summaryrefslogtreecommitdiffstats
path: root/ext/lsm1/lsm_vtab.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--ext/lsm1/lsm_vtab.c1079
1 files changed, 1079 insertions, 0 deletions
diff --git a/ext/lsm1/lsm_vtab.c b/ext/lsm1/lsm_vtab.c
new file mode 100644
index 0000000..bb14602
--- /dev/null
+++ b/ext/lsm1/lsm_vtab.c
@@ -0,0 +1,1079 @@
+/*
+** 2015-11-16
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file implements a virtual table for SQLite3 around the LSM
+** storage engine from SQLite4.
+**
+** USAGE
+**
+** CREATE VIRTUAL TABLE demo USING lsm1(filename,key,keytype,value1,...);
+**
+** The filename parameter is the name of the LSM database file, which is
+** separate and distinct from the SQLite3 database file.
+**
+** The keytype must be one of: UINT, TEXT, BLOB. All keys must be of that
+** one type. "UINT" means unsigned integer. The values may be of any
+** SQLite datatype: BLOB, TEXT, INTEGER, FLOAT, or NULL.
+**
+** The virtual table contains read-only hidden columns:
+**
+** lsm1_key A BLOB which is the raw LSM key. If the "keytype"
+** is BLOB or TEXT then this column is exactly the
+** same as the key. For the UINT keytype, this column
+** will be a variable-length integer encoding of the key.
+**
+** lsm1_value A BLOB which is the raw LSM value. All of the value
+** columns are packed into this BLOB using the encoding
+** described below.
+**
+** Attempts to write values into the lsm1_key and lsm1_value columns are
+** silently ignored.
+**
+** EXAMPLE
+**
+** The virtual table declared this way:
+**
+** CREATE VIRTUAL TABLE demo2 USING lsm1('x.lsm',id,UINT,a,b,c,d);
+**
+** Results in a new virtual table named "demo2" that acts as if it has
+** the following schema:
+**
+** CREATE TABLE demo2(
+** id UINT PRIMARY KEY ON CONFLICT REPLACE,
+** a ANY,
+** b ANY,
+** c ANY,
+** d ANY,
+** lsm1_key BLOB HIDDEN,
+** lsm1_value BLOB HIDDEN
+** ) WITHOUT ROWID;
+**
+**
+**
+** INTERNALS
+**
+** The key encoding for BLOB and TEXT is just a copy of the blob or text.
+** UTF-8 is used for text. The key encoding for UINT is the variable-length
+** integer format at https://sqlite.org/src4/doc/trunk/www/varint.wiki.
+**
+** The values are encoded as a single blob (since that is what lsm stores as
+** its content). There is a "type integer" followed by "content" for each
+** value, alternating back and forth. The content might be empty.
+**
+** TYPE1 CONTENT1 TYPE2 CONTENT2 TYPE3 CONTENT3 ....
+**
+** Each "type integer" is encoded as a variable-length integer in the
+** format of the link above. Let the type integer be T. The actual
+** datatype is an integer 0-5 equal to T%6. Values 1 through 5 correspond
+** to SQLITE_INTEGER through SQLITE_NULL. The size of the content in bytes
+** is T/6. Type value 0 means that the value is an integer whose actual
+** values is T/6 and there is no content. The type-value-0 integer format
+** only works for integers in the range of 0 through 40.
+**
+** There is no content for NULL or type-0 integers. For BLOB and TEXT
+** values, the content is the blob data or the UTF-8 text data. For
+** non-negative integers X, the content is a variable-length integer X*2.
+** For negative integers Y, the content is varaible-length integer (1-Y)*2+1.
+** For FLOAT values, the content is the IEEE754 floating point value in
+** native byte-order. This means that FLOAT values will be corrupted when
+** database file is moved between big-endian and little-endian machines.
+*/
+#include "sqlite3ext.h"
+SQLITE_EXTENSION_INIT1
+#include "lsm.h"
+#include <assert.h>
+#include <string.h>
+
+/* Forward declaration of subclasses of virtual table objects */
+typedef struct lsm1_vtab lsm1_vtab;
+typedef struct lsm1_cursor lsm1_cursor;
+typedef struct lsm1_vblob lsm1_vblob;
+
+/* Primitive types */
+typedef unsigned char u8;
+typedef unsigned int u32;
+typedef sqlite3_uint64 u64;
+
+/* An open connection to an LSM table */
+struct lsm1_vtab {
+ sqlite3_vtab base; /* Base class - must be first */
+ lsm_db *pDb; /* Open connection to the LSM table */
+ u8 keyType; /* SQLITE_BLOB, _TEXT, or _INTEGER */
+ u32 nVal; /* Number of value columns */
+};
+
+
+/* lsm1_cursor is a subclass of sqlite3_vtab_cursor which will
+** serve as the underlying representation of a cursor that scans
+** over rows of the result
+*/
+struct lsm1_cursor {
+ sqlite3_vtab_cursor base; /* Base class - must be first */
+ lsm_cursor *pLsmCur; /* The LSM cursor */
+ u8 isDesc; /* 0: scan forward. 1: scan reverse */
+ u8 atEof; /* True if the scan is complete */
+ u8 bUnique; /* True if no more than one row of output */
+ u8 *zData; /* Content of the current row */
+ u32 nData; /* Number of bytes in the current row */
+ u8 *aeType; /* Types for all column values */
+ u32 *aiOfst; /* Offsets to the various fields */
+ u32 *aiLen; /* Length of each field */
+ u8 *pKey2; /* Loop termination key, or NULL */
+ u32 nKey2; /* Length of the loop termination key */
+};
+
+/* An extensible buffer object.
