summaryrefslogtreecommitdiffstats
path: root/ext/lsm1/lsm_shared.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--ext/lsm1/lsm_shared.c1976
1 files changed, 1976 insertions, 0 deletions
diff --git a/ext/lsm1/lsm_shared.c b/ext/lsm1/lsm_shared.c
new file mode 100644
index 0000000..2fdacf1
--- /dev/null
+++ b/ext/lsm1/lsm_shared.c
@@ -0,0 +1,1976 @@
+/*
+** 2012-01-23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** Utilities used to help multiple LSM clients to coexist within the
+** same process space.
+*/
+#include "lsmInt.h"
+
+/*
+** Global data. All global variables used by code in this file are grouped
+** into the following structure instance.
+**
+** pDatabase:
+** Linked list of all Database objects allocated within this process.
+** This list may not be traversed without holding the global mutex (see
+** functions enterGlobalMutex() and leaveGlobalMutex()).
+*/
+static struct SharedData {
+ Database *pDatabase; /* Linked list of all Database objects */
+} gShared;
+
+/*
+** Database structure. There is one such structure for each distinct
+** database accessed by this process. They are stored in the singly linked
+** list starting at global variable gShared.pDatabase. Database objects are
+** reference counted. Once the number of connections to the associated
+** database drops to zero, they are removed from the linked list and deleted.
+**
+** pFile:
+** In multi-process mode, this file descriptor is used to obtain locks
+** and to access shared-memory. In single process mode, its only job is
+** to hold the exclusive lock on the file.
+**
+*/
+struct Database {
+ /* Protected by the global mutex (enterGlobalMutex/leaveGlobalMutex): */
+ char *zName; /* Canonical path to database file */
+ int nName; /* strlen(zName) */
+ int nDbRef; /* Number of associated lsm_db handles */
+ Database *pDbNext; /* Next Database structure in global list */
+
+ /* Protected by the local mutex (pClientMutex) */
+ int bReadonly; /* True if Database.pFile is read-only */
+ int bMultiProc; /* True if running in multi-process mode */
+ lsm_file *pFile; /* Used for locks/shm in multi-proc mode */
+ LsmFile *pLsmFile; /* List of deferred closes */
+ lsm_mutex *pClientMutex; /* Protects the apShmChunk[] and pConn */
+ int nShmChunk; /* Number of entries in apShmChunk[] array */
+ void **apShmChunk; /* Array of "shared" memory regions */
+ lsm_db *pConn; /* List of connections to this db. */
+};
+
+/*
+** Functions to enter and leave the global mutex. This mutex is used
+** to protect the global linked-list headed at gShared.pDatabase.
+*/
+static int enterGlobalMutex(lsm_env *pEnv){
+ lsm_mutex *p;
+ int rc = lsmMutexStatic(pEnv, LSM_MUTEX_GLOBAL, &p);
+ if( rc==LSM_OK ) lsmMutexEnter(pEnv, p);
+ return rc;
+}
+static void leaveGlobalMutex(lsm_env *pEnv){
+ lsm_mutex *p;
+ lsmMutexStatic(pEnv, LSM_MUTEX_GLOBAL, &p);
+ lsmMutexLeave(pEnv, p);
+}
+
+#ifdef LSM_DEBUG
+static int holdingGlobalMutex(lsm_env *pEnv){
+ lsm_mutex *p;
+ lsmMutexStatic(pEnv, LSM_MUTEX_GLOBAL, &p);
+ return lsmMutexHeld(pEnv, p);
+}
+#endif
+
+#if 0
+static void assertNotInFreelist(Freelist *p, int iBlk){
+ int i;
+ for(i=0; i<p->nEntry; i++){
+ assert( p->aEntry[i].iBlk!=iBlk );
+ }
+}
+#else
+# define assertNotInFreelist(x,y)
+#endif
+
+/*
+** Append an entry to the free-list. If (iId==-1), this is a delete.
+*/
+int freelistAppend(lsm_db *db, u32 iBlk, i64 iId){
+ lsm_env *pEnv = db->pEnv;
+ Freelist *p;
+ int i;
+
+ assert( iId==-1 || iId>=0 );
+ p = db->bUseFreelist ? db->pFreelist : &db->pWorker->freelist;
+
+ /* Extend the space allocated for the freelist, if required */
+ assert( p->nAlloc>=p->nEntry );
+ if( p->nAlloc==p->nEntry ){
+ int nNew;
+ int nByte;
+ FreelistEntry *aNew;
+
+ nNew = (p->nAlloc==0 ? 4 : p->nAlloc*2);
+ nByte = sizeof(FreelistEntry) * nNew;
+ aNew = (FreelistEntry *)lsmRealloc(pEnv, p->aEntry, nByte);
+ if( !aNew ) return LSM_NOMEM_BKPT;
+ p->nAlloc = nNew;
+ p->aEntry = aNew;
+ }
+
+ for(i=0; i<p->nEntry; i++){
+ assert( i==0 || p->aEntry[i].iBlk > p->aEntry[i-1].iBlk );
+ if( p->aEntry[i].iBlk>=iBlk ) break;
+ }
+
+ if( i<p->nEntry && p->aEntry[i].iBlk==iBlk ){
+ /* Clobber an existing entry */
+ p->aEntry[i].iId = iId;
+ }else{
+ /* Insert a new entry into the list */
+ int nByte = sizeof(FreelistEntry)*(p->nEntry-i);
+ memmove(&p->aEntry[i+1], &p->aEntry[i], nByte);
+ p->aEntry[i].iBlk = iBlk;
+ p->aEntry[i].iId = iId;
+ p->nEntry++;
+ }
+
+ return LSM_OK;
+}
+
+/*
+** This function frees all resources held by the Database structure passed
+** as the only argument.
+*/
+static void freeDatabase(lsm_env *pEnv, Database *p){
+ assert( holdingGlobalMutex(pEnv) );
+ if( p ){
+ /* Free the mutexes */
+ lsmMutexDel(pEnv, p->pClientMutex);
+
+ if( p->pFile ){
+ lsmEnvClose(pEnv, p->pFile);
+ }
+
+ /* Free the array of shm pointers */
+ lsmFree(pEnv, p->apShmChunk);
+
+ /* Free the memory allocated for the Database struct itself */
+ lsmFree(pEnv, p);
+ }
+}
+
+typedef struct DbTruncateCtx DbTruncateCtx;
+struct DbTruncateCtx {
+ int nBlock;
+ i64 iInUse;
+};
+
+static int dbTruncateCb(void *pCtx, int iBlk, i64 iSnapshot){
+ DbTruncateCtx *p = (DbTruncateCtx *)pCtx;
+ if( iBlk!=p->nBlock || (p->iInUse>=0 && iSnapshot>=p->iInUse) ) return 1;
+ p->nBlock--;
+ return 0;
+}
+
+static int dbTruncate(lsm_db *pDb, i64 iInUse){
+ int rc = LSM_OK;
+#if 0
+ int i;
+ DbTruncateCtx ctx;
+
+ assert( pDb->pWorker );
+ ctx.nBlock = pDb->pWorker->nBlock;
+ ctx.iInUse = iInUse;
+
+ rc = lsmWalkFreelist(pDb, 1, dbTruncateCb, (void *)&ctx);
+ for(i=ctx.nBlock+1; rc==LSM_OK && i<=pDb->pWorker->nBlock; i++){
+ rc = freelistAppend(pDb, i, -1);
+ }
+
+ if( rc==LSM_OK ){
+#ifdef LSM_LOG_FREELIST
+ if( ctx.nBlock!=pDb->pWorker->nBlock ){
+ lsmLogMessage(pDb, 0,
+ "dbTruncate(): truncated db to %d blocks",ctx.nBlock
+ );
+ }
+#endif
+ pDb->pWorker->nBlock = ctx.nBlock;
+ }
+#endif
+ return rc;
+}
+
+
+/*
+** This function is called during database shutdown (when the number of
+** connections drops from one to zero). It truncates the database file
+** to as small a size as possible without truncating away any blocks that
+** contain data.
+*/
+static int dbTruncateFile(lsm_db *pDb){
+ int rc;
+
+ assert( pDb->pWorker==0 );
+ assert( lsmShmAssertLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_EXCL) );
+ rc = lsmCheckpointLoadWorker(pDb);
+
+ if( rc==LSM_OK ){
+ DbTruncateCtx ctx;
+
+ /* Walk the database free-block-list in reverse order. Set ctx.nBlock
+ ** to the block number of the last block in the database that actually
+ ** contains data. */
+ ctx.nBlock = pDb->pWorker->nBlock;
+ ctx.iInUse = -1;
+ rc = lsmWalkFreelist(pDb, 1, dbTruncateCb, (void *)&ctx);
+
+ /* If the last block that contains data is not already the last block in
+ ** the database file, truncate the database file so that it is. */
+ if( rc==LSM_OK ){
+ rc = lsmFsTruncateDb(
+ pDb->pFS, (i64)ctx.nBlock*lsmFsBlockSize(pDb->pFS)
+ );
+ }
+ }
+
+ lsmFreeSnapshot(pDb->pEnv, pDb->pWorker);
+ pDb->pWorker = 0;
+ return rc;
+}
+
+static void doDbDisconnect(lsm_db *pDb){
+ int rc;
+
+ if( pDb->bReadonly ){
+ lsmShmLock(pDb, LSM_LOCK_DMS3, LSM_LOCK_UNLOCK, 0);
+ }else{
+ /* Block for an exclusive lock on DMS1. This lock serializes all calls
+ ** to doDbConnect() and doDbDisconnect() across all processes. */
+ rc = lsmShmLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_EXCL, 1);
+ if( rc==LSM_OK ){
+
+ lsmShmLock(pDb, LSM_LOCK_DMS2, LSM_LOCK_UNLOCK, 0);
+
+ /* Try an exclusive lock on DMS2. If successful, this is the last
+ ** connection to the database. In this case flush the contents of the
+ ** in-memory tree to disk and write a checkpoint. */
+ rc = lsmShmTestLock(pDb, LSM_LOCK_DMS2, 1, LSM_LOCK_EXCL);
+ if( rc==LSM_OK ){
+ rc = lsmShmTestLock(pDb, LSM_LOCK_CHECKPOINTER, 1, LSM_LOCK_EXCL);
+ }
+ if( rc==LSM_OK ){
+ int bReadonly = 0; /* True if there exist read-only conns. */
+
+ /* Flush the in-memory tree, if required. If there is data to flush,
+ ** this will create a new client snapshot in Database.pClient. The
+ ** checkpoint (serialization) of this snapshot may be written to disk
+ ** by the following block.
