a co-routine if all of the following are
+ ** true:
+ **
+ ** (1) the subquery is guaranteed to be the outer loop (so that
+ ** it does not need to be computed more than once), and
+ ** (2) the subquery is not a CTE that should be materialized
+ ** (3) the subquery is not part of a left operand for a RIGHT JOIN
+ */
+ if( i==0
+ && (pTabList->nSrc==1
+ || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) /* (1) */
+ && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */
+ && (pTabList->a[0].fg.jointype & JT_LTORJ)==0 /* (3) */
+ ){
+ /* Implement a co-routine that will return a single row of the result
+ ** set on each invocation.
+ */
+ int addrTop = sqlite3VdbeCurrentAddr(v)+1;
+
+ pItem->regReturn = ++pParse->nMem;
+ sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
+ VdbeComment((v, "%!S", pItem));
+ pItem->addrFillSub = addrTop;
+ sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
+ ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
+ sqlite3Select(pParse, pSub, &dest);
+ pItem->pTab->nRowLogEst = pSub->nSelectRow;
+ pItem->fg.viaCoroutine = 1;
+ pItem->regResult = dest.iSdst;
+ sqlite3VdbeEndCoroutine(v, pItem->regReturn);
+ sqlite3VdbeJumpHere(v, addrTop-1);
+ sqlite3ClearTempRegCache(pParse);
+ }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
+ /* This is a CTE for which materialization code has already been
+ ** generated. Invoke the subroutine to compute the materialization,
+ ** the make the pItem->iCursor be a copy of the ephemerial table that
+ ** holds the result of the materialization. */
+ CteUse *pCteUse = pItem->u2.pCteUse;
+ sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
+ if( pItem->iCursor!=pCteUse->iCur ){
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
+ VdbeComment((v, "%!S", pItem));
+ }
+ pSub->nSelectRow = pCteUse->nRowEst;
+ }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
+ /* This view has already been materialized by a prior entry in
+ ** this same FROM clause. Reuse it. */
+ if( pPrior->addrFillSub ){
+ sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
+ }
+ sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
+ pSub->nSelectRow = pPrior->pSelect->nSelectRow;
+ }else{
+ /* Materialize the view. If the view is not correlated, generate a
+ ** subroutine to do the materialization so that subsequent uses of
+ ** the same view can reuse the materialization. */
+ int topAddr;
+ int onceAddr = 0;
+
+ pItem->regReturn = ++pParse->nMem;
+ topAddr = sqlite3VdbeAddOp0(v, OP_Goto);
+ pItem->addrFillSub = topAddr+1;
+ pItem->fg.isMaterialized = 1;
+ if( pItem->fg.isCorrelated==0 ){
+ /* If the subquery is not correlated and if we are not inside of
+ ** a trigger, then we only need to compute the value of the subquery
+ ** once. */
+ onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
+ VdbeComment((v, "materialize %!S", pItem));
+ }else{
+ VdbeNoopComment((v, "materialize %!S", pItem));
+ }
+ sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
+ ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
+ dest.zAffSdst = sqlite3TableAffinityStr(db, pItem->pTab);
+ sqlite3Select(pParse, pSub, &dest);
+ sqlite3DbFree(db, dest.zAffSdst);
+ dest.zAffSdst = 0;
+ pItem->pTab->nRowLogEst = pSub->nSelectRow;
+ if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
+ sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1);
+ VdbeComment((v, "end %!S", pItem));
+ sqlite3VdbeJumpHere(v, topAddr);
+ sqlite3ClearTempRegCache(pParse);
+ if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
+ CteUse *pCteUse = pItem->u2.pCteUse;
+ pCteUse->addrM9e = pItem->addrFillSub;
+ pCteUse->regRtn = pItem->regReturn;
+ pCteUse->iCur = pItem->iCursor;
+ pCteUse->nRowEst = pSub->nSelectRow;
+ }
+ }
+ if( db->mallocFailed ) goto select_end;
+ pParse->nHeight -= sqlite3SelectExprHeight(p);
+ pParse->zAuthContext = zSavedAuthContext;
+#endif
+ }
+
+ /* Various elements of the SELECT copied into local variables for
+ ** convenience */
+ pEList = p->pEList;
+ pWhere = p->pWhere;
+ pGroupBy = p->pGroupBy;
+ pHaving = p->pHaving;
+ sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x400 ){
+ SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+
+ /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
+ ** if the select-list is the same as the ORDER BY list, then this query
+ ** can be rewritten as a GROUP BY. In other words, this:
+ **
+ ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
+ **
+ ** is transformed to:
+ **
+ ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
+ **
+ ** The second form is preferred as a single index (or temp-table) may be
+ ** used for both the ORDER BY and DISTINCT processing. As originally
+ ** written the query must use a temp-table for at least one of the ORDER
+ ** BY and DISTINCT, and an index or separate temp-table for the other.
