summaryrefslogtreecommitdiffstats
path: root/src/pcache1.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/pcache1.c1280
1 files changed, 1280 insertions, 0 deletions
diff --git a/src/pcache1.c b/src/pcache1.c
new file mode 100644
index 0000000..adbe953
--- /dev/null
+++ b/src/pcache1.c
@@ -0,0 +1,1280 @@
+/*
+** 2008 November 05
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file implements the default page cache implementation (the
+** sqlite3_pcache interface). It also contains part of the implementation
+** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
+** If the default page cache implementation is overridden, then neither of
+** these two features are available.
+**
+** A Page cache line looks like this:
+**
+** -------------------------------------------------------------
+** | database page content | PgHdr1 | MemPage | PgHdr |
+** -------------------------------------------------------------
+**
+** The database page content is up front (so that buffer overreads tend to
+** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage
+** is the extension added by the btree.c module containing information such
+** as the database page number and how that database page is used. PgHdr
+** is added by the pcache.c layer and contains information used to keep track
+** of which pages are "dirty". PgHdr1 is an extension added by this
+** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page.
+** PgHdr1 contains information needed to look up a page by its page number.
+** The superclass sqlite3_pcache_page.pBuf points to the start of the
+** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
+**
+** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
+** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The
+** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
+** size can vary according to architecture, compile-time options, and
+** SQLite library version number.
+**
+** Historical note: It used to be that if the SQLITE_PCACHE_SEPARATE_HEADER
+** was defined, then the page content would be held in a separate memory
+** allocation from the PgHdr1. This was intended to avoid clownshoe memory
+** allocations. However, the btree layer needs a small (16-byte) overrun
+** area after the page content buffer. The header serves as that overrun
+** area. Therefore SQLITE_PCACHE_SEPARATE_HEADER was discontinued to avoid
+** any possibility of a memory error.
+**
+** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates
+** with this module. Information is passed back and forth as PgHdr1 pointers.
+**
+** The pcache.c and pager.c modules deal pointers to PgHdr objects.
+** The btree.c module deals with pointers to MemPage objects.
+**
+** SOURCE OF PAGE CACHE MEMORY:
+**
+** Memory for a page might come from any of three sources:
+**
+** (1) The general-purpose memory allocator - sqlite3Malloc()
+** (2) Global page-cache memory provided using sqlite3_config() with
+** SQLITE_CONFIG_PAGECACHE.
+** (3) PCache-local bulk allocation.
+**
+** The third case is a chunk of heap memory (defaulting to 100 pages worth)
+** that is allocated when the page cache is created. The size of the local
+** bulk allocation can be adjusted using
+**
+** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
+**
+** If N is positive, then N pages worth of memory are allocated using a single
+** sqlite3Malloc() call and that memory is used for the first N pages allocated.
+** Or if N is negative, then -1024*N bytes of memory are allocated and used
+** for as many pages as can be accomodated.
+**
+** Only one of (2) or (3) can be used. Once the memory available to (2) or
+** (3) is exhausted, subsequent allocations fail over to the general-purpose
+** memory allocator (1).
+**
+** Earlier versions of SQLite used only methods (1) and (2). But experiments
+** show that method (3) with N==100 provides about a 5% performance boost for
+** common workloads.
+*/
+#include "sqliteInt.h"
+
+typedef struct PCache1 PCache1;
+typedef struct PgHdr1 PgHdr1;
+typedef struct PgFreeslot PgFreeslot;
+typedef struct PGroup PGroup;
+
+/*
+** Each cache entry is represented by an instance of the following
+** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated
+** directly before this structure and is used to cache the page content.
+**
+** When reading a corrupt database file, it is possible that SQLite might
+** read a few bytes (no more than 16 bytes) past the end of the page buffer.
+** It will only read past the end of the page buffer, never write. This
+** object is positioned immediately after the page buffer to serve as an
+** overrun area, so that overreads are harmless.
+**
+** Variables isBulkLocal and isAnchor were once type "u8". That works,
+** but causes a 2-byte gap in the structure for most architectures (since
+** pointers must be either 4 or 8-byte aligned). As this structure is located
+** in memory directly after the associated page data, if the database is
+** corrupt, code at the b-tree layer may overread the page buffer and
+** read part of this structure before the corruption is detected. This
+** can cause a valgrind error if the unitialized gap is accessed. Using u16
+** ensures there is no such gap, and therefore no bytes of uninitialized
+** memory in the structure.
+**
+** The pLruNext and pLruPrev pointers form a double-linked circular list
+** of all pages that are unpinned. The PGroup.lru element (which should be
+** the only element on the list with PgHdr1.isAnchor set to 1) forms the
+** beginning and the end of the list.
+*/
+struct PgHdr1 {
+ sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */
+ unsigned int iKey; /* Key value (page number) */
+ u16 isBulkLocal; /* This page from bulk local storage */
+ u16 isAnchor; /* This is the PGroup.lru element */
+ PgHdr1 *pNext; /* Next in hash table chain */
+ PCache1 *pCache; /* Cache that currently owns this page */
+ PgHdr1 *pLruNext; /* Next in circular LRU list of unpinned pages */
+ PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
+ /* NB: pLruPrev is only valid if pLruNext!=0 */
+};
+
+/*
+** A page is pinned if it is not on the LRU list. To be "pinned" means
+** that the page is in active use and must not be deallocated.
+*/
+#define PAGE_IS_PINNED(p) ((p)->pLruNext==0)
+#define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0)
+
+/* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
+** of one or more PCaches that are able to recycle each other's unpinned
+** pages when they are under memory pressure. A PGroup is an instance of
+** the following object.
