summaryrefslogtreecommitdiffstats
path: root/ext/misc/fuzzer.c
diff options
context:
space:
mode:
Diffstat (limited to 'ext/misc/fuzzer.c')
-rw-r--r--ext/misc/fuzzer.c1187
1 files changed, 1187 insertions, 0 deletions
diff --git a/ext/misc/fuzzer.c b/ext/misc/fuzzer.c
new file mode 100644
index 0000000..65d9d8d
--- /dev/null
+++ b/ext/misc/fuzzer.c
@@ -0,0 +1,1187 @@
+/*
+** 2011 March 24
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** Code for a demonstration virtual table that generates variations
+** on an input word at increasing edit distances from the original.
+**
+** A fuzzer virtual table is created like this:
+**
+** CREATE VIRTUAL TABLE f USING fuzzer(<fuzzer-data-table>);
+**
+** When it is created, the new fuzzer table must be supplied with the
+** name of a "fuzzer data table", which must reside in the same database
+** file as the new fuzzer table. The fuzzer data table contains the various
+** transformations and their costs that the fuzzer logic uses to generate
+** variations.
+**
+** The fuzzer data table must contain exactly four columns (more precisely,
+** the statement "SELECT * FROM <fuzzer_data_table>" must return records
+** that consist of four columns). It does not matter what the columns are
+** named.
+**
+** Each row in the fuzzer data table represents a single character
+** transformation. The left most column of the row (column 0) contains an
+** integer value - the identifier of the ruleset to which the transformation
+** rule belongs (see "MULTIPLE RULE SETS" below). The second column of the
+** row (column 0) contains the input character or characters. The third
+** column contains the output character or characters. And the fourth column
+** contains the integer cost of making the transformation. For example:
+**
+** CREATE TABLE f_data(ruleset, cFrom, cTo, Cost);
+** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, '', 'a', 100);
+** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'b', '', 87);
+** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'o', 'oe', 38);
+** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'oe', 'o', 40);
+**
+** The first row inserted into the fuzzer data table by the SQL script
+** above indicates that the cost of inserting a letter 'a' is 100. (All
+** costs are integers. We recommend that costs be scaled so that the
+** average cost is around 100.) The second INSERT statement creates a rule
+** saying that the cost of deleting a single letter 'b' is 87. The third
+** and fourth INSERT statements mean that the cost of transforming a
+** single letter "o" into the two-letter sequence "oe" is 38 and that the
+** cost of transforming "oe" back into "o" is 40.
+**
+** The contents of the fuzzer data table are loaded into main memory when
+** a fuzzer table is first created, and may be internally reloaded by the
+** system at any subsequent time. Therefore, the fuzzer data table should be
+** populated before the fuzzer table is created and not modified thereafter.
+** If you do need to modify the contents of the fuzzer data table, it is
+** recommended that the associated fuzzer table be dropped, the fuzzer data
+** table edited, and the fuzzer table recreated within a single transaction.
+** Alternatively, the fuzzer data table can be edited then the database
+** connection can be closed and reopened.
+**
+** Once it has been created, the fuzzer table can be queried as follows:
+**
+** SELECT word, distance FROM f
+** WHERE word MATCH 'abcdefg'
+** AND distance<200;
+**
+** This first query outputs the string "abcdefg" and all strings that
+** can be derived from that string by appling the specified transformations.
+** The strings are output together with their total transformation cost
+** (called "distance") and appear in order of increasing cost. No string
+** is output more than once. If there are multiple ways to transform the
+** target string into the output string then the lowest cost transform is
+** the one that is returned. In the example, the search is limited to
+** strings with a total distance of less than 200.
+**
+** The fuzzer is a read-only table. Any attempt to DELETE, INSERT, or
+** UPDATE on a fuzzer table will throw an error.
+**
+** It is important to put some kind of a limit on the fuzzer output. This
+** can be either in the form of a LIMIT clause at the end of the query,
+** or better, a "distance<NNN" constraint where NNN is some number. The
+** running time and memory requirement is exponential in the value of NNN
+** so you want to make sure that NNN is not too big. A value of NNN that
+** is about twice the average transformation cost seems to give good results.
+**
+** The fuzzer table can be useful for tasks such as spelling correction.
+** Suppose there is a second table vocabulary(w) where the w column contains
+** all correctly spelled words. Let $word be a word you want to look up.
+**
+** SELECT vocabulary.w FROM f, vocabulary
+** WHERE f.word MATCH $word
+** AND f.distance<=200
+** AND f.word=vocabulary.w
+** LIMIT 20
+**
+** The query above gives the 20 closest words to the $word being tested.
+** (Note that for good performance, the vocubulary.w column should be
+** indexed.)
+**
+** A similar query can be used to find all words in the dictionary that
+** begin with some prefix $prefix:
+**
+** SELECT vocabulary.w FROM f, vocabulary
+** WHERE f.word MATCH $prefix
+** AND f.distance<=200
+** AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF')
+** LIMIT 50
+**
+** This last query will show up to 50 words out of the vocabulary that
+** match or nearly match the $prefix.
