/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the SQLite parser ** when syntax rules are reduced. The routines in this file handle the ** following kinds of SQL syntax: ** ** CREATE TABLE ** DROP TABLE ** CREATE INDEX ** DROP INDEX ** creating ID lists ** BEGIN TRANSACTION ** COMMIT ** ROLLBACK */ #include "sqliteInt.h" #ifndef SQLITE_OMIT_SHARED_CACHE /* ** The TableLock structure is only used by the sqlite3TableLock() and ** codeTableLocks() functions. */ struct TableLock { int iDb; /* The database containing the table to be locked */ Pgno iTab; /* The root page of the table to be locked */ u8 isWriteLock; /* True for write lock. False for a read lock */ const char *zLockName; /* Name of the table */ }; /* ** Record the fact that we want to lock a table at run-time. ** ** The table to be locked has root page iTab and is found in database iDb. ** A read or a write lock can be taken depending on isWritelock. ** ** This routine just records the fact that the lock is desired. The ** code to make the lock occur is generated by a later call to ** codeTableLocks() which occurs during sqlite3FinishCoding(). */ static SQLITE_NOINLINE void lockTable( Parse *pParse, /* Parsing context */ int iDb, /* Index of the database containing the table to lock */ Pgno iTab, /* Root page number of the table to be locked */ u8 isWriteLock, /* True for a write lock */ const char *zName /* Name of the table to be locked */ ){ Parse *pToplevel; int i; int nBytes; TableLock *p; assert( iDb>=0 ); pToplevel = sqlite3ParseToplevel(pParse); for(i=0; inTableLock; i++){ p = &pToplevel->aTableLock[i]; if( p->iDb==iDb && p->iTab==iTab ){ p->isWriteLock = (p->isWriteLock || isWriteLock); return; } } nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); pToplevel->aTableLock = sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); if( pToplevel->aTableLock ){ p = &pToplevel->aTableLock[pToplevel->nTableLock++]; p->iDb = iDb; p->iTab = iTab; p->isWriteLock = isWriteLock; p->zLockName = zName; }else{ pToplevel->nTableLock = 0; sqlite3OomFault(pToplevel->db); } } void sqlite3TableLock( Parse *pParse, /* Parsing context */ int iDb, /* Index of the database containing the table to lock */ Pgno iTab, /* Root page number of the table to be locked */ u8 isWriteLock, /* True for a write lock */ const char *zName /* Name of the table to be locked */ ){ if( iDb==1 ) return; if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; lockTable(pParse, iDb, iTab, isWriteLock, zName); } /* ** Code an OP_TableLock instruction for each table locked by the ** statement (configured by calls to sqlite3TableLock()). */ static void codeTableLocks(Parse *pParse){ int i; Vdbe *pVdbe = pParse->pVdbe; assert( pVdbe!=0 ); for(i=0; inTableLock; i++){ TableLock *p = &pParse->aTableLock[i]; int p1 = p->iDb; sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, p->zLockName, P4_STATIC); } } #else #define codeTableLocks(x) #endif /* ** Return TRUE if the given yDbMask object is empty - if it contains no ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() ** macros when SQLITE_MAX_ATTACHED is greater than 30. */ #if SQLITE_MAX_ATTACHED>30 int sqlite3DbMaskAllZero(yDbMask m){ int i; for(i=0; ipToplevel==0 ); db = pParse->db; assert( db->pParse==pParse ); if( pParse->nested ) return; if( pParse->nErr ){ if( db->mallocFailed ) pParse->rc = SQLITE_NOMEM; return; } assert( db->mallocFailed==0 ); /* Begin by generating some termination code at the end of the ** vdbe program */ v = pParse->pVdbe; if( v==0 ){ if( db->init.busy ){ pParse->rc = SQLITE_DONE; return; } v = sqlite3GetVdbe(pParse); if( v==0 ) pParse->rc = SQLITE_ERROR; } assert( !pParse->isMultiWrite || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); if( v ){ if( pParse->bReturning ){ Returning *pReturning = pParse->u1.pReturning; int addrRewind; int reg; if( pReturning->nRetCol ){ sqlite3VdbeAddOp0(v, OP_FkCheck); addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur); VdbeCoverage(v); reg = pReturning->iRetReg; for(i=0; inRetCol; i++){ sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i); } sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i); sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrRewind); } } sqlite3VdbeAddOp0(v, OP_Halt); #if SQLITE_USER_AUTHENTICATION if( pParse->nTableLock>0 && db->init.busy==0 ){ sqlite3UserAuthInit(db); if( db->auth.authLevelrc = SQLITE_AUTH_USER; return; } } #endif /* The cookie mask contains one bit for each database file open. ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are ** set for each database that is used. Generate code to start a ** transaction on each used database and to verify the schema cookie ** on each used database. */ assert( pParse->nErr>0 || sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); sqlite3VdbeJumpHere(v, 0); assert( db->nDb>0 ); iDb = 0; do{ Schema *pSchema; if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; sqlite3VdbeUsesBtree(v, iDb); pSchema = db->aDb[iDb].pSchema; sqlite3VdbeAddOp4Int(v, OP_Transaction, /* Opcode */ iDb, /* P1 */ DbMaskTest(pParse->writeMask,iDb), /* P2 */ pSchema->schema_cookie, /* P3 */ pSchema->iGeneration /* P4 */ ); if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); VdbeComment((v, "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); }while( ++iDbnDb ); #ifndef SQLITE_OMIT_VIRTUALTABLE for(i=0; inVtabLock; i++){ char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); } pParse->nVtabLock = 0; #endif /* Once all the cookies have been verified and transactions opened, ** obtain the required table-locks. This is a no-op unless the ** shared-cache feature is enabled. */ codeTableLocks(pParse); /* Initialize any AUTOINCREMENT data structures required. */ sqlite3AutoincrementBegin(pParse); /* Code constant expressions that where factored out of inner loops. ** ** The pConstExpr list might also contain expressions that we simply ** want to keep around until the Parse object is deleted. Such ** expressions have iConstExprReg==0. Do not generate code for ** those expressions, of course. */ if( pParse->pConstExpr ){ ExprList *pEL = pParse->pConstExpr; pParse->okConstFactor = 0; for(i=0; inExpr; i++){ int iReg = pEL->a[i].u.iConstExprReg; sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg); } } if( pParse->bReturning ){ Returning *pRet = pParse->u1.pReturning; if( pRet->nRetCol ){ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol); } } /* Finally, jump back to the beginning of the executable code. */ sqlite3VdbeGoto(v, 1); } /* Get the VDBE program ready for execution */ assert( v!