+**
+** This page cache implementation works in one of two modes:
+**
+** (1) Every PCache is the sole member of its own PGroup. There is
+** one PGroup per PCache.
+**
+** (2) There is a single global PGroup that all PCaches are a member
+** of.
+**
+** Mode 1 uses more memory (since PCache instances are not able to rob
+** unused pages from other PCaches) but it also operates without a mutex,
+** and is therefore often faster. Mode 2 requires a mutex in order to be
+** threadsafe, but recycles pages more efficiently.
+**
+** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
+** PGroup which is the pcache1.grp global variable and its mutex is
+** SQLITE_MUTEX_STATIC_LRU.
+*/
+struct PGroup {
+ sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
+ unsigned int nMaxPage; /* Sum of nMax for purgeable caches */
+ unsigned int nMinPage; /* Sum of nMin for purgeable caches */
+ unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */
+ unsigned int nPurgeable; /* Number of purgeable pages allocated */
+ PgHdr1 lru; /* The beginning and end of the LRU list */
+};
+
+/* Each page cache is an instance of the following object. Every
+** open database file (including each in-memory database and each
+** temporary or transient database) has a single page cache which
+** is an instance of this object.
+**
+** Pointers to structures of this type are cast and returned as
+** opaque sqlite3_pcache* handles.
+*/
+struct PCache1 {
+ /* Cache configuration parameters. Page size (szPage) and the purgeable
+ ** flag (bPurgeable) and the pnPurgeable pointer are all set when the
+ ** cache is created and are never changed thereafter. nMax may be
+ ** modified at any time by a call to the pcache1Cachesize() method.
+ ** The PGroup mutex must be held when accessing nMax.
+ */
+ PGroup *pGroup; /* PGroup this cache belongs to */
+ unsigned int *pnPurgeable; /* Pointer to pGroup->nPurgeable */
+ int szPage; /* Size of database content section */
+ int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */
+ int szAlloc; /* Total size of one pcache line */
+ int bPurgeable; /* True if cache is purgeable */
+ unsigned int nMin; /* Minimum number of pages reserved */
+ unsigned int nMax; /* Configured "cache_size" value */
+ unsigned int n90pct; /* nMax*9/10 */
+ unsigned int iMaxKey; /* Largest key seen since xTruncate() */
+ unsigned int nPurgeableDummy; /* pnPurgeable points here when not used*/
+
+ /* Hash table of all pages. The following variables may only be accessed
+ ** when the accessor is holding the PGroup mutex.
+ */
+ unsigned int nRecyclable; /* Number of pages in the LRU list */
+ unsigned int nPage; /* Total number of pages in apHash */
+ unsigned int nHash; /* Number of slots in apHash[] */
+ PgHdr1 **apHash; /* Hash table for fast lookup by key */
+ PgHdr1 *pFree; /* List of unused pcache-local pages */
+ void *pBulk; /* Bulk memory used by pcache-local */
+};
+
+/*
+** Free slots in the allocator used to divide up the global page cache
+** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
+*/
+struct PgFreeslot {
+ PgFreeslot *pNext; /* Next free slot */
+};
+
+/*
+** Global data used by this cache.
+*/
+static SQLITE_WSD struct PCacheGlobal {
+ PGroup grp; /* The global PGroup for mode (2) */
+
+ /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
+ ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
+ ** fixed at sqlite3_initialize() time and do not require mutex protection.
+ ** The nFreeSlot and pFree values do require mutex protection.
+ */
+ int isInit; /* True if initialized */
+ int separateCache; /* Use a new PGroup for each PCache */
+ int nInitPage; /* Initial bulk allocation size */
+ int szSlot; /* Size of each free slot */
+ int nSlot; /* The number of pcache slots */
+ int nReserve; /* Try to keep nFreeSlot above this */
+ void *pStart, *pEnd; /* Bounds of global page cache memory */
+ /* Above requires no mutex. Use mutex below for variable that follow. */
+ sqlite3_mutex *mutex; /* Mutex for accessing the following: */
+ PgFreeslot *pFree; /* Free page blocks */
+ int nFreeSlot; /* Number of unused pcache slots */
+ /* The following value requires a mutex to change. We skip the mutex on
+ ** reading because (1) most platforms read a 32-bit integer atomically and
+ ** (2) even if an incorrect value is read, no great harm is done since this
+ ** is really just an optimization. */
+ int bUnderPressure; /* True if low on PAGECACHE memory */
+} pcache1_g;
+
+/*
+** All code in this file should access the global structure above via the
+** alias "pcache1". This ensures that the WSD emulation is used when
+** compiling for systems that do not support real WSD.
+*/
+#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
+
+/*
+** Macros to enter and leave the PCache LRU mutex.
+*/
+#if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
+# define pcache1EnterMutex(X) assert((X)->mutex==0)
+# define pcache1LeaveMutex(X) assert((X)->mutex==0)
+# define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
+#else
+# define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
+# define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
+# define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
+#endif
+
+/******************************************************************************/
+/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
+
+
+/*
+** This function is called during initialization if a static buffer is
+** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
+** verb to sqlite3_config(). Parameter pBuf points to an allocation large
+** enough to contain 'n' buffers of 'sz' bytes each.
+**
+** This routine is called from sqlite3_initialize() and so it is guaranteed
+** to be serialized already. There is no need for further mutexing.
