/* 2022-09-16 The author disclaims copyright to this source code. In place of a legal notice, here is a blessing: * May you do good and not evil. * May you find forgiveness for yourself and forgive others. * May you share freely, never taking more than you give. *********************************************************************** A Worker which manages asynchronous OPFS handles on behalf of a synchronous API which controls it via a combination of Worker messages, SharedArrayBuffer, and Atomics. It is the asynchronous counterpart of the API defined in sqlite3-api-opfs.js. Highly indebted to: https://github.com/rhashimoto/wa-sqlite/blob/master/src/examples/OriginPrivateFileSystemVFS.js for demonstrating how to use the OPFS APIs. This file is to be loaded as a Worker. It does not have any direct access to the sqlite3 JS/WASM bits, so any bits which it needs (most notably SQLITE_xxx integer codes) have to be imported into it via an initialization process. This file represents an implementation detail of a larger piece of code, and not a public interface. Its details may change at any time and are not intended to be used by any client-level code. */ "use strict"; const toss = function(...args){throw new Error(args.join(' '))}; if(self.window === self){ toss("This code cannot run from the main thread.", "Load it as a Worker from a separate Worker."); }else if(!navigator.storage.getDirectory){ toss("This API requires navigator.storage.getDirectory."); } /** Will hold state copied to this object from the syncronous side of this API. */ const state = Object.create(null); /** verbose: 0 = no logging output 1 = only errors 2 = warnings and errors 3 = debug, warnings, and errors */ state.verbose = 2; const loggers = { 0:console.error.bind(console), 1:console.warn.bind(console), 2:console.log.bind(console) }; const logImpl = (level,...args)=>{ if(state.verbose>level) loggers[level]("OPFS asyncer:",...args); }; const log = (...args)=>logImpl(2, ...args); const warn = (...args)=>logImpl(1, ...args); const error = (...args)=>logImpl(0, ...args); const metrics = Object.create(null); metrics.reset = ()=>{ let k; const r = (m)=>(m.count = m.time = m.wait = 0); for(k in state.opIds){ r(metrics[k] = Object.create(null)); } let s = metrics.s11n = Object.create(null); s = s.serialize = Object.create(null); s.count = s.time = 0; s = metrics.s11n.deserialize = Object.create(null); s.count = s.time = 0; }; metrics.dump = ()=>{ let k, n = 0, t = 0, w = 0; for(k in state.opIds){ const m = metrics[k]; n += m.count; t += m.time; w += m.wait; m.avgTime = (m.count && m.time) ? (m.time / m.count) : 0; } console.log(self.location.href, "metrics for",self.location.href,":\n", metrics, "\nTotal of",n,"op(s) for",t,"ms", "approx",w,"ms spent waiting on OPFS APIs."); console.log("Serialization metrics:",metrics.s11n); }; /** __openFiles is a map of sqlite3_file pointers (integers) to metadata related to a given OPFS file handles. The pointers are, in this side of the interface, opaque file handle IDs provided by the synchronous part of this constellation. Each value is an object with a structure demonstrated in the xOpen() impl. */ const __openFiles = Object.create(null); /** __autoLocks is a Set of sqlite3_file pointers (integers) which were "auto-locked". i.e. those for which we obtained a sync access handle without an explicit xLock() call. Such locks will be released during db connection idle time, whereas a sync access handle obtained via xLock(), or subsequently xLock()'d after auto-acquisition, will not be released until xUnlock() is called. Maintenance reminder: if we relinquish auto-locks at the end of the operation which acquires them, we pay a massive performance penalty: speedtest1 benchmarks take up to 4x as long. By delaying the lock release until idle time, the hit is negligible. */ const __autoLocks = new Set(); /** Expects an OPFS file path. It gets resolved, such that ".." components are properly expanded, and returned. If the 