+**
+** MULTIPLE RULE SETS
+**
+** Normally, the "ruleset" value associated with all character transformations
+** in the fuzzer data table is zero. However, if required, the fuzzer table
+** allows multiple rulesets to be defined. Each query uses only a single
+** ruleset. This allows, for example, a single fuzzer table to support
+** multiple languages.
+**
+** By default, only the rules from ruleset 0 are used. To specify an
+** alternative ruleset, a "ruleset = ?" expression must be added to the
+** WHERE clause of a SELECT, where ? is the identifier of the desired
+** ruleset. For example:
+**
+** SELECT vocabulary.w FROM f, vocabulary
+** WHERE f.word MATCH $word
+** AND f.distance<=200
+** AND f.word=vocabulary.w
+** AND f.ruleset=1 -- Specify the ruleset to use here
+** LIMIT 20
+**
+** If no "ruleset = ?" constraint is specified in the WHERE clause, ruleset
+** 0 is used.
+**
+** LIMITS
+**
+** The maximum ruleset number is 2147483647. The maximum length of either
+** of the strings in the second or third column of the fuzzer data table
+** is 50 bytes. The maximum cost on a rule is 1000.
+*/
+#include "sqlite3ext.h"
+SQLITE_EXTENSION_INIT1
+
+/* If SQLITE_DEBUG is not defined, disable assert statements. */
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
+# define NDEBUG
+#endif
+
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <stdio.h>
+
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+
+/*
+** Forward declaration of objects used by this implementation
+*/
+typedef struct fuzzer_vtab fuzzer_vtab;
+typedef struct fuzzer_cursor fuzzer_cursor;
+typedef struct fuzzer_rule fuzzer_rule;
+typedef struct fuzzer_seen fuzzer_seen;
+typedef struct fuzzer_stem fuzzer_stem;
+
+/*
+** Various types.
+**
+** fuzzer_cost is the "cost" of an edit operation.
+**
+** fuzzer_len is the length of a matching string.
+**
+** fuzzer_ruleid is an ruleset identifier.
+*/
+typedef int fuzzer_cost;
+typedef signed char fuzzer_len;
+typedef int fuzzer_ruleid;
+
+/*
+** Limits
+*/
+#define FUZZER_MX_LENGTH 50 /* Maximum length of a rule string */
+#define FUZZER_MX_RULEID 2147483647 /* Maximum rule ID */
+#define FUZZER_MX_COST 1000 /* Maximum single-rule cost */
+#define FUZZER_MX_OUTPUT_LENGTH 100 /* Maximum length of an output string */
+
+
+/*
+** Each transformation rule is stored as an instance of this object.
+** All rules are kept on a linked list sorted by rCost.
+*/
+struct fuzzer_rule {
+ fuzzer_rule *pNext; /* Next rule in order of increasing rCost */
+ char *zFrom; /* Transform from */
+ fuzzer_cost rCost; /* Cost of this transformation */
+ fuzzer_len nFrom, nTo; /* Length of the zFrom and zTo strings */
+ fuzzer_ruleid iRuleset; /* The rule set to which this rule belongs */
+ char zTo[4]; /* Transform to (extra space appended) */
+};
+
+/*
+** A stem object is used to generate variants. It is also used to record
+** previously generated outputs.
+**
+** Every stem is added to a hash table as it is output. Generation of
+** duplicate stems is suppressed.
+**
+** Active stems (those that might generate new outputs) are kepts on a linked
+** list sorted by increasing cost. The cost is the sum of rBaseCost and
+** pRule->rCost.
+*/
+struct fuzzer_stem {
+ char *zBasis; /* Word being fuzzed */
+ const fuzzer_rule *pRule; /* Current rule to apply */
+ fuzzer_stem *pNext; /* Next stem in rCost order */
+ fuzzer_stem *pHash; /* Next stem with same hash on zBasis */
+ fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */
+ fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */
+ fuzzer_len nBasis; /* Length of the zBasis string */
+ fuzzer_len n; /* Apply pRule at this character offset */
+};
+
+/*
+** A fuzzer virtual-table object
+*/
+struct fuzzer_vtab {
+ sqlite3_vtab base; /* Base class - must be first */
+ char *zClassName; /* Name of this class. Default: "fuzzer" */
+ fuzzer_rule *pRule; /* All active rules in this fuzzer */
+ int nCursor; /* Number of active cursors */
+};
+
+#define FUZZER_HASH 4001 /* Hash table size */
+#define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */
+
+/* A fuzzer cursor object */
+struct fuzzer_cursor {
+ sqlite3_vtab_cursor base; /* Base class - must be first */
+ sqlite3_int64 iRowid; /* The rowid of the current word */
+ fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */
+ fuzzer_cost rLimit; /* Maximum cost of any term */
+ fuzzer_stem *pStem; /* Stem with smallest rCostX */
+ fuzzer_stem *pDone; /* Stems already processed to completion */
+ fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */
+ int mxQueue; /* Largest used index in aQueue[] */
+ char *zBuf; /* Temporary use buffer */
+ int nBuf; /* Bytes allocated for zBuf */
+ int nStem; /* Number of stems allocated */
+ int iRuleset; /* Only process rules from this ruleset */
+ fuzzer_rule nullRule; /* Null rule used first */
+ fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */
+};
+
+/*
+** The two input rule lists are both sorted in order of increasing
+** cost. Merge them together into a single list, sorted by cost, and
+** return a pointer to the head of that list.
