diff options
Diffstat (limited to '')
-rw-r--r-- | test/malloc3.test | 703 |
1 files changed, 703 insertions, 0 deletions
diff --git a/test/malloc3.test b/test/malloc3.test new file mode 100644 index 0000000..b497ab6 --- /dev/null +++ b/test/malloc3.test @@ -0,0 +1,703 @@ +# 2005 November 30 +# +# The author disclaims copyright to this source code. In place of +# a legal notice, here is a blessing: +# +# May you do good and not evil. +# May you find forgiveness for yourself and forgive others. +# May you share freely, never taking more than you give. +# +#*********************************************************************** +# +# This file contains tests to ensure that the library handles malloc() failures +# correctly. The emphasis of these tests are the _prepare(), _step() and +# _finalize() calls. +# +# $Id: malloc3.test,v 1.24 2008/10/14 15:54:08 drh Exp $ + +set testdir [file dirname $argv0] +source $testdir/tester.tcl +source $testdir/malloc_common.tcl + +# Only run these tests if memory debugging is turned on. +# +if {!$MEMDEBUG} { + puts "Skipping malloc3 tests: not compiled with -DSQLITE_MEMDEBUG..." + finish_test + return +} + +# Do not run these tests if F2FS batch writes are supported. In this case, +# it is possible for a single DML statement in an implicit transaction +# to fail with SQLITE_NOMEM, but for the transaction to still end up +# committed to disk. Which confuses the tests in this module. +# +if {[atomic_batch_write test.db]} { + puts "Skipping malloc3 tests: atomic-batch support" + finish_test + return +} + + +# Do not run these tests with an in-memory journal. +# +# In the pager layer, if an IO or OOM error occurs during a ROLLBACK, or +# when flushing a page to disk due to cache-stress, the pager enters an +# "error state". The only way out of the error state is to unlock the +# database file and end the transaction, leaving whatever journal and +# database files happen to be on disk in place. The next time the current +# (or any other) connection opens a read transaction, hot-journal rollback +# is performed if necessary. +# +# Of course, this doesn't work with an in-memory journal. +# +if {[permutation]=="inmemory_journal"} { + finish_test + return +} + +#-------------------------------------------------------------------------- +# NOTES ON RECOVERING FROM A MALLOC FAILURE +# +# The tests in this file test the behaviours described in the following +# paragraphs. These tests test the behaviour of the system when malloc() fails +# inside of a call to _prepare(), _step(), _finalize() or _reset(). The +# handling of malloc() failures within ancillary procedures is tested +# elsewhere. +# +# Overview: +# +# Executing a statement is done in three stages (prepare, step and finalize). A +# malloc() failure may occur within any stage. If a memory allocation fails +# during statement preparation, no statement handle is returned. From the users +# point of view the system state is as if _prepare() had never been called. +# +# If the memory allocation fails during the _step() or _finalize() calls, then +# the database may be left in one of two states (after finalize() has been +# called): +# +# * As if the neither _step() nor _finalize() had ever been called on +# the statement handle (i.e. any changes made by the statement are +# rolled back). +# * The current transaction may be rolled back. In this case a hot-journal +# may or may not actually be present in the filesystem. +# +# The caller can tell the difference between these two scenarios by invoking +# _get_autocommit(). +# +# +# Handling of sqlite3_reset(): +# +# If a malloc() fails while executing an sqlite3_reset() call, this is handled +# in the same way as a failure within _finalize(). The statement handle +# is not deleted and must be passed to _finalize() for resource deallocation. +# Attempting to _step() or _reset() the statement after a failed _reset() will +# always return SQLITE_NOMEM. +# +# +# Other active SQL statements: +# +# The effect of a malloc failure on concurrently executing SQL statements, +# particularly when the statement is executing with READ_UNCOMMITTED set and +# the malloc() failure mandates statement rollback only. Currently, if +# transaction rollback is required, all other vdbe's are aborted. +# +# Non-transient mallocs in btree.c: +# * The Btree structure itself +# * Each BtCursor structure +# +# Mallocs in pager.c: +# readMasterJournal() - Space to read the master journal name +# pager_delmaster() - Space for the entire master journal file +# +# sqlite3pager_open() - The pager structure itself +# sqlite3_pagerget() - Space for a new page +# pager_open_journal() - Pager.aInJournal[] bitmap +# sqlite3pager_write() - For in-memory databases only: history page and +# statement history page. +# pager_stmt_begin() - Pager.aInStmt[] bitmap +# +# None of the above are a huge problem. The most troublesome failures are the +# transient malloc() calls in btree.c, which can occur during the tree-balance +# operation. This means the tree being balanced will be internally inconsistent +# after the malloc() fails. To avoid the corrupt tree being read by a +# READ_UNCOMMITTED query, we have to make sure the transaction or statement +# rollback occurs before sqlite3_step() returns, not during a subsequent +# sqlite3_finalize(). +#-------------------------------------------------------------------------- + +#-------------------------------------------------------------------------- +# NOTES ON TEST IMPLEMENTATION +# +# The tests in this file are implemented differently from those in other +# files. Instead, tests are specified using three primitives: SQL, PREP and +# TEST. Each primitive has a single argument. Primitives are processed in +# the order they are specified in the file. +# +# A TEST primitive specifies a TCL script as its argument. When a TEST +# directive is encountered the Tcl script is evaluated. Usually, this Tcl +# script contains one or more calls to [do_test]. +# +# A PREP primitive specifies an SQL script as its argument. When a PREP +# directive is encountered the SQL is evaluated using database connection +# [db]. +# +# The SQL primitives are where the action happens. An SQL primitive must +# contain a single, valid SQL statement as its argument. When an SQL +# primitive is encountered, it is evaluated one or more times to test the +# behaviour of the system when malloc() fails during preparation or +# execution of said statement. The Nth time the statement is executed, +# the Nth malloc is said to fail. The statement is executed until it +# succeeds, i.e. (M+1) times, where M is the number of mallocs() required +# to prepare and execute the statement. +# +# Each time an SQL statement fails, the driver program (see proc [run_test] +# below) figures out if a transaction has been automatically rolled back. +# If not, it executes any TEST block immediately proceeding the SQL +# statement, then reexecutes the SQL statement with the next value of N. +# +# If a transaction has been automatically rolled back, then the driver +# program executes