+ */
+ if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
+ && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ && p->pWin==0
+#endif
+ ){
+ p->selFlags &= ~SF_Distinct;
+ pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
+ p->selFlags |= SF_Aggregate;
+ /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
+ ** the sDistinct.isTnct is still set. Hence, isTnct represents the
+ ** original setting of the SF_Distinct flag, not the current setting */
+ assert( sDistinct.isTnct );
+ sDistinct.isTnct = 2;
+
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x400 ){
+ SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ }
+
+ /* If there is an ORDER BY clause, then create an ephemeral index to
+ ** do the sorting. But this sorting ephemeral index might end up
+ ** being unused if the data can be extracted in pre-sorted order.
+ ** If that is the case, then the OP_OpenEphemeral instruction will be
+ ** changed to an OP_Noop once we figure out that the sorting index is
+ ** not needed. The sSort.addrSortIndex variable is used to facilitate
+ ** that change.
+ */
+ if( sSort.pOrderBy ){
+ KeyInfo *pKeyInfo;
+ pKeyInfo = sqlite3KeyInfoFromExprList(
+ pParse, sSort.pOrderBy, 0, pEList->nExpr);
+ sSort.iECursor = pParse->nTab++;
+ sSort.addrSortIndex =
+ sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
+ sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
+ (char*)pKeyInfo, P4_KEYINFO
+ );
+ }else{
+ sSort.addrSortIndex = -1;
+ }
+
+ /* If the output is destined for a temporary table, open that table.
+ */
+ if( pDest->eDest==SRT_EphemTab ){
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
+ if( p->selFlags & SF_NestedFrom ){
+ /* Delete or NULL-out result columns that will never be used */
+ int ii;
+ for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){
+ sqlite3ExprDelete(db, pEList->a[ii].pExpr);
+ sqlite3DbFree(db, pEList->a[ii].zEName);
+ pEList->nExpr--;
+ }
+ for(ii=0; ii<pEList->nExpr; ii++){
+ if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL;
+ }
+ }
+ }
+
+ /* Set the limiter.
+ */
+ iEnd = sqlite3VdbeMakeLabel(pParse);
+ if( (p->selFlags & SF_FixedLimit)==0 ){
+ p->nSelectRow = 320; /* 4 billion rows */
+ }
+ if( p->pLimit ) computeLimitRegisters(pParse, p, iEnd);
+ if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
+ sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
+ sSort.sortFlags |= SORTFLAG_UseSorter;
+ }
+
+ /* Open an ephemeral index to use for the distinct set.
+ */
+ if( p->selFlags & SF_Distinct ){
+ sDistinct.tabTnct = pParse->nTab++;
+ sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
+ sDistinct.tabTnct, 0, 0,
+ (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
+ P4_KEYINFO);
+ sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
+ sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
+ }else{
+ sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
+ }
+
+ if( !isAgg && pGroupBy==0 ){
+ /* No aggregate functions and no GROUP BY clause */
+ u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
+ | (p->selFlags & SF_FixedLimit);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ Window *pWin = p->pWin; /* Main window object (or NULL) */
+ if( pWin ){
+ sqlite3WindowCodeInit(pParse, p);
+ }
+#endif
+ assert( WHERE_USE_LIMIT==SF_FixedLimit );
+
+
+ /* Begin the database scan. */
+ SELECTTRACE(1,pParse,p,("WhereBegin\n"));
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
+ p->pEList, p, wctrlFlags, p->nSelectRow);
+ if( pWInfo==0 ) goto select_end;
+ if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
+ p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
+ }
+ if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
+ sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
+ }
+ if( sSort.pOrderBy ){
+ sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
+ sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
+ if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
+ sSort.pOrderBy = 0;
+ }
+ }
+ SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
+
+ /* If sorting index that was created by a prior OP_OpenEphemeral
+ ** instruction ended up not being needed, then change the OP_OpenEphemeral
+ ** into an OP_Noop.