+**
+** Content can be appended. Space to hold new content is automatically
+** allocated.
+*/
+struct lsm1_vblob {
+ u8 *a; /* Space to hold content, from sqlite3_malloc64() */
+ u64 n; /* Bytes of space used */
+ u64 nAlloc; /* Bytes of space allocated */
+ u8 errNoMem; /* True if a memory allocation error has been seen */
+};
+
+#if defined(__GNUC__)
+# define LSM1_NOINLINE __attribute__((noinline))
+#elif defined(_MSC_VER) && _MSC_VER>=1310
+# define LSM1_NOINLINE __declspec(noinline)
+#else
+# define LSM1_NOINLINE
+#endif
+
+
+/* Increase the available space in the vblob object so that it can hold
+** at least N more bytes. Return the number of errors.
+*/
+static int lsm1VblobEnlarge(lsm1_vblob *p, u32 N){
+ if( p->n+N>p->nAlloc ){
+ if( p->errNoMem ) return 1;
+ p->nAlloc += N + (p->nAlloc ? p->nAlloc : N);
+ p->a = sqlite3_realloc64(p->a, p->nAlloc);
+ if( p->a==0 ){
+ p->n = 0;
+ p->nAlloc = 0;
+ p->errNoMem = 1;
+ return 1;
+ }
+ p->nAlloc = sqlite3_msize(p->a);
+ }
+ return 0;
+}
+
+/* Append N bytes to a vblob after first enlarging it */
+static LSM1_NOINLINE void lsm1VblobEnlargeAndAppend(
+ lsm1_vblob *p,
+ const u8 *pData,
+ u32 N
+){
+ if( p->n+N>p->nAlloc && lsm1VblobEnlarge(p, N) ) return;
+ memcpy(p->a+p->n, pData, N);
+ p->n += N;
+}
+
+/* Append N bytes to a vblob */
+static void lsm1VblobAppend(lsm1_vblob *p, const u8 *pData, u32 N){
+ sqlite3_int64 n = p->n;
+ if( n+N>p->nAlloc ){
+ lsm1VblobEnlargeAndAppend(p, pData, N);
+ }else{
+ p->n += N;
+ memcpy(p->a+n, pData, N);
+ }
+}
+
+/* append text to a vblob */
+static void lsm1VblobAppendText(lsm1_vblob *p, const char *z){
+ lsm1VblobAppend(p, (u8*)z, (u32)strlen(z));
+}
+
+/* Dequote the string */
+static void lsm1Dequote(char *z){
+ int j;
+ char cQuote = z[0];
+ size_t i, n;
+
+ if( cQuote!='\'' && cQuote!='"' ) return;
+ n = strlen(z);
+ if( n<2 || z[n-1]!=z[0] ) return;
+ for(i=1, j=0; i<n-1; i++){
+ if( z[i]==cQuote && z[i+1]==cQuote ) i++;
+ z[j++] = z[i];
+ }
+ z[j] = 0;
+}
+
+
+/*
+** The lsm1Connect() method is invoked to create a new
+** lsm1_vtab that describes the virtual table.
+*/
+static int lsm1Connect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ lsm1_vtab *pNew;
+ int rc;
+ char *zFilename;
+ u8 keyType = 0;
+ int i;
+ lsm1_vblob sql;
+ static const char *azTypes[] = { "UINT", "TEXT", "BLOB" };
+ static const u8 aeTypes[] = { SQLITE_INTEGER, SQLITE_TEXT, SQLITE_BLOB };
+ static const char *azArgName[] = {"filename", "key", "key type", "value1" };
+
+ for(i=0; i<sizeof(azArgName)/sizeof(azArgName[0]); i++){
+ if( argc<i+4 || argv[i+3]==0 || argv[i+3][0]==0 ){
+ *pzErr = sqlite3_mprintf("%s (%r) argument missing",
+ azArgName[i], i+1);
+ return SQLITE_ERROR;
+ }
+ }
+ for(i=0; i<sizeof(azTypes)/sizeof(azTypes[0]); i++){
+ if( sqlite3_stricmp(azTypes[i],argv[5])==0 ){
+ keyType = aeTypes[i];
+ break;
+ }
+ }
+ if( keyType==0 ){
+ *pzErr = sqlite3_mprintf("key type should be INT, TEXT, or BLOB");
+ return SQLITE_ERROR;
+ }
+ *ppVtab = sqlite3_malloc( sizeof(*pNew) );
+ pNew = (lsm1_vtab*)*ppVtab;
+ if( pNew==0 ){
+ return SQLITE_NOMEM;
+ }
+ memset(pNew, 0, sizeof(*pNew));
+ pNew->keyType = keyType;
+ rc = lsm_new(0, &pNew->pDb);
+ if( rc ){
+ *pzErr = sqlite3_mprintf("lsm_new failed with error code %d", rc);