2nd arg is true, the result is returned as an array of path elements, else an absolute path string is returned. */ const getResolvedPath = function(filename,splitIt){ const p = new URL( filename, 'file://irrelevant' ).pathname; return splitIt ? p.split('/').filter((v)=>!!v) : p; }; /** Takes the absolute path to a filesystem element. Returns an array of [handleOfContainingDir, filename]. If the 2nd argument is truthy then each directory element leading to the file is created along the way. Throws if any creation or resolution fails. */ const getDirForFilename = async function f(absFilename, createDirs = false){ const path = getResolvedPath(absFilename, true); const filename = path.pop(); let dh = state.rootDir; for(const dirName of path){ if(dirName){ dh = await dh.getDirectoryHandle(dirName, {create: !!createDirs}); } } return [dh, filename]; }; /** An error class specifically for use with getSyncHandle(), the goal of which is to eventually be able to distinguish unambiguously between locking-related failures and other types, noting that we cannot currently do so because createSyncAccessHandle() does not define its exceptions in the required level of detail. */ class GetSyncHandleError extends Error { constructor(errorObject, ...msg){ super(); this.error = errorObject; this.message = [ ...msg, ': Original exception ['+errorObject.name+']:', errorObject.message ].join(' '); this.name = 'GetSyncHandleError'; } }; /** Returns the sync access handle associated with the given file handle object (which must be a valid handle object, as created by xOpen()), lazily opening it if needed. In order to help alleviate cross-tab contention for a dabase, if an exception is thrown while acquiring the handle, this routine will wait briefly and try again, up to 3 times. If acquisition still fails at that point it will give up and propagate the exception. */ const getSyncHandle = async (fh)=>{ if(!fh.syncHandle){ const t = performance.now(); log("Acquiring sync handle for",fh.filenameAbs); const maxTries = 4, msBase = 300; let i = 1, ms = msBase; for(; true; ms = msBase * ++i){ try { //if(i<3) toss("Just testing getSyncHandle() wait-and-retry."); //TODO? A config option which tells it to throw here //randomly every now and then, for testing purposes. fh.syncHandle = await fh.fileHandle.createSyncAccessHandle(); break; }catch(e){ if(i === maxTries){ throw new GetSyncHandleError( e, "Error getting sync handle.",maxTries, "attempts failed.",fh.filenameAbs ); } warn("Error getting sync handle. Waiting",ms, "ms and trying again.",fh.filenameAbs,e); Atomics.wait(state.sabOPView, state.opIds.retry, 0, ms); } } log("Got sync handle for",fh.filenameAbs,'in',performance.now() - t,'ms'); if(!fh.xLock){ __autoLocks.add(fh.fid); log("Auto-locked",fh.fid,fh.filenameAbs); } } return fh.syncHandle; }; /** If the given file-holding object has a sync handle attached to it, that handle is remove and asynchronously closed. Though it may sound sensible to continue work as soon as the close() returns (noting that it's asynchronous), doing so can cause operations performed soon afterwards, e.g. a call to getSyncHandle() to fail because they may happen out of order from the close(). OPFS does not guaranty that the actual order of operations is retained in such cases. i.e. always "await" on the result of this function. */ const closeSyncHandle = async (fh)=>{ if(fh.syncHandle){ log("Closing sync handle for",fh.filenameAbs); const h = fh.syncHandle; delete fh.syncHandle; delete fh.xLock; __autoLocks.delete(fh.fid); return h.close(); } }; /** A proxy for closeSyncHandle() which is guaranteed to not throw. This function is part of a lock/unlock step in functions which require a sync access handle but may be called without xLock() having been called first. Such calls need to release that handle to avoid locking the file for all of time. This is an _attempt_ at reducing cross-tab contention but it may prove to be more of a problem than a solution and may