+ */
+ if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
+ sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
+ }
+
+ assert( p->pEList==pEList );
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ if( pWin ){
+ int addrGosub = sqlite3VdbeMakeLabel(pParse);
+ int iCont = sqlite3VdbeMakeLabel(pParse);
+ int iBreak = sqlite3VdbeMakeLabel(pParse);
+ int regGosub = ++pParse->nMem;
+
+ sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
+
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
+ sqlite3VdbeResolveLabel(v, addrGosub);
+ VdbeNoopComment((v, "inner-loop subroutine"));
+ sSort.labelOBLopt = 0;
+ selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
+ sqlite3VdbeResolveLabel(v, iCont);
+ sqlite3VdbeAddOp1(v, OP_Return, regGosub);
+ VdbeComment((v, "end inner-loop subroutine"));
+ sqlite3VdbeResolveLabel(v, iBreak);
+ }else
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+ {
+ /* Use the standard inner loop. */
+ selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
+ sqlite3WhereContinueLabel(pWInfo),
+ sqlite3WhereBreakLabel(pWInfo));
+
+ /* End the database scan loop.
+ */
+ SELECTTRACE(1,pParse,p,("WhereEnd\n"));
+ sqlite3WhereEnd(pWInfo);
+ }
+ }else{
+ /* This case when there exist aggregate functions or a GROUP BY clause
+ ** or both */
+ NameContext sNC; /* Name context for processing aggregate information */
+ int iAMem; /* First Mem address for storing current GROUP BY */
+ int iBMem; /* First Mem address for previous GROUP BY */
+ int iUseFlag; /* Mem address holding flag indicating that at least
+ ** one row of the input to the aggregator has been
+ ** processed */
+ int iAbortFlag; /* Mem address which causes query abort if positive */
+ int groupBySort; /* Rows come from source in GROUP BY order */
+ int addrEnd; /* End of processing for this SELECT */
+ int sortPTab = 0; /* Pseudotable used to decode sorting results */
+ int sortOut = 0; /* Output register from the sorter */
+ int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
+
+ /* Remove any and all aliases between the result set and the
+ ** GROUP BY clause.
+ */
+ if( pGroupBy ){
+ int k; /* Loop counter */
+ struct ExprList_item *pItem; /* For looping over expression in a list */
+
+ for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
+ pItem->u.x.iAlias = 0;
+ }
+ for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
+ pItem->u.x.iAlias = 0;
+ }
+ assert( 66==sqlite3LogEst(100) );
+ if( p->nSelectRow>66 ) p->nSelectRow = 66;
+
+ /* If there is both a GROUP BY and an ORDER BY clause and they are
+ ** identical, then it may be possible to disable the ORDER BY clause
+ ** on the grounds that the GROUP BY will cause elements to come out
+ ** in the correct order. It also may not - the GROUP BY might use a
+ ** database index that causes rows to be grouped together as required
+ ** but not actually sorted. Either way, record the fact that the
+ ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
+ ** variable. */
+ if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
+ int ii;
+ /* The GROUP BY processing doesn't care whether rows are delivered in
+ ** ASC or DESC order - only that each group is returned contiguously.
+ ** So set the ASC/DESC flags in the GROUP BY to match those in the
+ ** ORDER BY to maximize the chances of rows being delivered in an
+ ** order that makes the ORDER BY redundant. */
+ for(ii=0; ii<pGroupBy->nExpr; ii++){
+ u8 sortFlags;
+ sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC;
+ pGroupBy->a[ii].fg.sortFlags = sortFlags;
+ }
+ if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
+ orderByGrp = 1;
+ }
+ }
+ }else{
+ assert( 0==sqlite3LogEst(1) );
+ p->nSelectRow = 0;
+ }
+
+ /* Create a label to jump to when we want to abort the query */
+ addrEnd = sqlite3VdbeMakeLabel(pParse);
+
+ /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
+ ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
+ ** SELECT statement.