+ rc = SQLITE_ERROR;
+ goto connect_failed;
+ }
+ zFilename = sqlite3_mprintf("%s", argv[3]);
+ lsm1Dequote(zFilename);
+ rc = lsm_open(pNew->pDb, zFilename);
+ sqlite3_free(zFilename);
+ if( rc ){
+ *pzErr = sqlite3_mprintf("lsm_open failed with %d", rc);
+ rc = SQLITE_ERROR;
+ goto connect_failed;
+ }
+
+ memset(&sql, 0, sizeof(sql));
+ lsm1VblobAppendText(&sql, "CREATE TABLE x(");
+ lsm1VblobAppendText(&sql, argv[4]);
+ lsm1VblobAppendText(&sql, " ");
+ lsm1VblobAppendText(&sql, argv[5]);
+ lsm1VblobAppendText(&sql, " PRIMARY KEY");
+ for(i=6; i<argc; i++){
+ lsm1VblobAppendText(&sql, ", ");
+ lsm1VblobAppendText(&sql, argv[i]);
+ pNew->nVal++;
+ }
+ lsm1VblobAppendText(&sql,
+ ", lsm1_command HIDDEN"
+ ", lsm1_key HIDDEN"
+ ", lsm1_value HIDDEN) WITHOUT ROWID");
+ lsm1VblobAppend(&sql, (u8*)"", 1);
+ if( sql.errNoMem ){
+ rc = SQLITE_NOMEM;
+ goto connect_failed;
+ }
+ rc = sqlite3_declare_vtab(db, (const char*)sql.a);
+ sqlite3_free(sql.a);
+
+connect_failed:
+ if( rc!=SQLITE_OK ){
+ if( pNew ){
+ if( pNew->pDb ) lsm_close(pNew->pDb);
+ sqlite3_free(pNew);
+ }
+ *ppVtab = 0;
+ }
+ return rc;
+}
+
+/*
+** This method is the destructor for lsm1_cursor objects.
+*/
+static int lsm1Disconnect(sqlite3_vtab *pVtab){
+ lsm1_vtab *p = (lsm1_vtab*)pVtab;
+ lsm_close(p->pDb);
+ sqlite3_free(p);
+ return SQLITE_OK;
+}
+
+/*
+** Constructor for a new lsm1_cursor object.
+*/
+static int lsm1Open(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){
+ lsm1_vtab *p = (lsm1_vtab*)pVtab;
+ lsm1_cursor *pCur;
+ int rc;
+ pCur = sqlite3_malloc64( sizeof(*pCur)
+ + p->nVal*(sizeof(pCur->aiOfst)+sizeof(pCur->aiLen)+1) );
+ if( pCur==0 ) return SQLITE_NOMEM;
+ memset(pCur, 0, sizeof(*pCur));
+ pCur->aiOfst = (u32*)&pCur[1];
+ pCur->aiLen = &pCur->aiOfst[p->nVal];
+ pCur->aeType = (u8*)&pCur->aiLen[p->nVal];
+ *ppCursor = &pCur->base;
+ rc = lsm_csr_open(p->pDb, &pCur->pLsmCur);
+ if( rc==LSM_OK ){
+ rc = SQLITE_OK;
+ }else{
+ sqlite3_free(pCur);
+ *ppCursor = 0;
+ rc = SQLITE_ERROR;
+ }
+ return rc;
+}
+
+/*
+** Destructor for a lsm1_cursor.
+*/
+static int lsm1Close(sqlite3_vtab_cursor *cur){
+ lsm1_cursor *pCur = (lsm1_cursor*)cur;
+ sqlite3_free(pCur->pKey2);
+ lsm_csr_close(pCur->pLsmCur);
+ sqlite3_free(pCur);
+ return SQLITE_OK;
+}
+
+
+/*
+** Advance a lsm1_cursor to its next row of output.
+*/
+static int lsm1Next(sqlite3_vtab_cursor *cur){
+ lsm1_cursor *pCur = (lsm1_cursor*)cur;
+ int rc = LSM_OK;
+ if( pCur->bUnique ){
+ pCur->atEof = 1;
+ }else{
+ if( pCur->isDesc ){
+ rc = lsm_csr_prev(pCur->pLsmCur);
+ }else{
+ rc = lsm_csr_next(pCur->pLsmCur);
+ }
+ if( rc==LSM_OK && lsm_csr_valid(pCur->pLsmCur)==0 ){
+ pCur->atEof = 1;
+ }
+ if( pCur->pKey2 && pCur->atEof==0 ){
+ const u8 *pVal;
+ u32 nVal;
+ assert( pCur->isDesc==0 );
+ rc = lsm_csr_key(pCur->pLsmCur, (const void**)&pVal, (int*)&nVal);
+ if( rc==LSM_OK ){
+ u32 len = pCur->nKey2;
+ int c;
+ if( len>nVal ) len = nVal;
+ c = memcmp(pVal, pCur->pKey2, len);
+ if( c==0 ) c = nVal - pCur->nKey2;
+ if( c>0 ) pCur->atEof = 1;
+ }
+ }
+ pCur->zData = 0;
+ }
+ return rc==LSM_OK ? SQLITE_OK : SQLITE_ERROR;
+}
+
+/*
+** Return TRUE if the cursor has been moved off of the last
+** row of output.