+ **
+ ** There is no need to take a WRITER lock here. That there are no
+ ** other locks on DMS2 guarantees that there are no other read-write
+ ** connections at this time (and the lock on DMS1 guarantees that
+ ** no new ones may appear).
+ */
+ rc = lsmTreeLoadHeader(pDb, 0);
+ if( rc==LSM_OK && (lsmTreeHasOld(pDb) || lsmTreeSize(pDb)>0) ){
+ rc = lsmFlushTreeToDisk(pDb);
+ }
+
+ /* Now check if there are any read-only connections. If there are,
+ ** then do not truncate the db file or unlink the shared-memory
+ ** region. */
+ if( rc==LSM_OK ){
+ rc = lsmShmTestLock(pDb, LSM_LOCK_DMS3, 1, LSM_LOCK_EXCL);
+ if( rc==LSM_BUSY ){
+ bReadonly = 1;
+ rc = LSM_OK;
+ }
+ }
+
+ /* Write a checkpoint to disk. */
+ if( rc==LSM_OK ){
+ rc = lsmCheckpointWrite(pDb, 0);
+ }
+
+ /* If the checkpoint was written successfully, delete the log file
+ ** and, if possible, truncate the database file. */
+ if( rc==LSM_OK ){
+ int bRotrans = 0;
+ Database *p = pDb->pDatabase;
+
+ /* The log file may only be deleted if there are no clients
+ ** read-only clients running rotrans transactions. */
+ rc = lsmDetectRoTrans(pDb, &bRotrans);
+ if( rc==LSM_OK && bRotrans==0 ){
+ lsmFsCloseAndDeleteLog(pDb->pFS);
+ }
+
+ /* The database may only be truncated if there exist no read-only
+ ** clients - either connected or running rotrans transactions. */
+ if( bReadonly==0 && bRotrans==0 ){
+ lsmFsUnmap(pDb->pFS);
+ dbTruncateFile(pDb);
+ if( p->pFile && p->bMultiProc ){
+ lsmEnvShmUnmap(pDb->pEnv, p->pFile, 1);
+ }
+ }
+ }
+ }
+ }
+
+ if( pDb->iRwclient>=0 ){
+ lsmShmLock(pDb, LSM_LOCK_RWCLIENT(pDb->iRwclient), LSM_LOCK_UNLOCK, 0);
+ pDb->iRwclient = -1;
+ }
+
+ lsmShmLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK, 0);
+ }
+ pDb->pShmhdr = 0;
+}
+
+static int doDbConnect(lsm_db *pDb){
+ const int nUsMax = 100000; /* Max value for nUs */
+ int nUs = 1000; /* us to wait between DMS1 attempts */
+ int rc;
+
+ /* Obtain a pointer to the shared-memory header */
+ assert( pDb->pShmhdr==0 );
+ assert( pDb->bReadonly==0 );
+
+ /* Block for an exclusive lock on DMS1. This lock serializes all calls
+ ** to doDbConnect() and doDbDisconnect() across all processes. */
+ while( 1 ){
+ rc = lsmShmLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_EXCL, 1);
+ if( rc!=LSM_BUSY ) break;
+ lsmEnvSleep(pDb->pEnv, nUs);
+ nUs = nUs * 2;
+ if( nUs>nUsMax ) nUs = nUsMax;
+ }
+ if( rc==LSM_OK ){
+ rc = lsmShmCacheChunks(pDb, 1);
+ }
+ if( rc!=LSM_OK ) return rc;
+ pDb->pShmhdr = (ShmHeader *)pDb->apShm[0];
+
+ /* Try an exclusive lock on DMS2/DMS3. If successful, this is the first
+ ** and only connection to the database. In this case initialize the
+ ** shared-memory and run log file recovery. */
+ assert( LSM_LOCK_DMS3==1+LSM_LOCK_DMS2 );
+ rc = lsmShmTestLock(pDb, LSM_LOCK_DMS2, 2, LSM_LOCK_EXCL);
+ if( rc==LSM_OK ){
+ memset(pDb->pShmhdr, 0, sizeof(ShmHeader));
+ rc = lsmCheckpointRecover(pDb);
+ if( rc==LSM_OK ){
+ rc = lsmLogRecover(pDb);
+ }
+ if( rc==LSM_OK ){
+ ShmHeader *pShm = pDb->pShmhdr;
+ pShm->aReader[0].iLsmId = lsmCheckpointId(pShm->aSnap1, 0);
+ pShm->aReader[0].iTreeId = pDb->treehdr.iUsedShmid;
+ }
+ }else if( rc==LSM_BUSY ){
+ rc = LSM_OK;
+ }
+
+ /* Take a shared lock on DMS2. In multi-process mode this lock "cannot"
+ ** fail, as connections may only hold an exclusive lock on DMS2 if they
+ ** first hold an exclusive lock on DMS1. And this connection is currently
+ ** holding the exclusive lock on DSM1.
+ **
+ ** However, if some other connection has the database open in single-process
+ ** mode, this operation will fail. In this case, return the error to the
+ ** caller - the attempt to connect to the db has failed.
+ */
+ if( rc==LSM_OK ){
+ rc = lsmShmLock(pDb, LSM_LOCK_DMS2, LSM_LOCK_SHARED, 0);
+ }
+
+ /* If anything went wrong, unlock DMS2. Otherwise, try to take an exclusive
+ ** lock on one of the LSM_LOCK_RWCLIENT() locks. Unlock DMS1 in any case. */
+ if( rc!=LSM_OK ){
+ pDb->pShmhdr = 0;
+ }else{
+ int i;
+ for(i=0; i<LSM_LOCK_NRWCLIENT; i++){
+ int rc2 = lsmShmLock(pDb, LSM_LOCK_RWCLIENT(i), LSM_LOCK_EXCL, 0);
+ if( rc2==LSM_OK ) pDb->iRwclient = i;
+ if( rc2!=LSM_BUSY ){
+ rc = rc2;
+ break;
+ }
+ }
+ }
+ lsmShmLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK, 0);
+
+ return rc;
+}
+
+static int dbOpenSharedFd(lsm_env *pEnv, Database *p, int bRoOk){
+ int rc;
+
+ rc = lsmEnvOpen(pEnv, p->zName, 0, &p->pFile);
+ if( rc==LSM_IOERR && bRoOk ){
+ rc = lsmEnvOpen(pEnv, p->zName, LSM_OPEN_READONLY, &p->pFile);
+ p->bReadonly = 1;
+ }
+
+ return rc;
+}
+
+/*
+** Return a reference to the shared Database handle for the database
+** identified by canonical path zName. If this is the first connection to
+** the named database, a new Database object is allocated. Otherwise, a
+** pointer to an existing object is returned.
+**
+** If successful, *ppDatabase is set to point to the shared Database
+** structure and LSM_OK returned. Otherwise, *ppDatabase is set to NULL
+** and and LSM error code returned.
+**
+** Each successful call to this function should be (eventually) matched
+** by a call to lsmDbDatabaseRelease().