+ */
+ pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
+ if( pAggInfo ){
+ sqlite3ParserAddCleanup(pParse,
+ (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
+ testcase( pParse->earlyCleanup );
+ }
+ if( db->mallocFailed ){
+ goto select_end;
+ }
+ pAggInfo->selId = p->selId;
+ memset(&sNC, 0, sizeof(sNC));
+ sNC.pParse = pParse;
+ sNC.pSrcList = pTabList;
+ sNC.uNC.pAggInfo = pAggInfo;
+ VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
+ pAggInfo->mnReg = pParse->nMem+1;
+ pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
+ pAggInfo->pGroupBy = pGroupBy;
+ sqlite3ExprAnalyzeAggList(&sNC, pEList);
+ sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
+ if( pHaving ){
+ if( pGroupBy ){
+ assert( pWhere==p->pWhere );
+ assert( pHaving==p->pHaving );
+ assert( pGroupBy==p->pGroupBy );
+ havingToWhere(pParse, p);
+ pWhere = p->pWhere;
+ }
+ sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
+ }
+ pAggInfo->nAccumulator = pAggInfo->nColumn;
+ if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
+ minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
+ }else{
+ minMaxFlag = WHERE_ORDERBY_NORMAL;
+ }
+ for(i=0; i<pAggInfo->nFunc; i++){
+ Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
+ assert( ExprUseXList(pExpr) );
+ sNC.ncFlags |= NC_InAggFunc;
+ sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ assert( !IsWindowFunc(pExpr) );
+ if( ExprHasProperty(pExpr, EP_WinFunc) ){
+ sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
+ }
+#endif
+ sNC.ncFlags &= ~NC_InAggFunc;
+ }
+ pAggInfo->mxReg = pParse->nMem;
+ if( db->mallocFailed ) goto select_end;
+#if TREETRACE_ENABLED
+ if( sqlite3TreeTrace & 0x400 ){
+ int ii;
+ SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
+ sqlite3TreeViewSelect(0, p, 0);
+ if( minMaxFlag ){
+ sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
+ sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
+ }
+ for(ii=0; ii<pAggInfo->nColumn; ii++){
+ struct AggInfo_col *pCol = &pAggInfo->aCol[ii];
+ sqlite3DebugPrintf(
+ "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d"
+ " iSorterColumn=%d\n",
+ ii, pCol->pTab ? pCol->pTab->zName : "NULL",
+ pCol->iTable, pCol->iColumn, pCol->iMem,
+ pCol->iSorterColumn);
+ sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
+ }
+ for(ii=0; ii<pAggInfo->nFunc; ii++){
+ sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
+ ii, pAggInfo->aFunc[ii].iMem);
+ sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
+ }
+ }
+#endif
+
+
+ /* Processing for aggregates with GROUP BY is very different and
+ ** much more complex than aggregates without a GROUP BY.
+ */
+ if( pGroupBy ){
+ KeyInfo *pKeyInfo; /* Keying information for the group by clause */
+ int addr1; /* A-vs-B comparision jump */
+ int addrOutputRow; /* Start of subroutine that outputs a result row */
+ int regOutputRow; /* Return address register for output subroutine */
+ int addrSetAbort; /* Set the abort flag and return */
+ int addrTopOfLoop; /* Top of the input loop */
+ int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
+ int addrReset; /* Subroutine for resetting the accumulator */
+ int regReset; /* Return address register for reset subroutine */
+ ExprList *pDistinct = 0;
+ u16 distFlag = 0;
+ int eDist = WHERE_DISTINCT_NOOP;
+
+ if( pAggInfo->nFunc==1
+ && pAggInfo->aFunc[0].iDistinct>=0
+ && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
+ && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
+ && pAggInfo->aFunc[0].pFExpr->x.pList!=0
+ ){
+ Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
+ pExpr = sqlite3ExprDup(db, pExpr, 0);
+ pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
+ pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
+ distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
+ }
+
+ /* If there is a GROUP BY clause we might need a sorting index to
+ ** implement it. Allocate that sorting index now. If it turns out
+ ** that we do not need it after all, the OP_SorterOpen instruction
+ ** will be converted into a Noop.
+ */
+ pAggInfo->sortingIdx = pParse->nTab++;
+ pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
+ 0, pAggInfo->nColumn);
+ addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
+ pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
+ 0, (char*)pKeyInfo, P4_KEYINFO);
+
+ /* Initialize memory locations used by GROUP BY aggregate processing
+ */
+ iUseFlag = ++pParse->nMem;
+ iAbortFlag = ++pParse->nMem;
+ regOutputRow = ++pParse->nMem;
+ addrOutputRow = sqlite3VdbeMakeLabel(pParse);
+ regReset = ++pParse->nMem;
+ addrReset = sqlite3VdbeMakeLabel(pParse);
+ iAMem = pParse->nMem + 1;
+ pParse->nMem += pGroupBy->nExpr;
+ iBMem = pParse->nMem + 1;
+ pParse->nMem += pGroupBy->nExpr;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
+ VdbeComment((v, "clear abort flag"));
+ sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
+
+ /* Begin a loop that will extract all source rows in GROUP BY order.