+*/
+static int lsm1Eof(sqlite3_vtab_cursor *cur){
+ lsm1_cursor *pCur = (lsm1_cursor*)cur;
+ return pCur->atEof;
+}
+
+/*
+** Rowids are not supported by the underlying virtual table. So always
+** return 0 for the rowid.
+*/
+static int lsm1Rowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
+ *pRowid = 0;
+ return SQLITE_OK;
+}
+
+/*
+** Type prefixes on LSM keys
+*/
+#define LSM1_TYPE_NEGATIVE 0
+#define LSM1_TYPE_POSITIVE 1
+#define LSM1_TYPE_TEXT 2
+#define LSM1_TYPE_BLOB 3
+
+/*
+** Write a 32-bit unsigned integer as 4 big-endian bytes.
+*/
+static void varintWrite32(unsigned char *z, unsigned int y){
+ z[0] = (unsigned char)(y>>24);
+ z[1] = (unsigned char)(y>>16);
+ z[2] = (unsigned char)(y>>8);
+ z[3] = (unsigned char)(y);
+}
+
+/*
+** Write a varint into z[]. The buffer z[] must be at least 9 characters
+** long to accommodate the largest possible varint. Return the number of
+** bytes of z[] used.
+*/
+static int lsm1PutVarint64(unsigned char *z, sqlite3_uint64 x){
+ unsigned int w, y;
+ if( x<=240 ){
+ z[0] = (unsigned char)x;
+ return 1;
+ }
+ if( x<=2287 ){
+ y = (unsigned int)(x - 240);
+ z[0] = (unsigned char)(y/256 + 241);
+ z[1] = (unsigned char)(y%256);
+ return 2;
+ }
+ if( x<=67823 ){
+ y = (unsigned int)(x - 2288);
+ z[0] = 249;
+ z[1] = (unsigned char)(y/256);
+ z[2] = (unsigned char)(y%256);
+ return 3;
+ }
+ y = (unsigned int)x;
+ w = (unsigned int)(x>>32);
+ if( w==0 ){
+ if( y<=16777215 ){
+ z[0] = 250;
+ z[1] = (unsigned char)(y>>16);
+ z[2] = (unsigned char)(y>>8);
+ z[3] = (unsigned char)(y);
+ return 4;
+ }
+ z[0] = 251;
+ varintWrite32(z+1, y);
+ return 5;
+ }
+ if( w<=255 ){
+ z[0] = 252;
+ z[1] = (unsigned char)w;
+ varintWrite32(z+2, y);
+ return 6;
+ }
+ if( w<=65535 ){
+ z[0] = 253;
+ z[1] = (unsigned char)(w>>8);
+ z[2] = (unsigned char)w;
+ varintWrite32(z+3, y);
+ return 7;
+ }
+ if( w<=16777215 ){
+ z[0] = 254;
+ z[1] = (unsigned char)(w>>16);
+ z[2] = (unsigned char)(w>>8);
+ z[3] = (unsigned char)w;
+ varintWrite32(z+4, y);
+ return 8;
+ }
+ z[0] = 255;
+ varintWrite32(z+1, w);
+ varintWrite32(z+5, y);
+ return 9;
+}
+
+/* Append non-negative integer x as a variable-length integer.
+*/
+static void lsm1VblobAppendVarint(lsm1_vblob *p, sqlite3_uint64 x){
+ sqlite3_int64 n = p->n;
+ if( n+9>p->nAlloc && lsm1VblobEnlarge(p, 9) ) return;
+ p->n += lsm1PutVarint64(p->a+p->n, x);
+}
+
+/*
+** Decode the varint in the first n bytes z[]. Write the integer value
+** into *pResult and return the number of bytes in the varint.
+**
+** If the decode fails because there are not enough bytes in z[] then
+** return 0;
+*/
+static int lsm1GetVarint64(
+ const unsigned char *z,
+ int n,
+ sqlite3_uint64 *pResult
+){
+ unsigned int x;
+ if( n<1 ) return 0;
+ if( z[0]<=240 ){
+ *pResult = z[0];
+ return 1;
+ }
+ if( z[0]<=248 ){
+ if( n<2 ) return 0;
+ *pResult = (z[0]-241)*256 + z[1] + 240;
+ return 2;
+ }
+ if( n<z[0]-246 ) return 0;
+ if( z[0]==249 ){
+ *pResult = 2288 + 256*z[1] + z[2];
+ return 3;
+ }
+ if( z[0]==250 ){
+ *pResult = (z[1]<<16) + (z[2]<<8) + z[3];
+ return 4;
+ }
+ x = (z[1]<<24) + (z[2]<<16) + (z[3]<<8) + z[4];
+ if( z[0]==251 ){
+ *pResult = x;
+ return 5;
+ }
+ if( z[0]==252 ){
+ *pResult = (((sqlite3_uint64)x)<<8) + z[5];
+ return 6;
+ }
+ if( z[0]==253 ){
+ *pResult = (((sqlite3_uint64)x)<<16) + (z[5]<<8) + z[6];
+ return 7;
+ }
+ if( z[0]==254 ){
+ *pResult = (((sqlite3_uint64)x)<<24) + (z[5]<<16) + (z[6]<<8) + z[7];
+ return 8;
+ }
+ *pResult = (((sqlite3_uint64)x)<<32) +
+ (0xffffffff & ((z[5]<<24) + (z[6]<<16) + (z[7]<<8) + z[8]));
+ return 9;
+}
+
+/* Encoded a signed integer as a varint. Numbers close to zero uses fewer
+** bytes than numbers far away from zero. However, the result is not in
+** lexicographical order.
