diff options
Diffstat (limited to '')
-rw-r--r-- | test/whereF.test | 312 |
1 files changed, 312 insertions, 0 deletions
diff --git a/test/whereF.test b/test/whereF.test new file mode 100644 index 0000000..ac7fd80 --- /dev/null +++ b/test/whereF.test @@ -0,0 +1,312 @@ +# 2012 November 9 +# +# The author disclaims copyright to this source code. In place of +# a legal notice, here is a blessing: +# +# May you do good and not evil. +# May you find forgiveness for yourself and forgive others. +# May you share freely, never taking more than you give. +# +#*********************************************************************** +# +# Test cases for query planning decisions. + + +# +# The tests in this file demonstrate the behaviour of the query planner +# in determining the order in which joined tables are scanned. +# +# Assume there are two tables being joined - t1 and t2. Each has a cost +# if it is the outer loop, and a cost if it is the inner loop. As follows: +# +# t1(outer) - cost of scanning t1 as the outer loop. +# t1(inner) - cost of scanning t1 as the inner loop. +# t2(outer) - cost of scanning t2 as the outer loop. +# t2(inner) - cost of scanning t2 as the inner loop. +# +# Depending on the order in which the planner nests the scans, the total +# cost of the join query is one of: +# +# t1(outer) * t2(inner) +# t2(outer) * t1(inner) +# +# The tests in this file attempt to verify that the planner nests joins in +# the correct order when the following are true: +# +# + (t1(outer) * t2(inner)) > (t1(inner) * t2(outer) +# + t1(outer) < t2(outer) +# +# In other words, when the best overall query plan has t2 as the outer loop, +# but when the outer loop is considered independent of the inner, t1 is the +# most efficient choice. +# +# In order to make them more predictable, automatic indexes are turned off for +# the tests in this file. +# + +set testdir [file dirname $argv0] +source $testdir/tester.tcl +set testprefix whereF + +do_execsql_test 1.0 { + PRAGMA automatic_index = 0; + CREATE TABLE t1(a, b, c); + CREATE TABLE t2(d, e, f); + CREATE UNIQUE INDEX i1 ON t1(a); + CREATE UNIQUE INDEX i2 ON t2(d); +} {} + +foreach {tn sql} { + 1 "SELECT * FROM t1, t2 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10" + 2 "SELECT * FROM t2, t1 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10" + 3 "SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10" +} { + do_test 1.$tn { + db eval "EXPLAIN QUERY PLAN $sql" + } {/.*SCAN t2\y.*SEARCH t1\y.*/} +} + +do_execsql_test 2.0 { + DROP TABLE t1; + DROP TABLE t2; + CREATE TABLE t1(a, b, c); + CREATE TABLE t2(d, e, f); + + CREATE UNIQUE INDEX i1 ON t1(a); + CREATE UNIQUE INDEX i2 ON t1(b); + CREATE UNIQUE INDEX i3 ON t2(d); +} {} + +foreach {tn sql} { + 1 "SELECT * FROM t1, t2 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e" + 2 "SELECT * FROM t2, t1 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e" + 3 "SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e" +} { + do_test 2.$tn { + db eval "EXPLAIN QUERY PLAN $sql" + } {/.*SCAN t2\y.*SEARCH t1\y.