+*/
+void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
+ if( pcache1.isInit ){
+ PgFreeslot *p;
+ if( pBuf==0 ) sz = n = 0;
+ if( n==0 ) sz = 0;
+ sz = ROUNDDOWN8(sz);
+ pcache1.szSlot = sz;
+ pcache1.nSlot = pcache1.nFreeSlot = n;
+ pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
+ pcache1.pStart = pBuf;
+ pcache1.pFree = 0;
+ pcache1.bUnderPressure = 0;
+ while( n-- ){
+ p = (PgFreeslot*)pBuf;
+ p->pNext = pcache1.pFree;
+ pcache1.pFree = p;
+ pBuf = (void*)&((char*)pBuf)[sz];
+ }
+ pcache1.pEnd = pBuf;
+ }
+}
+
+/*
+** Try to initialize the pCache->pFree and pCache->pBulk fields. Return
+** true if pCache->pFree ends up containing one or more free pages.
+*/
+static int pcache1InitBulk(PCache1 *pCache){
+ i64 szBulk;
+ char *zBulk;
+ if( pcache1.nInitPage==0 ) return 0;
+ /* Do not bother with a bulk allocation if the cache size very small */
+ if( pCache->nMax<3 ) return 0;
+ sqlite3BeginBenignMalloc();
+ if( pcache1.nInitPage>0 ){
+ szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
+ }else{
+ szBulk = -1024 * (i64)pcache1.nInitPage;
+ }
+ if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
+ szBulk = pCache->szAlloc*(i64)pCache->nMax;
+ }
+ zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
+ sqlite3EndBenignMalloc();
+ if( zBulk ){
+ int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
+ do{
+ PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
+ pX->page.pBuf = zBulk;
+ pX->page.pExtra = &pX[1];
+ pX->isBulkLocal = 1;
+ pX->isAnchor = 0;
+ pX->pNext = pCache->pFree;
+ pX->pLruPrev = 0; /* Initializing this saves a valgrind error */
+ pCache->pFree = pX;
+ zBulk += pCache->szAlloc;
+ }while( --nBulk );
+ }
+ return pCache->pFree!=0;
+}
+
+/*
+** Malloc function used within this file to allocate space from the buffer
+** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
+** such buffer exists or there is no space left in it, this function falls
+** back to sqlite3Malloc().
+**
+** Multiple threads can run this routine at the same time. Global variables
+** in pcache1 need to be protected via mutex.
+*/
+static void *pcache1Alloc(int nByte){
+ void *p = 0;
+ assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
+ if( nByte<=pcache1.szSlot ){
+ sqlite3_mutex_enter(pcache1.mutex);
+ p = (PgHdr1 *)pcache1.pFree;
+ if( p ){
+ pcache1.pFree = pcache1.pFree->pNext;
+ pcache1.nFreeSlot--;
+ pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
+ assert( pcache1.nFreeSlot>=0 );
+ sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
+ sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
+ }
+ sqlite3_mutex_leave(pcache1.mutex);
+ }
+ if( p==0 ){
+ /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
+ ** it from sqlite3Malloc instead.
+ */
+ p = sqlite3Malloc(nByte);
+#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
+ if( p ){
+ int sz = sqlite3MallocSize(p);
+ sqlite3_mutex_enter(pcache1.mutex);
+ sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
+ sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
+ sqlite3_mutex_leave(pcache1.mutex);
+ }
+#endif
+ sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
+ }
+ return p;
+}
+
+/*
+** Free an allocated buffer obtained from pcache1Alloc().
+*/
+static void pcache1Free(void *p){
+ if( p==0 ) return;
+ if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
+ PgFreeslot *pSlot;
+ sqlite3_mutex_enter(pcache1.mutex);
+ sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
+ pSlot = (PgFreeslot*)p;
+ pSlot->pNext = pcache1.pFree;
+ pcache1.pFree = pSlot;
+ pcache1.nFreeSlot++;
+ pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
+ assert( pcache1.nFreeSlot<=pcache1.nSlot );
+ sqlite3_mutex_leave(pcache1.mutex);
+ }else{
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
+#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
+ {
+ int nFreed = 0;
+ nFreed = sqlite3MallocSize(p);
+ sqlite3_mutex_enter(pcache1.mutex);
+ sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
+ sqlite3_mutex_leave(pcache1.mutex);
+ }
+#endif
+ sqlite3_free(p);
+ }
+}
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+/*
+** Return the size of a pcache allocation
+*/
+static int pcache1MemSize(void *p){
+ if( p>=pcache1.pStart && p<pcache1.pEnd ){
+ return pcache1.szSlot;
+ }else{
+ int iSize;
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
+ iSize = sqlite3MallocSize(p);
+ sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
+ return iSize;
+ }
+}
+#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
+
+/*
+** Allocate a new page object initially associated with cache pCache.
+*/
+static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
+ PgHdr1 *p = 0;
+ void *pPg;
+
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
+ if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
+ assert( pCache->pFree!=0 );
+ p = pCache->pFree;
+ pCache->pFree = p->pNext;
+ p->pNext = 0;
+ }else{
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ /* The group mutex must be released before pcache1Alloc() is called. This
+ ** is because it might call sqlite3_release_memory(), which assumes that
+ ** this mutex is not held. */
+ assert( pcache1.separateCache==0 );
+ assert( pCache->pGroup==&pcache1.grp );
+ pcache1LeaveMutex(pCache->pGroup);
+#endif
+ if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
+ pPg = pcache1Alloc(pCache->szAlloc);
+ if( benignMalloc ){ sqlite3EndBenignMalloc(); }
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ pcache1EnterMutex(pCache->pGroup);
+#endif
+ if( pPg==0 ) return 0;
+ p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
+ p->page.pBuf = pPg;
+ p->page.pExtra = &p[1];
+ p->isBulkLocal = 0;
+ p->isAnchor = 0;
+ p->pLruPrev = 0; /* Initializing this saves a valgrind error */
+ }
+ (*pCache->pnPurgeable)++;
+ return p;
+}
+
+/*
+** Free a page object allocated by pcache1AllocPage().