all the SQL specified as part of SQL or PREP primitives +# between the current SQL statement and the most recent "BEGIN". Any +# TEST block immediately proceeding the SQL statement is evaluated, and +# then the SQL statement reexecuted with the incremented N value. +# +# That make any sense? If not, read the code in [run_test] and it might. +# +# Extra restriction imposed by the implementation: +# +# * If a PREP block starts a transaction, it must finish it. +# * A PREP block may not close a transaction it did not start. +# +#-------------------------------------------------------------------------- + + +# These procs are used to build up a "program" in global variable +# ::run_test_script. At the end of this file, the proc [run_test] is used +# to execute the program (and all test cases contained therein). +# +set ::run_test_sql_id 0 +set ::run_test_script [list] +proc TEST {id t} {lappend ::run_test_script -test [list $id $t]} +proc PREP {p} {lappend ::run_test_script -prep [string trim $p]} +proc DEBUG {s} {lappend ::run_test_script -debug $s} + +# SQL -- +# +# SQL ?-norollback? <sql-text> +# +# Add an 'SQL' primitive to the program (see notes above). If the -norollback +# switch is present, then the statement is not allowed to automatically roll +# back any active transaction if malloc() fails. It must rollback the statement +# transaction only. +# +proc SQL {a1 {a2 ""}} { + # An SQL primitive parameter is a list of three elements, an id, a boolean + # value indicating if the statement may cause transaction rollback when + # malloc() fails, and the sql statement itself. + set id [incr ::run_test_sql_id] + if {$a2 == ""} { + lappend ::run_test_script -sql [list $id true [string trim $a1]] + } else { + lappend ::run_test_script -sql [list $id false [string trim $a2]] + } +} + +# TEST_AUTOCOMMIT -- +# +# A shorthand test to see if a transaction is active or not. The first +# argument - $id - is the integer number of the test case. The second +# argument is either 1 or 0, the expected value of the auto-commit flag. +# +proc TEST_AUTOCOMMIT {id a} { + TEST $id "do_test \$testid { sqlite3_get_autocommit \$::DB } {$a}" +} + +#-------------------------------------------------------------------------- +# Start of test program declaration +# + + +# Warm body test. A malloc() fails in the middle of a CREATE TABLE statement +# in a single-statement transaction on an empty database. Not too much can go +# wrong here. +# +TEST 1 { + do_test $testid { + execsql {SELECT tbl_name FROM sqlite_master;} + } {} +} +SQL { + CREATE TABLE IF NOT EXISTS abc(a, b, c); +} +TEST 2 { + do_test $testid.1 { + execsql {SELECT tbl_name FROM sqlite_master;} + } {abc} +} + +# Insert a couple of rows into the table. each insert is in its own +# transaction. test that the table is unpopulated before running the inserts +# (and hence after each failure of the first insert), and that it has been +# populated correctly after the final insert succeeds. +# +TEST 3 { + do_test $testid.2 { + execsql {SELECT * FROM abc} + } {} +} +SQL {INSERT INTO abc VALUES(1, 2, 3);} +SQL {INSERT INTO abc VALUES(4, 5, 6);} +SQL {INSERT INTO abc VALUES(7, 8, 9);} +TEST 4 { + do_test $testid { + execsql {SELECT * FROM abc} + } {1 2 3 4 5 6 7 8 9} +} + +# Test a CREATE INDEX statement. Because the table 'abc' is so small, the index +# will all fit on a single page, so this doesn't test too much that the CREATE +# TABLE statement didn't test. A few of the transient malloc()s in btree.c +# perhaps. +# +SQL {CREATE INDEX abc_i ON