+*/
+int lsmDbDatabaseConnect(
+ lsm_db *pDb, /* Database handle */
+ const char *zName /* Full-path to db file */
+){
+ lsm_env *pEnv = pDb->pEnv;
+ int rc; /* Return code */
+ Database *p = 0; /* Pointer returned via *ppDatabase */
+ int nName = lsmStrlen(zName);
+
+ assert( pDb->pDatabase==0 );
+ rc = enterGlobalMutex(pEnv);
+ if( rc==LSM_OK ){
+
+ /* Search the global list for an existing object. TODO: Need something
+ ** better than the memcmp() below to figure out if a given Database
+ ** object represents the requested file. */
+ for(p=gShared.pDatabase; p; p=p->pDbNext){
+ if( nName==p->nName && 0==memcmp(zName, p->zName, nName) ) break;
+ }
+
+ /* If no suitable Database object was found, allocate a new one. */
+ if( p==0 ){
+ p = (Database *)lsmMallocZeroRc(pEnv, sizeof(Database)+nName+1, &rc);
+
+ /* If the allocation was successful, fill in other fields and
+ ** allocate the client mutex. */
+ if( rc==LSM_OK ){
+ p->bMultiProc = pDb->bMultiProc;
+ p->zName = (char *)&p[1];
+ p->nName = nName;
+ memcpy((void *)p->zName, zName, nName+1);
+ rc = lsmMutexNew(pEnv, &p->pClientMutex);
+ }
+
+ /* If nothing has gone wrong so far, open the shared fd. And if that
+ ** succeeds and this connection requested single-process mode,
+ ** attempt to take the exclusive lock on DMS2. */
+ if( rc==LSM_OK ){
+ int bReadonly = (pDb->bReadonly && pDb->bMultiProc);
+ rc = dbOpenSharedFd(pDb->pEnv, p, bReadonly);
+ }
+
+ if( rc==LSM_OK && p->bMultiProc==0 ){
+ /* Hold an exclusive lock DMS1 while grabbing DMS2. This ensures
+ ** that any ongoing call to doDbDisconnect() (even one in another
+ ** process) is finished before proceeding. */
+ assert( p->bReadonly==0 );
+ rc = lsmEnvLock(pDb->pEnv, p->pFile, LSM_LOCK_DMS1, LSM_LOCK_EXCL);
+ if( rc==LSM_OK ){
+ rc = lsmEnvLock(pDb->pEnv, p->pFile, LSM_LOCK_DMS2, LSM_LOCK_EXCL);
+ lsmEnvLock(pDb->pEnv, p->pFile, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK);
+ }
+ }
+
+ if( rc==LSM_OK ){
+ p->pDbNext = gShared.pDatabase;
+ gShared.pDatabase = p;
+ }else{
+ freeDatabase(pEnv, p);
+ p = 0;
+ }
+ }
+
+ if( p ){
+ p->nDbRef++;
+ }
+ leaveGlobalMutex(pEnv);
+
+ if( p ){
+ lsmMutexEnter(pDb->pEnv, p->pClientMutex);
+ pDb->pNext = p->pConn;
+ p->pConn = pDb;
+ lsmMutexLeave(pDb->pEnv, p->pClientMutex);
+ }
+ }
+
+ pDb->pDatabase = p;
+ if( rc==LSM_OK ){
+ assert( p );
+ rc = lsmFsOpen(pDb, zName, p->bReadonly);
+ }
+
+ /* If the db handle is read-write, then connect to the system now. Run
+ ** recovery as necessary. Or, if this is a read-only database handle,
+ ** defer attempting to connect to the system until a read-transaction
+ ** is opened. */
+ if( rc==LSM_OK ){
+ rc = lsmFsConfigure(pDb);
+ }
+ if( rc==LSM_OK && pDb->bReadonly==0 ){
+ rc = doDbConnect(pDb);
+ }
+
+ return rc;
+}
+
+static void dbDeferClose(lsm_db *pDb){
+ if( pDb->pFS ){
+ LsmFile *pLsmFile;
+ Database *p = pDb->pDatabase;
+ pLsmFile = lsmFsDeferClose(pDb->pFS);
+ pLsmFile->pNext = p->pLsmFile;
+ p->pLsmFile = pLsmFile;
+ }
+}
+
+LsmFile *lsmDbRecycleFd(lsm_db *db){
+ LsmFile *pRet;
+ Database *p = db->pDatabase;
+ lsmMutexEnter(db->pEnv, p->pClientMutex);
+ if( (pRet = p->pLsmFile)!=0 ){
+ p->pLsmFile = pRet->pNext;
+ }
+ lsmMutexLeave(db->pEnv, p->pClientMutex);
+ return pRet;
+}
+
+/*
+** Release a reference to a Database object obtained from
+** lsmDbDatabaseConnect(). There should be exactly one call to this function
+** for each successful call to Find().
+*/
+void lsmDbDatabaseRelease(lsm_db *pDb){
+ Database *p = pDb->pDatabase;
+ if( p ){
+ lsm_db **ppDb;
+
+ if( pDb->pShmhdr ){
+ doDbDisconnect(pDb);
+ }
+
+ lsmFsUnmap(pDb->pFS);
+ lsmMutexEnter(pDb->pEnv, p->pClientMutex);
+ for(ppDb=&p->pConn; *ppDb!=pDb; ppDb=&((*ppDb)->pNext));
+ *ppDb = pDb->pNext;
+ dbDeferClose(pDb);
+ lsmMutexLeave(pDb->pEnv, p->pClientMutex);
+
+ enterGlobalMutex(pDb->pEnv);
+ p->nDbRef--;
+ if( p->nDbRef==0 ){
+ LsmFile *pIter;
+ LsmFile *pNext;
+ Database **pp;
+
+ /* Remove the Database structure from the linked list. */
+ for(pp=&gShared.pDatabase; *pp!=p; pp=&((*pp)->pDbNext));
+ *pp = p->pDbNext;
+
+ /* If they were allocated from the heap, free the shared memory chunks */
+ if( p->bMultiProc==0 ){
+ int i;
+ for(i=0; i<p->nShmChunk; i++){
+ lsmFree(pDb->pEnv, p->apShmChunk[i]);
+ }
+ }
+
+ /* Close any outstanding file descriptors */
+ for(pIter=p->pLsmFile; pIter; pIter=pNext){
+ pNext = pIter->pNext;
+ lsmEnvClose(pDb->pEnv, pIter->pFile);
+ lsmFree(pDb->pEnv, pIter);
+ }
+ freeDatabase(pDb->pEnv, p);
+ }
+ leaveGlobalMutex(pDb->pEnv);
+ }
+}
+
+Level *lsmDbSnapshotLevel(Snapshot *pSnapshot){
+ return pSnapshot->pLevel;
+}
+
+void lsmDbSnapshotSetLevel(Snapshot *pSnap, Level *pLevel){
+ pSnap->pLevel = pLevel;
+}
+
+/* TODO: Shuffle things around to get rid of this */
+static int firstSnapshotInUse(lsm_db *, i64 *);
+
+/*
+** Context object used by the lsmWalkFreelist() utility.
+*/
+typedef struct WalkFreelistCtx WalkFreelistCtx;
+struct WalkFreelistCtx {
+ lsm_db *pDb;
+ int bReverse;
+ Freelist *pFreelist;
+ int iFree;
+ int (*xUsr)(void *, int, i64); /* User callback function */
+ void *pUsrctx; /* User callback context */
+ int bDone; /* Set to true after xUsr() returns true */
+};
+
+/*
+** Callback used by lsmWalkFreelist().
+*/
+static int walkFreelistCb(void *pCtx, int iBlk, i64 iSnapshot){
+ WalkFreelistCtx *p = (WalkFreelistCtx *)pCtx;
+ const int iDir = (p->bReverse ? -1 : 1);
+ Freelist *pFree = p->pFreelist;
+
+ assert( p->bDone==0 );
+ assert( iBlk>=0 );
+ if( pFree ){
+ while( (p->iFree < pFree->nEntry) && p->iFree>=0 ){
+ FreelistEntry *pEntry = &pFree->aEntry[p->iFree];
+ if( (p->bReverse==0 && pEntry->iBlk>(u32)iBlk)
+ || (p->bReverse!=0 && pEntry->iBlk<(u32)iBlk)
+ ){
+ break;
+ }else{
+ p->iFree += iDir;
+ if( pEntry->iId>=0
+ && p->xUsr(p->pUsrctx, pEntry->iBlk, pEntry->iId)
+ ){
+ p->bDone = 1;
+ return 1;
+ }
+ if( pEntry->iBlk==(u32)iBlk ) return 0;
+ }
+ }
+ }
+
+ if( p->xUsr(p->pUsrctx, iBlk, iSnapshot) ){
+ p->bDone = 1;
+ return 1;
+ }
+ return 0;
+}
+
+/*
+** The database handle passed as the first argument must be the worker
+** connection. This function iterates through the contents of the current
+** free block list, invoking the supplied callback once for each list
+** element.
+**
+** The difference between this function and lsmSortedWalkFreelist() is
+** that lsmSortedWalkFreelist() only considers those free-list elements
+** stored within the LSM. This function also merges in any in-memory
+** elements.
+*/
+int lsmWalkFreelist(
+ lsm_db *pDb, /* Database handle (must be worker) */
+ int bReverse, /* True to iterate from largest to smallest */
+ int (*x)(void *, int, i64), /* Callback function */
+ void *pCtx /* First argument to pass to callback */
+){
+ const int iDir = (bReverse ? -1 : 1);
+ int rc;
+ int iCtx;
+
+ WalkFreelistCtx ctx[2];
+
+ ctx[0].pDb = pDb;
+ ctx[0].bReverse = bReverse;
+ ctx[0].pFreelist = &pDb->pWorker->freelist;
+ if( ctx[0].pFreelist && bReverse ){
+ ctx[0].iFree = ctx[0].pFreelist->nEntry-1;
+ }else{
+ ctx[0].iFree = 0;
+ }
+ ctx[0].xUsr = walkFreelistCb;
+ ctx[0].pUsrctx = (void *)&ctx[1];
+ ctx[0].bDone = 0;
+
+ ctx[1].pDb = pDb;
+ ctx[1].bReverse = bReverse;
+ ctx[1].pFreelist = pDb->pFreelist;
+ if( ctx[1].pFreelist && bReverse ){
+ ctx[1].iFree = ctx[1].pFreelist->nEntry-1;
+ }else{
+ ctx[1].iFree = 0;
+ }
+ ctx[1].xUsr = x;
+ ctx[1].pUsrctx = pCtx;
+ ctx[1].bDone = 0;
+
+ rc = lsmSortedWalkFreelist(pDb, bReverse, walkFreelistCb, (void *)&ctx[0]);
+
+ if( ctx[0].bDone==0 ){
+ for(iCtx=0; iCtx<2; iCtx++){
+ int i;
+ WalkFreelistCtx *p = &ctx[iCtx];
+ for(i=p->iFree;
+ p->pFreelist && rc==LSM_OK && i<p->pFreelist->nEntry && i>=0;
+ i += iDir
+ ){
+ FreelistEntry *pEntry = &p->pFreelist->aEntry[i];
+ if( pEntry->iId>=0 && p->xUsr(p->pUsrctx, pEntry->iBlk, pEntry->iId) ){
+ return LSM_OK;
+ }
+ }
+ }
+ }
+
+ return rc;
+}
+
+
+typedef struct FindFreeblockCtx FindFreeblockCtx;
+struct FindFreeblockCtx {
+ i64 iInUse;
+ int iRet;
+ int bNotOne;
+};
+
+static int findFreeblockCb(void *pCtx, int iBlk, i64 iSnapshot){
+ FindFreeblockCtx *p = (FindFreeblockCtx *)pCtx;
+ if( iSnapshot<p->iInUse && (iBlk!=1 || p->bNotOne==0) ){
+ p->iRet = iBlk;
+ return 1;
+ }
+ return 0;
+}
+
+static int findFreeblock(lsm_db *pDb, i64 iInUse, int bNotOne, int *piRet){
+ int rc; /* Return code */
+ FindFreeblockCtx ctx; /* Context object */
+
+ ctx.iInUse = iInUse;
+ ctx.iRet = 0;
+ ctx.bNotOne = bNotOne;
+ rc = lsmWalkFreelist(pDb, 0, findFreeblockCb, (void *)&ctx);
+ *piRet = ctx.iRet;
+
+ return rc;
+}
+
+/*
+** Allocate a new database file block to write data to, either by extending
+** the database file or by recycling a free-list entry. The worker snapshot
+** must be held in order to call this function.