+*/
+static void pcache1FreePage(PgHdr1 *p){
+ PCache1 *pCache;
+ assert( p!=0 );
+ pCache = p->pCache;
+ assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
+ if( p->isBulkLocal ){
+ p->pNext = pCache->pFree;
+ pCache->pFree = p;
+ }else{
+ pcache1Free(p->page.pBuf);
+ }
+ (*pCache->pnPurgeable)--;
+}
+
+/*
+** Malloc function used by SQLite to obtain space from the buffer configured
+** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
+** exists, this function falls back to sqlite3Malloc().
+*/
+void *sqlite3PageMalloc(int sz){
+ assert( sz<=65536+8 ); /* These allocations are never very large */
+ return pcache1Alloc(sz);
+}
+
+/*
+** Free an allocated buffer obtained from sqlite3PageMalloc().
+*/
+void sqlite3PageFree(void *p){
+ pcache1Free(p);
+}
+
+
+/*
+** Return true if it desirable to avoid allocating a new page cache
+** entry.
+**
+** If memory was allocated specifically to the page cache using
+** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
+** it is desirable to avoid allocating a new page cache entry because
+** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
+** for all page cache needs and we should not need to spill the
+** allocation onto the heap.
+**
+** Or, the heap is used for all page cache memory but the heap is
+** under memory pressure, then again it is desirable to avoid
+** allocating a new page cache entry in order to avoid stressing
+** the heap even further.
+*/
+static int pcache1UnderMemoryPressure(PCache1 *pCache){
+ if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
+ return pcache1.bUnderPressure;
+ }else{
+ return sqlite3HeapNearlyFull();
+ }
+}
+
+/******************************************************************************/
+/******** General Implementation Functions ************************************/
+
+/*
+** This function is used to resize the hash table used by the cache passed
+** as the first argument.
+**
+** The PCache mutex must be held when this function is called.
+*/
+static void pcache1ResizeHash(PCache1 *p){
+ PgHdr1 **apNew;
+ unsigned int nNew;
+ unsigned int i;
+
+ assert( sqlite3_mutex_held(p->pGroup->mutex) );
+
+ nNew = p->nHash*2;
+ if( nNew<256 ){
+ nNew = 256;
+ }
+
+ pcache1LeaveMutex(p->pGroup);
+ if( p->nHash ){ sqlite3BeginBenignMalloc(); }
+ apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
+ if( p->nHash ){ sqlite3EndBenignMalloc(); }
+ pcache1EnterMutex(p->pGroup);
+ if( apNew ){
+ for(i=0; i<p->nHash; i++){
+ PgHdr1 *pPage;
+ PgHdr1 *pNext = p->apHash[i];
+ while( (pPage = pNext)!=0 ){
+ unsigned int h = pPage->iKey % nNew;
+ pNext = pPage->pNext;
+ pPage->pNext = apNew[h];
+ apNew[h] = pPage;
+ }
+ }
+ sqlite3_free(p->apHash);
+ p->apHash = apNew;
+ p->nHash = nNew;
+ }
+}
+
+/*
+** This function is used internally to remove the page pPage from the
+** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
+** LRU list, then this function is a no-op.
+**
+** The PGroup mutex must be held when this function is called.
+*/
+static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
+ assert( pPage!=0 );
+ assert( PAGE_IS_UNPINNED(pPage) );
+ assert( pPage->pLruNext );
+ assert( pPage->pLruPrev );
+ assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) );
+ pPage->pLruPrev->pLruNext = pPage->pLruNext;
+ pPage->pLruNext->pLruPrev = pPage->pLruPrev;
+ pPage->pLruNext = 0;
+ /* pPage->pLruPrev = 0;
+ ** No need to clear pLruPrev as it is never accessed if pLruNext is 0 */
+ assert( pPage->isAnchor==0 );
+ assert( pPage->pCache->pGroup->lru.isAnchor==1 );
+ pPage->pCache->nRecyclable--;
+ return pPage;
+}
+
+
+/*
+** Remove the page supplied as an argument from the hash table
+** (PCache1.apHash structure) that it is currently stored in.
+** Also free the page if freePage is true.
+**
+** The PGroup mutex must be held when this function is called.
+*/
+static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
+ unsigned int h;
+ PCache1 *pCache = pPage->pCache;
+ PgHdr1 **pp;
+
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
+ h = pPage->iKey % pCache->nHash;
+ for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
+ *pp = (*pp)->pNext;
+
+ pCache->nPage--;
+ if( freeFlag ) pcache1FreePage(pPage);
+}
+
+/*
+** If there are currently more than nMaxPage pages allocated, try
+** to recycle pages to reduce the number allocated to nMaxPage.
+*/
+static void pcache1EnforceMaxPage(PCache1 *pCache){
+ PGroup *pGroup = pCache->pGroup;
+ PgHdr1 *p;
+ assert( sqlite3_mutex_held(pGroup->mutex) );
+ while( pGroup->nPurgeable>pGroup->nMaxPage
+ && (p=pGroup->lru.pLruPrev)->isAnchor==0
+ ){
+ assert( p->pCache->pGroup==pGroup );
+ assert( PAGE_IS_UNPINNED(p) );
+ pcache1PinPage(p);
+ pcache1RemoveFromHash(p, 1);
+ }
+ if( pCache->nPage==0 && pCache->pBulk ){
+ sqlite3_free(pCache->pBulk);
+ pCache->pBulk = pCache->pFree = 0;
+ }
+}
+
+/*
+** Discard all pages from cache pCache with a page number (key value)
+** greater than or equal to iLimit. Any pinned pages that meet this
+** criteria are unpinned before they are discarded.
