diff options
Diffstat (limited to '')
-rw-r--r-- | ext/rtree/README | 120 |
1 files changed, 120 insertions, 0 deletions
diff --git a/ext/rtree/README b/ext/rtree/README new file mode 100644 index 0000000..3736f45 --- /dev/null +++ b/ext/rtree/README @@ -0,0 +1,120 @@ + +This directory contains an SQLite extension that implements a virtual +table type that allows users to create, query and manipulate r-tree[1] +data structures inside of SQLite databases. Users create, populate +and query r-tree structures using ordinary SQL statements. + + 1. SQL Interface + + 1.1 Table Creation + 1.2 Data Manipulation + 1.3 Data Querying + 1.4 Introspection and Analysis + + 2. Compilation and Deployment + + 3. References + + +1. SQL INTERFACE + + 1.1 Table Creation. + + All r-tree virtual tables have an odd number of columns between + 3 and 11. Unlike regular SQLite tables, r-tree tables are strongly + typed. + + The leftmost column is always the pimary key and contains 64-bit + integer values. Each subsequent column contains a 32-bit real + value. For each pair of real values, the first (leftmost) must be + less than or equal to the second. R-tree tables may be + constructed using the following syntax: + + CREATE VIRTUAL TABLE <name> USING rtree(<column-names>) + + For example: + + CREATE VIRTUAL TABLE boxes USING rtree(boxno, xmin, xmax, ymin, ymax); + INSERT INTO boxes VALUES(1, 1.0, 3.0, 2.0, 4.0); + + Constructing a virtual r-tree table <name> creates the following three + real tables in the database to store the data structure: + + <name>_node + <name>_rowid + <name>_parent + + Dropping or modifying the contents of these tables directly will + corrupt the r-tree structure. To delete an r-tree from a database, + use a regular DROP TABLE statement: + + DROP TABLE <name>; + + Dropping the main r-tree table automatically drops the automatically + created tables. + + 1.2 Data Manipulation (INSERT, UPDATE, DELETE). + + The usual INSERT, UPDATE or DELETE syntax is used to manipulate data + stored in an r-tree table. Please note the following: + + * Inserting a NULL value into the primary key column has the + same effect as inserting a NULL into an INTEGER PRIMARY KEY + column of a regular table. The system automatically assigns + an unused integer key value to the new record. Usually, this + is one greater than the largest primary key value currently + present in the table. + + * Attempting to insert a duplicate primary key value fails with + an SQLITE_CONSTRAINT error. + + * Attempting to insert or modify a record such that the value + stored in the (N*2)th column is greater than that stored in + the (N*2+1)th column fails with an SQLITE_CONSTRAINT error. + + * When a record is inserted, values are always converted to + the required type (64-bit integer or 32-bit real) as if they + were part of an SQL CAST expression. Non-numeric strings are + converted to zero. + + 1.3 Queries. + + R-tree tables may be queried using all of the same SQL syntax supported + by regular tables. However, some query patterns are more efficient + than others. + + R-trees support fast lookup by primary key value (O(logN), like + regular tables). + + Any combination of equality and range (<, <=, >, >=) constraints + on spatial data columns may be used to optimize other queries. This + is the key advantage to using r-tree tables instead of creating + indices on regular tables. + + 1.4 Introspection and Analysis. + + TODO: Describe rtreenode() and rtreedepth() functions. + + +2. COMPILATION AND USAGE + + The easiest way to compile and use the RTREE extension is to build + and use it as a dynamically loadable SQLite extension. To do this + using gcc on *nix: + + gcc -shared rtree.c -o libSqliteRtree.so + + You may need to add "-I" flags so that gcc can find sqlite3ext.h + and sqlite3.h. The resulting shared lib, libSqliteRtree.so, may be + loaded into sqlite in the same way as any other dynamicly loadable + extension. + + +3. REFERENCES + + [1] Atonin Guttman, "R-trees - A Dynamic Index Structure For Spatial + Searching", University of California Berkeley, 1984. + + [2] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, Bernhard Seeger, + "The R*-tree: An Efficient and Robust Access Method for Points and + Rectangles", Universitaet Bremen, 1990. |