+**
+** If successful, *piBlk is set to the block number allocated and LSM_OK is
+** returned. Otherwise, *piBlk is zeroed and an lsm error code returned.
+*/
+int lsmBlockAllocate(lsm_db *pDb, int iBefore, int *piBlk){
+ Snapshot *p = pDb->pWorker;
+ int iRet = 0; /* Block number of allocated block */
+ int rc = LSM_OK;
+ i64 iInUse = 0; /* Snapshot id still in use */
+ i64 iSynced = 0; /* Snapshot id synced to disk */
+
+ assert( p );
+
+#ifdef LSM_LOG_FREELIST
+ {
+ static int nCall = 0;
+ char *zFree = 0;
+ nCall++;
+ rc = lsmInfoFreelist(pDb, &zFree);
+ if( rc!=LSM_OK ) return rc;
+ lsmLogMessage(pDb, 0, "lsmBlockAllocate(): %d freelist: %s", nCall, zFree);
+ lsmFree(pDb->pEnv, zFree);
+ }
+#endif
+
+ /* Set iInUse to the smallest snapshot id that is either:
+ **
+ ** * Currently in use by a database client,
+ ** * May be used by a database client in the future, or
+ ** * Is the most recently checkpointed snapshot (i.e. the one that will
+ ** be used following recovery if a failure occurs at this point).
+ */
+ rc = lsmCheckpointSynced(pDb, &iSynced, 0, 0);
+ if( rc==LSM_OK && iSynced==0 ) iSynced = p->iId;
+ iInUse = iSynced;
+ if( rc==LSM_OK && pDb->iReader>=0 ){
+ assert( pDb->pClient );
+ iInUse = LSM_MIN(iInUse, pDb->pClient->iId);
+ }
+ if( rc==LSM_OK ) rc = firstSnapshotInUse(pDb, &iInUse);
+
+#ifdef LSM_LOG_FREELIST
+ {
+ lsmLogMessage(pDb, 0, "lsmBlockAllocate(): "
+ "snapshot-in-use: %lld (iSynced=%lld) (client-id=%lld)",
+ iInUse, iSynced, (pDb->iReader>=0 ? pDb->pClient->iId : 0)
+ );
+ }
+#endif
+
+
+ /* Unless there exists a read-only transaction (which prevents us from
+ ** recycling any blocks regardless, query the free block list for a
+ ** suitable block to reuse.
+ **
+ ** It might seem more natural to check for a read-only transaction at
+ ** the start of this function. However, it is better do wait until after
+ ** the call to lsmCheckpointSynced() to do so.
+ */
+ if( rc==LSM_OK ){
+ int bRotrans;
+ rc = lsmDetectRoTrans(pDb, &bRotrans);
+
+ if( rc==LSM_OK && bRotrans==0 ){
+ rc = findFreeblock(pDb, iInUse, (iBefore>0), &iRet);
+ }
+ }
+
+ if( iBefore>0 && (iRet<=0 || iRet>=iBefore) ){
+ iRet = 0;
+
+ }else if( rc==LSM_OK ){
+ /* If a block was found in the free block list, use it and remove it from
+ ** the list. Otherwise, if no suitable block was found, allocate one from
+ ** the end of the file. */
+ if( iRet>0 ){
+#ifdef LSM_LOG_FREELIST
+ lsmLogMessage(pDb, 0,
+ "reusing block %d (snapshot-in-use=%lld)", iRet, iInUse);
+#endif
+ rc = freelistAppend(pDb, iRet, -1);
+ if( rc==LSM_OK ){
+ rc = dbTruncate(pDb, iInUse);
+ }
+ }else{
+ iRet = ++(p->nBlock);
+#ifdef LSM_LOG_FREELIST
+ lsmLogMessage(pDb, 0, "extending file to %d blocks", iRet);
+#endif
+ }
+ }
+
+ assert( iBefore>0 || iRet>0 || rc!=LSM_OK );
+ *piBlk = iRet;
+ return rc;
+}
+
+/*
+** Free a database block. The worker snapshot must be held in order to call
+** this function.
+**
+** If successful, LSM_OK is returned. Otherwise, an lsm error code (e.g.
+** LSM_NOMEM).
+*/
+int lsmBlockFree(lsm_db *pDb, int iBlk){
+ Snapshot *p = pDb->pWorker;
+ assert( lsmShmAssertWorker(pDb) );
+
+#ifdef LSM_LOG_FREELIST
+ lsmLogMessage(pDb, LSM_OK, "lsmBlockFree(): Free block %d", iBlk);
+#endif
+
+ return freelistAppend(pDb, iBlk, p->iId);
+}
+
+/*
+** Refree a database block. The worker snapshot must be held in order to call
+** this function.
+**
+** Refreeing is required when a block is allocated using lsmBlockAllocate()
+** but then not used. This function is used to push the block back onto
+** the freelist. Refreeing a block is different from freeing is, as a refreed
+** block may be reused immediately. Whereas a freed block can not be reused
+** until (at least) after the next checkpoint.
+*/
+int lsmBlockRefree(lsm_db *pDb, int iBlk){
+ int rc = LSM_OK; /* Return code */
+
+#ifdef LSM_LOG_FREELIST
+ lsmLogMessage(pDb, LSM_OK, "lsmBlockRefree(): Refree block %d", iBlk);
+#endif
+
+ rc = freelistAppend(pDb, iBlk, 0);
+ return rc;
+}
+
+/*
+** If required, copy a database checkpoint from shared memory into the
+** database itself.
+**
+** The WORKER lock must not be held when this is called. This is because
+** this function may indirectly call fsync(). And the WORKER lock should
+** not be held that long (in case it is required by a client flushing an
+** in-memory tree to disk).
+*/
+int lsmCheckpointWrite(lsm_db *pDb, u32 *pnWrite){
+ int rc; /* Return Code */
+ u32 nWrite = 0;
+
+ assert( pDb->pWorker==0 );
+ assert( 1 || pDb->pClient==0 );
+ assert( lsmShmAssertLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_UNLOCK) );
+
+ rc = lsmShmLock(pDb, LSM_LOCK_CHECKPOINTER, LSM_LOCK_EXCL, 0);
+ if( rc!=LSM_OK ) return rc;
+
+ rc = lsmCheckpointLoad(pDb, 0);
+ if( rc==LSM_OK ){
+ int nBlock = lsmCheckpointNBlock(pDb->aSnapshot);
+ ShmHeader *pShm = pDb->pShmhdr;
+ int bDone = 0; /* True if checkpoint is already stored */
+
+ /* Check if this checkpoint has already been written to the database
+ ** file. If so, set variable bDone to true. */
+ if( pShm->iMetaPage ){
+ MetaPage *pPg; /* Meta page */
+ u8 *aData; /* Meta-page data buffer */
+ int nData; /* Size of aData[] in bytes */
+ i64 iCkpt; /* Id of checkpoint just loaded */
+ i64 iDisk = 0; /* Id of checkpoint already stored in db */
+ iCkpt = lsmCheckpointId(pDb->aSnapshot, 0);
+ rc = lsmFsMetaPageGet(pDb->pFS, 0, pShm->iMetaPage, &pPg);
+ if( rc==LSM_OK ){
+ aData = lsmFsMetaPageData(pPg, &nData);
+ iDisk = lsmCheckpointId((u32 *)aData, 1);
+ nWrite = lsmCheckpointNWrite((u32 *)aData, 1);
+ lsmFsMetaPageRelease(pPg);
+ }
+ bDone = (iDisk>=iCkpt);
+ }
+
+ if( rc==LSM_OK && bDone==0 ){
+ int iMeta = (pShm->iMetaPage % 2) + 1;
+ if( pDb->eSafety!=LSM_SAFETY_OFF ){
+ rc = lsmFsSyncDb(pDb->pFS, nBlock);
+ }
+ if( rc==LSM_OK ) rc = lsmCheckpointStore(pDb, iMeta);
+ if( rc==LSM_OK && pDb->eSafety!=LSM_SAFETY_OFF){
+ rc = lsmFsSyncDb(pDb->pFS, 0);
+ }
+ if( rc==LSM_OK ){
+ pShm->iMetaPage = iMeta;
+ nWrite = lsmCheckpointNWrite(pDb->aSnapshot, 0) - nWrite;
+ }
+#ifdef LSM_LOG_WORK
+ lsmLogMessage(pDb, 0, "finish checkpoint %d",
+ (int)lsmCheckpointId(pDb->aSnapshot, 0)
+ );
+#endif
+ }
+ }
+
+ lsmShmLock(pDb, LSM_LOCK_CHECKPOINTER, LSM_LOCK_UNLOCK, 0);
+ if( pnWrite && rc==LSM_OK ) *pnWrite = nWrite;
+ return rc;
+}
+
+int lsmBeginWork(lsm_db *pDb){
+ int rc;
+
+ /* Attempt to take the WORKER lock */
+ rc = lsmShmLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_EXCL, 0);
+
+ /* Deserialize the current worker snapshot */
+ if( rc==LSM_OK ){
+ rc = lsmCheckpointLoadWorker(pDb);
+ }
+ return rc;
+}
+
+void lsmFreeSnapshot(lsm_env *pEnv, Snapshot *p){
+ if( p ){
+ lsmSortedFreeLevel(pEnv, p->pLevel);
+ lsmFree(pEnv, p->freelist.aEntry);
+ lsmFree(pEnv, p->redirect.a);
+ lsmFree(pEnv, p);
+ }
+}
+
+/*
+** Attempt to populate one of the read-lock slots to contain lock values
+** iLsm/iShm. Or, if such a slot exists already, this function is a no-op.
