diff options
Diffstat (limited to '')
-rw-r--r-- | test/malloc5.test | 421 |
1 files changed, 421 insertions, 0 deletions
diff --git a/test/malloc5.test b/test/malloc5.test new file mode 100644 index 0000000..906ac89 --- /dev/null +++ b/test/malloc5.test @@ -0,0 +1,421 @@ +# 2005 November 30 +# +# The author disclaims copyright to this source code. In place of +# a legal notice, here is a blessing: +# +# May you do good and not evil. +# May you find forgiveness for yourself and forgive others. +# May you share freely, never taking more than you give. +# +#*********************************************************************** +# +# This file contains test cases focused on the two memory-management APIs, +# sqlite3_soft_heap_limit() and sqlite3_release_memory(). +# +# Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding +# the configured soft heap limit could cause sqlite to upgrade database +# locks and flush dirty pages to the file system. As of 3.6.2, this is +# no longer the case. In version 3.6.2, sqlite3_release_memory() only +# reclaims clean pages. This test file has been updated accordingly. +# +# $Id: malloc5.test,v 1.22 2009/04/11 19:09:54 drh Exp $ + +set testdir [file dirname $argv0] +source $testdir/tester.tcl +source $testdir/malloc_common.tcl +db close + +# Only run these tests if memory debugging is turned on. +# +if {!$MEMDEBUG} { + puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..." + finish_test + return +} + +# Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time. +ifcapable !memorymanage { + finish_test + return +} + +# The sizes of memory allocations from system malloc() might vary, +# depending on the memory allocator algorithms used. The following +# routine is designed to support answers that fall within a range +# of values while also supplying easy-to-understand "expected" values +# when errors occur. +# +proc value_in_range {target x args} { + set v [lindex $args 0] + if {$v!=""} { + if {$v<$target*$x} {return $v} + if {$v>$target/$x} {return $v} + } + return "number between [expr {int($target*$x)}] and [expr {int($target/$x)}]" +} +set mrange 0.98 ;# plus or minus 2% + +test_set_config_pagecache 0 100 + +sqlite3_soft_heap_limit 0 +sqlite3 db test.db +# db eval {PRAGMA cache_size=1} + +do_test malloc5-1.1 { + # Simplest possible test. Call sqlite3_release_memory when there is exactly + # one unused page in a single pager cache. The page cannot be freed, as + # it is dirty. So sqlite3_release_memory() returns 0. + # + execsql { + PRAGMA auto_vacuum=OFF; + BEGIN; + CREATE TABLE abc(a, b, c); + } + sqlite3_release_memory +} {0} + +do_test malloc5-1.2 { + # Test that the transaction started in the above test is still active. + # The lock on the database file should not have been upgraded (this was + # not the case before version 3.6.2). + # + sqlite3 db2 test.db + execsql {PRAGMA cache_size=2; SELECT * FROM sqlite_master } db2 +} {} +do_test malloc5-1.3 { + # Call [sqlite3_release_memory] when there is exactly one unused page + # in the cache belonging to db2. + # + set ::pgalloc [sqlite3_release_memory] + value_in_range 1288 0.75 +} [value_in_range 1288 0.75] + +do_test malloc5-1.4 { + # Commit the transaction and open a new one. Read 1 page into the cache. + # Because the page is not dirty, it is eligible for collection even + # before the transaction is concluded. + # + execsql { + COMMIT; + BEGIN; + SELECT * FROM abc; + } + value_in_range $::pgalloc $::mrange [sqlite3_release_memory] +} [value_in_range $::pgalloc $::mrange] + +do_test malloc5-1.5 { + # Conclude the transaction opened in the previous [do_test] block. This + # causes another page (page 1) to become eligible for recycling. + # + execsql { COMMIT } + value_in_range $::pgalloc $::mrange [sqlite3_release_memory] +} [value_in_range $::pgalloc $::mrange] + +do_test malloc5-1.6 { + # Manipulate the cache so that it contains two unused pages. One requires + # a journal-sync to free, the other does not. + db2 close + execsql { + BEGIN; + CREATE TABLE def(d, e, f); + SELECT * FROM abc; + } + value_in_range $::pgalloc $::mrange [sqlite3_release_memory 500] +} [value_in_range $::pgalloc $::mrange] +do_test malloc5-1.7 { + # Database should not be locked this time. + sqlite3 db2 test.db + catchsql { SELECT * FROM abc } db2 +} {0 {}} +do_test malloc5-1.8 { + # Try to release another block of memory. This will fail as the only + # pages