=0 || pParse->nErr ); assert( db->mallocFailed==0 || pParse->nErr ); if( pParse->nErr==0 ){ /* A minimum of one cursor is required if autoincrement is used * See ticket [a696379c1f08866] */ assert( pParse->pAinc==0 || pParse->nTab>0 ); sqlite3VdbeMakeReady(v, pParse); pParse->rc = SQLITE_DONE; }else{ pParse->rc = SQLITE_ERROR; } } /* ** Run the parser and code generator recursively in order to generate ** code for the SQL statement given onto the end of the pParse context ** currently under construction. Notes: ** ** * The final OP_Halt is not appended and other initialization ** and finalization steps are omitted because those are handling by the ** outermost parser. ** ** * Built-in SQL functions always take precedence over application-defined ** SQL functions. In other words, it is not possible to override a ** built-in function. */ void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ va_list ap; char *zSql; sqlite3 *db = pParse->db; u32 savedDbFlags = db->mDbFlags; char saveBuf[PARSE_TAIL_SZ]; if( pParse->nErr ) return; assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ va_start(ap, zFormat); zSql = sqlite3VMPrintf(db, zFormat, ap); va_end(ap); if( zSql==0 ){ /* This can result either from an OOM or because the formatted string ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set ** an error */ if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG; pParse->nErr++; return; } pParse->nested++; memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); db->mDbFlags |= DBFLAG_PreferBuiltin; sqlite3RunParser(pParse, zSql); db->mDbFlags = savedDbFlags; sqlite3DbFree(db, zSql); memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); pParse->nested--; } #if SQLITE_USER_AUTHENTICATION /* ** Return TRUE if zTable is the name of the system table that stores the ** list of users and their access credentials. */ int sqlite3UserAuthTable(const char *zTable){ return sqlite3_stricmp(zTable, "sqlite_user")==0; } #endif /* ** Locate the in-memory structure that describes a particular database ** table given the name of that table and (optionally) the name of the ** database containing the table. Return NULL if not found. ** ** If zDatabase is 0, all databases are searched for the table and the ** first matching table is returned. (No checking for duplicate table ** names is done.) The search order is TEMP first, then MAIN, then any ** auxiliary databases added using the ATTACH command. ** ** See also sqlite3LocateTable(). */ Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ Table *p = 0; int i; /* All mutexes are required for schema access. Make sure we hold them. */ assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); #if SQLITE_USER_AUTHENTICATION /* Only the admin user is allowed to know that the sqlite_user table ** exists */ if( db->auth.authLevelnDb; i++){ if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break; } if( i>=db->nDb ){ /* No match against the official names. But always match "main" ** to schema 0 as a legacy fallback. */ if( sqlite3StrICmp(zDatabase,"main")==0 ){ i = 0; }else{ return 0; } } p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ if( i==1 ){ if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){ p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, LEGACY_TEMP_SCHEMA_TABLE); } }else{ if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){ p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, LEGACY_SCHEMA_TABLE); } } } }else{ /* Match against TEMP first */ p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName); if( p ) return p; /* The main database is second */ p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName); if( p ) return p; /* Attached databases are in order of attachment */ for(i=2; inDb; i++){ assert( sqlite3SchemaMutexHeld(db, i, 0) ); p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName); if( p ) break; } if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){ p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE); }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){ p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, LEGACY_TEMP_SCHEMA_TABLE); } } } return p; } /* ** Locate the in-memory structure that describes a particular database ** table given the name of that table and (optionally) the name of the ** database containing the table. Return NULL if not found. Also leave an ** error message in pParse->zErrMsg. ** ** The difference between this routine and sqlite3FindTable() is that this ** routine leaves an error message in pParse->zErrMsg where ** sqlite3FindTable() does not. */ Table *sqlite3LocateTable( Parse *pParse, /* context in which to report errors */ u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ const char *zName, /* Name of the table we are looking for */ const char *zDbase /* Name of the database. Might be NULL */ ){ Table *p; sqlite3 *db = pParse->db; /* Read the database schema. If an error occurs, leave an error message ** and code in pParse and return NULL. */ if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 && SQLITE_OK!=sqlite3ReadSchema(pParse) ){ return 0; } p = sqlite3FindTable(db, zName, zDbase); if( p==0 ){ #ifndef SQLITE_OMIT_VIRTUALTABLE /* If zName is the not the name of a table in the schema created using ** CREATE, then check to see if it is the name of an virtual table that ** can be an eponymous virtual table. */ if( (pParse->prepFlags & SQLITE_PREPARE_NO_VTAB)==0 && db->init.busy==0 ){ Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ pMod = sqlite3PragmaVtabRegister(db, zName); } if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ testcase( pMod->pEpoTab==0 ); return pMod->pEpoTab; } } #endif if( flags & LOCATE_NOERR ) return 0; pParse->checkSchema = 1; }else if( IsVirtual(p) && (pParse->prepFlags & SQLITE_PREPARE_NO_VTAB)!=0 ){ p = 0; } if( p==0 ){ const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; if( zDbase ){ sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); }else{ sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); } }else{ assert( HasRowid(p) || p->iPKey<0 ); } return p; } /* ** Locate the table identified by *p. ** ** This is a wrapper around sqlite3LocateTable(). The difference between ** sqlite3LocateTable() and this function is that this function restricts ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be ** non-NULL if it is part of a view or trigger program definition. See ** sqlite3FixSrcList() for details. */ Table *sqlite3LocateTableItem( Parse *pParse, u32 flags, SrcItem *p ){ const char *zDb; assert( p->pSchema==0 || p->zDatabase==0 ); if( p->pSchema ){ int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); zDb = pParse->db->aDb[iDb].zDbSName; }else{ zDb = p->zDatabase; } return sqlite3LocateTable(pParse, flags, p->zName, zDb); } /* ** Return the preferred table name for system tables. Translate legacy ** names into the new preferred names, as appropriate. */ const char *sqlite3PreferredTableName(const char *zName){ if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){ if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){ return PREFERRED_SCHEMA_TABLE; } if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){ return PREFERRED_TEMP_SCHEMA_TABLE; } } return zName; } /* ** Locate the in-memory structure that describes ** a particular index given the name of that index ** and the name of the database that contains the index. ** Return NULL if not found. ** ** If zDatabase is 0, all databases are searched for the ** table and the first matching index is returned. (No checking ** for duplicate index names is done.) The search order is ** TEMP first, then MAIN, then any auxiliary databases added ** using the ATTACH command. */ Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ Index *p = 0; int i; /* All mutexes are required for schema access. Make sure we hold them. */ assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); for(i=OMIT_TEMPDB; inDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ Schema *pSchema = db->aDb[j].pSchema; assert( pSchema ); if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue; assert( sqlite3SchemaMutexHeld(db, j, 0) ); p = sqlite3HashFind(&pSchema->idxHash, zName); if( p ) break; } return p; } /* ** Reclaim the memory used by an index */ void sqlite3FreeIndex(sqlite3 *db, Index *p){ #ifndef SQLITE_OMIT_ANALYZE sqlite3DeleteIndexSamples(db, p); #endif sqlite3ExprDelete(db, p->pPartIdxWhere); sqlite3ExprListDelete(db, p->aColExpr); sqlite3DbFree(db, p->zColAff); if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); #ifdef SQLITE_ENABLE_STAT4 sqlite3_free(p->aiRowEst); #endif sqlite3DbFree(db, p); } /* ** For the index called zIdxName which is found in the database iDb, ** unlike that index from its Table then remove the index from ** the index hash table and free all memory structures associated ** with the index. */ void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ Index *pIndex; Hash *pHash; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pHash = &db->aDb[iDb].pSchema->idxHash; pIndex = sqlite3HashInsert(pHash, zIdxName, 0); if( ALWAYS(pIndex) ){ if( pIndex->pTable->pIndex==pIndex ){ pIndex->pTable->pIndex = pIndex->pNext; }else{ Index *p; /* Justification of ALWAYS(); The index must be on the list of ** indices. */ p = pIndex->pTable->pIndex; while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } if( ALWAYS(p && p->pNext==pIndex) ){ p->pNext = pIndex->pNext; } } sqlite3FreeIndex(db, pIndex); } db->mDbFlags |= DBFLAG_SchemaChange; } /* ** Look through the list of open database files in db->aDb[] and if ** any have been closed, remove them from the list. Reallocate the ** db->aDb[] structure to a smaller size, if possible. ** ** Entry 0 (the "main" database) and entry 1 (the "temp" database) ** are never candidates for being collapsed. */ void sqlite3CollapseDatabaseArray(sqlite3 *db){ int i, j; for(i=j=2; inDb; i++){ struct Db *pDb = &db->aDb[i]; if( pDb->pBt==0 ){ sqlite3DbFree(db, pDb->zDbSName); pDb->zDbSName = 0; continue; } if( jaDb[j] = db->aDb[i]; } j++; } db->nDb = j; if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); sqlite3DbFree(db, db->aDb); db->aDb = db->aDbStatic; } } /* ** Reset the schema for the database at index iDb. Also reset the ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero. ** Deferred resets may be run by calling with iDb<0. */ void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ int i; assert( iDbnDb ); if( iDb>=0 ){ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); DbSetProperty(db, iDb, DB_ResetWanted); DbSetProperty(db, 1, DB_ResetWanted); db->mDbFlags &= ~DBFLAG_SchemaKnownOk; } if( db->nSchemaLock==0 ){ for(i=0; inDb; i++){ if( DbHasProperty(db, i, DB_ResetWanted) ){ sqlite3SchemaClear(db->aDb[i].pSchema); } } } } /* ** Erase all schema information from all attached databases (including ** "main" and "temp") for a single database connection. */ void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ int i; sqlite3BtreeEnterAll(db); for(i=0; inDb; i++){ Db *pDb = &db->aDb[i]; if( pDb->pSchema ){ if( db->nSchemaLock==0 ){ sqlite3SchemaClear(pDb->pSchema); }else{ DbSetProperty(db, i, DB_ResetWanted); } } } db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); sqlite3VtabUnlockList(db); sqlite3BtreeLeaveAll(db); if( db->nSchemaLock==0 ){ sqlite3CollapseDatabaseArray(db); } } /* ** This routine is called when a commit occurs. */ void sqlite3CommitInternalChanges(sqlite3 *db){ db->mDbFlags &= ~DBFLAG_SchemaChange; } /* ** Set the expression associated with a column. This is usually ** the DEFAULT value, but might also be the expression that computes ** the value for a generated column. */ void sqlite3ColumnSetExpr( Parse *pParse, /* Parsing context */ Table *pTab, /* The table containing the column */ Column *pCol, /* The column to receive the new DEFAULT expression */ Expr *pExpr /* The new default expression */ ){ ExprList *pList; assert( IsOrdinaryTable(pTab) ); pList = pTab->u.tab.pDfltList; if( pCol->iDflt==0 || NEVER(pList==0) || NEVER(pList->nExpriDflt) ){ pCol->iDflt = pList==0 ? 1 : pList->nExpr+1; pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr); }else{ sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr); pList->a[pCol->iDflt-1].pExpr = pExpr; } } /* ** Return the expression associated with a column. The expression might be ** the DEFAULT clause or the AS clause of a generated column. ** Return NULL if the column has no associated expression. */ Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){ if( pCol->iDflt==0 ) return 0; if( NEVER(!IsOrdinaryTable(pTab)) ) return 0; if( NEVER(pTab->u.tab.pDfltList==0) ) return 0; if( NEVER(pTab->u.tab.pDfltList->nExpriDflt) ) return 0; return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr; } /* ** Set the collating sequence name for a column. */ void sqlite3ColumnSetColl( sqlite3 *db, Column *pCol, const char *zColl ){ i64 nColl; i64 n; char *zNew; assert( zColl!=0 ); n = sqlite3Strlen30(pCol->zCnName) + 1; if( pCol->colFlags & COLFLAG_HASTYPE ){ n += sqlite3Strlen30(pCol->zCnName+n) + 1; } nColl = sqlite3Strlen30(zColl) + 1; zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n); if( zNew ){ pCol->zCnName = zNew; memcpy(pCol->zCnName + n, zColl, nColl); pCol->colFlags |= COLFLAG_HASCOLL; } } /* ** Return the collating squence name for a column */ const char *sqlite3ColumnColl(Column *pCol){ const char *z; if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0; z = pCol->zCnName; while( *z ){ z++; } if( pCol->colFlags & COLFLAG_HASTYPE ){ do{ z++; }while( *z ); } return z+1; } /* ** Delete memory allocated for the column names of a table or view (the ** Table.aCol[] array). */ void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ int i; Column *pCol; assert( pTable!=0 ); assert( db!=0 ); if( (pCol = pTable->aCol)!