+*/
+static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){
+ fuzzer_rule head;
+ fuzzer_rule *pTail;
+
+ pTail = &head;
+ while( pA && pB ){
+ if( pA->rCost<=pB->rCost ){
+ pTail->pNext = pA;
+ pTail = pA;
+ pA = pA->pNext;
+ }else{
+ pTail->pNext = pB;
+ pTail = pB;
+ pB = pB->pNext;
+ }
+ }
+ if( pA==0 ){
+ pTail->pNext = pB;
+ }else{
+ pTail->pNext = pA;
+ }
+ return head.pNext;
+}
+
+/*
+** Statement pStmt currently points to a row in the fuzzer data table. This
+** function allocates and populates a fuzzer_rule structure according to
+** the content of the row.
+**
+** If successful, *ppRule is set to point to the new object and SQLITE_OK
+** is returned. Otherwise, *ppRule is zeroed, *pzErr may be set to point
+** to an error message and an SQLite error code returned.
+*/
+static int fuzzerLoadOneRule(
+ fuzzer_vtab *p, /* Fuzzer virtual table handle */
+ sqlite3_stmt *pStmt, /* Base rule on statements current row */
+ fuzzer_rule **ppRule, /* OUT: New rule object */
+ char **pzErr /* OUT: Error message */
+){
+ sqlite3_int64 iRuleset = sqlite3_column_int64(pStmt, 0);
+ const char *zFrom = (const char *)sqlite3_column_text(pStmt, 1);
+ const char *zTo = (const char *)sqlite3_column_text(pStmt, 2);
+ int nCost = sqlite3_column_int(pStmt, 3);
+
+ int rc = SQLITE_OK; /* Return code */
+ int nFrom; /* Size of string zFrom, in bytes */
+ int nTo; /* Size of string zTo, in bytes */
+ fuzzer_rule *pRule = 0; /* New rule object to return */
+
+ if( zFrom==0 ) zFrom = "";
+ if( zTo==0 ) zTo = "";
+ nFrom = (int)strlen(zFrom);
+ nTo = (int)strlen(zTo);
+
+ /* Silently ignore null transformations */
+ if( strcmp(zFrom, zTo)==0 ){
+ *ppRule = 0;
+ return SQLITE_OK;
+ }
+
+ if( nCost<=0 || nCost>FUZZER_MX_COST ){
+ *pzErr = sqlite3_mprintf("%s: cost must be between 1 and %d",
+ p->zClassName, FUZZER_MX_COST
+ );
+ rc = SQLITE_ERROR;
+ }else
+ if( nFrom>FUZZER_MX_LENGTH || nTo>FUZZER_MX_LENGTH ){
+ *pzErr = sqlite3_mprintf("%s: maximum string length is %d",
+ p->zClassName, FUZZER_MX_LENGTH
+ );
+ rc = SQLITE_ERROR;
+ }else
+ if( iRuleset<0 || iRuleset>FUZZER_MX_RULEID ){
+ *pzErr = sqlite3_mprintf("%s: ruleset must be between 0 and %d",
+ p->zClassName, FUZZER_MX_RULEID
+ );
+ rc = SQLITE_ERROR;
+ }else{
+
+ pRule = sqlite3_malloc64( sizeof(*pRule) + nFrom + nTo );
+ if( pRule==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pRule, 0, sizeof(*pRule));
+ pRule->zFrom = pRule->zTo;
+ pRule->zFrom += nTo + 1;
+ pRule->nFrom = (fuzzer_len)nFrom;
+ memcpy(pRule->zFrom, zFrom, nFrom+1);
+ memcpy(pRule->zTo, zTo, nTo+1);
+ pRule->nTo = (fuzzer_len)nTo;
+ pRule->rCost = nCost;
+ pRule->iRuleset = (int)iRuleset;
+ }
+ }
+
+ *ppRule = pRule;
+ return rc;
+}
+
+/*
+** Load the content of the fuzzer data table into memory.
+*/
+static int fuzzerLoadRules(
+ sqlite3 *db, /* Database handle */
+ fuzzer_vtab *p, /* Virtual fuzzer table to configure */
+ const char *zDb, /* Database containing rules data */
+ const char *zData, /* Table containing rules data */
+ char **pzErr /* OUT: Error message */
+){
+ int rc = SQLITE_OK; /* Return code */
+ char *zSql; /* SELECT used to read from rules table */
+ fuzzer_rule *pHead = 0;
+
+ zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zData);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ int rc2; /* finalize() return code */
+ sqlite3_stmt *pStmt = 0;
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
+ if( rc!=SQLITE_OK ){
+ *pzErr = sqlite3_mprintf("%s: %s", p->zClassName, sqlite3_errmsg(db));
+ }else if( sqlite3_column_count(pStmt)!=4 ){
+ *pzErr = sqlite3_mprintf("%s: %s has %d columns, expected 4",
+ p->zClassName, zData, sqlite3_column_count(pStmt)
+ );
+ rc = SQLITE_ERROR;
+ }else{
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
+ fuzzer_rule *pRule = 0;
+ rc = fuzzerLoadOneRule(p, pStmt, &pRule, pzErr);
+ if( pRule ){
+ pRule->pNext = pHead;
+ pHead = pRule;
+ }
+ }
+ }
+ rc2 = sqlite3_finalize(pStmt);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+ sqlite3_free(zSql);
+
+ /* All rules are now in a singly linked list starting at pHead. This
+ ** block sorts them by cost and then sets fuzzer_vtab.pRule to point to
+ ** point to the head of the sorted list.