+ ** This might involve two separate loops with an OP_Sort in between, or
+ ** it might be a single loop that uses an index to extract information
+ ** in the right order to begin with.
+ */
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
+ SELECTTRACE(1,pParse,p,("WhereBegin\n"));
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
+ p, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY)
+ | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
+ );
+ if( pWInfo==0 ){
+ sqlite3ExprListDelete(db, pDistinct);
+ goto select_end;
+ }
+ eDist = sqlite3WhereIsDistinct(pWInfo);
+ SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
+ if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
+ /* The optimizer is able to deliver rows in group by order so
+ ** we do not have to sort. The OP_OpenEphemeral table will be
+ ** cancelled later because we still need to use the pKeyInfo
+ */
+ groupBySort = 0;
+ }else{
+ /* Rows are coming out in undetermined order. We have to push
+ ** each row into a sorting index, terminate the first loop,
+ ** then loop over the sorting index in order to get the output
+ ** in sorted order
+ */
+ int regBase;
+ int regRecord;
+ int nCol;
+ int nGroupBy;
+
+ explainTempTable(pParse,
+ (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
+ "DISTINCT" : "GROUP BY");
+
+ groupBySort = 1;
+ nGroupBy = pGroupBy->nExpr;
+ nCol = nGroupBy;
+ j = nGroupBy;
+ for(i=0; i<pAggInfo->nColumn; i++){
+ if( pAggInfo->aCol[i].iSorterColumn>=j ){
+ nCol++;
+ j++;
+ }
+ }
+ regBase = sqlite3GetTempRange(pParse, nCol);
+ sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
+ j = nGroupBy;
+ pAggInfo->directMode = 1;
+ for(i=0; i<pAggInfo->nColumn; i++){
+ struct AggInfo_col *pCol = &pAggInfo->aCol[i];
+ if( pCol->iSorterColumn>=j ){
+ sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase);
+ j++;
+ }
+ }
+ pAggInfo->directMode = 0;
+ regRecord = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
+ sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
+ sqlite3ReleaseTempReg(pParse, regRecord);
+ sqlite3ReleaseTempRange(pParse, regBase, nCol);
+ SELECTTRACE(1,pParse,p,("WhereEnd\n"));
+ sqlite3WhereEnd(pWInfo);
+ pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
+ sortOut = sqlite3GetTempReg(pParse);
+ sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
+ sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
+ VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
+ pAggInfo->useSortingIdx = 1;
+ }
+
+ /* If the index or temporary table used by the GROUP BY sort
+ ** will naturally deliver rows in the order required by the ORDER BY
+ ** clause, cancel the ephemeral table open coded earlier.
+ **
+ ** This is an optimization - the correct answer should result regardless.
+ ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
+ ** disable this optimization for testing purposes. */
+ if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
+ && (groupBySort || sqlite3WhereIsSorted(pWInfo))
+ ){
+ sSort.pOrderBy = 0;
+ sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
+ }
+
+ /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
+ ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
+ ** Then compare the current GROUP BY terms against the GROUP BY terms
+ ** from the previous row currently stored in a0, a1, a2...
+ */
+ addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
+ if( groupBySort ){
+ sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
+ sortOut, sortPTab);
+ }
+ for(j=0; j<pGroupBy->nExpr; j++){
+ if( groupBySort ){
+ sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
+ }else{
+ pAggInfo->directMode = 1;
+ sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
+ }
+ }
+ sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
+ (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
+ addr1 = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
+
+ /* Generate code that runs whenever the GROUP BY changes.
+ ** Changes in the GROUP BY are detected by the previous code
+ ** block. If there were no changes, this block is skipped.
+ **
+ ** This code copies current group by terms in b0,b1,b2,...
+ ** over to a0,a1,a2. It then calls the output subroutine
+ ** and resets the aggregate accumulator registers in preparation
+ ** for the next GROUP BY batch.