need to be removed. */ const closeSyncHandleNoThrow = async (fh)=>{ try{await closeSyncHandle(fh)} catch(e){ warn("closeSyncHandleNoThrow() ignoring:",e,fh); } }; /** Stores the given value at state.sabOPView[state.opIds.rc] and then Atomics.notify()'s it. */ const storeAndNotify = (opName, value)=>{ log(opName+"() => notify(",value,")"); Atomics.store(state.sabOPView, state.opIds.rc, value); Atomics.notify(state.sabOPView, state.opIds.rc); }; /** Throws if fh is a file-holding object which is flagged as read-only. */ const affirmNotRO = function(opName,fh){ if(fh.readOnly) toss(opName+"(): File is read-only: "+fh.filenameAbs); }; const affirmLocked = function(opName,fh){ //if(!fh.syncHandle) toss(opName+"(): File does not have a lock: "+fh.filenameAbs); /** Currently a no-op, as speedtest1 triggers xRead() without a lock (that seems like a bug but it's currently uninvestigated). This means, however, that some OPFS VFS routines may trigger acquisition of a lock but never let it go until xUnlock() is called (which it likely won't be if xLock() was not called). */ }; /** We track 2 different timers: the "metrics" timer records how much time we spend performing work. The "wait" timer records how much time we spend waiting on the underlying OPFS timer. See the calls to mTimeStart(), mTimeEnd(), wTimeStart(), and wTimeEnd() throughout this file to see how they're used. */ const __mTimer = Object.create(null); __mTimer.op = undefined; __mTimer.start = undefined; const mTimeStart = (op)=>{ __mTimer.start = performance.now(); __mTimer.op = op; //metrics[op] || toss("Maintenance required: missing metrics for",op); ++metrics[op].count; }; const mTimeEnd = ()=>( metrics[__mTimer.op].time += performance.now() - __mTimer.start ); const __wTimer = Object.create(null); __wTimer.op = undefined; __wTimer.start = undefined; const wTimeStart = (op)=>{ __wTimer.start = performance.now(); __wTimer.op = op; //metrics[op] || toss("Maintenance required: missing metrics for",op); }; const wTimeEnd = ()=>( metrics[__wTimer.op].wait += performance.now() - __wTimer.start ); /** Gets set to true by the 'opfs-async-shutdown' command to quit the wait loop. This is only intended for debugging purposes: we cannot inspect this file's state while the tight waitLoop() is running and need a way to stop that loop for introspection purposes. */ let flagAsyncShutdown = false; /** Asynchronous wrappers for sqlite3_vfs and sqlite3_io_methods methods, as well as helpers like mkdir(). Maintenance reminder: members are in alphabetical order to simplify finding them. */ const vfsAsyncImpls = { 'opfs-async-metrics': async ()=>{ mTimeStart('opfs-async-metrics'); metrics.dump(); storeAndNotify('opfs-async-metrics', 0); mTimeEnd(); }, 'opfs-async-shutdown': async ()=>{ flagAsyncShutdown = true; storeAndNotify('opfs-async-shutdown', 0); }, mkdir: async (dirname)=>{ mTimeStart('mkdir'); let rc = 0; wTimeStart('mkdir'); try { await getDirForFilename(dirname+"/filepart", true); }catch(e){ state.s11n.storeException(2,e); rc = state.sq3Codes.SQLITE_IOERR; }finally{ wTimeEnd(); } storeAndNotify('mkdir', rc); mTimeEnd(); }, xAccess: async (filename)=>{ mTimeStart('xAccess'); /* OPFS cannot support the full range of xAccess() queries sqlite3 calls for. We can essentially just tell if the file is accessible, but if it is it's automatically writable (unless it's locked, which we cannot(?) know without trying to open it). OPFS does not have the notion of read-only. The return semantics of this function differ from sqlite3's xAccess semantics because we are limited in what we can communicate back to our synchronous communication partner: 0 = accessible, non-0 means not accessible. */ let rc = 0; wTimeStart('xAccess'); try{ const [dh, fn] = await getDirForFilename(filename); await dh.getFileHandle(fn); }catch(e){ state.s11n.storeException(2,e); rc = state.sq3Codes.SQLITE_IOERR; }finally{ wTimeEnd(); } storeAndNotify('xAccess', rc); mTimeEnd(); }, xClose: async