*/} +} + +do_execsql_test 3.0 { + DROP TABLE t1; + DROP TABLE t2; + CREATE TABLE t1(a, b, c); + CREATE TABLE t2(d, e, f); + + CREATE UNIQUE INDEX i1 ON t1(a, b); + CREATE INDEX i2 ON t2(d); +} {} + +foreach {tn sql} { + 1 {SELECT t1.a, t1.b, t2.d, t2.e FROM t1, t2 + WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)} + + 2 {SELECT t1.a, t1.b, t2.d, t2.e FROM t2, t1 + WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)} + + 3 {SELECT t1.a, t1.b, t2.d, t2.e FROM t2 CROSS JOIN t1 + WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)} +} { + do_test 3.$tn { + db eval "EXPLAIN QUERY PLAN $sql" + } {/.*SCAN t2\y.*SEARCH t1\y.*/} +} + +do_execsql_test 4.0 { + CREATE TABLE t4(a,b,c,d,e, PRIMARY KEY(a,b,c)); + CREATE INDEX t4adc ON t4(a,d,c); + CREATE UNIQUE INDEX t4aebc ON t4(a,e,b,c); + EXPLAIN QUERY PLAN SELECT rowid FROM t4 WHERE a=? AND b=?; +} {/a=. AND b=./} + +#------------------------------------------------------------------------- +# Test the following case: +# +# ... FROM t1, t2 WHERE ( +# t2.rowid = +t1.rowid OR (t2.f2 = t1.f1 AND t1.f1!=-1) +# ) +# +# where there is an index on t2(f2). The planner should use "t1" as the +# outer loop. The inner loop, on "t2", is an OR optimization. One pass +# for: +# +# t2.rowid = $1 +# +# and another for: +# +# t2.f2=$1 AND $1!=-1 +# +# the test is to ensure that on the second pass, the ($1!=-1) condition +# is tested before any seek operations are performed - i.e. outside of +# the loop through the f2=$1 range of the t2(f2) index. +# +reset_db +do_execsql_test 5.0 { + CREATE TABLE t1(f1); + CREATE TABLE t2(f2); + CREATE INDEX t2f ON t2(f2); + + INSERT INTO t1 VALUES(-1); + INSERT INTO t1 VALUES(-1); + INSERT INTO t1 VALUES(-1); + INSERT INTO t1 VALUES(-1); + + WITH w(i) AS ( + SELECT 1 UNION ALL SELECT i+1 FROM w WHERE i<1000 + ) + INSERT INTO t2 SELECT -1 FROM w; +} + +do_execsql_test 5.1 { + SELECT count(*) FROM t1, t2 WHERE t2.rowid = +t1.rowid +} {4} +do_test 5.2 { expr [db status vmstep]<200 } 1 + +do_execsql_test 5.3 { + SELECT count(*) FROM t1, t2 WHERE ( + t2.rowid = +t1.rowid OR t2.f2 = t1.f1 + ) +} {4000} +do_test 5.4 { expr [db status vmstep]>1000 } 1 + +do_execsql_test 5.5 { + SELECT count(*) FROM t1, t2 WHERE ( + t2.rowid = +t1.rowid OR (t2.f2 = t1.f1 AND t1.f1!=-1) + ) +} {4} +do_test 5.6 { expr [db status vmstep]<200 } 1 + +# 2017-09-04 ticket b899b6042f97f52d +# Segfault on correlated subquery... +# +ifcapable json1&&vtab { + do_execsql_test 6.1 { + CREATE TABLE t6(x); + SELECT * FROM t6 WHERE 1 IN (SELECT value FROM json_each(x)); + } {} + + do_execsql_test 6.2 { + DROP TABLE t6; + CREATE TABLE t6(a,b,c); + INSERT INTO t6 VALUES + (0,null,'{"a":0,"b":[3,4,5],"c":{"x":4.5,"y":7.8}}'), + (1,null,'{"a":1,"b":[3,4,5],"c":{"x":4.5,"y":7.8}}'), + (2,null,'{"a":9,"b":[3,4,5],"c":{"x":4.5,"y":7.8}}'); + SELECT * FROM t6 + WHERE (EXISTS (SELECT 1 FROM json_each(t6.c) AS x WHERE x.value=1)); + } {1 {} {{"a":1,"b":[3,4,5],"c":{"x":4.5,"y":7.8}}}} + + # Another test case derived from a posting by Wout Mertens on the + # sqlite-users mailing list on 2017-10-04. + do_execsql_test 6.3 { + DROP TABLE IF EXISTS t; + CREATE TABLE t(json