+**
+** The PCache mutex must be held when this function is called.
+*/
+static void pcache1TruncateUnsafe(
+ PCache1 *pCache, /* The cache to truncate */
+ unsigned int iLimit /* Drop pages with this pgno or larger */
+){
+ TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */
+ unsigned int h, iStop;
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
+ assert( pCache->iMaxKey >= iLimit );
+ assert( pCache->nHash > 0 );
+ if( pCache->iMaxKey - iLimit < pCache->nHash ){
+ /* If we are just shaving the last few pages off the end of the
+ ** cache, then there is no point in scanning the entire hash table.
+ ** Only scan those hash slots that might contain pages that need to
+ ** be removed. */
+ h = iLimit % pCache->nHash;
+ iStop = pCache->iMaxKey % pCache->nHash;
+ TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */
+ }else{
+ /* This is the general case where many pages are being removed.
+ ** It is necessary to scan the entire hash table */
+ h = pCache->nHash/2;
+ iStop = h - 1;
+ }
+ for(;;){
+ PgHdr1 **pp;
+ PgHdr1 *pPage;
+ assert( h<pCache->nHash );
+ pp = &pCache->apHash[h];
+ while( (pPage = *pp)!=0 ){
+ if( pPage->iKey>=iLimit ){
+ pCache->nPage--;
+ *pp = pPage->pNext;
+ if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage);
+ pcache1FreePage(pPage);
+ }else{
+ pp = &pPage->pNext;
+ TESTONLY( if( nPage>=0 ) nPage++; )
+ }
+ }
+ if( h==iStop ) break;
+ h = (h+1) % pCache->nHash;
+ }
+ assert( nPage<0 || pCache->nPage==(unsigned)nPage );
+}
+
+/******************************************************************************/
+/******** sqlite3_pcache Methods **********************************************/
+
+/*
+** Implementation of the sqlite3_pcache.xInit method.
+*/
+static int pcache1Init(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ assert( pcache1.isInit==0 );
+ memset(&pcache1, 0, sizeof(pcache1));
+
+
+ /*
+ ** The pcache1.separateCache variable is true if each PCache has its own
+ ** private PGroup (mode-1). pcache1.separateCache is false if the single
+ ** PGroup in pcache1.grp is used for all page caches (mode-2).
+ **
+ ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
+ **
+ ** * Use a unified cache in single-threaded applications that have
+ ** configured a start-time buffer for use as page-cache memory using
+ ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
+ ** pBuf argument.
+ **
+ ** * Otherwise use separate caches (mode-1)
+ */
+#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
+ pcache1.separateCache = 0;
+#elif SQLITE_THREADSAFE
+ pcache1.separateCache = sqlite3GlobalConfig.pPage==0
+ || sqlite3GlobalConfig.bCoreMutex>0;
+#else
+ pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
+#endif
+
+#if SQLITE_THREADSAFE
+ if( sqlite3GlobalConfig.bCoreMutex ){
+ pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU);
+ pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM);
+ }
+#endif
+ if( pcache1.separateCache
+ && sqlite3GlobalConfig.nPage!=0
+ && sqlite3GlobalConfig.pPage==0
+ ){
+ pcache1.nInitPage = sqlite3GlobalConfig.nPage;
+ }else{
+ pcache1.nInitPage = 0;
+ }
+ pcache1.grp.mxPinned = 10;
+ pcache1.isInit = 1;
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of the sqlite3_pcache.xShutdown method.
+** Note that the static mutex allocated in xInit does
+** not need to be freed.
+*/
+static void pcache1Shutdown(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ assert( pcache1.isInit!=0 );
+ memset(&pcache1, 0, sizeof(pcache1));
+}
+
+/* forward declaration */
+static void pcache1Destroy(sqlite3_pcache *p);
+
+/*
+** Implementation of the sqlite3_pcache.xCreate method.
+**
+** Allocate a new cache.
+*/
+static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
+ PCache1 *pCache; /* The newly created page cache */
+ PGroup *pGroup; /* The group the new page cache will belong to */
+ int sz; /* Bytes of memory required to allocate the new cache */
+
+ assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
+ assert( szExtra < 300 );
+
+ sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
+ pCache = (PCache1 *)sqlite3MallocZero(sz);
+ if( pCache ){
+ if( pcache1.separateCache ){
+ pGroup = (PGroup*)&pCache[1];
+ pGroup->mxPinned = 10;
+ }else{
+ pGroup = &pcache1.grp;
+ }
+ pcache1EnterMutex(pGroup);
+ if( pGroup->lru.isAnchor==0 ){
+ pGroup->lru.isAnchor = 1;
+ pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
+ }
+ pCache->pGroup = pGroup;
+ pCache->szPage = szPage;
+ pCache->szExtra = szExtra;
+ pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
+ pCache->bPurgeable = (bPurgeable ? 1 : 0);
+ pcache1ResizeHash(pCache);
+ if( bPurgeable ){
+ pCache->nMin = 10;
+ pGroup->nMinPage += pCache->nMin;
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
+ pCache->pnPurgeable = &pGroup->nPurgeable;
+ }else{
+ pCache->pnPurgeable = &pCache->nPurgeableDummy;
+ }
+ pcache1LeaveMutex(pGroup);
+ if( pCache->nHash==0 ){
+ pcache1Destroy((sqlite3_pcache*)pCache);
+ pCache = 0;
+ }
+ }
+ return (sqlite3_pcache *)pCache;
+}
+
+/*
+** Implementation of the sqlite3_pcache.xCachesize method.