+**
+** Encoding: Non-negative integer X is encoding as an unsigned
+** varint X*2. Negative integer Y is encoding as an unsigned
+** varint (1-Y)*2 + 1.
+*/
+static int lsm1PutSignedVarint64(u8 *z, sqlite3_int64 v){
+ sqlite3_uint64 u;
+ if( v>=0 ){
+ u = (sqlite3_uint64)v;
+ return lsm1PutVarint64(z, u*2);
+ }else{
+ u = (sqlite3_uint64)(-1-v);
+ return lsm1PutVarint64(z, u*2+1);
+ }
+}
+
+/* Decoded a signed varint. */
+static int lsm1GetSignedVarint64(
+ const unsigned char *z,
+ int n,
+ sqlite3_int64 *pResult
+){
+ sqlite3_uint64 u = 0;
+ n = lsm1GetVarint64(z, n, &u);
+ if( u&1 ){
+ *pResult = -1 - (sqlite3_int64)(u>>1);
+ }else{
+ *pResult = (sqlite3_int64)(u>>1);
+ }
+ return n;
+}
+
+
+/*
+** Read the value part of the key-value pair and decode it into columns.
+*/
+static int lsm1DecodeValues(lsm1_cursor *pCur){
+ lsm1_vtab *pTab = (lsm1_vtab*)(pCur->base.pVtab);
+ int i, n;
+ int rc;
+ u8 eType;
+ sqlite3_uint64 v;
+
+ if( pCur->zData ) return 1;
+ rc = lsm_csr_value(pCur->pLsmCur, (const void**)&pCur->zData,
+ (int*)&pCur->nData);
+ if( rc ) return 0;
+ for(i=n=0; i<pTab->nVal; i++){
+ v = 0;
+ n += lsm1GetVarint64(pCur->zData+n, pCur->nData-n, &v);
+ pCur->aeType[i] = eType = (u8)(v%6);
+ if( eType==0 ){
+ pCur->aiOfst[i] = (u32)(v/6);
+ pCur->aiLen[i] = 0;
+ }else{
+ pCur->aiOfst[i] = n;
+ n += (pCur->aiLen[i] = (u32)(v/6));
+ }
+ if( n>pCur->nData ) break;
+ }
+ if( i<pTab->nVal ){
+ pCur->zData = 0;
+ return 0;
+ }
+ return 1;
+}
+
+/*
+** Return values of columns for the row at which the lsm1_cursor
+** is currently pointing.
+*/
+static int lsm1Column(
+ sqlite3_vtab_cursor *cur, /* The cursor */
+ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
+ int i /* Which column to return */
+){
+ lsm1_cursor *pCur = (lsm1_cursor*)cur;
+ lsm1_vtab *pTab = (lsm1_vtab*)(cur->pVtab);
+ if( i==0 ){
+ /* The key column */
+ const void *pVal;
+ int nVal;
+ if( lsm_csr_key(pCur->pLsmCur, &pVal, &nVal)==LSM_OK ){
+ if( pTab->keyType==SQLITE_BLOB ){
+ sqlite3_result_blob(ctx, pVal, nVal, SQLITE_TRANSIENT);
+ }else if( pTab->keyType==SQLITE_TEXT ){
+ sqlite3_result_text(ctx,(const char*)pVal, nVal, SQLITE_TRANSIENT);
+ }else{
+ const unsigned char *z = (const unsigned char*)pVal;
+ sqlite3_uint64 v1;
+ lsm1GetVarint64(z, nVal, &v1);
+ sqlite3_result_int64(ctx, (sqlite3_int64)v1);
+ }
+ }
+ }else if( i>pTab->nVal ){
+ if( i==pTab->nVal+2 ){ /* lsm1_key */
+ const void *pVal;
+ int nVal;
+ if( lsm_csr_key(pCur->pLsmCur, &pVal, &nVal)==LSM_OK ){
+ sqlite3_result_blob(ctx, pVal, nVal, SQLITE_TRANSIENT);
+ }
+ }else if( i==pTab->nVal+3 ){ /* lsm1_value */
+ const void *pVal;
+ int nVal;
+ if( lsm_csr_value(pCur->pLsmCur, &pVal, &nVal)==LSM_OK ){
+ sqlite3_result_blob(ctx, pVal, nVal, SQLITE_TRANSIENT);
+ }
+ }
+ }else if( lsm1DecodeValues(pCur) ){
+ /* The i-th value column (where leftmost is 1) */
+ const u8 *zData;
+ u32 nData;
+ i--;
+ zData = pCur->zData + pCur->aiOfst[i];
+ nData = pCur->aiLen[i];
+ switch( pCur->aeType[i] ){
+ case 0: { /* in-line integer */
+ sqlite3_result_int(ctx, pCur->aiOfst[i]);
+ break;
+ }
+ case SQLITE_INTEGER: {
+ sqlite3_int64 v;
+ lsm1GetSignedVarint64(zData, nData, &v);
+ sqlite3_result_int64(ctx, v);
+ break;
+ }
+ case SQLITE_FLOAT: {
+ double v;
+ if( nData==sizeof(v) ){
+ memcpy(&v, zData, sizeof(v));
+ sqlite3_result_double(ctx, v);
+ }
+ break;
+ }
+ case SQLITE_TEXT: {
+ sqlite3_result_text(ctx, (const char*)zData, nData, SQLITE_TRANSIENT);
+ break;
+ }
+ case SQLITE_BLOB: {
+ sqlite3_result_blob(ctx, zData, nData, SQLITE_TRANSIENT);
+ break;
+ }
+ default: {
+ /* A NULL. Do nothing */
+ }
+ }
+ }
+ return SQLITE_OK;
+}
+
+/* Parameter "pValue" contains an SQL value that is to be used as
+** a key in an LSM table. The type of the key is determined by
+** "keyType". Extract the raw bytes used for the key in LSM1.