+**
+** It is not an error if no slot can be populated because the write-lock
+** cannot be obtained. If any other error occurs, return an LSM error code.
+** Otherwise, LSM_OK.
+**
+** This function is called at various points to try to ensure that there
+** always exists at least one read-lock slot that can be used by a read-only
+** client. And so that, in the usual case, there is an "exact match" available
+** whenever a read transaction is opened by any client. At present this
+** function is called when:
+**
+** * A write transaction that called lsmTreeDiscardOld() is committed, and
+** * Whenever the working snapshot is updated (i.e. lsmFinishWork()).
+*/
+static int dbSetReadLock(lsm_db *db, i64 iLsm, u32 iShm){
+ int rc = LSM_OK;
+ ShmHeader *pShm = db->pShmhdr;
+ int i;
+
+ /* Check if there is already a slot containing the required values. */
+ for(i=0; i<LSM_LOCK_NREADER; i++){
+ ShmReader *p = &pShm->aReader[i];
+ if( p->iLsmId==iLsm && p->iTreeId==iShm ) return LSM_OK;
+ }
+
+ /* Iterate through all read-lock slots, attempting to take a write-lock
+ ** on each of them. If a write-lock succeeds, populate the locked slot
+ ** with the required values and break out of the loop. */
+ for(i=0; rc==LSM_OK && i<LSM_LOCK_NREADER; i++){
+ rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_EXCL, 0);
+ if( rc==LSM_BUSY ){
+ rc = LSM_OK;
+ }else{
+ ShmReader *p = &pShm->aReader[i];
+ p->iLsmId = iLsm;
+ p->iTreeId = iShm;
+ lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_UNLOCK, 0);
+ break;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Release the read-lock currently held by connection db.
+*/
+int dbReleaseReadlock(lsm_db *db){
+ int rc = LSM_OK;
+ if( db->iReader>=0 ){
+ rc = lsmShmLock(db, LSM_LOCK_READER(db->iReader), LSM_LOCK_UNLOCK, 0);
+ db->iReader = -1;
+ }
+ db->bRoTrans = 0;
+ return rc;
+}
+
+
+/*
+** Argument bFlush is true if the contents of the in-memory tree has just
+** been flushed to disk. The significance of this is that once the snapshot
+** created to hold the updated state of the database is synced to disk, log
+** file space can be recycled.
+*/
+void lsmFinishWork(lsm_db *pDb, int bFlush, int *pRc){
+ int rc = *pRc;
+ assert( rc!=0 || pDb->pWorker );
+ if( pDb->pWorker ){
+ /* If no error has occurred, serialize the worker snapshot and write
+ ** it to shared memory. */
+ if( rc==LSM_OK ){
+ rc = lsmSaveWorker(pDb, bFlush);
+ }
+
+ /* Assuming no error has occurred, update a read lock slot with the
+ ** new snapshot id (see comments above function dbSetReadLock()). */
+ if( rc==LSM_OK ){
+ if( pDb->iReader<0 ){
+ rc = lsmTreeLoadHeader(pDb, 0);
+ }
+ if( rc==LSM_OK ){
+ rc = dbSetReadLock(pDb, pDb->pWorker->iId, pDb->treehdr.iUsedShmid);
+ }
+ }
+
+ /* Free the snapshot object. */
+ lsmFreeSnapshot(pDb->pEnv, pDb->pWorker);
+ pDb->pWorker = 0;
+ }
+
+ lsmShmLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_UNLOCK, 0);
+ *pRc = rc;
+}
+
+/*
+** Called when recovery is finished.
+*/
+int lsmFinishRecovery(lsm_db *pDb){
+ lsmTreeEndTransaction(pDb, 1);
+ return LSM_OK;
+}
+
+/*
+** Check if the currently configured compression functions
+** (LSM_CONFIG_SET_COMPRESSION) are compatible with a database that has its
+** compression id set to iReq. Compression routines are compatible if iReq
+** is zero (indicating the database is empty), or if it is equal to the
+** compression id of the configured compression routines.
+**
+** If the check shows that the current compression are incompatible and there
+** is a compression factory registered, give it a chance to install new
+** compression routines.
+**
+** If, after any registered factory is invoked, the compression functions
+** are still incompatible, return LSM_MISMATCH. Otherwise, LSM_OK.
+*/
+int lsmCheckCompressionId(lsm_db *pDb, u32 iReq){
+ if( iReq!=LSM_COMPRESSION_EMPTY && pDb->compress.iId!=iReq ){
+ if( pDb->factory.xFactory ){
+ pDb->bInFactory = 1;
+ pDb->factory.xFactory(pDb->factory.pCtx, pDb, iReq);
+ pDb->bInFactory = 0;
+ }
+ if( pDb->compress.iId!=iReq ){
+ /* Incompatible */
+ return LSM_MISMATCH;
+ }
+ }
+ /* Compatible */
+ return LSM_OK;
+}
+
+/*
+** Begin a read transaction. This function is a no-op if the connection
+** passed as the only argument already has an open read transaction.
+*/
+int lsmBeginReadTrans(lsm_db *pDb){
+ const int MAX_READLOCK_ATTEMPTS = 10;
+ const int nMaxAttempt = (pDb->bRoTrans ? 1 : MAX_READLOCK_ATTEMPTS);
+
+ int rc = LSM_OK; /* Return code */
+ int iAttempt = 0;
+
+ assert( pDb->pWorker==0 );
+
+ while( rc==LSM_OK && pDb->iReader<0 && (iAttempt++)<nMaxAttempt ){
+ int iTreehdr = 0;
+ int iSnap = 0;
+ assert( pDb->pCsr==0 && pDb->nTransOpen==0 );
+
+ /* Load the in-memory tree header. */
+ rc = lsmTreeLoadHeader(pDb, &iTreehdr);
+
+ /* Load the database snapshot */
+ if( rc==LSM_OK ){
+ if( lsmCheckpointClientCacheOk(pDb)==0 ){
+ lsmFreeSnapshot(pDb->pEnv, pDb->pClient);
+ pDb->pClient = 0;
+ lsmMCursorFreeCache(pDb);
+ lsmFsPurgeCache(pDb->pFS);
+ rc = lsmCheckpointLoad(pDb, &iSnap);
+ }else{
+ iSnap = 1;
+ }
+ }
+
+ /* Take a read-lock on the tree and snapshot just loaded. Then check
+ ** that the shared-memory still contains the same values. If so, proceed.
+ ** Otherwise, relinquish the read-lock and retry the whole procedure
+ ** (starting with loading the in-memory tree header). */
+ if( rc==LSM_OK ){
+ u32 iShmMax = pDb->treehdr.iUsedShmid;
+ u32 iShmMin = pDb->treehdr.iNextShmid+1-LSM_MAX_SHMCHUNKS;
+ rc = lsmReadlock(
+ pDb, lsmCheckpointId(pDb->aSnapshot, 0), iShmMin, iShmMax
+ );
+ if( rc==LSM_OK ){
+ if( lsmTreeLoadHeaderOk(pDb, iTreehdr)
+ && lsmCheckpointLoadOk(pDb, iSnap)
+ ){
+ /* Read lock has been successfully obtained. Deserialize the
+ ** checkpoint just loaded. TODO: This will be removed after
+ ** lsm_sorted.c is changed to work directly from the serialized
+ ** version of the snapshot. */
+ if( pDb->pClient==0 ){
+ rc = lsmCheckpointDeserialize(pDb, 0, pDb->aSnapshot,&pDb->pClient);
+ }
+ assert( (rc==LSM_OK)==(pDb->pClient!=0) );
+ assert( pDb->iReader>=0 );
+
+ /* Check that the client has the right compression hooks loaded.
+ ** If not, set rc to LSM_MISMATCH. */
+ if( rc==LSM_OK ){
+ rc = lsmCheckCompressionId(pDb, pDb->pClient->iCmpId);
+ }
+ }else{
+ rc = dbReleaseReadlock(pDb);
+ }
+ }
+
+ if( rc==LSM_BUSY ){
+ rc = LSM_OK;
+ }
+ }
+#if 0
+if( rc==LSM_OK && pDb->pClient ){
+ fprintf(stderr,
+ "reading %p: snapshot:%d used-shmid:%d trans-id:%d iOldShmid=%d\n",
+ (void *)pDb,
+ (int)pDb->pClient->iId, (int)pDb->treehdr.iUsedShmid,
+ (int)pDb->treehdr.root.iTransId,
+ (int)pDb->treehdr.iOldShmid
+ );
+}
+#endif
+ }
+
+ if( rc==LSM_OK ){
+ rc = lsmShmCacheChunks(pDb, pDb->treehdr.nChunk);
+ }
+ if( rc!=LSM_OK ){
+ dbReleaseReadlock(pDb);
+ }
+ if( pDb->pClient==0 && rc==LSM_OK ) rc = LSM_BUSY;
+ return rc;
+}
+
+/*
+** This function is used by a read-write connection to determine if there
+** are currently one or more read-only transactions open on the database
+** (in this context a read-only transaction is one opened by a read-only
+** connection on a non-live database).
