summaryrefslogtreecommitdiffstats
path: root/ext/misc/sha1.c
diff options
context:
space:
mode:
Diffstat (limited to 'ext/misc/sha1.c')
-rw-r--r--ext/misc/sha1.c393
1 files changed, 393 insertions, 0 deletions
diff --git a/ext/misc/sha1.c b/ext/misc/sha1.c
new file mode 100644
index 0000000..9790a1d
--- /dev/null
+++ b/ext/misc/sha1.c
@@ -0,0 +1,393 @@
+/*
+** 2017-01-27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This SQLite extension implements functions that compute SHA1 hashes.
+** Two SQL functions are implemented:
+**
+** sha1(X)
+** sha1_query(Y)
+**
+** The sha1(X) function computes the SHA1 hash of the input X, or NULL if
+** X is NULL.
+**
+** The sha1_query(Y) function evalutes all queries in the SQL statements of Y
+** and returns a hash of their results.
+*/
+#include "sqlite3ext.h"
+SQLITE_EXTENSION_INIT1
+#include <assert.h>
+#include <string.h>
+#include <stdarg.h>
+
+/******************************************************************************
+** The Hash Engine
+*/
+/* Context for the SHA1 hash */
+typedef struct SHA1Context SHA1Context;
+struct SHA1Context {
+ unsigned int state[5];
+ unsigned int count[2];
+ unsigned char buffer[64];
+};
+
+#define SHA_ROT(x,l,r) ((x) << (l) | (x) >> (r))
+#define rol(x,k) SHA_ROT(x,k,32-(k))
+#define ror(x,k) SHA_ROT(x,32-(k),k)
+
+#define blk0le(i) (block[i] = (ror(block[i],8)&0xFF00FF00) \
+ |(rol(block[i],8)&0x00FF00FF))
+#define blk0be(i) block[i]
+#define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \
+ ^block[(i+2)&15]^block[i&15],1))
+
+/*
+ * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
+ *
+ * Rl0() for little-endian and Rb0() for big-endian. Endianness is
+ * determined at run-time.
+ */
+#define Rl0(v,w,x,y,z,i) \
+ z+=((w&(x^y))^y)+blk0le(i)+0x5A827999+rol(v,5);w=ror(w,2);
+#define Rb0(v,w,x,y,z,i) \
+ z+=((w&(x^y))^y)+blk0be(i)+0x5A827999+rol(v,5);w=ror(w,2);
+#define R1(v,w,x,y,z,i) \
+ z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=ror(w,2);
+#define R2(v,w,x,y,z,i) \
+ z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=ror(w,2);
+#define R3(v,w,x,y,z,i) \
+ z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=ror(w,2);
+#define R4(v,w,x,y,z,i) \
+ z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=ror(w,2);
+
+/*
+ * Hash a single 512-bit block. This is the core of the algorithm.
+ */
+static void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]){
+ unsigned int qq[5]; /* a, b, c, d, e; */
+ static int one = 1;
+ unsigned int block[16];
+ memcpy(block, buffer, 64);
+ memcpy(qq,state,5*sizeof(unsigned int));
+
+#define a qq[0]
+#define b qq[1]
+#define c qq[2]
+#define d qq[3]
+#define e qq[4]
+
+ /* Copy p->state[] to working vars */
+ /*
+ a = state[0];
+ b = state[1];
+ c = state[2];
+ d = state[3];
+ e = state[4];
+ */
+
+ /* 4 rounds of 20 operations each. Loop unrolled. */
+ if( 1 == *(unsigned char*)&one ){
+ Rl0(a,b,c,d,e, 0); Rl0(e,a,b,c,d, 1); Rl0(d,e,a,b,c, 2); Rl0(c,d,e,a,b, 3);
+ Rl0(b,c,d,e,a, 4); Rl0(a,b,c,d,e, 5); Rl0(e,a,b,c,d, 6); Rl0(d,e,a,b,c, 7);
+ Rl0(c,d,e,a,b, 8); Rl0(b,c,d,e,a, 9); Rl0(a,b,c,d,e,10); Rl0(e,a,b,c,d,11);
+ Rl0(d,e,a,b,c,12); Rl0(c,d,e,a,b,13); Rl0(b,c,d,e,a,14); Rl0(a,b,c,d,e,15);
+ }else{
+ Rb0(a,b,c,d,e, 0); Rb0(e,a,b,c,d, 1); Rb0(d,e,a,b,c, 2); Rb0(c,d,e,a,b, 3);
+ Rb0(b,c,d,e,a, 4); Rb0(a,b,c,d,e, 5); Rb0(e,a,b,c,d, 6); Rb0(d,e,a,b,c, 7);
+ Rb0(c,d,e,a,b, 8); Rb0(b,c,d,e,a, 9); Rb0(a,b,c,d,e,10); Rb0(e,a,b,c,d,11);
+ Rb0(d,e,a,b,c,12); Rb0(c,d,e,a,b,13); Rb0(b,c,d,e,a,14); Rb0(a,b,c,d,e,15);
+ }
+ R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
+ R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
+ R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
+ R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
+ R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
+ R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
+ R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
+ R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
+ R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