currently in the cache are dirty (page 3) or pinned (page 1). + db2 close + sqlite3_release_memory 500 +} 0 +do_test malloc5-1.8 { + # Database is still not locked. + # + sqlite3 db2 test.db + catchsql { SELECT * FROM abc } db2 +} {0 {}} +do_test malloc5-1.9 { + execsql { + COMMIT; + } +} {} + +do_test malloc5-2.1 { + # Put some data in tables abc and def. Both tables are still wholly + # contained within their root pages. + execsql { + INSERT INTO abc VALUES(1, 2, 3); + INSERT INTO abc VALUES(4, 5, 6); + INSERT INTO def VALUES(7, 8, 9); + INSERT INTO def VALUES(10,11,12); + } +} {} +do_test malloc5-2.2 { + # Load the root-page for table def into the cache. Then query table abc. + # Halfway through the query call sqlite3_release_memory(). The goal of this + # test is to make sure we don't free pages that are in use (specifically, + # the root of table abc). + sqlite3_release_memory + set nRelease 0 + execsql { + BEGIN; + SELECT * FROM def; + } + set data [list] + db eval {SELECT * FROM abc} { + incr nRelease [sqlite3_release_memory] + lappend data $a $b $c + } + execsql { + COMMIT; + } + value_in_range $::pgalloc $::mrange $nRelease +} [value_in_range $::pgalloc $::mrange] +do_test malloc5-2.2.1 { + set data +} {1 2 3 4 5 6} + +do_test malloc5-3.1 { + # Simple test to show that if two pagers are opened from within this + # thread, memory is freed from both when sqlite3_release_memory() is + # called. + execsql { + BEGIN; + SELECT * FROM abc; + } + execsql { + SELECT * FROM sqlite_master; + BEGIN; + SELECT * FROM def; + } db2 + value_in_range [expr $::pgalloc*2] 0.99 [sqlite3_release_memory] +} [value_in_range [expr $::pgalloc * 2] 0.99] +do_test malloc5-3.2 { + concat \ + [execsql {SELECT * FROM abc; COMMIT}] \ + [execsql {SELECT * FROM def; COMMIT} db2] +} {1 2 3 4 5 6 7 8 9 10 11 12} + +db2 close +puts "Highwater mark: [sqlite3_memory_highwater]" + +# The following two test cases each execute a transaction in which +# 10000 rows are inserted into table abc. The first test case is used +# to ensure that more than 1MB of dynamic memory is used to perform +# the transaction. +# +# The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB) +# and tests to see that this limit is not exceeded at any point during +# transaction execution. +# +# Before executing malloc5-4.* we save the value of the current soft heap +# limit in variable ::soft_limit. The original value is restored after +# running the tests. +# +set ::soft_limit [sqlite3_soft_heap_limit -1] +execsql {PRAGMA cache_size=2000} +do_test malloc5-4.1 { + execsql {BEGIN;} + execsql {DELETE FROM abc;} + for {set i 0} {$i < 10000} {incr i} { + execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');" + } + execsql {COMMIT;} + db cache flush + sqlite3_release_memory + sqlite3_memory_highwater 1 + execsql {SELECT * FROM abc} + set nMaxBytes [sqlite3_memory_highwater 1] + puts -nonewline " (Highwater mark: $nMaxBytes) " + expr $nMaxBytes > 1000000 +} {1} +do_test malloc5-4.2 { + db eval {PRAGMA cache_size=1} + db cache flush + sqlite3_release_memory + sqlite3_soft_heap_limit 200000 + sqlite3_memory_highwater 1 + execsql {SELECT * FROM abc} + set nMaxBytes [sqlite3_memory_highwater 1] + puts -nonewline " (Highwater mark: $nMaxBytes) " + expr $nMaxBytes <= 210000 +} {1} +do_test malloc5-4.3 { + # Check that the content of table abc is at least roughly as expected. + execsql { + SELECT count(*), sum(a), sum(b) FROM abc; + } +} [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]] + +# Restore the soft heap limit. +sqlite3_soft_heap_limit $::soft_limit + +# Test that there are no problems calling sqlite3_release_memory when +# there are open in-memory databases. +# +# At one point these tests would cause a seg-fault. +# +do_test malloc5-5.1 { + db close + sqlite3 db :memory: + execsql { + BEGIN; + CREATE TABLE abc(a, b, c); + INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL); + INSERT INTO abc SELECT * FROM abc; + INSERT INTO abc SELECT * FROM abc; + INSERT INTO abc SELECT * FROM abc; + INSERT INTO abc SELECT * FROM abc; + INSERT INTO abc SELECT * FROM abc; + INSERT INTO abc SELECT * FROM abc; + INSERT INTO abc SELECT * FROM abc; + } + sqlite3_release_memory +} 0 +do_test malloc5-5.2 { + sqlite3_soft_heap_limit 5000 + execsql { + COMMIT; + PRAGMA temp_store = memory; + SELECT * FROM abc ORDER BY a; + } + expr 1 +} {1} +sqlite3_soft_heap_limit $::soft_limit + +#------------------------------------------------------------------------- +# The following test cases (malloc5-6.