JSON); + SELECT * FROM t + WHERE(EXISTS(SELECT 1 FROM json_each(t.json,"$.foo") j + WHERE j.value = 'meep')); + } {} + do_execsql_test 6.4 { + INSERT INTO t VALUES('{"xyzzy":null}'); + INSERT INTO t VALUES('{"foo":"meep","other":12345}'); + INSERT INTO t VALUES('{"foo":"bingo","alt":5.25}'); + SELECT * FROM t + WHERE(EXISTS(SELECT 1 FROM json_each(t.json,"$.foo") j + WHERE j.value = 'meep')); + } {{{"foo":"meep","other":12345}}} +} + +# 2018-01-27 +# Ticket https://sqlite.org/src/tktview/ec32177c99ccac2b180fd3ea2083 +# Incorrect result when using the new OR clause factoring optimization +# +# This is the original test case as reported on the sqlite-users mailing +# list +# +do_execsql_test 7.1 { + DROP TABLE IF EXISTS cd; + CREATE TABLE cd ( cdid INTEGER PRIMARY KEY NOT NULL, genreid integer ); + CREATE INDEX cd_idx_genreid ON cd (genreid); + INSERT INTO cd ( cdid, genreid ) VALUES + ( 1, 1 ), + ( 2, NULL ), + ( 3, NULL ), + ( 4, NULL ), + ( 5, NULL ); + + SELECT cdid + FROM cd me + WHERE 2 > ( + SELECT COUNT( * ) + FROM cd rownum__emulation + WHERE + ( + me.genreid IS NOT NULL + AND + rownum__emulation.genreid IS NULL + ) + OR + ( + me.genreid IS NOT NULL + AND + rownum__emulation.genreid IS NOT NULL + AND + rownum__emulation.genreid < me.genreid + ) + OR + ( + ( me.genreid = rownum__emulation.genreid OR ( me.genreid IS NULL + AND rownum__emulation.genreid IS NULL ) ) + AND + rownum__emulation.cdid > me.cdid + ) + ); +} {4 5} + +# Simplified test cases from the ticket +# +do_execsql_test 7.2 { + DROP TABLE IF EXISTS t1; + DROP TABLE IF EXISTS t2; + CREATE TABLE t1(a INTEGER PRIMARY KEY, b); + INSERT INTO t1(a,b) VALUES(1,1); + CREATE TABLE t2(aa INTEGER PRIMARY KEY, bb); + INSERT INTO t2(aa,bb) VALUES(1,1),(2,NULL),(3,NULL); + SELECT ( + SELECT COUNT(*) FROM t2 + WHERE ( t1.b IS NOT NULL AND t2.bb IS NULL ) + OR ( t2.bb < t1.b ) + OR ( t1.b IS t2.bb AND t2.aa > t1.a ) + ) + FROM t1; +} {2} + +# The fix for ticket ec32177c99ccac2b180fd3ea2083 only makes a difference +# in the output when there is a TERM_VNULL entry in the WhereClause array. +# And TERM_VNULL entries are only generated when compiling with +# SQLITE_ENABLE_STAT4. Nevertheless, it is correct that TERM_VIRTUAL terms +# should not participate in the factoring optimization. In all cases other +# than TERM_VNULL, participation is harmless, but it does consume a few +# extra CPU cycles. +# +# The following test verifies that the TERM_VIRTUAL terms resulting from +# a GLOB operator do not appear anywhere in the generated code. This +# confirms that the problem is fixed, even on builds that omit STAT4. +# +do_execsql_test 7.3 { + DROP TABLE IF EXISTS t1; + DROP TABLE IF EXISTS t2; + CREATE TABLE t1(a INTEGER PRIMARY KEY, b TEXT); + INSERT INTO t1(a,b) VALUES(1,'abcxyz'); + CREATE TABLE t2(aa INTEGER PRIMARY KEY, bb TEXT); + INSERT INTO t2(aa,bb) VALUES(1,'abc'),(2,'wxyz'),(3,'xyz'); + CREATE INDEX t2bb ON t2(bb); + EXPLAIN SELECT ( + SELECT COUNT(*) FROM t2 + WHERE ( t1.b GLOB 'a*z' AND t2.bb='xyz' ) + OR ( t2.bb = t1.b ) + OR ( t2.aa = t1.a ) + ) + FROM t1; +} {~/ (Lt|Ge) /} + +finish_test |