+ R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
+ R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
+ R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
+ R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
+ R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
+ R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
+ R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
+
+ /* Add the working vars back into context.state[] */
+ state[0] += a;
+ state[1] += b;
+ state[2] += c;
+ state[3] += d;
+ state[4] += e;
+
+#undef a
+#undef b
+#undef c
+#undef d
+#undef e
+}
+
+
+/* Initialize a SHA1 context */
+static void hash_init(SHA1Context *p){
+ /* SHA1 initialization constants */
+ p->state[0] = 0x67452301;
+ p->state[1] = 0xEFCDAB89;
+ p->state[2] = 0x98BADCFE;
+ p->state[3] = 0x10325476;
+ p->state[4] = 0xC3D2E1F0;
+ p->count[0] = p->count[1] = 0;
+}
+
+/* Add new content to the SHA1 hash */
+static void hash_step(
+ SHA1Context *p, /* Add content to this context */
+ const unsigned char *data, /* Data to be added */
+ unsigned int len /* Number of bytes in data */
+){
+ unsigned int i, j;
+
+ j = p->count[0];
+ if( (p->count[0] += len << 3) < j ){
+ p->count[1] += (len>>29)+1;
+ }
+ j = (j >> 3) & 63;
+ if( (j + len) > 63 ){
+ (void)memcpy(&p->buffer[j], data, (i = 64-j));
+ SHA1Transform(p->state, p->buffer);
+ for(; i + 63 < len; i += 64){
+ SHA1Transform(p->state, &data[i]);
+ }
+ j = 0;
+ }else{
+ i = 0;
+ }
+ (void)memcpy(&p->buffer[j], &data[i], len - i);
+}
+
+/* Compute a string using sqlite3_vsnprintf() and hash it */
+static void hash_step_vformat(
+ SHA1Context *p, /* Add content to this context */
+ const char *zFormat,
+ ...
+){
+ va_list ap;
+ int n;
+ char zBuf[50];
+ va_start(ap, zFormat);
+ sqlite3_vsnprintf(sizeof(zBuf),zBuf,zFormat,ap);
+ va_end(ap);
+ n = (int)strlen(zBuf);
+ hash_step(p, (unsigned char*)zBuf, n);
+}
+
+
+/* Add padding and compute the message digest. Render the
+** message digest as lower-case hexadecimal and put it into
+** zOut[]. zOut[] must be at least 41 bytes long. */
+static void hash_finish(
+ SHA1Context *p, /* The SHA1 context to finish and render */
+ char *zOut /* Store hexadecimal hash here */
+){
+ unsigned int i;
+ unsigned char finalcount[8];
+ unsigned char digest[20];
+ static const char zEncode[] = "0123456789abcdef";
+
+ for (i = 0; i < 8; i++){
+ finalcount[i] = (unsigned char)((p->count[(i >= 4 ? 0 : 1)]
+ >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
+ }
+ hash_step(p, (const unsigned char *)"\200", 1);
+ while ((p->count[0] & 504) != 448){
+ hash_step(p, (const unsigned char *)"\0", 1);
+ }
+ hash_step(p, finalcount, 8); /* Should cause a SHA1Transform() */
+ for (i = 0; i < 20; i++){
+ digest[i] = (unsigned char)((p->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
+ }
+ for(i=0; i<20; i++){
+ zOut[i*2] = zEncode[(digest[i]>>4)&0xf];
+ zOut[i*2+1] = zEncode[digest[i] & 0xf];
+ }
+ zOut[i*2]= 0;
+}
+/* End of the hashing logic
+*****************************************************************************/
+
+/*
+** Implementation of the sha1(X) function.
+**
+** Return a lower-case hexadecimal rendering of the SHA1 hash of the
+** argument X. If X is a BLOB, it is hashed as is. For all other
+** types of input, X is converted into a UTF-8 string and the string
+** is hash without the trailing 0x00 terminator. The hash of a NULL
+** value is NULL.
+*/
+static void sha1Func(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ SHA1Context cx;
+ int eType = sqlite3_value_type(argv[0]);
+ int nByte = sqlite3_value_bytes(argv[0]);
+ char zOut[44];
+
+ assert( argc==1 );
+ if( eType==SQLITE_NULL ) return;
+ hash_init(&cx);
+ if( eType==SQLITE_BLOB ){
+ hash_step(&cx, sqlite3_value_blob(argv[0]), nByte);
+ }else{
+ hash_step(&cx, sqlite3_value_text(argv[0]), nByte);
+ }
+ hash_finish(&cx, zOut);
+ sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT);
+}
+
+/*
+** Implementation of the sha1_query(SQL) function.