+**
+** If no error occurs, LSM_OK is returned and *pbExists is set to true if
+** some other connection has a read-only transaction open, or false
+** otherwise. If an error occurs an LSM error code is returned and the final
+** value of *pbExist is undefined.
+*/
+int lsmDetectRoTrans(lsm_db *db, int *pbExist){
+ int rc;
+
+ /* Only a read-write connection may use this function. */
+ assert( db->bReadonly==0 );
+
+ rc = lsmShmTestLock(db, LSM_LOCK_ROTRANS, 1, LSM_LOCK_EXCL);
+ if( rc==LSM_BUSY ){
+ *pbExist = 1;
+ rc = LSM_OK;
+ }else{
+ *pbExist = 0;
+ }
+
+ return rc;
+}
+
+/*
+** db is a read-only database handle in the disconnected state. This function
+** attempts to open a read-transaction on the database. This may involve
+** connecting to the database system (opening shared memory etc.).
+*/
+int lsmBeginRoTrans(lsm_db *db){
+ int rc = LSM_OK;
+
+ assert( db->bReadonly && db->pShmhdr==0 );
+ assert( db->iReader<0 );
+
+ if( db->bRoTrans==0 ){
+
+ /* Attempt a shared-lock on DMS1. */
+ rc = lsmShmLock(db, LSM_LOCK_DMS1, LSM_LOCK_SHARED, 0);
+ if( rc!=LSM_OK ) return rc;
+
+ rc = lsmShmTestLock(
+ db, LSM_LOCK_RWCLIENT(0), LSM_LOCK_NREADER, LSM_LOCK_SHARED
+ );
+ if( rc==LSM_OK ){
+ /* System is not live. Take a SHARED lock on the ROTRANS byte and
+ ** release DMS1. Locking ROTRANS tells all read-write clients that they
+ ** may not recycle any disk space from within the database or log files,
+ ** as a read-only client may be using it. */
+ rc = lsmShmLock(db, LSM_LOCK_ROTRANS, LSM_LOCK_SHARED, 0);
+ lsmShmLock(db, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK, 0);
+
+ if( rc==LSM_OK ){
+ db->bRoTrans = 1;
+ rc = lsmShmCacheChunks(db, 1);
+ if( rc==LSM_OK ){
+ db->pShmhdr = (ShmHeader *)db->apShm[0];
+ memset(db->pShmhdr, 0, sizeof(ShmHeader));
+ rc = lsmCheckpointRecover(db);
+ if( rc==LSM_OK ){
+ rc = lsmLogRecover(db);
+ }
+ }
+ }
+ }else if( rc==LSM_BUSY ){
+ /* System is live! */
+ rc = lsmShmLock(db, LSM_LOCK_DMS3, LSM_LOCK_SHARED, 0);
+ lsmShmLock(db, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK, 0);
+ if( rc==LSM_OK ){
+ rc = lsmShmCacheChunks(db, 1);
+ if( rc==LSM_OK ){
+ db->pShmhdr = (ShmHeader *)db->apShm[0];
+ }
+ }
+ }
+
+ if( rc==LSM_OK ){
+ rc = lsmBeginReadTrans(db);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Close the currently open read transaction.
+*/
+void lsmFinishReadTrans(lsm_db *pDb){
+
+ /* Worker connections should not be closing read transactions. And
+ ** read transactions should only be closed after all cursors and write
+ ** transactions have been closed. Finally pClient should be non-NULL
+ ** only iff pDb->iReader>=0. */
+ assert( pDb->pWorker==0 );
+ assert( pDb->pCsr==0 && pDb->nTransOpen==0 );
+
+ if( pDb->bRoTrans ){
+ int i;
+ for(i=0; i<pDb->nShm; i++){
+ lsmFree(pDb->pEnv, pDb->apShm[i]);
+ }
+ lsmFree(pDb->pEnv, pDb->apShm);
+ pDb->apShm = 0;
+ pDb->nShm = 0;
+ pDb->pShmhdr = 0;
+
+ lsmShmLock(pDb, LSM_LOCK_ROTRANS, LSM_LOCK_UNLOCK, 0);
+ }
+ dbReleaseReadlock(pDb);
+}
+
+/*
+** Open a write transaction.
+*/
+int lsmBeginWriteTrans(lsm_db *pDb){
+ int rc = LSM_OK; /* Return code */
+ ShmHeader *pShm = pDb->pShmhdr; /* Shared memory header */
+
+ assert( pDb->nTransOpen==0 );
+ assert( pDb->bDiscardOld==0 );
+ assert( pDb->bReadonly==0 );
+
+ /* If there is no read-transaction open, open one now. */
+ if( pDb->iReader<0 ){
+ rc = lsmBeginReadTrans(pDb);
+ }
+
+ /* Attempt to take the WRITER lock */
+ if( rc==LSM_OK ){
+ rc = lsmShmLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_EXCL, 0);
+ }
+
+ /* If the previous writer failed mid-transaction, run emergency rollback. */
+ if( rc==LSM_OK && pShm->bWriter ){
+ rc = lsmTreeRepair(pDb);
+ if( rc==LSM_OK ) pShm->bWriter = 0;
+ }
+
+ /* Check that this connection is currently reading from the most recent
+ ** version of the database. If not, return LSM_BUSY. */
+ if( rc==LSM_OK && memcmp(&pShm->hdr1, &pDb->treehdr, sizeof(TreeHeader)) ){
+ rc = LSM_BUSY;
+ }
+
+ if( rc==LSM_OK ){
+ rc = lsmLogBegin(pDb);
+ }
+
+ /* If everything was successful, set the "transaction-in-progress" flag
+ ** and return LSM_OK. Otherwise, if some error occurred, relinquish the
+ ** WRITER lock and return an error code. */
+ if( rc==LSM_OK ){
+ TreeHeader *p = &pDb->treehdr;
+ pShm->bWriter = 1;
+ p->root.iTransId++;
+ if( lsmTreeHasOld(pDb) && p->iOldLog==pDb->pClient->iLogOff ){
+ lsmTreeDiscardOld(pDb);
+ pDb->bDiscardOld = 1;
+ }
+ }else{
+ lsmShmLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_UNLOCK, 0);
+ if( pDb->pCsr==0 ) lsmFinishReadTrans(pDb);
+ }
+ return rc;
+}
+
+/*
+** End the current write transaction. The connection is left with an open
+** read transaction. It is an error to call this if there is no open write
+** transaction.
+**
+** If the transaction was committed, then a commit record has already been
+** written into the log file when this function is called. Or, if the
+** transaction was rolled back, both the log file and in-memory tree
+** structure have already been restored. In either case, this function
+** merely releases locks and other resources held by the write-transaction.
+**
+** LSM_OK is returned if successful, or an LSM error code otherwise.
+*/
+int lsmFinishWriteTrans(lsm_db *pDb, int bCommit){
+ int rc = LSM_OK;
+ int bFlush = 0;
+
+ lsmLogEnd(pDb, bCommit);
+ if( rc==LSM_OK && bCommit && lsmTreeSize(pDb)>pDb->nTreeLimit ){
+ bFlush = 1;
+ lsmTreeMakeOld(pDb);
+ }
+ lsmTreeEndTransaction(pDb, bCommit);
+
+ if( rc==LSM_OK ){
+ if( bFlush && pDb->bAutowork ){
+ rc = lsmSortedAutoWork(pDb, 1);
+ }else if( bCommit && pDb->bDiscardOld ){
+ rc = dbSetReadLock(pDb, pDb->pClient->iId, pDb->treehdr.iUsedShmid);
+ }
+ }
+ pDb->bDiscardOld = 0;
+ lsmShmLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_UNLOCK, 0);
+
+ if( bFlush && pDb->bAutowork==0 && pDb->xWork ){
+ pDb->xWork(pDb, pDb->pWorkCtx);
+ }
+ return rc;
+}
+
+
+/*
+** Return non-zero if the caller is holding the client mutex.
+*/
+#ifdef LSM_DEBUG
+int lsmHoldingClientMutex(lsm_db *pDb){
+ return lsmMutexHeld(pDb->pEnv, pDb->pDatabase->pClientMutex);
+}
+#endif
+
+static int slotIsUsable(ShmReader *p, i64 iLsm, u32 iShmMin, u32 iShmMax){
+ return(
+ p->iLsmId && p->iLsmId<=iLsm
+ && shm_sequence_ge(iShmMax, p->iTreeId)
+ && shm_sequence_ge(p->iTreeId, iShmMin)
+ );
+}
+
+/*
+** Obtain a read-lock on database version identified by the combination
+** of snapshot iLsm and tree iTree. Return LSM_OK if successful, or
+** an LSM error code otherwise.