+ */
+ if( rc==SQLITE_OK ){
+ unsigned int i;
+ fuzzer_rule *pX;
+ fuzzer_rule *a[15];
+ for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0;
+ while( (pX = pHead)!=0 ){
+ pHead = pX->pNext;
+ pX->pNext = 0;
+ for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){
+ pX = fuzzerMergeRules(a[i], pX);
+ a[i] = 0;
+ }
+ a[i] = fuzzerMergeRules(a[i], pX);
+ }
+ for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){
+ pX = fuzzerMergeRules(a[i], pX);
+ }
+ p->pRule = fuzzerMergeRules(p->pRule, pX);
+ }else{
+ /* An error has occurred. Setting p->pRule to point to the head of the
+ ** allocated list ensures that the list will be cleaned up in this case.
+ */
+ assert( p->pRule==0 );
+ p->pRule = pHead;
+ }
+
+ return rc;
+}
+
+/*
+** This function converts an SQL quoted string into an unquoted string
+** and returns a pointer to a buffer allocated using sqlite3_malloc()
+** containing the result. The caller should eventually free this buffer
+** using sqlite3_free.
+**
+** Examples:
+**
+** "abc" becomes abc
+** 'xyz' becomes xyz
+** [pqr] becomes pqr
+** `mno` becomes mno
+*/
+static char *fuzzerDequote(const char *zIn){
+ sqlite3_int64 nIn; /* Size of input string, in bytes */
+ char *zOut; /* Output (dequoted) string */
+
+ nIn = strlen(zIn);
+ zOut = sqlite3_malloc64(nIn+1);
+ if( zOut ){
+ char q = zIn[0]; /* Quote character (if any ) */
+
+ if( q!='[' && q!= '\'' && q!='"' && q!='`' ){
+ memcpy(zOut, zIn, (size_t)(nIn+1));
+ }else{
+ int iOut = 0; /* Index of next byte to write to output */
+ int iIn; /* Index of next byte to read from input */
+
+ if( q=='[' ) q = ']';
+ for(iIn=1; iIn<nIn; iIn++){
+ if( zIn[iIn]==q ) iIn++;
+ zOut[iOut++] = zIn[iIn];
+ }
+ }
+ assert( (int)strlen(zOut)<=nIn );
+ }
+ return zOut;
+}
+
+/*
+** xDisconnect/xDestroy method for the fuzzer module.
+*/
+static int fuzzerDisconnect(sqlite3_vtab *pVtab){
+ fuzzer_vtab *p = (fuzzer_vtab*)pVtab;
+ assert( p->nCursor==0 );
+ while( p->pRule ){
+ fuzzer_rule *pRule = p->pRule;
+ p->pRule = pRule->pNext;
+ sqlite3_free(pRule);
+ }
+ sqlite3_free(p);
+ return SQLITE_OK;
+}
+
+/*
+** xConnect/xCreate method for the fuzzer module. Arguments are:
+**
+** argv[0] -> module name ("fuzzer")
+** argv[1] -> database name
+** argv[2] -> table name
+** argv[3] -> fuzzer rule table name
+*/
+static int fuzzerConnect(
+ sqlite3 *db,
+ void *pAux,
+ int argc, const char *const*argv,
+ sqlite3_vtab **ppVtab,
+ char **pzErr
+){
+ int rc = SQLITE_OK; /* Return code */
+ fuzzer_vtab *pNew = 0; /* New virtual table */
+ const char *zModule = argv[0];
+ const char *zDb = argv[1];
+
+ if( argc!=4 ){
+ *pzErr = sqlite3_mprintf(
+ "%s: wrong number of CREATE VIRTUAL TABLE arguments", zModule
+ );
+ rc = SQLITE_ERROR;
+ }else{
+ sqlite3_int64 nModule; /* Length of zModule, in bytes */
+
+ nModule = strlen(zModule);
+ pNew = sqlite3_malloc64( sizeof(*pNew) + nModule + 1);
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ char *zTab; /* Dequoted name of fuzzer data table */
+
+ memset(pNew, 0, sizeof(*pNew));
+ pNew->zClassName = (char*)&pNew[1];
+ memcpy(pNew->zClassName, zModule, (size_t)(nModule+1));
+
+ zTab = fuzzerDequote(argv[3]);
+ if( zTab==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = fuzzerLoadRules(db, pNew, zDb, zTab, pzErr);
+ sqlite3_free(zTab);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,ruleset)");
+ }
+ if( rc!=SQLITE_OK ){
+ fuzzerDisconnect((sqlite3_vtab *)pNew);
+ pNew = 0;
+ }else{
+ sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS);
+ }
+ }
+ }
+
+ *ppVtab = (sqlite3_vtab *)pNew;
+ return rc;
+}
+
+/*
+** Open a new fuzzer cursor.