=0 ){ for(i=0; inCol; i++, pCol++){ assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) ); sqlite3DbFree(db, pCol->zCnName); } sqlite3DbNNFreeNN(db, pTable->aCol); if( IsOrdinaryTable(pTable) ){ sqlite3ExprListDelete(db, pTable->u.tab.pDfltList); } if( db->pnBytesFreed==0 ){ pTable->aCol = 0; pTable->nCol = 0; if( IsOrdinaryTable(pTable) ){ pTable->u.tab.pDfltList = 0; } } } } /* ** Remove the memory data structures associated with the given ** Table. No changes are made to disk by this routine. ** ** This routine just deletes the data structure. It does not unlink ** the table data structure from the hash table. But it does destroy ** memory structures of the indices and foreign keys associated with ** the table. ** ** The db parameter is optional. It is needed if the Table object ** contains lookaside memory. (Table objects in the schema do not use ** lookaside memory, but some ephemeral Table objects do.) Or the ** db parameter can be used with db->pnBytesFreed to measure the memory ** used by the Table object. */ static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ Index *pIndex, *pNext; #ifdef SQLITE_DEBUG /* Record the number of outstanding lookaside allocations in schema Tables ** prior to doing any free() operations. Since schema Tables do not use ** lookaside, this number should not change. ** ** If malloc has already failed, it may be that it failed while allocating ** a Table object that was going to be marked ephemeral. So do not check ** that no lookaside memory is used in this case either. */ int nLookaside = 0; assert( db!=0 ); if( !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){ nLookaside = sqlite3LookasideUsed(db, 0); } #endif /* Delete all indices associated with this table. */ for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ pNext = pIndex->pNext; assert( pIndex->pSchema==pTable->pSchema || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); if( db->pnBytesFreed==0 && !IsVirtual(pTable) ){ char *zName = pIndex->zName; TESTONLY ( Index *pOld = ) sqlite3HashInsert( &pIndex->pSchema->idxHash, zName, 0 ); assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); assert( pOld==pIndex || pOld==0 ); } sqlite3FreeIndex(db, pIndex); } if( IsOrdinaryTable(pTable) ){ sqlite3FkDelete(db, pTable); } #ifndef SQLITE_OMIT_VIRTUAL_TABLE else if( IsVirtual(pTable) ){ sqlite3VtabClear(db, pTable); } #endif else{ assert( IsView(pTable) ); sqlite3SelectDelete(db, pTable->u.view.pSelect); } /* Delete the Table structure itself. */ sqlite3DeleteColumnNames(db, pTable); sqlite3DbFree(db, pTable->zName); sqlite3DbFree(db, pTable->zColAff); sqlite3ExprListDelete(db, pTable->pCheck); sqlite3DbFree(db, pTable); /* Verify that no lookaside memory was used by schema tables */ assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) ); } void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ /* Do not delete the table until the reference count reaches zero. */ assert( db!=0 ); if( !pTable ) return; if( db->pnBytesFreed==0 && (--pTable->nTabRef)>0 ) return; deleteTable(db, pTable); } /* ** Unlink the given table from the hash tables and the delete the ** table structure with all its indices and foreign keys. */ void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ Table *p; Db *pDb; assert( db!=0 ); assert( iDb>=0 && iDbnDb ); assert( zTabName ); assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ pDb = &db->aDb[iDb]; p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); sqlite3DeleteTable(db, p); db->mDbFlags |= DBFLAG_SchemaChange; } /* ** Given a token, return a string that consists of the text of that ** token. Space to hold the returned string ** is obtained from sqliteMalloc() and must be freed by the calling ** function. ** ** Any quotation marks (ex: "name", 'name', [name], or `name`) that ** surround the body of the token are removed. ** ** Tokens are often just pointers into the original SQL text and so ** are not \000 terminated and are not persistent. The returned string ** is \000 terminated and is persistent. */ char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){ char *zName; if( pName ){ zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n); sqlite3Dequote(zName); }else{ zName = 0; } return zName; } /* ** Open the sqlite_schema table stored in database number iDb for ** writing. The table is opened using cursor 0. */ void sqlite3OpenSchemaTable(Parse *p, int iDb){ Vdbe *v = sqlite3GetVdbe(p); sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE); sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5); if( p->nTab==0 ){ p->nTab = 1; } } /* ** Parameter zName points to a nul-terminated buffer containing the name ** of a database ("main", "temp" or the name of an attached db). This ** function returns the index of the named database in db->aDb[], or ** -1 if the named db cannot be found. */ int sqlite3FindDbName(sqlite3 *db, const char *zName){ int i = -1; /* Database number */ if( zName ){ Db *pDb; for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; /* "main" is always an acceptable alias for the primary database ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; } } return i; } /* ** The token *pName contains the name of a database (either "main" or ** "temp" or the name of an attached db). This routine returns the ** index of the named database in db->aDb[], or -1 if the named db ** does not exist. */ int sqlite3FindDb(sqlite3 *db, Token *pName){ int i; /* Database number */ char *zName; /* Name we are searching for */ zName = sqlite3NameFromToken(db, pName); i = sqlite3FindDbName(db, zName); sqlite3DbFree(db, zName); return i; } /* The table or view or trigger name is passed to this routine via tokens ** pName1 and pName2. If the table name was fully qualified, for example: ** ** CREATE TABLE xxx.yyy (...); ** ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if ** the table name is not fully qualified, i.e.: ** ** CREATE TABLE yyy(...); ** ** Then pName1 is set to "yyy" and pName2 is "". ** ** This routine sets the *ppUnqual pointer to point at the token (pName1 or ** pName2) that stores the unqualified table name. The index of the ** database "xxx" is returned. */ int sqlite3TwoPartName( Parse *pParse, /* Parsing and code generating context */ Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ Token *pName2, /* The "yyy" in the name "xxx.yyy" */ Token **pUnqual /* Write the unqualified object name here */ ){ int iDb; /* Database holding the object */ sqlite3 *db = pParse->db; assert( pName2!=0 ); if( pName2->n>0 ){ if( db->init.busy ) { sqlite3ErrorMsg(pParse, "corrupt database"); return -1; } *pUnqual = pName2; iDb = sqlite3FindDb(db, pName1); if( iDb<0 ){ sqlite3ErrorMsg(pParse, "unknown database %T", pName1); return -1; } }else{ assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE || (db->mDbFlags & DBFLAG_Vacuum)!