*) test the new global LRU list +# used to determine the pages to recycle when sqlite3_release_memory is +# called and there is more than one pager open. +# +proc nPage {db} { + set bt [btree_from_db $db] + array set stats [btree_pager_stats $bt] + set stats(page) +} +db close +forcedelete test.db test.db-journal test2.db test2.db-journal + +# This block of test-cases (malloc5-6.1.*) prepares two database files +# for the subsequent tests. +do_test malloc5-6.1.1 { + sqlite3 db test.db + execsql { + PRAGMA page_size=1024; + PRAGMA default_cache_size=2; + } + execsql { + PRAGMA temp_store = memory; + BEGIN; + CREATE TABLE abc(a PRIMARY KEY, b, c); + INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100)); + INSERT INTO abc + SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; + INSERT INTO abc + SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; + INSERT INTO abc + SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; + INSERT INTO abc + SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; + INSERT INTO abc + SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; + INSERT INTO abc + SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; + COMMIT; + } + forcecopy test.db test2.db + sqlite3 db2 test2.db + db2 eval {PRAGMA cache_size=2} + list \ + [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20] +} {1 1} +do_test malloc5-6.1.2 { + list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2] +} {2 2} + +do_test malloc5-6.2.1 { + execsql {SELECT * FROM abc} db2 + execsql {SELECT * FROM abc} db + expr [nPage db] + [nPage db2] +} {4} + +do_test malloc5-6.2.2 { + # If we now try to reclaim some memory, it should come from the db2 cache. + sqlite3_release_memory 3000 + expr [nPage db] + [nPage db2] +} {1} +do_test malloc5-6.2.3 { + # Access the db2 cache again, so that all the db2 pages have been used + # more recently than all the db pages. Then try to reclaim 3000 bytes. + # This time, 3 pages should be pulled from the db cache. + execsql { SELECT * FROM abc } db2 + sqlite3_release_memory 3000 + expr [nPage db] + [nPage db2] +} {0} + +do_test malloc5-6.3.1 { + # Now open a transaction and update 2 pages in the db2 cache. Then + # do a SELECT on the db cache so that all the db pages are more recently + # used than the db2 pages. When we try to free memory, SQLite should + # free the non-dirty db2 pages, then the db pages, then finally use + # sync() to free up the dirty db2 pages. The only page that cannot be + # freed is page1 of db2. Because there is an open transaction, the + # btree layer holds a reference to page 1 in the db2 cache. + # + # UPDATE: No longer. As release_memory() does not cause a sync() + execsql { + BEGIN; + UPDATE abc SET c = randstr(100,100) + WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc); + } db2 + execsql { SELECT * FROM abc } db + expr [nPage db] + [nPage db2] +} {4} +do_test malloc5-6.3.2 { + # Try to release 7700 bytes. This should release all the + # non-dirty pages held by db2. + sqlite3_release_memory [expr 7*1132] + list [nPage db] [nPage db2] +} {0 3} +do_test malloc5-6.3.3 { + # Try to release another 1000 bytes. This should come fromt the db + # cache, since all three pages held by db2 are either in-use or diry. + sqlite3_release_memory 1000 + list [nPage db] [nPage db2] +} {0 3} +do_test malloc5-6.3.4 { + # Now release 9900 more (about 9 pages worth). This should expunge + # the rest of the db cache. But the db2 cache remains intact, because + # SQLite tries to avoid calling sync(). + if {$::tcl_platform(wordSize)==8} { + sqlite3_release_memory 10500 + } else { + sqlite3_release_memory 9900 + } + list [nPage db] [nPage db2] +} {0 3} +do_test malloc5-6.3.5 { + # But if we are really insistent, SQLite will consent to call sync() + # if there is no other option. UPDATE: As of 3.6.2, SQLite will not + # call sync() in this scenario. So no further memory can be reclaimed. + sqlite3_release_memory 1000 + list [nPage db] [nPage db2] +} {0 3} +do_test malloc5-6.3.6 { + # The referenced page (page 1 of the db2 cache) will not be freed no + # matter how much memory we ask for: + sqlite3_release_memory 31459 + list [nPage db] [nPage db2] +} {0 3} + +db2 close + +sqlite3_soft_heap_limit $::soft_limit +test_restore_config_pagecache +finish_test +catch {db close} |