+*/
+static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
+ fuzzer_vtab *p = (fuzzer_vtab*)pVTab;
+ fuzzer_cursor *pCur;
+ pCur = sqlite3_malloc( sizeof(*pCur) );
+ if( pCur==0 ) return SQLITE_NOMEM;
+ memset(pCur, 0, sizeof(*pCur));
+ pCur->pVtab = p;
+ *ppCursor = &pCur->base;
+ p->nCursor++;
+ return SQLITE_OK;
+}
+
+/*
+** Free all stems in a list.
+*/
+static void fuzzerClearStemList(fuzzer_stem *pStem){
+ while( pStem ){
+ fuzzer_stem *pNext = pStem->pNext;
+ sqlite3_free(pStem);
+ pStem = pNext;
+ }
+}
+
+/*
+** Free up all the memory allocated by a cursor. Set it rLimit to 0
+** to indicate that it is at EOF.
+*/
+static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){
+ int i;
+ fuzzerClearStemList(pCur->pStem);
+ fuzzerClearStemList(pCur->pDone);
+ for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]);
+ pCur->rLimit = (fuzzer_cost)0;
+ if( clearHash && pCur->nStem ){
+ pCur->mxQueue = 0;
+ pCur->pStem = 0;
+ pCur->pDone = 0;
+ memset(pCur->aQueue, 0, sizeof(pCur->aQueue));
+ memset(pCur->apHash, 0, sizeof(pCur->apHash));
+ }
+ pCur->nStem = 0;
+}
+
+/*
+** Close a fuzzer cursor.
+*/
+static int fuzzerClose(sqlite3_vtab_cursor *cur){
+ fuzzer_cursor *pCur = (fuzzer_cursor *)cur;
+ fuzzerClearCursor(pCur, 0);
+ sqlite3_free(pCur->zBuf);
+ pCur->pVtab->nCursor--;
+ sqlite3_free(pCur);
+ return SQLITE_OK;
+}
+
+/*
+** Compute the current output term for a fuzzer_stem.
+*/
+static int fuzzerRender(
+ fuzzer_stem *pStem, /* The stem to be rendered */
+ char **pzBuf, /* Write results into this buffer. realloc if needed */
+ int *pnBuf /* Size of the buffer */
+){
+ const fuzzer_rule *pRule = pStem->pRule;
+ int n; /* Size of output term without nul-term */
+ char *z; /* Buffer to assemble output term in */
+
+ n = pStem->nBasis + pRule->nTo - pRule->nFrom;
+ if( (*pnBuf)<n+1 ){
+ (*pzBuf) = sqlite3_realloc((*pzBuf), n+100);
+ if( (*pzBuf)==0 ) return SQLITE_NOMEM;
+ (*pnBuf) = n+100;
+ }
+ n = pStem->n;
+ z = *pzBuf;
+ if( n<0 ){
+ memcpy(z, pStem->zBasis, pStem->nBasis+1);
+ }else{
+ memcpy(z, pStem->zBasis, n);
+ memcpy(&z[n], pRule->zTo, pRule->nTo);
+ memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom],
+ pStem->nBasis-n-pRule->nFrom+1);
+ }
+
+ assert( z[pStem->nBasis + pRule->nTo - pRule->nFrom]==0 );
+ return SQLITE_OK;
+}
+
+/*
+** Compute a hash on zBasis.
+*/
+static unsigned int fuzzerHash(const char *z){
+ unsigned int h = 0;
+ while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); }
+ return h % FUZZER_HASH;
+}
+
+/*
+** Current cost of a stem
+*/
+static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){
+ return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost;
+}
+
+#if 0
+/*
+** Print a description of a fuzzer_stem on stderr.
+*/
+static void fuzzerStemPrint(
+ const char *zPrefix,
+ fuzzer_stem *pStem,
+ const char *zSuffix
+){
+ if( pStem->n<0 ){
+ fprintf(stderr, "%s[%s](%d)-->self%s",
+ zPrefix,
+ pStem->zBasis, pStem->rBaseCost,
+ zSuffix
+ );
+ }else{
+ char *zBuf = 0;
+ int nBuf = 0;
+ if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return;
+ fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s",
+ zPrefix,
+ pStem->zBasis, pStem->rBaseCost, zBuf, pStem->,
+ zSuffix
+ );
+ sqlite3_free(zBuf);
+ }
+}
+#endif
+
+/*
+** Return 1 if the string to which the cursor is point has already
+** been emitted. Return 0 if not. Return -1 on a memory allocation
+** failures.
+*/
+static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){
+ unsigned int h;
+ fuzzer_stem *pLookup;
+
+ if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
+ return -1;
+ }
+ h = fuzzerHash(pCur->zBuf);
+ pLookup = pCur->apHash[h];
+ while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){
+ pLookup = pLookup->pHash;
+ }
+ return pLookup!=0;
+}
+
+/*
+** If argument pRule is NULL, this function returns false.