+ */
+ sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
+ VdbeComment((v, "output one row"));
+ sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
+ VdbeComment((v, "check abort flag"));
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
+ VdbeComment((v, "reset accumulator"));
+
+ /* Update the aggregate accumulators based on the content of
+ ** the current row
+ */
+ sqlite3VdbeJumpHere(v, addr1);
+ updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
+ VdbeComment((v, "indicate data in accumulator"));
+
+ /* End of the loop
+ */
+ if( groupBySort ){
+ sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
+ VdbeCoverage(v);
+ }else{
+ SELECTTRACE(1,pParse,p,("WhereEnd\n"));
+ sqlite3WhereEnd(pWInfo);
+ sqlite3VdbeChangeToNoop(v, addrSortingIdx);
+ }
+ sqlite3ExprListDelete(db, pDistinct);
+
+ /* Output the final row of result
+ */
+ sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
+ VdbeComment((v, "output final row"));
+
+ /* Jump over the subroutines
+ */
+ sqlite3VdbeGoto(v, addrEnd);
+
+ /* Generate a subroutine that outputs a single row of the result
+ ** set. This subroutine first looks at the iUseFlag. If iUseFlag
+ ** is less than or equal to zero, the subroutine is a no-op. If
+ ** the processing calls for the query to abort, this subroutine
+ ** increments the iAbortFlag memory location before returning in
+ ** order to signal the caller to abort.
+ */
+ addrSetAbort = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
+ VdbeComment((v, "set abort flag"));
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
+ sqlite3VdbeResolveLabel(v, addrOutputRow);
+ addrOutputRow = sqlite3VdbeCurrentAddr(v);
+ sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
+ VdbeCoverage(v);
+ VdbeComment((v, "Groupby result generator entry point"));
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
+ finalizeAggFunctions(pParse, pAggInfo);
+ sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
+ selectInnerLoop(pParse, p, -1, &sSort,
+ &sDistinct, pDest,
+ addrOutputRow+1, addrSetAbort);
+ sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
+ VdbeComment((v, "end groupby result generator"));
+
+ /* Generate a subroutine that will reset the group-by accumulator
+ */
+ sqlite3VdbeResolveLabel(v, addrReset);
+ resetAccumulator(pParse, pAggInfo);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
+ VdbeComment((v, "indicate accumulator empty"));
+ sqlite3VdbeAddOp1(v, OP_Return, regReset);
+
+ if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){
+ struct AggInfo_func *pF = &pAggInfo->aFunc[0];
+ fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
+ }
+ } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
+ else {
+ Table *pTab;
+ if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
+ /* If isSimpleCount() returns a pointer to a Table structure, then
+ ** the SQL statement is of the form:
+ **
+ ** SELECT count(*) FROM <tbl>
+ **
+ ** where the Table structure returned represents table <tbl>.
+ **
+ ** This statement is so common that it is optimized specially. The
+ ** OP_Count instruction is executed either on the intkey table that
+ ** contains the data for table <tbl> or on one of its indexes. It
+ ** is better to execute the op on an index, as indexes are almost
+ ** always spread across less pages than their corresponding tables.
+ */
+ const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+ const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
+ Index *pIdx; /* Iterator variable */
+ KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
+ Index *pBest = 0; /* Best index found so far */
+ Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */
+
+ sqlite3CodeVerifySchema(pParse, iDb);
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+
+ /* Search for the index that has the lowest scan cost.
+ **
+ ** (2011-04-15) Do not do a full scan of an unordered index.
+ **
+ ** (2013-10-03) Do not count the entries in a partial index.
+ **
+ ** In practice the KeyInfo structure will not be used. It is only
+ ** passed to keep OP_OpenRead happy.
+ */
+ if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
+ if( !p->pSrc->a[0].fg.notIndexed ){
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+ if( pIdx->bUnordered==0
+ && pIdx->szIdxRow<pTab->szTabRow
+ && pIdx->pPartIdxWhere==0
+ && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
+ ){
+ pBest = pIdx;
+ }
+ }
+ }
+ if( pBest ){
+ iRoot = pBest->tnum;
+ pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
+ }
+
+ /* Open a read-only cursor, execute the OP_Count, close the cursor. */
+ sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
+ if( pKeyInfo ){
+ sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
+ }
+ sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
+ sqlite3VdbeAddOp1(v, OP_Close, iCsr);
+ explainSimpleCount(pParse, pTab, pBest);
+ }else{
+ int regAcc = 0; /* "populate accumulators" flag */
+ ExprList *pDistinct = 0;
+ u16 distFlag = 0;
+ int eDist;
+
+ /* If there are accumulator registers but no min() or max() functions
+ ** without FILTER clauses, allocate register regAcc. Register regAcc
+ ** will contain 0 the first time the inner loop runs, and 1 thereafter.