=0); iDb = db->init.iDb; *pUnqual = pName1; } return iDb; } /* ** True if PRAGMA writable_schema is ON */ int sqlite3WritableSchema(sqlite3 *db){ testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== SQLITE_WriteSchema ); testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== SQLITE_Defensive ); testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== (SQLITE_WriteSchema|SQLITE_Defensive) ); return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; } /* ** This routine is used to check if the UTF-8 string zName is a legal ** unqualified name for a new schema object (table, index, view or ** trigger). All names are legal except those that begin with the string ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace ** is reserved for internal use. ** ** When parsing the sqlite_schema table, this routine also checks to ** make sure the "type", "name", and "tbl_name" columns are consistent ** with the SQL. */ int sqlite3CheckObjectName( Parse *pParse, /* Parsing context */ const char *zName, /* Name of the object to check */ const char *zType, /* Type of this object */ const char *zTblName /* Parent table name for triggers and indexes */ ){ sqlite3 *db = pParse->db; if( sqlite3WritableSchema(db) || db->init.imposterTable || !sqlite3Config.bExtraSchemaChecks ){ /* Skip these error checks for writable_schema=ON */ return SQLITE_OK; } if( db->init.busy ){ if( sqlite3_stricmp(zType, db->init.azInit[0]) || sqlite3_stricmp(zName, db->init.azInit[1]) || sqlite3_stricmp(zTblName, db->init.azInit[2]) ){ sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */ return SQLITE_ERROR; } }else{ if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7)) || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName)) ){ sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); return SQLITE_ERROR; } } return SQLITE_OK; } /* ** Return the PRIMARY KEY index of a table */ Index *sqlite3PrimaryKeyIndex(Table *pTab){ Index *p; for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} return p; } /* ** Convert an table column number into a index column number. That is, ** for the column iCol in the table (as defined by the CREATE TABLE statement) ** find the (first) offset of that column in index pIdx. Or return -1 ** if column iCol is not used in index pIdx. */ i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){ int i; for(i=0; inColumn; i++){ if( iCol==pIdx->aiColumn[i] ) return i; } return -1; } #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* Convert a storage column number into a table column number. ** ** The storage column number (0,1,2,....) is the index of the value ** as it appears in the record on disk. The true column number ** is the index (0,1,2,...) of the column in the CREATE TABLE statement. ** ** The storage column number is less than the table column number if ** and only there are VIRTUAL columns to the left. ** ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro. */ i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){ if( pTab->tabFlags & TF_HasVirtual ){ int i; for(i=0; i<=iCol; i++){ if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++; } } return iCol; } #endif #ifndef SQLITE_OMIT_GENERATED_COLUMNS /* Convert a table column number into a storage column number. ** ** The storage column number (0,1,2,....) is the index of the value ** as it appears in the record on disk. Or, if the input column is ** the N-th virtual column (zero-based) then the storage number is ** the number of non-virtual columns in the table plus N. ** ** The true column number is the index (0,1,2,...) of the column in ** the CREATE TABLE statement. ** ** If the input column is a VIRTUAL column, then it should not appear ** in storage. But the value sometimes is cached in registers that ** follow the range of registers used to construct storage. This ** avoids computing the same VIRTUAL column multiple times, and provides ** values for use by OP_Param opcodes in triggers. Hence, if the ** input column is a VIRTUAL table, put it after all the other columns. ** ** In the following, N means "normal column", S means STORED, and ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this: ** ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V); ** -- 0 1 2 3 4 5 6 7 8 ** ** Then the mapping from this function is as follows: ** ** INPUTS: 0 1 2 3 4 5 6 7 8 ** OUTPUTS: 0 1 6 2 3 7 4 5 8 ** ** So, in other words, this routine shifts all the virtual columns to ** the end. ** ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and ** this routine is a no-op macro. If the pTab does not have any virtual ** columns, then this routine is no-op that always return iCol. If iCol ** is negative (indicating the ROWID column) then this routine return iCol. */ i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){ int i; i16 n; assert( iColnCol ); if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol; for(i=0, n=0; iaCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++; } if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){ /* iCol is a virtual column itself */ return pTab->nNVCol + i - n; }else{ /* iCol is a normal or stored column */ return n; } } #endif /* ** Insert a single OP_JournalMode query opcode in order to force the ** prepared statement to return false for sqlite3_stmt_readonly(). This ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS ** will return false for sqlite3_stmt_readonly() even if that statement ** is a read-only no-op. */ static void sqlite3ForceNotReadOnly(Parse *pParse){ int iReg = ++pParse->nMem; Vdbe *v = sqlite3GetVdbe(pParse); if( v ){ sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY); sqlite3VdbeUsesBtree(v, 0); } } /* ** Begin constructing a new table representation in memory. This is ** the first of several action routines that get called in response ** to a CREATE TABLE statement. In particular, this routine is called ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp ** flag is true if the table should be stored in the auxiliary database ** file instead of in the main database file. This is normally the case ** when the "TEMP" or "TEMPORARY" keyword occurs in between ** CREATE and TABLE. ** ** The new table record is initialized and put in pParse->pNewTable. ** As more of the CREATE TABLE statement is parsed, additional action ** routines will be called to add more information to this record. ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine ** is called to complete the construction of the new table record. */ void sqlite3StartTable( Parse *pParse, /* Parser context */ Token *pName1, /* First part of the name of the table or view */ Token *pName2, /* Second part of the name of the table or view */ int isTemp, /* True if this is a TEMP table */ int isView, /* True if this is a VIEW */ int isVirtual, /* True if this is a VIRTUAL table */ int noErr /* Do nothing if table already exists */ ){ Table *pTable; char *zName = 0; /* The name of the new table */ sqlite3 *db = pParse->db; Vdbe *v; int iDb; /* Database number to create the table in */ Token *pName; /* Unqualified name of the table to create */ if( db->init.busy && db->init.newTnum==1 ){ /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */ iDb = db->init.iDb; zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); pName = pName1; }else{ /* The common case */ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); if( iDb<0 ) return; if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ /* If creating a temp table, the name may not be qualified. Unless ** the database name is "temp" anyway. */ sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); return; } if( !OMIT_TEMPDB && isTemp ) iDb = 1; zName = sqlite3NameFromToken(db, pName); if( IN_RENAME_OBJECT ){ sqlite3RenameTokenMap(pParse, (void*)zName, pName); } } pParse->sNameToken = *pName; if( zName==0 ) return; if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){ goto begin_table_error; } if( db->init.iDb==1 ) isTemp = 1; #ifndef SQLITE_OMIT_AUTHORIZATION assert( isTemp==0 || isTemp==1 ); assert( isView==0 || isView==1 ); { static const u8 aCode[] = { SQLITE_CREATE_TABLE, SQLITE_CREATE_TEMP_TABLE, SQLITE_CREATE_VIEW, SQLITE_CREATE_TEMP_VIEW }; char *zDb = db->aDb[iDb].zDbSName; if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ goto begin_table_error; } if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], zName, 0, zDb) ){ goto begin_table_error; } } #endif /* Make sure the new table name does not collide with an existing ** index or table name in the same database. Issue an error message if ** it does. The exception is if the statement being parsed was passed ** to an sqlite3_declare_vtab() call. In that case only the column names ** and types will be used, so there is no need to test for namespace ** collisions. */ if( !IN_SPECIAL_PARSE ){ char *zDb = db->aDb[iDb].zDbSName; if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto begin_table_error; } pTable = sqlite3FindTable(db, zName, zDb); if( pTable ){ if( !noErr ){ sqlite3ErrorMsg(pParse, "%s %T already exists", (IsView(pTable)? "view" : "table"), pName); }else{ assert( !db->init.busy || CORRUPT_DB ); sqlite3CodeVerifySchema(pParse, iDb); sqlite3ForceNotReadOnly(pParse); } goto begin_table_error; } if( sqlite3FindIndex(db, zName, zDb)!=0 ){ sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); goto begin_table_error; } } pTable = sqlite3DbMallocZero(db, sizeof(Table)); if( pTable==0 ){ assert( db->mallocFailed ); pParse->rc = SQLITE_NOMEM_BKPT; pParse->nErr++; goto begin_table_error; } pTable->zName = zName; pTable->iPKey = -1; pTable->pSchema = db->aDb[iDb].pSchema; pTable->nTabRef = 1; #ifdef SQLITE_DEFAULT_ROWEST pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); #else pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); #endif assert( pParse->pNewTable==0 ); pParse->pNewTable = pTable; /* Begin generating the code that will insert the table record into ** the schema table. Note in particular that we must go ahead ** and allocate the record number for the table entry now. Before any ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause ** indices to be created and the table record must come before the ** indices. Hence, the record number for the table must be allocated ** now. */ if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ int addr1; int fileFormat; int reg1, reg2, reg3; /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; sqlite3BeginWriteOperation(pParse, 1, iDb); #ifndef SQLITE_OMIT_VIRTUALTABLE if( isVirtual ){ sqlite3VdbeAddOp0(v, OP_VBegin); } #endif /* If the file format and encoding in the database have not been set, ** set them now. */ reg1 = pParse->regRowid = ++pParse->nMem; reg2 = pParse->regRoot = ++pParse->nMem; reg3 = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); sqlite3VdbeUsesBtree(v, iDb); addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1 : SQLITE_MAX_FILE_FORMAT; sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); sqlite3VdbeJumpHere(v, addr1); /* This just creates a place-holder record in the sqlite_schema table. ** The record created does not contain anything yet. It will be replaced ** by the real entry in code generated at sqlite3EndTable(). ** ** The rowid for the new entry is left in register pParse->regRowid. ** The root page number of the new table is left in reg pParse->regRoot. ** The rowid and root page number values are needed by the code that ** sqlite3EndTable will generate. */ #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) if( isView || isVirtual ){ sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); }else #endif { assert( !pParse->bReturning ); pParse->u1.addrCrTab = sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY); } sqlite3OpenSchemaTable(pParse, iDb); sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3VdbeAddOp0(v, OP_Close); } /* Normal (non-error) return. */ return; /* If an error occurs, we jump here */ begin_table_error: pParse->checkSchema = 1; sqlite3DbFree(db, zName); return; } /* Set properties of a table column based on the (magical) ** name of the column. */ #if SQLITE_ENABLE_HIDDEN_COLUMNS void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){ pCol->colFlags |= COLFLAG_HIDDEN; if( pTab ) pTab->tabFlags |= TF_HasHidden; }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ pTab->tabFlags |= TF_OOOHidden; } } #endif /* ** Name of the special TEMP trigger used to implement RETURNING. The ** name begins with "sqlite_" so that it is guaranteed not to collide ** with any application-generated triggers. */ #define RETURNING_TRIGGER_NAME "sqlite_returning" /* ** Clean up the data structures associated with the RETURNING clause. */ static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){ Hash *pHash; pHash = &(db->aDb[1].pSchema->trigHash); sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0); sqlite3ExprListDelete(db, pRet->pReturnEL); sqlite3DbFree(db, pRet); } /* ** Add the RETURNING clause to the parse currently underway. ** ** This routine creates a special TEMP trigger that will fire for each row ** of the DML statement. That TEMP trigger contains a single SELECT ** statement with a result set that is the argument of the RETURNING clause. ** The trigger has the Trigger.bReturning flag and an opcode of ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator ** knows to handle it specially. The TEMP trigger is automatically ** removed at the end of the parse. ** ** When this routine is called, we do not yet know if the RETURNING clause ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a ** RETURNING trigger instead. It will then be converted into the appropriate ** type on the first call to sqlite3TriggersExist(). */ void sqlite3AddReturning(Parse *pParse, ExprList *pList){ Returning *pRet; Hash *pHash; sqlite3 *db = pParse->db; if( pParse->pNewTrigger ){ sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger"); }else{ assert( pParse->bReturning==0 ); } pParse->bReturning = 1; pRet = sqlite3DbMallocZero(db, sizeof(*pRet)); if( pRet==0 ){ sqlite3ExprListDelete(db, pList); return; } pParse->u1.pReturning = pRet; pRet->pParse = pParse; pRet->pReturnEL = pList; sqlite3ParserAddCleanup(pParse, (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet); testcase( pParse->earlyCleanup ); if( db->mallocFailed ) return; pRet->retTrig.zName = RETURNING_TRIGGER_NAME; pRet->retTrig.op = TK_RETURNING; pRet->retTrig.tr_tm = TRIGGER_AFTER; pRet->retTrig.bReturning = 1; pRet->retTrig.pSchema = db->aDb[1].pSchema; pRet->retTrig.pTabSchema = db->aDb[1].pSchema; pRet->retTrig.step_list = &pRet->retTStep; pRet->retTStep.op = TK_RETURNING; pRet->retTStep.pTrig = &pRet->retTrig; pRet->retTStep.pExprList = pList; pHash = &(db->aDb[1].pSchema->trigHash); assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr ); if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig) ==&pRet->retTrig ){ sqlite3OomFault(db); } } /* ** Add a new column to the table currently being constructed. ** ** The parser calls this routine once for each column declaration ** in a CREATE TABLE statement. sqlite3StartTable() gets called ** first to get things going. Then this routine is called for each ** column. */ void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){ Table *p; int i; char *z; char *zType; Column *pCol; sqlite3 *db = pParse->db; u8 hName; Column *aNew; u8 eType = COLTYPE_CUSTOM; u8 szEst = 1; char affinity = SQLITE_AFF_BLOB; if( (p = pParse->pNewTable)==0 ) return; if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); return; } if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName); /* Because keywords GENERATE ALWAYS can be converted into indentifiers ** by the parser, we can sometimes end up with a typename that ends ** with "generated always". Check for this case and omit the surplus ** text. */ if( sType.n>=16 && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0 ){ sType.n -= 6; while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--; if( sType.n>=9 && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0 ){ sType.n -= 9; while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--; } } /* Check for standard typenames. For standard typenames we will ** set the Column.eType field rather than storing the typename after ** the column name, in order to save space. */ if( sType.n>=3 ){ sqlite3DequoteToken(&sType); for(i=0; i0) ); if( z==0 ) return; if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName); memcpy(z, sName.z, sName.n); z[sName.n] = 0; sqlite3Dequote(z); hName = sqlite3StrIHash(z); for(i=0; inCol; i++){ if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){ sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); sqlite3DbFree(db, z); return; } } aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0])); if( aNew==0 ){ sqlite3DbFree(db, z); return; } p->aCol = aNew; pCol = &p->aCol[p->nCol]; memset(pCol, 0, sizeof(p->aCol[0])); pCol->zCnName = z; pCol->hName = hName; sqlite3ColumnPropertiesFromName(p, pCol); if( sType.n==0 ){ /* If there is no type specified, columns have the default affinity ** 'BLOB' with a default size of 4 bytes. */ pCol->affinity = affinity; pCol->eCType = eType; pCol->szEst = szEst; #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( affinity==SQLITE_AFF_BLOB ){ if( 4>=sqlite3GlobalConfig.szSorterRef ){ pCol->colFlags |= COLFLAG_SORTERREF; } } #endif }else{ zType = z + sqlite3Strlen30(z) + 1; memcpy(zType, sType.z, sType.n); zType[sType.n] = 0; sqlite3Dequote(zType); pCol->affinity = sqlite3AffinityType(zType, pCol); pCol->colFlags |= COLFLAG_HASTYPE; } p->nCol++; p->nNVCol++; pParse->constraintName.n = 0; } /* ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has ** been seen on a column. This routine sets the notNull flag on ** the column currently under construction. */ void sqlite3AddNotNull(Parse *pParse, int onError){ Table *p; Column *pCol; p = pParse->pNewTable; if( p==0 || NEVER(p->nCol<1) ) return; pCol = &p->aCol[p->nCol-1]; pCol->notNull = (u8)onError; p->tabFlags |= TF_HasNotNull; /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created ** on this column. */ if( pCol->colFlags & COLFLAG_UNIQUE ){ Index *pIdx; for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None ); if( pIdx->aiColumn[0]==p->nCol-1 ){ pIdx->uniqNotNull = 1; } } } } /* ** Scan the column type name zType (length nType) and return the ** associated affinity type. ** ** This routine does a case-independent search of zType for the ** substrings in the following table. If one of the substrings is ** found, the corresponding affinity is returned. If zType contains ** more than one of the substrings, entries toward the top of ** the table take priority. For example, if zType is 'BLOBINT', ** SQLITE_AFF_INTEGER is returned. ** ** Substring | Affinity ** -------------------------------- ** 'INT' | SQLITE_AFF_INTEGER ** 'CHAR' | SQLITE_AFF_TEXT ** 'CLOB' | SQLITE_AFF_TEXT ** 'TEXT' | SQLITE_AFF_TEXT ** 'BLOB' | SQLITE_AFF_BLOB ** 'REAL' | SQLITE_AFF_REAL ** 'FLOA' | SQLITE_AFF_REAL ** 'DOUB' | SQLITE_AFF_REAL ** ** If none of the substrings in the above table are found, ** SQLITE_AFF_NUMERIC is returned. */ char sqlite3AffinityType(const char *zIn, Column *pCol){ u32 h = 0; char aff = SQLITE_AFF_NUMERIC; const char *zChar = 0; assert( zIn!=0 ); while( zIn[0] ){ h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; zIn++; if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ aff = SQLITE_AFF_TEXT; zChar = zIn; }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ aff = SQLITE_AFF_TEXT; }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ aff = SQLITE_AFF_TEXT; }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ aff = SQLITE_AFF_BLOB; if( zIn[0]=='(' ) zChar = zIn; #ifndef SQLITE_OMIT_FLOATING_POINT }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ && aff==SQLITE_AFF_NUMERIC ){ aff = SQLITE_AFF_REAL; }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ && aff==SQLITE_AFF_NUMERIC ){ aff = SQLITE_AFF_REAL; }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ && aff==SQLITE_AFF_NUMERIC ){ aff = SQLITE_AFF_REAL; #endif }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ aff = SQLITE_AFF_INTEGER; break; } } /* If pCol is not NULL, store an estimate of the field size. The ** estimate is scaled so that the size of an integer is 1. */ if( pCol ){ int v = 0; /* default size is approx 4 bytes */ if( aff r=(k/4+1) */ sqlite3GetInt32(zChar, &v); break; } zChar++; } }else{ v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ } } #ifdef SQLITE_ENABLE_SORTER_REFERENCES if( v>=sqlite3GlobalConfig.szSorterRef ){ pCol->colFlags |= COLFLAG_SORTERREF; } #endif v = v/4 + 1; if( v>255 ) v = 255; pCol->szEst = v; } return aff; } /* ** The expression is the default value for the most recently added column ** of the table currently under construction. ** ** Default value expressions must be constant. Raise an exception if this ** is not the case. ** ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. */ void sqlite3AddDefaultValue( Parse *pParse, /* Parsing context */ Expr *pExpr, /* The parsed expression of the default value */ const char *zStart, /* Start of the default value text */ const char *zEnd /* First character past end of defaut value text */ ){ Table *p; Column *pCol; sqlite3 *db = pParse->db; p = pParse->pNewTable; if( p!