abc(a, b, c);} +TEST 4 { + do_test $testid { + execsql { + SELECT * FROM abc ORDER BY a DESC; + } + } {7 8 9 4 5 6 1 2 3} +} + +# Test a DELETE statement. Also create a trigger and a view, just to make sure +# these statements don't have any obvious malloc() related bugs in them. Note +# that the test above will be executed each time the DELETE fails, so we're +# also testing rollback of a DELETE from a table with an index on it. +# +SQL {DELETE FROM abc WHERE a > 2;} +SQL {CREATE TRIGGER abc_t AFTER INSERT ON abc BEGIN SELECT 'trigger!'; END;} +SQL {CREATE VIEW abc_v AS SELECT * FROM abc;} +TEST 5 { + do_test $testid { + execsql { + SELECT name, tbl_name FROM sqlite_master ORDER BY name; + SELECT * FROM abc; + } + } {abc abc abc_i abc abc_t abc abc_v abc_v 1 2 3} +} + +set sql { + BEGIN;DELETE FROM abc; +} +for {set i 1} {$i < 100} {incr i} { + set a $i + set b "String value $i" + set c [string repeat X $i] + append sql "INSERT INTO abc VALUES ($a, '$b', '$c');" +} +append sql {COMMIT;} +PREP $sql + +SQL { + DELETE FROM abc WHERE oid IN (SELECT oid FROM abc ORDER BY random() LIMIT 5); +} +TEST 6 { + do_test $testid.1 { + execsql {SELECT count(*) FROM abc} + } {94} + do_test $testid.2 { + execsql { + SELECT min( + (oid == a) AND 'String value ' || a == b AND a == length(c) + ) FROM abc; + } + } {1} +} +SQL { + DELETE FROM abc WHERE oid IN (SELECT oid FROM abc ORDER BY random() LIMIT 5); +} +TEST 7 { + do_test $testid { + execsql {SELECT count(*) FROM abc} + } {89} + do_test $testid { + execsql { + SELECT min( + (oid == a) AND 'String value ' || a == b AND a == length(c) + ) FROM abc; + } + } {1} +} +SQL { + DELETE FROM abc WHERE oid IN (SELECT oid FROM abc ORDER BY random() LIMIT 5); +} +TEST 9 { + do_test $testid { + execsql {SELECT count(*) FROM abc} + } {84} + do_test $testid { + execsql { + SELECT min( + (oid == a) AND 'String value ' || a == b AND a == length(c) + ) FROM abc; + } + } {1} +} + +set padding [string repeat X 500] +PREP [subst { + DROP TABLE abc; + CREATE TABLE abc(a PRIMARY KEY, padding, b, c); + INSERT INTO abc VALUES(0, '$padding', 2, 2); + INSERT INTO abc VALUES(3, '$padding', 5, 5); + INSERT INTO abc VALUES(6, '$padding', 8, 8); +}] + +TEST 10 { + do_test $testid { + execsql {SELECT a, b, c FROM abc} + } {0 2 2 3 5 5 6 8 8} +} + +SQL {BEGIN;} +SQL {INSERT INTO abc VALUES(9, 'XXXXX', 11, 12);} +TEST_AUTOCOMMIT 11 0 +SQL -norollback {UPDATE abc SET a = a + 1, c = c + 1;} +TEST_AUTOCOMMIT 12 0 +SQL {DELETE FROM abc WHERE a = 10;} +TEST_AUTOCOMMIT 13 0 +SQL {COMMIT;} + +TEST 14 { + do_test $testid.1 { + sqlite3_get_autocommit $::DB + } {1} + do_test $testid.2 { + execsql {SELECT a, b, c FROM abc} + } {1 2 3 4 5 6 7 8 9} +} + +PREP [subst { + DROP TABLE abc; + CREATE TABLE abc(a, padding, b, c); + INSERT INTO abc VALUES(1, '$padding', 2, 3); + INSERT INTO abc VALUES(4, '$padding', 5, 6); + INSERT INTO abc VALUES(7, '$padding', 8, 9); + CREATE INDEX abc_i ON abc(a, padding, b, c); +}] + +TEST 15 { + db eval {PRAGMA cache_size = 10} +} + +SQL {BEGIN;} +SQL -norllbck {INSERT INTO abc (oid, a, padding, b, c) SELECT NULL, * FROM abc} +TEST 16 { + do_test $testid { + execsql {SELECT a, count(*) FROM abc GROUP BY a;} + } {1 2 4 2 7 2} +} +SQL -norllbck {INSERT INTO abc (oid, a, padding, b, c) SELECT NULL, * FROM abc} +TEST 17 { + do_test $testid { + execsql {SELECT a, count(*) FROM abc GROUP BY a;} + } {1 4 4 4 7 4} +} +SQL -norllbck {INSERT INTO abc (oid, a, padding, b, c) SELECT NULL, * FROM abc} +TEST 18 { + do_test $testid { + execsql {SELECT a, count(*) FROM abc GROUP BY