+**
+** Configure the cache_size limit for a cache.
+*/
+static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
+ PCache1 *pCache = (PCache1 *)p;
+ u32 n;
+ assert( nMax>=0 );
+ if( pCache->bPurgeable ){
+ PGroup *pGroup = pCache->pGroup;
+ pcache1EnterMutex(pGroup);
+ n = (u32)nMax;
+ if( n > 0x7fff0000 - pGroup->nMaxPage + pCache->nMax ){
+ n = 0x7fff0000 - pGroup->nMaxPage + pCache->nMax;
+ }
+ pGroup->nMaxPage += (n - pCache->nMax);
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
+ pCache->nMax = n;
+ pCache->n90pct = pCache->nMax*9/10;
+ pcache1EnforceMaxPage(pCache);
+ pcache1LeaveMutex(pGroup);
+ }
+}
+
+/*
+** Implementation of the sqlite3_pcache.xShrink method.
+**
+** Free up as much memory as possible.
+*/
+static void pcache1Shrink(sqlite3_pcache *p){
+ PCache1 *pCache = (PCache1*)p;
+ if( pCache->bPurgeable ){
+ PGroup *pGroup = pCache->pGroup;
+ unsigned int savedMaxPage;
+ pcache1EnterMutex(pGroup);
+ savedMaxPage = pGroup->nMaxPage;
+ pGroup->nMaxPage = 0;
+ pcache1EnforceMaxPage(pCache);
+ pGroup->nMaxPage = savedMaxPage;
+ pcache1LeaveMutex(pGroup);
+ }
+}
+
+/*
+** Implementation of the sqlite3_pcache.xPagecount method.
+*/
+static int pcache1Pagecount(sqlite3_pcache *p){
+ int n;
+ PCache1 *pCache = (PCache1*)p;
+ pcache1EnterMutex(pCache->pGroup);
+ n = pCache->nPage;
+ pcache1LeaveMutex(pCache->pGroup);
+ return n;
+}
+
+
+/*
+** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
+** in the header of the pcache1Fetch() procedure.
+**
+** This steps are broken out into a separate procedure because they are
+** usually not needed, and by avoiding the stack initialization required
+** for these steps, the main pcache1Fetch() procedure can run faster.
+*/
+static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
+ PCache1 *pCache,
+ unsigned int iKey,
+ int createFlag
+){
+ unsigned int nPinned;
+ PGroup *pGroup = pCache->pGroup;
+ PgHdr1 *pPage = 0;
+
+ /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
+ assert( pCache->nPage >= pCache->nRecyclable );
+ nPinned = pCache->nPage - pCache->nRecyclable;
+ assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
+ assert( pCache->n90pct == pCache->nMax*9/10 );
+ if( createFlag==1 && (
+ nPinned>=pGroup->mxPinned
+ || nPinned>=pCache->n90pct
+ || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
+ )){
+ return 0;
+ }
+
+ if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
+ assert( pCache->nHash>0 && pCache->apHash );
+
+ /* Step 4. Try to recycle a page. */
+ if( pCache->bPurgeable
+ && !pGroup->lru.pLruPrev->isAnchor
+ && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
+ ){
+ PCache1 *pOther;
+ pPage = pGroup->lru.pLruPrev;
+ assert( PAGE_IS_UNPINNED(pPage) );
+ pcache1RemoveFromHash(pPage, 0);
+ pcache1PinPage(pPage);
+ pOther = pPage->pCache;
+ if( pOther->szAlloc != pCache->szAlloc ){
+ pcache1FreePage(pPage);
+ pPage = 0;
+ }else{
+ pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable);
+ }
+ }
+
+ /* Step 5. If a usable page buffer has still not been found,
+ ** attempt to allocate a new one.
+ */
+ if( !pPage ){
+ pPage = pcache1AllocPage(pCache, createFlag==1);
+ }
+
+ if( pPage ){
+ unsigned int h = iKey % pCache->nHash;
+ pCache->nPage++;
+ pPage->iKey = iKey;
+ pPage->pNext = pCache->apHash[h];
+ pPage->pCache = pCache;
+ pPage->pLruNext = 0;
+ /* pPage->pLruPrev = 0;
+ ** No need to clear pLruPrev since it is not accessed when pLruNext==0 */
+ *(void **)pPage->page.pExtra = 0;
+ pCache->apHash[h] = pPage;
+ if( iKey>pCache->iMaxKey ){
+ pCache->iMaxKey = iKey;
+ }
+ }
+ return pPage;
+}
+
+/*
+** Implementation of the sqlite3_pcache.xFetch method.
+**
+** Fetch a page by key value.
+**
+** Whether or not a new page may be allocated by this function depends on
+** the value of the createFlag argument. 0 means do not allocate a new
+** page. 1 means allocate a new page if space is easily available. 2
+** means to try really hard to allocate a new page.
+**
+** For a non-purgeable cache (a cache used as the storage for an in-memory
+** database) there is really no difference between createFlag 1 and 2. So
+** the calling function (pcache.c) will never have a createFlag of 1 on
+** a non-purgeable cache.
+**
+** There are three different approaches to obtaining space for a page,
+** depending on the value of parameter createFlag (which may be 0, 1 or 2).
+**
+** 1. Regardless of the value of createFlag, the cache is searched for a
+** copy of the requested page. If one is found, it is returned.