function(fid/*sqlite3_file pointer*/){ const opName = 'xClose'; mTimeStart(opName); __autoLocks.delete(fid); const fh = __openFiles[fid]; let rc = 0; wTimeStart(opName); if(fh){ delete __openFiles[fid]; await closeSyncHandle(fh); if(fh.deleteOnClose){ try{ await fh.dirHandle.removeEntry(fh.filenamePart) } catch(e){ warn("Ignoring dirHandle.removeEntry() failure of",fh,e) } } }else{ state.s11n.serialize(); rc = state.sq3Codes.SQLITE_NOTFOUND; } wTimeEnd(); storeAndNotify(opName, rc); mTimeEnd(); }, xDelete: async function(...args){ mTimeStart('xDelete'); const rc = await vfsAsyncImpls.xDeleteNoWait(...args); storeAndNotify('xDelete', rc); mTimeEnd(); }, xDeleteNoWait: async function(filename, syncDir = 0, recursive = false){ /* The syncDir flag is, for purposes of the VFS API's semantics, ignored here. However, if it has the value 0x1234 then: after deleting the given file, recursively try to delete any empty directories left behind in its wake (ignoring any errors and stopping at the first failure). That said: we don't know for sure that removeEntry() fails if the dir is not empty because the API is not documented. It has, however, a "recursive" flag which defaults to false, so presumably it will fail if the dir is not empty and that flag is false. */ let rc = 0; wTimeStart('xDelete'); try { while(filename){ const [hDir, filenamePart] = await getDirForFilename(filename, false); if(!filenamePart) break; await hDir.removeEntry(filenamePart, {recursive}); if(0x1234 !== syncDir) break; recursive = false; filename = getResolvedPath(filename, true); filename.pop(); filename = filename.join('/'); } }catch(e){ state.s11n.storeException(2,e); rc = state.sq3Codes.SQLITE_IOERR_DELETE; } wTimeEnd(); return rc; }, xFileSize: async function(fid/*sqlite3_file pointer*/){ mTimeStart('xFileSize'); const fh = __openFiles[fid]; let rc; wTimeStart('xFileSize'); try{ affirmLocked('xFileSize',fh); rc = await (await getSyncHandle(fh)).getSize(); state.s11n.serialize(Number(rc)); rc = 0; }catch(e){ state.s11n.storeException(2,e); rc = state.sq3Codes.SQLITE_IOERR; } wTimeEnd(); storeAndNotify('xFileSize', rc); mTimeEnd(); }, xLock: async function(fid/*sqlite3_file pointer*/, lockType/*SQLITE_LOCK_...*/){ mTimeStart('xLock'); const fh = __openFiles[fid]; let rc = 0; const oldLockType = fh.xLock; fh.xLock = lockType; if( !fh.syncHandle ){ wTimeStart('xLock'); try { await getSyncHandle(fh); __autoLocks.delete(fid); }catch(e){ state.s11n.storeException(1,e); rc = state.sq3Codes.SQLITE_IOERR_LOCK; fh.xLock = oldLockType; } wTimeEnd(); } storeAndNotify('xLock',rc); mTimeEnd(); }, xOpen: async function(fid/*sqlite3_file pointer*/, filename, flags/*SQLITE_OPEN_...*/){ const opName = 'xOpen'; mTimeStart(opName); const deleteOnClose = (state.sq3Codes.SQLITE_OPEN_DELETEONCLOSE & flags); const create = (state.sq3Codes.SQLITE_OPEN_CREATE & flags); wTimeStart('xOpen'); try{ let hDir, filenamePart; try { [hDir, filenamePart] = await getDirForFilename(filename, !!create); }catch(e){ state.s11n.storeException(1,e); storeAndNotify(opName, state.sq3Codes.SQLITE_NOTFOUND); mTimeEnd(); wTimeEnd(); return; } const hFile = await hDir.getFileHandle(filenamePart, {create}); /** wa-sqlite, at this point, grabs a SyncAccessHandle and assigns it to the syncHandle prop of the file state object, but only for certain cases and it's unclear why it places that limitation on it. */ wTimeEnd(); __openFiles[fid] = Object.assign(Object.create(null),{ fid: fid, filenameAbs: filename, filenamePart: filenamePart, dirHandle: hDir, fileHandle: hFile, sabView: state.sabFileBufView, readOnly: create ? false : (state.sq3Codes.SQLITE_OPEN_READONLY & flags), deleteOnClose: deleteOnClose }); storeAndNotify(opName, 0); }catch(e){ wTimeEnd(); error(opName,e); state.s11n.storeException(1,e); storeAndNotify(opName, state.sq3Codes.SQLITE_IOERR); } mTimeEnd(); }, xRead: async function(fid/*sqlite3_file pointer*/,n,offset64){ mTimeStart('xRead'); let rc = 0, nRead; const fh = __openFiles[fid]; try{ affirmLocked('xRead',fh); wTimeStart('xRead'); nRead = (await getSyncHandle(fh)).read( fh.sabView.subarray(0, n), {at: Number(offset64)} ); wTimeEnd(); if(nRead < n){/* Zero-fill remaining bytes */ fh.sabView.fill(0, nRead, n); rc = state.sq3Codes.SQLITE_IOERR_SHORT_READ; } }catch(e){ if(undefined===nRead) wTimeEnd(); error("xRead() failed",e,fh); state.s11n.storeException(1,e); rc = state.sq3Codes.SQLITE_IOERR_READ; } storeAndNotify('xRead',rc); mTimeEnd(); }, xSync: async function(fid/*sqlite3_file pointer*/,flags/*ignored*/){ mTimeStart('xSync'); const fh = __openFiles[fid]; let rc = 0; if(!fh.readOnly && fh.syncHandle){ try { wTimeStart('xSync'); await fh.syncHandle.flush(); }catch(e){ state.s11n.storeException(2,e); rc = state.sq3Codes.SQLITE_IOERR_FSYNC; } wTimeEnd(); } storeAndNotify('xSync',rc); mTimeEnd(); }, xTruncate: async function(fid/*sqlite3_file pointer*/,size){ mTimeStart('xTruncate'); let rc = 0; const fh = __openFiles[fid]; wTimeStart('xTruncate'); try{ affirmLocked('xTruncate',fh); affirmNotRO('xTruncate', fh); await (await getSyncHandle(fh)).truncate(size); }catch(e){ error("xTruncate():",e,fh); state.s11n.storeException(2,e); rc = state.sq3Codes.SQLITE_IOERR_TRUNCATE; } wTimeEnd(); storeAndNotify('xTruncate',rc); mTimeEnd(); }, xUnlock: async function(fid/*sqlite3_file pointer*/, lockType/*SQLITE_LOCK_...*/){ mTimeStart('xUnlock'); let rc = 0; const fh = __openFiles[fid]; if( state.sq3Codes.SQLITE_LOCK_NONE===lockType && fh.syncHandle ){ wTimeStart('xUnlock'); try { await closeSyncHandle(fh) } catch(e){ state.s11n.storeException(1,e); rc = state.sq3Codes.SQLITE_IOERR_UNLOCK; } wTimeEnd(); } storeAndNotify('xUnlock',rc); mTimeEnd(); }, xWrite: async function(fid/*sqlite3_file pointer*/,n,offset64){ mTimeStart('xWrite'); let rc; const fh = __openFiles[fid]; wTimeStart('xWrite'); try{ affirmLocked('xWrite',fh); affirmNotRO('xWrite', fh); rc = ( n === (await getSyncHandle(fh)) .write(fh.sabView.subarray(0, n), {at: Number(offset64)}) ) ? 0 : state.sq3Codes.SQLITE_IOERR_WRITE; }catch(e){ error("xWrite():",e,fh); state.s11n.storeException(1,e); rc = state.sq3Codes.SQLITE_IOERR_WRITE; } wTimeEnd(); storeAndNotify('xWrite',rc); mTimeEnd(); } }/*vfsAsyncImpls*/; const initS11n = ()=>{ /** ACHTUNG: this code is 100% duplicated in the other half of this proxy! The documentation is maintained in the "synchronous half". */ if(state.s11n) return state.s11n; const textDecoder = new TextDecoder(), textEncoder = new TextEncoder('utf-8'), viewU8 = new Uint8Array(state.sabIO, state.sabS11nOffset, state.sabS11nSize), viewDV = new DataView(state.sabIO, state.sabS11nOffset, state.sabS11nSize); state.s11n = Object.create(null); const TypeIds = Object.create(null); TypeIds.number = { id: 1, size: 8, getter: 'getFloat64', setter: 'setFloat64' }; TypeIds.bigint = { id: 2, size: 8, getter: 'getBigInt64', setter: 'setBigInt64' }; TypeIds.boolean = { id: 3, size: 4, getter: 'getInt32', setter: 'setInt32' }; TypeIds.string = { id: 4 }; const getTypeId = (v)=>( TypeIds[typeof v] || toss("Maintenance required: this value type cannot be serialized.",v) ); const getTypeIdById = (tid)=>{ switch(tid){ case TypeIds.number.id: return TypeIds.number; case TypeIds.bigint.id: return TypeIds.bigint; case TypeIds.boolean.id: return TypeIds.boolean; case TypeIds.string.id: return TypeIds.string; default: toss("Invalid type ID:",tid); } }; state.s11n.deserialize = function(clear=false){ ++metrics.s11n.deserialize.count; const t = performance.now(); const argc = viewU8[0]; const rc = argc ? [] : null; if(argc){ const typeIds = []; let offset = 1, i, n, v; for(i = 0; i < argc; ++i, ++offset){ typeIds.push(getTypeIdById(viewU8[offset])); } for(i = 0; i < argc; ++i){ const t = typeIds[i]; if(t.getter){ v = viewDV[t.getter](offset, state.littleEndian); offset += t.size; }else{/*String*/ n = viewDV.getInt32(offset, state.littleEndian); offset += 4; v = textDecoder.decode(viewU8.slice(offset, offset+n)); offset += n; } rc.push(v); } } if(clear) viewU8[0] = 