+**
+** Otherwise, it returns true if rule pRule should be skipped. A rule
+** should be skipped if it does not belong to rule-set iRuleset, or if
+** applying it to stem pStem would create a string longer than
+** FUZZER_MX_OUTPUT_LENGTH bytes.
+*/
+static int fuzzerSkipRule(
+ const fuzzer_rule *pRule, /* Determine whether or not to skip this */
+ fuzzer_stem *pStem, /* Stem rule may be applied to */
+ int iRuleset /* Rule-set used by the current query */
+){
+ return pRule && (
+ (pRule->iRuleset!=iRuleset)
+ || (pStem->nBasis + pRule->nTo - pRule->nFrom)>FUZZER_MX_OUTPUT_LENGTH
+ );
+}
+
+/*
+** Advance a fuzzer_stem to its next value. Return 0 if there are
+** no more values that can be generated by this fuzzer_stem. Return
+** -1 on a memory allocation failure.
+*/
+static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){
+ const fuzzer_rule *pRule;
+ while( (pRule = pStem->pRule)!=0 ){
+ assert( pRule==&pCur->nullRule || pRule->iRuleset==pCur->iRuleset );
+ while( pStem->n < pStem->nBasis - pRule->nFrom ){
+ pStem->n++;
+ if( pRule->nFrom==0
+ || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0
+ ){
+ /* Found a rewrite case. Make sure it is not a duplicate */
+ int rc = fuzzerSeen(pCur, pStem);
+ if( rc<0 ) return -1;
+ if( rc==0 ){
+ fuzzerCost(pStem);
+ return 1;
+ }
+ }
+ }
+ pStem->n = -1;
+ do{
+ pRule = pRule->pNext;
+ }while( fuzzerSkipRule(pRule, pStem, pCur->iRuleset) );
+ pStem->pRule = pRule;
+ if( pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0;
+ }
+ return 0;
+}
+
+/*
+** The two input stem lists are both sorted in order of increasing
+** rCostX. Merge them together into a single list, sorted by rCostX, and
+** return a pointer to the head of that new list.
+*/
+static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){
+ fuzzer_stem head;
+ fuzzer_stem *pTail;
+
+ pTail = &head;
+ while( pA && pB ){
+ if( pA->rCostX<=pB->rCostX ){
+ pTail->pNext = pA;
+ pTail = pA;
+ pA = pA->pNext;
+ }else{
+ pTail->pNext = pB;
+ pTail = pB;
+ pB = pB->pNext;
+ }
+ }
+ if( pA==0 ){
+ pTail->pNext = pB;
+ }else{
+ pTail->pNext = pA;
+ }
+ return head.pNext;
+}
+
+/*
+** Load pCur->pStem with the lowest-cost stem. Return a pointer
+** to the lowest-cost stem.
+*/
+static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){
+ fuzzer_stem *pBest, *pX;
+ int iBest;
+ int i;
+
+ if( pCur->pStem==0 ){
+ iBest = -1;
+ pBest = 0;
+ for(i=0; i<=pCur->mxQueue; i++){
+ pX = pCur->aQueue[i];
+ if( pX==0 ) continue;
+ if( pBest==0 || pBest->rCostX>pX->rCostX ){
+ pBest = pX;
+ iBest = i;
+ }
+ }
+ if( pBest ){
+ pCur->aQueue[iBest] = pBest->pNext;
+ pBest->pNext = 0;
+ pCur->pStem = pBest;
+ }
+ }
+ return pCur->pStem;
+}
+
+/*
+** Insert pNew into queue of pending stems. Then find the stem
+** with the lowest rCostX and move it into pCur->pStem.
+** list. The insert is done such the pNew is in the correct order
+** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost.
+*/
+static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){
+ fuzzer_stem *pX;
+ int i;
+
+ /* If pCur->pStem exists and is greater than pNew, then make pNew
+ ** the new pCur->pStem and insert the old pCur->pStem instead.
+ */
+ if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){
+ pNew->pNext = 0;
+ pCur->pStem = pNew;
+ pNew = pX;
+ }
+
+ /* Insert the new value */
+ pNew->pNext = 0;
+ pX = pNew;
+ for(i=0; i<=pCur->mxQueue; i++){
+ if( pCur->aQueue[i] ){
+ pX = fuzzerMergeStems(pX, pCur->aQueue[i]);
+ pCur->aQueue[i] = 0;
+ }else{
+ pCur->aQueue[i] = pX;
+ break;
+ }
+ }
+ if( i>pCur->mxQueue ){
+ if( i<FUZZER_NQUEUE ){
+ pCur->mxQueue = i;
+ pCur->aQueue[i] = pX;
+ }else{
+ assert( pCur->mxQueue==FUZZER_NQUEUE-1 );
+ pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]);
+ pCur->aQueue[FUZZER_NQUEUE-1] = pX;
+ }
+ }
+
+ return fuzzerLowestCostStem(pCur);
+}
+
+/*
+** Allocate a new fuzzer_stem. Add it to the hash table but do not
+** link it into either the pCur->pStem or pCur->pDone lists.