a;} + } {1 8 4 8 7 8} +} +SQL -norllbck {INSERT INTO abc (oid, a, padding, b, c) SELECT NULL, * FROM abc} +TEST 19 { + do_test $testid { + execsql {SELECT a, count(*) FROM abc GROUP BY a;} + } {1 16 4 16 7 16} +} +SQL {COMMIT;} +TEST 21 { + do_test $testid { + execsql {SELECT a, count(*) FROM abc GROUP BY a;} + } {1 16 4 16 7 16} +} + +SQL {BEGIN;} +SQL {DELETE FROM abc WHERE oid %2} +TEST 22 { + do_test $testid { + execsql {SELECT a, count(*) FROM abc GROUP BY a;} + } {1 8 4 8 7 8} +} +SQL {DELETE FROM abc} +TEST 23 { + do_test $testid { + execsql {SELECT * FROM abc} + } {} +} +SQL {ROLLBACK;} +TEST 24 { + do_test $testid { + execsql {SELECT a, count(*) FROM abc GROUP BY a;} + } {1 16 4 16 7 16} +} + +# Test some schema modifications inside of a transaction. These should all +# cause transaction rollback if they fail. Also query a view, to cover a bit +# more code. +# +PREP {DROP VIEW abc_v;} +TEST 25 { + do_test $testid { + execsql { + SELECT name, tbl_name FROM sqlite_master; + } + } {abc abc abc_i abc} +} +SQL {BEGIN;} +SQL {CREATE TABLE def(d, e, f);} +SQL {CREATE TABLE ghi(g, h, i);} +TEST 26 { + do_test $testid { + execsql { + SELECT name, tbl_name FROM sqlite_master; + } + } {abc abc abc_i abc def def ghi ghi} +} +SQL {CREATE VIEW v1 AS SELECT * FROM def, ghi} +SQL {CREATE UNIQUE INDEX ghi_i1 ON ghi(g);} +TEST 27 { + do_test $testid { + execsql { + SELECT name, tbl_name FROM sqlite_master; + } + } {abc abc abc_i abc def def ghi ghi v1 v1 ghi_i1 ghi} +} +SQL {INSERT INTO def VALUES('a', 'b', 'c')} +SQL {INSERT INTO def VALUES(1, 2, 3)} +SQL -norollback {INSERT INTO ghi SELECT * FROM def} +TEST 28 { + do_test $testid { + execsql { + SELECT * FROM def, ghi WHERE d = g; + } + } {a b c a b c 1 2 3 1 2 3} +} +SQL {COMMIT} +TEST 29 { + do_test $testid { + execsql { + SELECT * FROM v1 WHERE d = g; + } + } {a b c a b c 1 2 3 1 2 3} +} + +# Test a simple multi-file transaction +# +forcedelete test2.db +ifcapable attach { + SQL {ATTACH 'test2.db' AS aux;} + SQL {BEGIN} + SQL {CREATE TABLE aux.tbl2(x, y, z)} + SQL {INSERT INTO tbl2 VALUES(1, 2, 3)} + SQL {INSERT INTO def VALUES(4, 5, 6)} + TEST 30 { + do_test $testid { + execsql { + SELECT * FROM tbl2, def WHERE d = x; + } + } {1 2 3 1 2 3} + } + SQL {COMMIT} + TEST 31 { + do_test $testid { + execsql { + SELECT * FROM tbl2, def WHERE d = x; + } + } {1 2 3 1 2 3} + } +} + +# Test what happens when a malloc() fails while there are other active +# statements. This changes the way sqlite3VdbeHalt() works. +TEST 32 { + if {![info exists ::STMT32]} { + set sql "SELECT name FROM sqlite_master" + set ::STMT32 [sqlite3_prepare $::DB $sql -1 DUMMY] + do_test $testid { + sqlite3_step $::STMT32 + } {SQLITE_ROW} + } +} +SQL BEGIN +TEST 33 { + do_test $testid { + execsql {SELECT * FROM ghi} + } {a b c 1 2 3} +} +SQL -norollback { + -- There is a unique index on ghi(g), so this statement may not cause + -- an automatic ROLLBACK. Hence the "-norollback" switch. + INSERT INTO ghi SELECT '2'||g, h, i FROM ghi; +} +TEST 34 { + if {[info exists ::STMT32]} { + do_test $testid { + sqlite3_finalize $::STMT32 + } {SQLITE_OK} + unset ::STMT32 + } +} +SQL COMMIT + +# +# End of test program declaration +#-------------------------------------------------------------------------- + +proc run_test {arglist iRepeat {pcstart 0} {iFailStart 1}} { + if {[llength $arglist] %2} { + error "Uneven number of arguments to TEST" + } + + for {set i 0} {$i < $pcstart} {incr i} { + set k2 [lindex $arglist [expr {2 * $i}]] + set v2 [lindex $arglist [expr {2 * $i + 1}]] + set ac [sqlite3_get_autocommit $::DB] ;# Auto-Commit + switch -- $k2 { + -sql {db eval [lindex $v2 2]} + -prep {db eval $v2} + -debug {eval $v2} + } + set nac [sqlite3_get_autocommit $::DB] ;# New Auto-Commit + if {$ac && !