+*/
+static void lsm1KeyFromValue(
+ int keyType, /* The key type */
+ sqlite3_value *pValue, /* The key value */
+ u8 *pBuf, /* Storage space for a generated key */
+ const u8 **ppKey, /* OUT: the bytes of the key */
+ int *pnKey /* OUT: size of the key */
+){
+ if( keyType==SQLITE_BLOB ){
+ *ppKey = (const u8*)sqlite3_value_blob(pValue);
+ *pnKey = sqlite3_value_bytes(pValue);
+ }else if( keyType==SQLITE_TEXT ){
+ *ppKey = (const u8*)sqlite3_value_text(pValue);
+ *pnKey = sqlite3_value_bytes(pValue);
+ }else{
+ sqlite3_int64 v = sqlite3_value_int64(pValue);
+ if( v<0 ) v = 0;
+ *pnKey = lsm1PutVarint64(pBuf, v);
+ *ppKey = pBuf;
+ }
+}
+
+/* Move to the first row to return.
+*/
+static int lsm1Filter(
+ sqlite3_vtab_cursor *pVtabCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ lsm1_cursor *pCur = (lsm1_cursor *)pVtabCursor;
+ lsm1_vtab *pTab = (lsm1_vtab*)(pCur->base.pVtab);
+ int rc = LSM_OK;
+ int seekType = -1;
+ const u8 *pVal = 0;
+ int nVal;
+ u8 keyType = pTab->keyType;
+ u8 aKey1[16];
+
+ pCur->atEof = 1;
+ sqlite3_free(pCur->pKey2);
+ pCur->pKey2 = 0;
+ if( idxNum<99 ){
+ lsm1KeyFromValue(keyType, argv[0], aKey1, &pVal, &nVal);
+ }
+ switch( idxNum ){
+ case 0: { /* key==argv[0] */
+ assert( argc==1 );
+ seekType = LSM_SEEK_EQ;
+ pCur->isDesc = 0;
+ pCur->bUnique = 1;
+ break;
+ }
+ case 1: { /* key>=argv[0] AND key<=argv[1] */
+ u8 aKey[12];
+ seekType = LSM_SEEK_GE;
+ pCur->isDesc = 0;
+ pCur->bUnique = 0;
+ if( keyType==SQLITE_INTEGER ){
+ sqlite3_int64 v = sqlite3_value_int64(argv[1]);
+ if( v<0 ) v = 0;
+ pCur->nKey2 = lsm1PutVarint64(aKey, (sqlite3_uint64)v);
+ pCur->pKey2 = sqlite3_malloc( pCur->nKey2 );
+ if( pCur->pKey2==0 ) return SQLITE_NOMEM;
+ memcpy(pCur->pKey2, aKey, pCur->nKey2);
+ }else{
+ pCur->nKey2 = sqlite3_value_bytes(argv[1]);
+ pCur->pKey2 = sqlite3_malloc( pCur->nKey2 );
+ if( pCur->pKey2==0 ) return SQLITE_NOMEM;
+ if( keyType==SQLITE_BLOB ){
+ memcpy(pCur->pKey2, sqlite3_value_blob(argv[1]), pCur->nKey2);
+ }else{
+ memcpy(pCur->pKey2, sqlite3_value_text(argv[1]), pCur->nKey2);
+ }
+ }
+ break;
+ }
+ case 2: { /* key>=argv[0] */
+ seekType = LSM_SEEK_GE;
+ pCur->isDesc = 0;
+ pCur->bUnique = 0;
+ break;
+ }
+ case 3: { /* key<=argv[0] */
+ seekType = LSM_SEEK_LE;
+ pCur->isDesc = 1;
+ pCur->bUnique = 0;
+ break;
+ }
+ default: { /* full table scan */
+ pCur->isDesc = 0;
+ pCur->bUnique = 0;
+ break;
+ }
+ }
+ if( pVal ){
+ rc = lsm_csr_seek(pCur->pLsmCur, pVal, nVal, seekType);
+ }else{
+ rc = lsm_csr_first(pCur->pLsmCur);
+ }
+ if( rc==LSM_OK && lsm_csr_valid(pCur->pLsmCur)!=0 ){
+ pCur->atEof = 0;
+ }
+ return rc==LSM_OK ? SQLITE_OK : SQLITE_ERROR;
+}
+
+/*
+** Only comparisons against the key are allowed. The idxNum defines
+** which comparisons are available:
+**
+** 0 key==?1
+** 1 key>=?1 AND key<=?2
+** 2 key>?1 or key>=?1
+** 3 key<?1 or key<=?1
+** 99 Full table scan only
+*/
+static int lsm1BestIndex(
+ sqlite3_vtab *tab,
+ sqlite3_index_info *pIdxInfo
+){
+ int i; /* Loop over constraints */
+ int idxNum = 99; /* The query plan */
+ int nArg = 0; /* Number of arguments to xFilter */
+ int argIdx = -1; /* Index of the key== constraint, or -1 if none */