+**
+** This function compiles and runs the SQL statement(s) given in the
+** argument. The results are hashed using SHA1 and that hash is returned.
+**
+** The original SQL text is included as part of the hash.
+**
+** The hash is not just a concatenation of the outputs. Each query
+** is delimited and each row and value within the query is delimited,
+** with all values being marked with their datatypes.
+*/
+static void sha1QueryFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ const char *zSql = (const char*)sqlite3_value_text(argv[0]);
+ sqlite3_stmt *pStmt = 0;
+ int nCol; /* Number of columns in the result set */
+ int i; /* Loop counter */
+ int rc;
+ int n;
+ const char *z;
+ SHA1Context cx;
+ char zOut[44];
+
+ assert( argc==1 );
+ if( zSql==0 ) return;
+ hash_init(&cx);
+ while( zSql[0] ){
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql);
+ if( rc ){
+ char *zMsg = sqlite3_mprintf("error SQL statement [%s]: %s",
+ zSql, sqlite3_errmsg(db));
+ sqlite3_finalize(pStmt);
+ sqlite3_result_error(context, zMsg, -1);
+ sqlite3_free(zMsg);
+ return;
+ }
+ if( !sqlite3_stmt_readonly(pStmt) ){
+ char *zMsg = sqlite3_mprintf("non-query: [%s]", sqlite3_sql(pStmt));
+ sqlite3_finalize(pStmt);
+ sqlite3_result_error(context, zMsg, -1);
+ sqlite3_free(zMsg);
+ return;
+ }
+ nCol = sqlite3_column_count(pStmt);
+ z = sqlite3_sql(pStmt);
+ n = (int)strlen(z);
+ hash_step_vformat(&cx,"S%d:",n);
+ hash_step(&cx,(unsigned char*)z,n);
+
+ /* Compute a hash over the result of the query */
+ while( SQLITE_ROW==sqlite3_step(pStmt) ){
+ hash_step(&cx,(const unsigned char*)"R",1);
+ for(i=0; i<nCol; i++){
+ switch( sqlite3_column_type(pStmt,i) ){
+ case SQLITE_NULL: {
+ hash_step(&cx, (const unsigned char*)"N",1);
+ break;
+ }
+ case SQLITE_INTEGER: {
+ sqlite3_uint64 u;
+ int j;
+ unsigned char x[9];
+ sqlite3_int64 v = sqlite3_column_int64(pStmt,i);
+ memcpy(&u, &v, 8);
+ for(j=8; j>=1; j--){
+ x[j] = u & 0xff;
+ u >>= 8;
+ }
+ x[0] = 'I';
+ hash_step(&cx, x, 9);
+ break;
+ }
+ case SQLITE_FLOAT: {
+ sqlite3_uint64 u;
+ int j;
+ unsigned char x[9];
+ double r = sqlite3_column_double(pStmt,i);
+ memcpy(&u, &r, 8);
+ for(j=8; j>=1; j--){
+ x[j] = u & 0xff;
+ u >>= 8;
+ }
+ x[0] = 'F';
+ hash_step(&cx,x,9);
+ break;
+ }
+ case SQLITE_TEXT: {
+ int n2 = sqlite3_column_bytes(pStmt, i);
+ const unsigned char *z2 = sqlite3_column_text(pStmt, i);
+ hash_step_vformat(&cx,"T%d:",n2);
+ hash_step(&cx, z2, n2);
+ break;
+ }
+ case SQLITE_BLOB: {
+ int n2 = sqlite3_column_bytes(pStmt, i);
+ const unsigned char *z2 = sqlite3_column_blob(pStmt, i);
+ hash_step_vformat(&cx,"B%d:",n2);
+ hash_step(&cx, z2, n2);
+ break;
+ }
+ }
+ }
+ }
+ sqlite3_finalize(pStmt);
+ }
+ hash_finish(&cx, zOut);
+ sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT);
+}
+
+
+#ifdef _WIN32
+__declspec(dllexport)
+#endif
+int sqlite3_sha_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ int rc = SQLITE_OK;
+ SQLITE_EXTENSION_INIT2(pApi);
+ (void)pzErrMsg; /* Unused parameter */
+ rc = sqlite3_create_function(db, "sha1", 1,
+ SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC,
+ 0, sha1Func, 0, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(db, "sha1_query", 1,
+ SQLITE_UTF8|SQLITE_DIRECTONLY, 0,
+ sha1QueryFunc, 0, 0);
+ }
+ return rc;
+}