+**
+** 2. If createFlag==0 and the page is not already in the cache, NULL is
+** returned.
+**
+** 3. If createFlag is 1, and the page is not already in the cache, then
+** return NULL (do not allocate a new page) if any of the following
+** conditions are true:
+**
+** (a) the number of pages pinned by the cache is greater than
+** PCache1.nMax, or
+**
+** (b) the number of pages pinned by the cache is greater than
+** the sum of nMax for all purgeable caches, less the sum of
+** nMin for all other purgeable caches, or
+**
+** 4. If none of the first three conditions apply and the cache is marked
+** as purgeable, and if one of the following is true:
+**
+** (a) The number of pages allocated for the cache is already
+** PCache1.nMax, or
+**
+** (b) The number of pages allocated for all purgeable caches is
+** already equal to or greater than the sum of nMax for all
+** purgeable caches,
+**
+** (c) The system is under memory pressure and wants to avoid
+** unnecessary pages cache entry allocations
+**
+** then attempt to recycle a page from the LRU list. If it is the right
+** size, return the recycled buffer. Otherwise, free the buffer and
+** proceed to step 5.
+**
+** 5. Otherwise, allocate and return a new page buffer.
+**
+** There are two versions of this routine. pcache1FetchWithMutex() is
+** the general case. pcache1FetchNoMutex() is a faster implementation for
+** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper
+** invokes the appropriate routine.
+*/
+static PgHdr1 *pcache1FetchNoMutex(
+ sqlite3_pcache *p,
+ unsigned int iKey,
+ int createFlag
+){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage = 0;
+
+ /* Step 1: Search the hash table for an existing entry. */
+ pPage = pCache->apHash[iKey % pCache->nHash];
+ while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
+
+ /* Step 2: If the page was found in the hash table, then return it.
+ ** If the page was not in the hash table and createFlag is 0, abort.
+ ** Otherwise (page not in hash and createFlag!=0) continue with
+ ** subsequent steps to try to create the page. */
+ if( pPage ){
+ if( PAGE_IS_UNPINNED(pPage) ){
+ return pcache1PinPage(pPage);
+ }else{
+ return pPage;
+ }
+ }else if( createFlag ){
+ /* Steps 3, 4, and 5 implemented by this subroutine */
+ return pcache1FetchStage2(pCache, iKey, createFlag);
+ }else{
+ return 0;
+ }
+}
+#if PCACHE1_MIGHT_USE_GROUP_MUTEX
+static PgHdr1 *pcache1FetchWithMutex(
+ sqlite3_pcache *p,
+ unsigned int iKey,
+ int createFlag
+){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage;
+
+ pcache1EnterMutex(pCache->pGroup);
+ pPage = pcache1FetchNoMutex(p, iKey, createFlag);
+ assert( pPage==0 || pCache->iMaxKey>=iKey );
+ pcache1LeaveMutex(pCache->pGroup);
+ return pPage;
+}
+#endif
+static sqlite3_pcache_page *pcache1Fetch(
+ sqlite3_pcache *p,
+ unsigned int iKey,
+ int createFlag
+){
+#if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
+ PCache1 *pCache = (PCache1 *)p;
+#endif
+
+ assert( offsetof(PgHdr1,page)==0 );
+ assert( pCache->bPurgeable || createFlag!=1 );
+ assert( pCache->bPurgeable || pCache->nMin==0 );
+ assert( pCache->bPurgeable==0 || pCache->nMin==10 );
+ assert( pCache->nMin==0 || pCache->bPurgeable );
+ assert( pCache->nHash>0 );
+#if PCACHE1_MIGHT_USE_GROUP_MUTEX
+ if( pCache->pGroup->mutex ){
+ return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
+ }else
+#endif
+ {
+ return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
+ }
+}
+
+
+/*
+** Implementation of the sqlite3_pcache.xUnpin method.
+**
+** Mark a page as unpinned (eligible for asynchronous recycling).
+*/
+static void pcache1Unpin(
+ sqlite3_pcache *p,
+ sqlite3_pcache_page *pPg,
+ int reuseUnlikely
+){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage = (PgHdr1 *)pPg;
+ PGroup *pGroup = pCache->pGroup;
+
+ assert( pPage->pCache==pCache );
+ pcache1EnterMutex(pGroup);
+
+ /* It is an error to call this function if the page is already
+ ** part of the PGroup LRU list.
+ */
+ assert( pPage->pLruNext==0 );
+ assert( PAGE_IS_PINNED(pPage) );
+
+ if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){
+ pcache1RemoveFromHash(pPage, 1);
+ }else{
+ /* Add the page to the PGroup LRU list. */
+ PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
+ pPage->pLruPrev = &pGroup->lru;
+ (pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
+ *ppFirst = pPage;
+ pCache->nRecyclable++;
+ }
+
+ pcache1LeaveMutex(pCache->pGroup);
+}
+
+/*
+** Implementation of the sqlite3_pcache.xRekey method.