+*/
+static fuzzer_stem *fuzzerNewStem(
+ fuzzer_cursor *pCur,
+ const char *zWord,
+ fuzzer_cost rBaseCost
+){
+ fuzzer_stem *pNew;
+ fuzzer_rule *pRule;
+ unsigned int h;
+
+ pNew = sqlite3_malloc64( sizeof(*pNew) + strlen(zWord) + 1 );
+ if( pNew==0 ) return 0;
+ memset(pNew, 0, sizeof(*pNew));
+ pNew->zBasis = (char*)&pNew[1];
+ pNew->nBasis = (fuzzer_len)strlen(zWord);
+ memcpy(pNew->zBasis, zWord, pNew->nBasis+1);
+ pRule = pCur->pVtab->pRule;
+ while( fuzzerSkipRule(pRule, pNew, pCur->iRuleset) ){
+ pRule = pRule->pNext;
+ }
+ pNew->pRule = pRule;
+ pNew->n = -1;
+ pNew->rBaseCost = pNew->rCostX = rBaseCost;
+ h = fuzzerHash(pNew->zBasis);
+ pNew->pHash = pCur->apHash[h];
+ pCur->apHash[h] = pNew;
+ pCur->nStem++;
+ return pNew;
+}
+
+
+/*
+** Advance a cursor to its next row of output
+*/
+static int fuzzerNext(sqlite3_vtab_cursor *cur){
+ fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
+ int rc;
+ fuzzer_stem *pStem, *pNew;
+
+ pCur->iRowid++;
+
+ /* Use the element the cursor is currently point to to create
+ ** a new stem and insert the new stem into the priority queue.
+ */
+ pStem = pCur->pStem;
+ if( pStem->rCostX>0 ){
+ rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf);
+ if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM;
+ pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX);
+ if( pNew ){
+ if( fuzzerAdvance(pCur, pNew)==0 ){
+ pNew->pNext = pCur->pDone;
+ pCur->pDone = pNew;
+ }else{
+ if( fuzzerInsert(pCur, pNew)==pNew ){
+ return SQLITE_OK;
+ }
+ }
+ }else{
+ return SQLITE_NOMEM;
+ }
+ }
+
+ /* Adjust the priority queue so that the first element of the
+ ** stem list is the next lowest cost word.
+ */
+ while( (pStem = pCur->pStem)!=0 ){
+ int res = fuzzerAdvance(pCur, pStem);
+ if( res<0 ){
+ return SQLITE_NOMEM;
+ }else if( res>0 ){
+ pCur->pStem = 0;
+ pStem = fuzzerInsert(pCur, pStem);
+ if( (rc = fuzzerSeen(pCur, pStem))!=0 ){
+ if( rc<0 ) return SQLITE_NOMEM;
+ continue;
+ }
+ return SQLITE_OK; /* New word found */
+ }
+ pCur->pStem = 0;
+ pStem->pNext = pCur->pDone;
+ pCur->pDone = pStem;
+ if( fuzzerLowestCostStem(pCur) ){
+ rc = fuzzerSeen(pCur, pCur->pStem);
+ if( rc<0 ) return SQLITE_NOMEM;
+ if( rc==0 ){
+ return SQLITE_OK;
+ }
+ }
+ }
+
+ /* Reach this point only if queue has been exhausted and there is
+ ** nothing left to be output. */
+ pCur->rLimit = (fuzzer_cost)0;
+ return SQLITE_OK;
+}
+
+/*
+** Called to "rewind" a cursor back to the beginning so that
+** it starts its output over again. Always called at least once
+** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call.
+*/
+static int fuzzerFilter(
+ sqlite3_vtab_cursor *pVtabCursor,
+ int idxNum, const char *idxStr,
+ int argc, sqlite3_value **argv
+){
+ fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor;
+ const char *zWord = "";
+ fuzzer_stem *pStem;
+ int idx;
+
+ fuzzerClearCursor(pCur, 1);
+ pCur->rLimit = 2147483647;
+ idx = 0;
+ if( idxNum & 1 ){
+ zWord = (const char*)sqlite3_value_text(argv[0]);
+ idx++;
+ }
+ if( idxNum & 2 ){
+ pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[idx]);
+ idx++;
+ }
+ if( idxNum & 4 ){
+ pCur->iRuleset = (fuzzer_cost)sqlite3_value_int(argv[idx]);
+ idx++;
+ }
+ pCur->nullRule.pNext = pCur->pVtab->pRule;
+ pCur->nullRule.rCost = 0;
+ pCur->nullRule.nFrom = 0;
+ pCur->nullRule.nTo = 0;
+ pCur->nullRule.zFrom = "";
+ pCur->iRowid = 1;
+ assert( pCur->pStem==0 );
+
+ /* If the query term is longer than FUZZER_MX_OUTPUT_LENGTH bytes, this
+ ** query will return zero rows. */
+ if( (int)strlen(zWord)<FUZZER_MX_OUTPUT_LENGTH ){
+ pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0);
+ if( pStem==0 ) return SQLITE_NOMEM;
+ pStem->pRule = &pCur->nullRule;
+ pStem->n = pStem->nBasis;
+ }else{
+ pCur->rLimit = 0;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** Only the word and distance columns have values. All other columns
+** return NULL
+*/
+static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
+ fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
+ if( i==0 ){
+ /* the "word" column */
+ if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
+ return SQLITE_NOMEM;
+ }
+ sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT);
+ }else if( i==1 ){
+ /* the "distance" column */
+ sqlite3_result_int(ctx, pCur->pStem->rCostX);
+ }else{
+ /* All other columns are NULL */
+ sqlite3_result_null(ctx);
+ }
+ return SQLITE_OK;
+}
+
+/*
+** The rowid.