0; //log("deserialize:",argc, rc); metrics.s11n.deserialize.time += performance.now() - t; return rc; }; state.s11n.serialize = function(...args){ const t = performance.now(); ++metrics.s11n.serialize.count; if(args.length){ //log("serialize():",args); const typeIds = []; let i = 0, offset = 1; viewU8[0] = args.length & 0xff /* header = # of args */; for(; i < args.length; ++i, ++offset){ /* Write the TypeIds.id value into the next args.length bytes. */ typeIds.push(getTypeId(args[i])); viewU8[offset] = typeIds[i].id; } for(i = 0; i < args.length; ++i) { /* Deserialize the following bytes based on their corresponding TypeIds.id from the header. */ const t = typeIds[i]; if(t.setter){ viewDV[t.setter](offset, args[i], state.littleEndian); offset += t.size; }else{/*String*/ const s = textEncoder.encode(args[i]); viewDV.setInt32(offset, s.byteLength, state.littleEndian); offset += 4; viewU8.set(s, offset); offset += s.byteLength; } } //log("serialize() result:",viewU8.slice(0,offset)); }else{ viewU8[0] = 0; } metrics.s11n.serialize.time += performance.now() - t; }; state.s11n.storeException = state.asyncS11nExceptions ? ((priority,e)=>{ if(priority<=state.asyncS11nExceptions){ state.s11n.serialize([e.name,': ',e.message].join("")); } }) : ()=>{}; return state.s11n; }/*initS11n()*/; const waitLoop = async function f(){ const opHandlers = Object.create(null); for(let k of Object.keys(state.opIds)){ const vi = vfsAsyncImpls[k]; if(!vi) continue; const o = Object.create(null); opHandlers[state.opIds[k]] = o; o.key = k; o.f = vi; } /** waitTime is how long (ms) to wait for each Atomics.wait(). We need to wake up periodically to give the thread a chance to do other things. */ const waitTime = 500; while(!flagAsyncShutdown){ try { if('timed-out'===Atomics.wait( state.sabOPView, state.opIds.whichOp, 0, waitTime )){ if(__autoLocks.size){ /* Release all auto-locks. */ for(const fid of __autoLocks){ const fh = __openFiles[fid]; await closeSyncHandleNoThrow(fh); log("Auto-unlocked",fid,fh.filenameAbs); } } continue; } const opId = Atomics.load(state.sabOPView, state.opIds.whichOp); Atomics.store(state.sabOPView, state.opIds.whichOp, 0); const hnd = opHandlers[opId] ?? toss("No waitLoop handler for whichOp #",opId); const args = state.s11n.deserialize( true /* clear s11n to keep the caller from confusing this with an exception string written by the upcoming operation */ ) || []; //warn("waitLoop() whichOp =",opId, hnd, args); if(hnd.f) await hnd.f(...args); else error("Missing callback for opId",opId); }catch(e){ error('in waitLoop():',e); } } }; navigator.storage.getDirectory().then(function(d){ const wMsg = (type)=>postMessage({type}); state.rootDir = d; self.onmessage = function({data}){ switch(data.type){ case 'opfs-async-init':{ /* Receive shared state from synchronous partner */ const opt = data.args; state.littleEndian = opt.littleEndian; state.asyncS11nExceptions = opt.asyncS11nExceptions; state.verbose = opt.verbose ?? 2; state.fileBufferSize = opt.fileBufferSize; state.sabS11nOffset = opt.sabS11nOffset; state.sabS11nSize = opt.sabS11nSize; state.sabOP = opt.sabOP; state.sabOPView = new Int32Array(state.sabOP); state.sabIO = opt.sabIO; state.sabFileBufView = new Uint8Array(state.sabIO, 0, state.fileBufferSize); state.sabS11nView = new Uint8Array(state.sabIO, state.sabS11nOffset, state.sabS11nSize); state.opIds = opt.opIds; state.sq3Codes = opt.sq3Codes; Object.keys(vfsAsyncImpls).forEach((k)=>{ if(!Number.isFinite(state.opIds[k])){ toss("Maintenance required: missing state.opIds[",k,"]"); } }); initS11n(); metrics.reset(); log("init state",state); wMsg('opfs-async-inited'); waitLoop(); break; } case 'opfs-async-restart': if(flagAsyncShutdown){ warn("Restarting after opfs-async-shutdown. Might or might not work."); flagAsyncShutdown = false; waitLoop(); } break; case 'opfs-async-metrics': metrics.dump(); break; } }; wMsg('opfs-async-loaded'); }).catch((e)=>error("error initializing OPFS asyncer:",e));