+*/
+static void pcache1Rekey(
+ sqlite3_pcache *p,
+ sqlite3_pcache_page *pPg,
+ unsigned int iOld,
+ unsigned int iNew
+){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage = (PgHdr1 *)pPg;
+ PgHdr1 **pp;
+ unsigned int hOld, hNew;
+ assert( pPage->iKey==iOld );
+ assert( pPage->pCache==pCache );
+ assert( iOld!=iNew ); /* The page number really is changing */
+
+ pcache1EnterMutex(pCache->pGroup);
+
+ assert( pcache1FetchNoMutex(p, iOld, 0)==pPage ); /* pPg really is iOld */
+ hOld = iOld%pCache->nHash;
+ pp = &pCache->apHash[hOld];
+ while( (*pp)!=pPage ){
+ pp = &(*pp)->pNext;
+ }
+ *pp = pPage->pNext;
+
+ assert( pcache1FetchNoMutex(p, iNew, 0)==0 ); /* iNew not in cache */
+ hNew = iNew%pCache->nHash;
+ pPage->iKey = iNew;
+ pPage->pNext = pCache->apHash[hNew];
+ pCache->apHash[hNew] = pPage;
+ if( iNew>pCache->iMaxKey ){
+ pCache->iMaxKey = iNew;
+ }
+
+ pcache1LeaveMutex(pCache->pGroup);
+}
+
+/*
+** Implementation of the sqlite3_pcache.xTruncate method.
+**
+** Discard all unpinned pages in the cache with a page number equal to
+** or greater than parameter iLimit. Any pinned pages with a page number
+** equal to or greater than iLimit are implicitly unpinned.
+*/
+static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
+ PCache1 *pCache = (PCache1 *)p;
+ pcache1EnterMutex(pCache->pGroup);
+ if( iLimit<=pCache->iMaxKey ){
+ pcache1TruncateUnsafe(pCache, iLimit);
+ pCache->iMaxKey = iLimit-1;
+ }
+ pcache1LeaveMutex(pCache->pGroup);
+}
+
+/*
+** Implementation of the sqlite3_pcache.xDestroy method.
+**
+** Destroy a cache allocated using pcache1Create().
+*/
+static void pcache1Destroy(sqlite3_pcache *p){
+ PCache1 *pCache = (PCache1 *)p;
+ PGroup *pGroup = pCache->pGroup;
+ assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
+ pcache1EnterMutex(pGroup);
+ if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0);
+ assert( pGroup->nMaxPage >= pCache->nMax );
+ pGroup->nMaxPage -= pCache->nMax;
+ assert( pGroup->nMinPage >= pCache->nMin );
+ pGroup->nMinPage -= pCache->nMin;
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
+ pcache1EnforceMaxPage(pCache);
+ pcache1LeaveMutex(pGroup);
+ sqlite3_free(pCache->pBulk);
+ sqlite3_free(pCache->apHash);
+ sqlite3_free(pCache);
+}
+
+/*
+** This function is called during initialization (sqlite3_initialize()) to
+** install the default pluggable cache module, assuming the user has not
+** already provided an alternative.
+*/
+void sqlite3PCacheSetDefault(void){
+ static const sqlite3_pcache_methods2 defaultMethods = {
+ 1, /* iVersion */
+ 0, /* pArg */
+ pcache1Init, /* xInit */
+ pcache1Shutdown, /* xShutdown */
+ pcache1Create, /* xCreate */
+ pcache1Cachesize, /* xCachesize */
+ pcache1Pagecount, /* xPagecount */
+ pcache1Fetch, /* xFetch */
+ pcache1Unpin, /* xUnpin */
+ pcache1Rekey, /* xRekey */
+ pcache1Truncate, /* xTruncate */
+ pcache1Destroy, /* xDestroy */
+ pcache1Shrink /* xShrink */
+ };
+ sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
+}
+
+/*
+** Return the size of the header on each page of this PCACHE implementation.
+*/
+int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
+
+/*
+** Return the global mutex used by this PCACHE implementation. The
+** sqlite3_status() routine needs access to this mutex.
+*/
+sqlite3_mutex *sqlite3Pcache1Mutex(void){
+ return pcache1.mutex;
+}
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+/*
+** This function is called to free superfluous dynamically allocated memory
+** held by the pager system. Memory in use by any SQLite pager allocated
+** by the current thread may be sqlite3_free()ed.
+**
+** nReq is the number of bytes of memory required. Once this much has
+** been released, the function returns. The return value is the total number
+** of bytes of memory released.
+*/
+int sqlite3PcacheReleaseMemory(int nReq){
+ int nFree = 0;
+ assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
+ assert( sqlite3_mutex_notheld(pcache1.mutex) );
+ if( sqlite3GlobalConfig.pPage==0 ){
+ PgHdr1 *p;
+ pcache1EnterMutex(&pcache1.grp);
+ while( (nReq<0 || nFree<nReq)
+ && (p=pcache1.grp.lru.pLruPrev)!=0
+ && p->isAnchor==0
+ ){
+ nFree += pcache1MemSize(p->page.pBuf);
+ assert( PAGE_IS_UNPINNED(p) );
+ pcache1PinPage(p);
+ pcache1RemoveFromHash(p, 1);
+ }
+ pcache1LeaveMutex(&pcache1.grp);
+ }
+ return nFree;
+}
+#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
+
+#ifdef SQLITE_TEST
+/*
+** This function is used by test procedures to inspect the internal state
+** of the global cache.
+*/
+void sqlite3PcacheStats(
+ int *pnCurrent, /* OUT: Total number of pages cached */
+ int *pnMax, /* OUT: Global maximum cache size */
+ int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
+ int *pnRecyclable /* OUT: Total number of pages available for recycling */
+){
+ PgHdr1 *p;
+ int nRecyclable = 0;
+ for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
+ assert( PAGE_IS_UNPINNED(p) );
+ nRecyclable++;
+ }
+ *pnCurrent = pcache1.grp.nPurgeable;
+ *pnMax = (int)pcache1.grp.nMaxPage;
+ *pnMin = (int)pcache1.grp.nMinPage;
+ *pnRecyclable = nRecyclable;
+}
+#endif