+*/
+static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
+ fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
+ *pRowid = pCur->iRowid;
+ return SQLITE_OK;
+}
+
+/*
+** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal
+** that the cursor has nothing more to output.
+*/
+static int fuzzerEof(sqlite3_vtab_cursor *cur){
+ fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
+ return pCur->rLimit<=(fuzzer_cost)0;
+}
+
+/*
+** Search for terms of these forms:
+**
+** (A) word MATCH $str
+** (B1) distance < $value
+** (B2) distance <= $value
+** (C) ruleid == $ruleid
+**
+** The distance< and distance<= are both treated as distance<=.
+** The query plan number is a bit vector:
+**
+** bit 1: Term of the form (A) found
+** bit 2: Term like (B1) or (B2) found
+** bit 3: Term like (C) found
+**
+** If bit-1 is set, $str is always in filter.argv[0]. If bit-2 is set
+** then $value is in filter.argv[0] if bit-1 is clear and is in
+** filter.argv[1] if bit-1 is set. If bit-3 is set, then $ruleid is
+** in filter.argv[0] if bit-1 and bit-2 are both zero, is in
+** filter.argv[1] if exactly one of bit-1 and bit-2 are set, and is in
+** filter.argv[2] if both bit-1 and bit-2 are set.
+*/
+static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
+ int iPlan = 0;
+ int iDistTerm = -1;
+ int iRulesetTerm = -1;
+ int i;
+ int seenMatch = 0;
+ const struct sqlite3_index_constraint *pConstraint;
+ double rCost = 1e12;
+
+ pConstraint = pIdxInfo->aConstraint;
+ for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
+ if( pConstraint->iColumn==0
+ && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
+ seenMatch = 1;
+ }
+ if( pConstraint->usable==0 ) continue;
+ if( (iPlan & 1)==0
+ && pConstraint->iColumn==0
+ && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
+ ){
+ iPlan |= 1;
+ pIdxInfo->aConstraintUsage[i].argvIndex = 1;
+ pIdxInfo->aConstraintUsage[i].omit = 1;
+ rCost /= 1e6;
+ }
+ if( (iPlan & 2)==0
+ && pConstraint->iColumn==1
+ && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
+ || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
+ ){
+ iPlan |= 2;
+ iDistTerm = i;
+ rCost /= 10.0;
+ }
+ if( (iPlan & 4)==0
+ && pConstraint->iColumn==2
+ && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
+ ){
+ iPlan |= 4;
+ pIdxInfo->aConstraintUsage[i].omit = 1;
+ iRulesetTerm = i;
+ rCost /= 10.0;
+ }
+ }
+ if( iPlan & 2 ){
+ pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0);
+ }
+ if( iPlan & 4 ){
+ int idx = 1;
+ if( iPlan & 1 ) idx++;
+ if( iPlan & 2 ) idx++;
+ pIdxInfo->aConstraintUsage[iRulesetTerm].argvIndex = idx;
+ }
+ pIdxInfo->idxNum = iPlan;
+ if( pIdxInfo->nOrderBy==1
+ && pIdxInfo->aOrderBy[0].iColumn==1
+ && pIdxInfo->aOrderBy[0].desc==0
+ ){
+ pIdxInfo->orderByConsumed = 1;
+ }
+ if( seenMatch && (iPlan&1)==0 ) rCost = 1e99;
+ pIdxInfo->estimatedCost = rCost;
+
+ return SQLITE_OK;
+}
+
+/*
+** A virtual table module that implements the "fuzzer".
+*/
+static sqlite3_module fuzzerModule = {
+ 0, /* iVersion */
+ fuzzerConnect,
+ fuzzerConnect,
+ fuzzerBestIndex,
+ fuzzerDisconnect,
+ fuzzerDisconnect,
+ fuzzerOpen, /* xOpen - open a cursor */
+ fuzzerClose, /* xClose - close a cursor */
+ fuzzerFilter, /* xFilter - configure scan constraints */
+ fuzzerNext, /* xNext - advance a cursor */
+ fuzzerEof, /* xEof - check for end of scan */
+ fuzzerColumn, /* xColumn - read data */
+ fuzzerRowid, /* xRowid - read data */
+ 0, /* xUpdate */
+ 0, /* xBegin */
+ 0, /* xSync */
+ 0, /* xCommit */
+ 0, /* xRollback */
+ 0, /* xFindMethod */
+ 0, /* xRename */
+};
+
+#endif /* SQLITE_OMIT_VIRTUALTABLE */
+
+
+#ifdef _WIN32
+__declspec(dllexport)
+#endif
+int sqlite3_fuzzer_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ int rc = SQLITE_OK;
+ SQLITE_EXTENSION_INIT2(pApi);
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0);
+#endif
+ return rc;
+}