+ int iIdx2 = -1; /* The index of the second key */
+ int omit1 = 0;
+ int omit2 = 0;
+
+ const struct sqlite3_index_constraint *pConstraint;
+ pConstraint = pIdxInfo->aConstraint;
+ for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
+ if( pConstraint->usable==0 ) continue;
+ if( pConstraint->iColumn!=0 ) continue;
+ switch( pConstraint->op ){
+ case SQLITE_INDEX_CONSTRAINT_EQ: {
+ if( idxNum>0 ){
+ argIdx = i;
+ iIdx2 = -1;
+ idxNum = 0;
+ omit1 = 1;
+ }
+ break;
+ }
+ case SQLITE_INDEX_CONSTRAINT_GE:
+ case SQLITE_INDEX_CONSTRAINT_GT: {
+ if( idxNum==99 ){
+ argIdx = i;
+ idxNum = 2;
+ omit1 = pConstraint->op==SQLITE_INDEX_CONSTRAINT_GE;
+ }else if( idxNum==3 ){
+ iIdx2 = idxNum;
+ omit2 = omit1;
+ argIdx = i;
+ idxNum = 1;
+ omit1 = pConstraint->op==SQLITE_INDEX_CONSTRAINT_GE;
+ }
+ break;
+ }
+ case SQLITE_INDEX_CONSTRAINT_LE:
+ case SQLITE_INDEX_CONSTRAINT_LT: {
+ if( idxNum==99 ){
+ argIdx = i;
+ idxNum = 3;
+ omit1 = pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE;
+ }else if( idxNum==2 ){
+ iIdx2 = i;
+ idxNum = 1;
+ omit1 = pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE;
+ }
+ break;
+ }
+ }
+ }
+ if( argIdx>=0 ){
+ pIdxInfo->aConstraintUsage[argIdx].argvIndex = ++nArg;
+ pIdxInfo->aConstraintUsage[argIdx].omit = omit1;
+ }
+ if( iIdx2>=0 ){
+ pIdxInfo->aConstraintUsage[iIdx2].argvIndex = ++nArg;
+ pIdxInfo->aConstraintUsage[iIdx2].omit = omit2;
+ }
+ if( idxNum==0 ){
+ pIdxInfo->estimatedCost = (double)1;
+ pIdxInfo->estimatedRows = 1;
+ pIdxInfo->orderByConsumed = 1;
+ }else if( idxNum==1 ){
+ pIdxInfo->estimatedCost = (double)100;
+ pIdxInfo->estimatedRows = 100;
+ }else if( idxNum<99 ){
+ pIdxInfo->estimatedCost = (double)5000;
+ pIdxInfo->estimatedRows = 5000;
+ }else{
+ /* Full table scan */
+ pIdxInfo->estimatedCost = (double)2147483647;
+ pIdxInfo->estimatedRows = 2147483647;
+ }
+ pIdxInfo->idxNum = idxNum;
+ return SQLITE_OK;
+}
+
+/*
+** The xUpdate method is normally used for INSERT, REPLACE, UPDATE, and
+** DELETE. But this virtual table only supports INSERT and REPLACE.
+** DELETE is accomplished by inserting a record with a value of NULL.
+** UPDATE is achieved by using REPLACE.
+*/
+int lsm1Update(
+ sqlite3_vtab *pVTab,
+ int argc,
+ sqlite3_value **argv,
+ sqlite_int64 *pRowid
+){
+ lsm1_vtab *p = (lsm1_vtab*)pVTab;
+ int nKey, nKey2;
+ int i;
+ int rc = LSM_OK;
+ const u8 *pKey, *pKey2;
+ unsigned char aKey[16];
+ unsigned char pSpace[16];
+ lsm1_vblob val;
+
+ if( argc==1 ){
+ /* DELETE the record whose key is argv[0] */
+ lsm1KeyFromValue(p->keyType, argv[0], aKey, &pKey, &nKey);
+ lsm_delete(p->pDb, pKey, nKey);
+ return SQLITE_OK;
+ }
+
+ if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){
+ /* An UPDATE */
+ lsm1KeyFromValue(p->keyType, argv[0], aKey, &pKey, &nKey);
+ lsm1KeyFromValue(p->keyType, argv[1], pSpace, &pKey2, &nKey2);
+ if( nKey!=nKey2 || memcmp(pKey, pKey2, nKey)!=0 ){
+ /* The UPDATE changes the PRIMARY KEY value. DELETE the old key */
+ lsm_delete(p->pDb, pKey, nKey);
+ }
+ /* Fall through into the INSERT case to complete the UPDATE */
+ }
+
+ /* "INSERT INTO tab(lsm1_command) VALUES('....')" is used to implement
+ ** special commands.