+*/
+int lsmReadlock(lsm_db *db, i64 iLsm, u32 iShmMin, u32 iShmMax){
+ int rc = LSM_OK;
+ ShmHeader *pShm = db->pShmhdr;
+ int i;
+
+ assert( db->iReader<0 );
+ assert( shm_sequence_ge(iShmMax, iShmMin) );
+
+ /* This is a no-op if the read-only transaction flag is set. */
+ if( db->bRoTrans ){
+ db->iReader = 0;
+ return LSM_OK;
+ }
+
+ /* Search for an exact match. */
+ for(i=0; db->iReader<0 && rc==LSM_OK && i<LSM_LOCK_NREADER; i++){
+ ShmReader *p = &pShm->aReader[i];
+ if( p->iLsmId==iLsm && p->iTreeId==iShmMax ){
+ rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_SHARED, 0);
+ if( rc==LSM_OK && p->iLsmId==iLsm && p->iTreeId==iShmMax ){
+ db->iReader = i;
+ }else if( rc==LSM_BUSY ){
+ rc = LSM_OK;
+ }
+ }
+ }
+
+ /* Try to obtain a write-lock on each slot, in order. If successful, set
+ ** the slot values to iLsm/iTree. */
+ for(i=0; db->iReader<0 && rc==LSM_OK && i<LSM_LOCK_NREADER; i++){
+ rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_EXCL, 0);
+ if( rc==LSM_BUSY ){
+ rc = LSM_OK;
+ }else{
+ ShmReader *p = &pShm->aReader[i];
+ p->iLsmId = iLsm;
+ p->iTreeId = iShmMax;
+ rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_SHARED, 0);
+ assert( rc!=LSM_BUSY );
+ if( rc==LSM_OK ) db->iReader = i;
+ }
+ }
+
+ /* Search for any usable slot */
+ for(i=0; db->iReader<0 && rc==LSM_OK && i<LSM_LOCK_NREADER; i++){
+ ShmReader *p = &pShm->aReader[i];
+ if( slotIsUsable(p, iLsm, iShmMin, iShmMax) ){
+ rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_SHARED, 0);
+ if( rc==LSM_OK && slotIsUsable(p, iLsm, iShmMin, iShmMax) ){
+ db->iReader = i;
+ }else if( rc==LSM_BUSY ){
+ rc = LSM_OK;
+ }
+ }
+ }
+
+ if( rc==LSM_OK && db->iReader<0 ){
+ rc = LSM_BUSY;
+ }
+ return rc;
+}
+
+/*
+** This is used to check if there exists a read-lock locking a particular
+** version of either the in-memory tree or database file.
+**
+** If iLsmId is non-zero, then it is a snapshot id. If there exists a
+** read-lock using this snapshot or newer, set *pbInUse to true. Or,
+** if there is no such read-lock, set it to false.
+**
+** Or, if iLsmId is zero, then iShmid is a shared-memory sequence id.
+** Search for a read-lock using this sequence id or newer. etc.
+*/
+static int isInUse(lsm_db *db, i64 iLsmId, u32 iShmid, int *pbInUse){
+ ShmHeader *pShm = db->pShmhdr;
+ int i;
+ int rc = LSM_OK;
+
+ for(i=0; rc==LSM_OK && i<LSM_LOCK_NREADER; i++){
+ ShmReader *p = &pShm->aReader[i];
+ if( p->iLsmId ){
+ if( (iLsmId!=0 && p->iLsmId!=0 && iLsmId>=p->iLsmId)
+ || (iLsmId==0 && shm_sequence_ge(p->iTreeId, iShmid))
+ ){
+ rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_EXCL, 0);
+ if( rc==LSM_OK ){
+ p->iLsmId = 0;
+ lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_UNLOCK, 0);
+ }
+ }
+ }
+ }
+
+ if( rc==LSM_BUSY ){
+ *pbInUse = 1;
+ return LSM_OK;
+ }
+ *pbInUse = 0;
+ return rc;
+}
+
+/*
+** This function is called by worker connections to determine the smallest
+** snapshot id that is currently in use by a database client. The worker
+** connection uses this result to determine whether or not it is safe to
+** recycle a database block.
+*/
+static int firstSnapshotInUse(
+ lsm_db *db, /* Database handle */
+ i64 *piInUse /* IN/OUT: Smallest snapshot id in use */
+){
+ ShmHeader *pShm = db->pShmhdr;
+ i64 iInUse = *piInUse;
+ int i;
+
+ assert( iInUse>0 );
+ for(i=0; i<LSM_LOCK_NREADER; i++){
+ ShmReader *p = &pShm->aReader[i];
+ if( p->iLsmId ){
+ i64 iThis = p->iLsmId;
+ if( iThis!=0 && iInUse>iThis ){
+ int rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_EXCL, 0);
+ if( rc==LSM_OK ){
+ p->iLsmId = 0;
+ lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_UNLOCK, 0);
+ }else if( rc==LSM_BUSY ){
+ iInUse = iThis;
+ }else{
+ /* Some error other than LSM_BUSY. Return the error code to
+ ** the caller in this case. */
+ return rc;
+ }
+ }
+ }
+ }
+
+ *piInUse = iInUse;
+ return LSM_OK;
+}
+
+int lsmTreeInUse(lsm_db *db, u32 iShmid, int *pbInUse){
+ if( db->treehdr.iUsedShmid==iShmid ){
+ *pbInUse = 1;
+ return LSM_OK;
+ }
+ return isInUse(db, 0, iShmid, pbInUse);
+}
+
+int lsmLsmInUse(lsm_db *db, i64 iLsmId, int *pbInUse){
+ if( db->pClient && db->pClient->iId<=iLsmId ){
+ *pbInUse = 1;
+ return LSM_OK;
+ }
+ return isInUse(db, iLsmId, 0, pbInUse);
+}
+
+/*
+** This function may only be called after a successful call to
+** lsmDbDatabaseConnect(). It returns true if the connection is in
+** multi-process mode, or false otherwise.
+*/
+int lsmDbMultiProc(lsm_db *pDb){
+ return pDb->pDatabase && pDb->pDatabase->bMultiProc;
+}
+
+
+/*************************************************************************
+**************************************************************************
+**************************************************************************
+**************************************************************************
+**************************************************************************
+*************************************************************************/
+
+/*
+** Ensure that database connection db has cached pointers to at least the
+** first nChunk chunks of shared memory.
+*/
+int lsmShmCacheChunks(lsm_db *db, int nChunk){
+ int rc = LSM_OK;
+ if( nChunk>db->nShm ){
+ static const int NINCR = 16;
+ Database *p = db->pDatabase;
+ lsm_env *pEnv = db->pEnv;
+ int nAlloc;
+ int i;
+
+ /* Ensure that the db->apShm[] array is large enough. If an attempt to
+ ** allocate memory fails, return LSM_NOMEM immediately. The apShm[] array
+ ** is always extended in multiples of 16 entries - so the actual allocated
+ ** size can be inferred from nShm. */
+ nAlloc = ((db->nShm + NINCR - 1) / NINCR) * NINCR;
+ while( nChunk>=nAlloc ){
+ void **apShm;
+ nAlloc += NINCR;
+ apShm = lsmRealloc(pEnv, db->apShm, sizeof(void*)*nAlloc);
+ if( !apShm ) return LSM_NOMEM_BKPT;
+ db->apShm = apShm;
+ }
+
+ if( db->bRoTrans ){
+ for(i=db->nShm; rc==LSM_OK && i<nChunk; i++){
+ db->apShm[i] = lsmMallocZeroRc(pEnv, LSM_SHM_CHUNK_SIZE, &rc);
+ db->nShm++;
+ }
+
+ }else{
+
+ /* Enter the client mutex */
+ lsmMutexEnter(pEnv, p->pClientMutex);
+
+ /* Extend the Database objects apShmChunk[] array if necessary. Using the
+ ** same pattern as for the lsm_db.apShm[] array above. */
+ nAlloc = ((p->nShmChunk + NINCR - 1) / NINCR) * NINCR;
+ while( nChunk>=nAlloc ){
+ void **apShm;
+ nAlloc += NINCR;
+ apShm = lsmRealloc(pEnv, p->apShmChunk, sizeof(void*)*nAlloc);
+ if( !apShm ){
+ rc = LSM_NOMEM_BKPT;
+ break;
+ }
+ p->apShmChunk = apShm;
+ }
+
+ for(i=db->nShm; rc==LSM_OK && i<nChunk; i++){
+ if( i>=p->nShmChunk ){
+ void *pChunk = 0;
+ if( p->bMultiProc==0 ){
+ /* Single process mode */
+ pChunk = lsmMallocZeroRc(pEnv, LSM_SHM_CHUNK_SIZE, &rc);
+ }else{
+ /* Multi-process mode */
+ rc = lsmEnvShmMap(pEnv, p->pFile, i, LSM_SHM_CHUNK_SIZE, &pChunk);
+ }
+ if( rc==LSM_OK ){
+ p->apShmChunk[i] = pChunk;
+ p->nShmChunk++;
+ }
+ }
+ if( rc==LSM_OK ){
+ db->apShm[i] = p->apShmChunk[i];
+ db->nShm++;
+ }
+ }
+
+ /* Release the client mutex */
+ lsmMutexLeave(pEnv, p->pClientMutex);
+ }
+ }
+
+ return rc;
+}
+
+static int lockSharedFile(lsm_env *pEnv, Database *p, int iLock, int eOp){
+ int rc = LSM_OK;
+ if( p->bMultiProc ){
+ rc = lsmEnvLock(pEnv, p->pFile, iLock, eOp);
+ }
+ return rc;
+}
+
+/*
+** Test if it would be possible for connection db to obtain a lock of type
+** eType on the nLock locks starting at iLock. If so, return LSM_OK. If it
+** would not be possible to obtain the lock due to a lock held by another
+** connection, return LSM_BUSY. If an IO or other error occurs (i.e. in the
+** lsm_env.xTestLock function), return some other LSM error code.