+ ** The code generated by updateAccumulator() uses this to ensure
+ ** that the accumulator registers are (a) updated only once if
+ ** there are no min() or max functions or (b) always updated for the
+ ** first row visited by the aggregate, so that they are updated at
+ ** least once even if the FILTER clause means the min() or max()
+ ** function visits zero rows. */
+ if( pAggInfo->nAccumulator ){
+ for(i=0; i<pAggInfo->nFunc; i++){
+ if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
+ continue;
+ }
+ if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
+ break;
+ }
+ }
+ if( i==pAggInfo->nFunc ){
+ regAcc = ++pParse->nMem;
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
+ }
+ }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
+ assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
+ pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
+ distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
+ }
+
+ /* This case runs if the aggregate has no GROUP BY clause. The
+ ** processing is much simpler since there is only a single row
+ ** of output.
+ */
+ assert( p->pGroupBy==0 );
+ resetAccumulator(pParse, pAggInfo);
+
+ /* If this query is a candidate for the min/max optimization, then
+ ** minMaxFlag will have been previously set to either
+ ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
+ ** be an appropriate ORDER BY expression for the optimization.
+ */
+ assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
+ assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
+
+ SELECTTRACE(1,pParse,p,("WhereBegin\n"));
+ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
+ pDistinct, p, minMaxFlag|distFlag, 0);
+ if( pWInfo==0 ){
+ goto select_end;
+ }
+ SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
+ eDist = sqlite3WhereIsDistinct(pWInfo);
+ updateAccumulator(pParse, regAcc, pAggInfo, eDist);
+ if( eDist!=WHERE_DISTINCT_NOOP ){
+ struct AggInfo_func *pF = pAggInfo->aFunc;
+ if( pF ){
+ fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
+ }
+ }
+
+ if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
+ if( minMaxFlag ){
+ sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
+ }
+ SELECTTRACE(1,pParse,p,("WhereEnd\n"));
+ sqlite3WhereEnd(pWInfo);
+ finalizeAggFunctions(pParse, pAggInfo);
+ }
+
+ sSort.pOrderBy = 0;
+ sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
+ selectInnerLoop(pParse, p, -1, 0, 0,
+ pDest, addrEnd, addrEnd);
+ }
+ sqlite3VdbeResolveLabel(v, addrEnd);
+
+ } /* endif aggregate query */
+
+ if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
+ explainTempTable(pParse, "DISTINCT");
+ }
+
+ /* If there is an ORDER BY clause, then we need to sort the results
+ ** and send them to the callback one by one.
+ */
+ if( sSort.pOrderBy ){
+ explainTempTable(pParse,
+ sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
+ assert( p->pEList==pEList );
+ generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
+ }
+
+ /* Jump here to skip this query
+ */
+ sqlite3VdbeResolveLabel(v, iEnd);
+
+ /* The SELECT has been coded. If there is an error in the Parse structure,
+ ** set the return code to 1. Otherwise 0. */
+ rc = (pParse->nErr>0);
+
+ /* Control jumps to here if an error is encountered above, or upon
+ ** successful coding of the SELECT.
+ */
+select_end:
+ assert( db->mallocFailed==0 || db->mallocFailed==1 );
+ assert( db->mallocFailed==0 || pParse->nErr!=0 );
+ sqlite3ExprListDelete(db, pMinMaxOrderBy);
+#ifdef SQLITE_DEBUG
+ if( pAggInfo && !db->mallocFailed ){
+ for(i=0; i<pAggInfo->nColumn; i++){
+ Expr *pExpr = pAggInfo->aCol[i].pCExpr;
+ assert( pExpr!=0 );
+ assert( pExpr->pAggInfo==pAggInfo );
+ assert( pExpr->iAgg==i );
+ }
+ for(i=0; i<pAggInfo->nFunc; i++){
+ Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
+ assert( pExpr!=0 );
+ assert( pExpr->pAggInfo==pAggInfo );
+ assert( pExpr->iAgg==i );
+ }
+ }
+#endif
+
+#if TREETRACE_ENABLED
+ SELECTTRACE(0x1,pParse,p,("end processing\n"));
+ if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
+ sqlite3TreeViewSelect(0, p, 0);
+ }
+#endif
+ ExplainQueryPlanPop(pParse);
+ return rc;
+}