+ */
+ if( sqlite3_value_type(argv[3+p->nVal])!=SQLITE_NULL ){
+ return SQLITE_OK;
+ }
+ lsm1KeyFromValue(p->keyType, argv[2], aKey, &pKey, &nKey);
+ memset(&val, 0, sizeof(val));
+ for(i=0; i<p->nVal; i++){
+ sqlite3_value *pArg = argv[3+i];
+ u8 eType = sqlite3_value_type(pArg);
+ switch( eType ){
+ case SQLITE_NULL: {
+ lsm1VblobAppendVarint(&val, SQLITE_NULL);
+ break;
+ }
+ case SQLITE_INTEGER: {
+ sqlite3_int64 v = sqlite3_value_int64(pArg);
+ if( v>=0 && v<=240/6 ){
+ lsm1VblobAppendVarint(&val, v*6);
+ }else{
+ int n = lsm1PutSignedVarint64(pSpace, v);
+ lsm1VblobAppendVarint(&val, SQLITE_INTEGER + n*6);
+ lsm1VblobAppend(&val, pSpace, n);
+ }
+ break;
+ }
+ case SQLITE_FLOAT: {
+ double r = sqlite3_value_double(pArg);
+ lsm1VblobAppendVarint(&val, SQLITE_FLOAT + 8*6);
+ lsm1VblobAppend(&val, (u8*)&r, sizeof(r));
+ break;
+ }
+ case SQLITE_BLOB: {
+ int n = sqlite3_value_bytes(pArg);
+ lsm1VblobAppendVarint(&val, n*6 + SQLITE_BLOB);
+ lsm1VblobAppend(&val, sqlite3_value_blob(pArg), n);
+ break;
+ }
+ case SQLITE_TEXT: {
+ int n = sqlite3_value_bytes(pArg);
+ lsm1VblobAppendVarint(&val, n*6 + SQLITE_TEXT);
+ lsm1VblobAppend(&val, sqlite3_value_text(pArg), n);
+ break;
+ }
+ }
+ }
+ if( val.errNoMem ){
+ return SQLITE_NOMEM;
+ }
+ rc = lsm_insert(p->pDb, pKey, nKey, val.a, val.n);
+ sqlite3_free(val.a);
+ return rc==LSM_OK ? SQLITE_OK : SQLITE_ERROR;
+}
+
+/* Begin a transaction
+*/
+static int lsm1Begin(sqlite3_vtab *pVtab){
+ lsm1_vtab *p = (lsm1_vtab*)pVtab;
+ int rc = lsm_begin(p->pDb, 1);
+ return rc==LSM_OK ? SQLITE_OK : SQLITE_ERROR;
+}
+
+/* Phase 1 of a transaction commit.
+*/
+static int lsm1Sync(sqlite3_vtab *pVtab){
+ return SQLITE_OK;
+}
+
+/* Commit a transaction
+*/
+static int lsm1Commit(sqlite3_vtab *pVtab){
+ lsm1_vtab *p = (lsm1_vtab*)pVtab;
+ int rc = lsm_commit(p->pDb, 0);
+ return rc==LSM_OK ? SQLITE_OK : SQLITE_ERROR;
+}
+
+/* Rollback a transaction
+*/
+static int lsm1Rollback(sqlite3_vtab *pVtab){
+ lsm1_vtab *p = (lsm1_vtab*)pVtab;
+ int rc = lsm_rollback(p->pDb, 0);
+ return rc==LSM_OK ? SQLITE_OK : SQLITE_ERROR;
+}
+
+/*
+** This following structure defines all the methods for the
+** generate_lsm1 virtual table.
+*/
+static sqlite3_module lsm1Module = {
+ 0, /* iVersion */
+ lsm1Connect, /* xCreate */
+ lsm1Connect, /* xConnect */
+ lsm1BestIndex, /* xBestIndex */
+ lsm1Disconnect, /* xDisconnect */
+ lsm1Disconnect, /* xDestroy */
+ lsm1Open, /* xOpen - open a cursor */
+ lsm1Close, /* xClose - close a cursor */
+ lsm1Filter, /* xFilter - configure scan constraints */
+ lsm1Next, /* xNext - advance a cursor */
+ lsm1Eof, /* xEof - check for end of scan */
+ lsm1Column, /* xColumn - read data */
+ lsm1Rowid, /* xRowid - read data */
+ lsm1Update, /* xUpdate */
+ lsm1Begin, /* xBegin */
+ lsm1Sync, /* xSync */
+ lsm1Commit, /* xCommit */
+ lsm1Rollback, /* xRollback */
+ 0, /* xFindMethod */
+ 0, /* xRename */
+};
+
+
+#ifdef _WIN32
+__declspec(dllexport)
+#endif
+int sqlite3_lsm_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ int rc = SQLITE_OK;
+ SQLITE_EXTENSION_INIT2(pApi);
+ rc = sqlite3_create_module(db, "lsm1", &lsm1Module, 0);
+ return rc;
+}