+**
+** Note that this function never actually locks the database - it merely
+** queries the system to see if there exists a lock that would prevent
+** it from doing so.
+*/
+int lsmShmTestLock(
+ lsm_db *db,
+ int iLock,
+ int nLock,
+ int eOp
+){
+ int rc = LSM_OK;
+ lsm_db *pIter;
+ Database *p = db->pDatabase;
+ int i;
+ u64 mask = 0;
+
+ for(i=iLock; i<(iLock+nLock); i++){
+ mask |= ((u64)1 << (iLock-1));
+ if( eOp==LSM_LOCK_EXCL ) mask |= ((u64)1 << (iLock+32-1));
+ }
+
+ lsmMutexEnter(db->pEnv, p->pClientMutex);
+ for(pIter=p->pConn; pIter; pIter=pIter->pNext){
+ if( pIter!=db && (pIter->mLock & mask) ){
+ assert( pIter!=db );
+ break;
+ }
+ }
+
+ if( pIter ){
+ rc = LSM_BUSY;
+ }else if( p->bMultiProc ){
+ rc = lsmEnvTestLock(db->pEnv, p->pFile, iLock, nLock, eOp);
+ }
+
+ lsmMutexLeave(db->pEnv, p->pClientMutex);
+ return rc;
+}
+
+/*
+** Attempt to obtain the lock identified by the iLock and bExcl parameters.
+** If successful, return LSM_OK. If the lock cannot be obtained because
+** there exists some other conflicting lock, return LSM_BUSY. If some other
+** error occurs, return an LSM error code.
+**
+** Parameter iLock must be one of LSM_LOCK_WRITER, WORKER or CHECKPOINTER,
+** or else a value returned by the LSM_LOCK_READER macro.
+*/
+int lsmShmLock(
+ lsm_db *db,
+ int iLock,
+ int eOp, /* One of LSM_LOCK_UNLOCK, SHARED or EXCL */
+ int bBlock /* True for a blocking lock */
+){
+ lsm_db *pIter;
+ const u64 me = ((u64)1 << (iLock-1));
+ const u64 ms = ((u64)1 << (iLock+32-1));
+ int rc = LSM_OK;
+ Database *p = db->pDatabase;
+
+ assert( eOp!=LSM_LOCK_EXCL || p->bReadonly==0 );
+ assert( iLock>=1 && iLock<=LSM_LOCK_RWCLIENT(LSM_LOCK_NRWCLIENT-1) );
+ assert( LSM_LOCK_RWCLIENT(LSM_LOCK_NRWCLIENT-1)<=32 );
+ assert( eOp==LSM_LOCK_UNLOCK || eOp==LSM_LOCK_SHARED || eOp==LSM_LOCK_EXCL );
+
+ /* Check for a no-op. Proceed only if this is not one of those. */
+ if( (eOp==LSM_LOCK_UNLOCK && (db->mLock & (me|ms))!=0)
+ || (eOp==LSM_LOCK_SHARED && (db->mLock & (me|ms))!=ms)
+ || (eOp==LSM_LOCK_EXCL && (db->mLock & me)==0)
+ ){
+ int nExcl = 0; /* Number of connections holding EXCLUSIVE */
+ int nShared = 0; /* Number of connections holding SHARED */
+ lsmMutexEnter(db->pEnv, p->pClientMutex);
+
+ /* Figure out the locks currently held by this process on iLock, not
+ ** including any held by connection db. */
+ for(pIter=p->pConn; pIter; pIter=pIter->pNext){
+ assert( (pIter->mLock & me)==0 || (pIter->mLock & ms)!=0 );
+ if( pIter!=db ){
+ if( pIter->mLock & me ){
+ nExcl++;
+ }else if( pIter->mLock & ms ){
+ nShared++;
+ }
+ }
+ }
+ assert( nExcl==0 || nExcl==1 );
+ assert( nExcl==0 || nShared==0 );
+ assert( nExcl==0 || (db->mLock & (me|ms))==0 );
+
+ switch( eOp ){
+ case LSM_LOCK_UNLOCK:
+ if( nShared==0 ){
+ lockSharedFile(db->pEnv, p, iLock, LSM_LOCK_UNLOCK);
+ }
+ db->mLock &= ~(me|ms);
+ break;
+
+ case LSM_LOCK_SHARED:
+ if( nExcl ){
+ rc = LSM_BUSY;
+ }else{
+ if( nShared==0 ){
+ rc = lockSharedFile(db->pEnv, p, iLock, LSM_LOCK_SHARED);
+ }
+ if( rc==LSM_OK ){
+ db->mLock |= ms;
+ db->mLock &= ~me;
+ }
+ }
+ break;
+
+ default:
+ assert( eOp==LSM_LOCK_EXCL );
+ if( nExcl || nShared ){
+ rc = LSM_BUSY;
+ }else{
+ rc = lockSharedFile(db->pEnv, p, iLock, LSM_LOCK_EXCL);
+ if( rc==LSM_OK ){
+ db->mLock |= (me|ms);
+ }
+ }
+ break;
+ }
+
+ lsmMutexLeave(db->pEnv, p->pClientMutex);
+ }
+
+ return rc;
+}
+
+#ifdef LSM_DEBUG
+
+int shmLockType(lsm_db *db, int iLock){
+ const u64 me = ((u64)1 << (iLock-1));
+ const u64 ms = ((u64)1 << (iLock+32-1));
+
+ if( db->mLock & me ) return LSM_LOCK_EXCL;
+ if( db->mLock & ms ) return LSM_LOCK_SHARED;
+ return LSM_LOCK_UNLOCK;
+}
+
+/*
+** The arguments passed to this function are similar to those passed to
+** the lsmShmLock() function. However, instead of obtaining a new lock
+** this function returns true if the specified connection already holds
+** (or does not hold) such a lock, depending on the value of eOp. As
+** follows:
+**
+** (eOp==LSM_LOCK_UNLOCK) -> true if db has no lock on iLock
+** (eOp==LSM_LOCK_SHARED) -> true if db has at least a SHARED lock on iLock.
+** (eOp==LSM_LOCK_EXCL) -> true if db has an EXCLUSIVE lock on iLock.
+*/
+int lsmShmAssertLock(lsm_db *db, int iLock, int eOp){
+ int ret = 0;
+ int eHave;
+
+ assert( iLock>=1 && iLock<=LSM_LOCK_READER(LSM_LOCK_NREADER-1) );
+ assert( iLock<=16 );
+ assert( eOp==LSM_LOCK_UNLOCK || eOp==LSM_LOCK_SHARED || eOp==LSM_LOCK_EXCL );
+
+ eHave = shmLockType(db, iLock);
+
+ switch( eOp ){
+ case LSM_LOCK_UNLOCK:
+ ret = (eHave==LSM_LOCK_UNLOCK);
+ break;
+ case LSM_LOCK_SHARED:
+ ret = (eHave!=LSM_LOCK_UNLOCK);
+ break;
+ case LSM_LOCK_EXCL:
+ ret = (eHave==LSM_LOCK_EXCL);
+ break;
+ default:
+ assert( !"bad eOp value passed to lsmShmAssertLock()" );
+ break;
+ }
+
+ return ret;
+}
+
+int lsmShmAssertWorker(lsm_db *db){
+ return lsmShmAssertLock(db, LSM_LOCK_WORKER, LSM_LOCK_EXCL) && db->pWorker;
+}
+
+/*
+** This function does not contribute to library functionality, and is not
+** included in release builds. It is intended to be called from within
+** an interactive debugger.
+**
+** When called, this function prints a single line of human readable output
+** to stdout describing the locks currently held by the connection. For
+** example:
+**
+** (gdb) call print_db_locks(pDb)
+** (shared on dms2) (exclusive on writer)
+*/
+void print_db_locks(lsm_db *db){
+ int iLock;
+ for(iLock=0; iLock<16; iLock++){
+ int bOne = 0;
+ const char *azLock[] = {0, "shared", "exclusive"};
+ const char *azName[] = {
+ 0, "dms1", "dms2", "writer", "worker", "checkpointer",
+ "reader0", "reader1", "reader2", "reader3", "reader4", "reader5"
+ };
+ int eHave = shmLockType(db, iLock);
+ if( azLock[eHave] ){
+ printf("%s(%s on %s)", (bOne?" ":""), azLock[eHave], azName[iLock]);
+ bOne = 1;
+ }
+ }
+ printf("\n");
+}
+void print_all_db_locks(lsm_db *db){
+ lsm_db *p;
+ for(p=db->pDatabase->pConn; p; p=p->pNext){
+ printf("%s connection %p ", ((p==db)?"*":""), p);
+ print_db_locks(p);
+ }
+}
+#endif
+
+void lsmShmBarrier(lsm_db *db){
+ lsmEnvShmBarrier(db->pEnv);
+}
+
+int lsm_checkpoint(lsm_db *pDb, int *pnKB){
+ int rc; /* Return code */
+ u32 nWrite = 0; /* Number of pages checkpointed */
+
+ /* Attempt the checkpoint. If successful, nWrite is set to the number of
+ ** pages written between this and the previous checkpoint. */
+ rc = lsmCheckpointWrite(pDb, &nWrite);
+
+ /* If required, calculate the output variable (KB of data checkpointed).
+ ** Set it to zero if an error occured. */
+ if( pnKB ){
+ int nKB = 0;
+ if( rc==LSM_OK && nWrite ){
+ nKB = (((i64)nWrite * lsmFsPageSize(pDb->pFS)) + 1023) / 1024;
+ }
+ *pnKB = nKB;
+ }
+
+ return rc;
+}