$nac} {set begin_pc $i} + } + + db rollback_hook [list incr ::rollback_hook_count] + + set iFail $iFailStart + set pc $pcstart + while {$pc*2 < [llength $arglist]} { + # Fetch the current instruction type and payload. + set k [lindex $arglist [expr {2 * $pc}]] + set v [lindex $arglist [expr {2 * $pc + 1}]] + + # Id of this iteration: + set iterid "pc=$pc.iFail=$iFail$k" + + switch -- $k { + + -test { + foreach {id script} $v {} + set testid "malloc3-(test $id).$iterid" + eval $script + incr pc + } + + -sql { + set ::rollback_hook_count 0 + + set id [lindex $v 0] + set testid "malloc3-(integrity $id).$iterid" + + set ac [sqlite3_get_autocommit $::DB] ;# Auto-Commit + sqlite3_memdebug_fail $iFail -repeat 0 + set rc [catch {db eval [lindex $v 2]} msg] ;# True error occurs + set nac [sqlite3_get_autocommit $::DB] ;# New Auto-Commit + + if {$rc != 0 && $nac && !$ac} { + # Before [db eval] the auto-commit flag was clear. Now it + # is set. Since an error occurred we assume this was not a + # commit - therefore a rollback occurred. Check that the + # rollback-hook was invoked. + do_test malloc3-rollback_hook_count.$iterid { + set ::rollback_hook_count + } {1} + } + + set nFail [sqlite3_memdebug_fail -1 -benigncnt nBenign] + if {$rc == 0} { + # Successful execution of sql. The number of failed malloc() + # calls should be equal to the number of benign failures. + # Otherwise a malloc() failed and the error was not reported. + # + set expr {$nFail!=$nBenign} + if {[expr $expr]} { + error "Unreported malloc() failure, test \"$testid\", $expr" + } + + if {$ac && !$nac} { + # Before the [db eval] the auto-commit flag was set, now it + # is clear. We can deduce that a "BEGIN" statement has just + # been successfully executed. + set begin_pc $pc + } + + incr pc + set iFail 1 + integrity_check $testid + } elseif {[regexp {.*out of memory} $msg] || [db errorcode] == 3082} { + # Out of memory error, as expected. + # + integrity_check $testid + incr iFail + if {$nac && !$ac} { + if {![lindex $v 1] && [db errorcode] != 3082} { + # error "Statement \"[lindex $v 2]\" caused a rollback" + } + + for {set i $begin_pc} {$i < $pc} {incr i} { + set k2 [lindex $arglist [expr {2 * $i}]] + set v2 [lindex $arglist [expr {2 * $i + 1}]] + set catchupsql "" + switch -- $k2 { + -sql {set catchupsql [lindex $v2 2]} + -prep {set catchupsql $v2} + } + db eval $catchupsql + } + } + } else { + error $msg + } + + # back up to the previous "-test" block. + while {[lindex $arglist [expr {2 * ($pc - 1)}]] == "-test"} { + incr pc -1 + } + } + + -prep { + db eval $v + incr pc + } + + -debug { + eval $v + incr pc + } + + default { error "Unknown switch: $k" } + } + } +} + +# Turn off the Tcl interface's prepared statement caching facility. Then +# run the tests with "persistent" malloc failures. +sqlite3_extended_result_codes db 1 +db cache size 0 +run_test $::run_test_script 1 + +# Close and reopen the db. +db close +forcedelete test.db test.db-journal test2.db test2.db-journal +sqlite3 db test.db +sqlite3_extended_result_codes db 1 +set ::DB [sqlite3_connection_pointer db] + +# Turn off the Tcl interface's prepared statement caching facility in +# the new connnection. Then run the tests with "transient" malloc failures. +db cache size 0 +run_test $::run_test_script 0 + +sqlite3_memdebug_fail -1 +finish_test |