=0 ){ int isInit = db->init.busy && db->init.iDb!=1; pCol = &(p->aCol[p->nCol-1]); if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){ sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", pCol->zCnName); #ifndef SQLITE_OMIT_GENERATED_COLUMNS }else if( pCol->colFlags & COLFLAG_GENERATED ){ testcase( pCol->colFlags & COLFLAG_VIRTUAL ); testcase( pCol->colFlags & COLFLAG_STORED ); sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column"); #endif }else{ /* A copy of pExpr is used instead of the original, as pExpr contains ** tokens that point to volatile memory. */ Expr x, *pDfltExpr; memset(&x, 0, sizeof(x)); x.op = TK_SPAN; x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd); x.pLeft = pExpr; x.flags = EP_Skip; pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); sqlite3DbFree(db, x.u.zToken); sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr); } } if( IN_RENAME_OBJECT ){ sqlite3RenameExprUnmap(pParse, pExpr); } sqlite3ExprDelete(db, pExpr); } /* ** Backwards Compatibility Hack: ** ** Historical versions of SQLite accepted strings as column names in ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: ** ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); ** ** This is goofy. But to preserve backwards compatibility we continue to ** accept it. This routine does the necessary conversion. It converts ** the expression given in its argument from a TK_STRING into a TK_ID ** if the expression is just a TK_STRING with an optional COLLATE clause. ** If the expression is anything other than TK_STRING, the expression is ** unchanged. */ static void sqlite3StringToId(Expr *p){ if( p->op==TK_STRING ){ p->op = TK_ID; }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ p->pLeft->op = TK_ID; } } /* ** Tag the given column as being part of the PRIMARY KEY */ static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){ pCol->colFlags |= COLFLAG_PRIMKEY; #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( pCol->colFlags & COLFLAG_GENERATED ){ testcase( pCol->colFlags & COLFLAG_VIRTUAL ); testcase( pCol->colFlags & COLFLAG_STORED ); sqlite3ErrorMsg(pParse, "generated columns cannot be part of the PRIMARY KEY"); } #endif } /* ** Designate the PRIMARY KEY for the table. pList is a list of names ** of columns that form the primary key. If pList is NULL, then the ** most recently added column of the table is the primary key. ** ** A table can have at most one primary key. If the table already has ** a primary key (and this is the second primary key) then create an ** error. ** ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, ** then we will try to use that column as the rowid. Set the Table.iPKey ** field of the table under construction to be the index of the ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is ** no INTEGER PRIMARY KEY. ** ** If the key is not an INTEGER PRIMARY KEY, then create a unique ** index for the key. No index is created for INTEGER PRIMARY KEYs. */ void sqlite3AddPrimaryKey( Parse *pParse, /* Parsing context */ ExprList *pList, /* List of field names to be indexed */ int onError, /* What to do with a uniqueness conflict */ int autoInc, /* True if the AUTOINCREMENT keyword is present */ int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ ){ Table *pTab = pParse->pNewTable; Column *pCol = 0; int iCol = -1, i; int nTerm; if( pTab==0 ) goto primary_key_exit; if( pTab->tabFlags & TF_HasPrimaryKey ){ sqlite3ErrorMsg(pParse, "table \"%s\" has more than one primary key", pTab->zName); goto primary_key_exit; } pTab->tabFlags |= TF_HasPrimaryKey; if( pList==0 ){ iCol = pTab->nCol - 1; pCol = &pTab->aCol[iCol]; makeColumnPartOfPrimaryKey(pParse, pCol); nTerm = 1; }else{ nTerm = pList->nExpr; for(i=0; ia[i].pExpr); assert( pCExpr!=0 ); sqlite3StringToId(pCExpr); if( pCExpr->op==TK_ID ){ const char *zCName; assert( !ExprHasProperty(pCExpr, EP_IntValue) ); zCName = pCExpr->u.zToken; for(iCol=0; iColnCol; iCol++){ if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){ pCol = &pTab->aCol[iCol]; makeColumnPartOfPrimaryKey(pParse, pCol); break; } } } } } if( nTerm==1 && pCol && pCol->eCType==COLTYPE_INTEGER && sortOrder!=SQLITE_SO_DESC ){ if( IN_RENAME_OBJECT && pList ){ Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr); sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr); } pTab->iPKey = iCol; pTab->keyConf = (u8)onError; assert( autoInc==0 || autoInc==1 ); pTab->tabFlags |= autoInc*TF_Autoincrement; if( pList ) pParse->iPkSortOrder = pList->a[0].fg.sortFlags; (void)sqlite3HasExplicitNulls(pParse, pList); }else if( autoInc ){ #ifndef SQLITE_OMIT_AUTOINCREMENT sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " "INTEGER PRIMARY KEY"); #endif }else{ sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); pList = 0; } primary_key_exit: sqlite3ExprListDelete(pParse->db, pList); return; } /* ** Add a new CHECK constraint to the table currently under construction. */ void sqlite3AddCheckConstraint( Parse *pParse, /* Parsing context */ Expr *pCheckExpr, /* The check expression */ const char *zStart, /* Opening "(" */ const char *zEnd /* Closing ")" */ ){ #ifndef SQLITE_OMIT_CHECK Table *pTab = pParse->pNewTable; sqlite3 *db = pParse->db; if( pTab && !IN_DECLARE_VTAB && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) ){ pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); if( pParse->constraintName.n ){ sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); }else{ Token t; for(zStart++; sqlite3Isspace(zStart[0]); zStart++){} while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; } t.z = zStart; t.n = (int)(zEnd - t.z); sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1); } }else #endif { sqlite3ExprDelete(pParse->db, pCheckExpr); } } /* ** Set the collation function of the most recently parsed table column ** to the CollSeq given. */ void sqlite3AddCollateType(Parse *pParse, Token *pToken){ Table *p; int i; char *zColl; /* Dequoted name of collation sequence */ sqlite3 *db; if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return; i = p->nCol-1; db = pParse->db; zColl = sqlite3NameFromToken(db, pToken); if( !zColl ) return; if( sqlite3LocateCollSeq(pParse, zColl) ){ Index *pIdx; sqlite3ColumnSetColl(db, &p->aCol[i], zColl); /* If the column is declared as " PRIMARY KEY COLLATE ", ** then an index may have been created on this column before the ** collation type was added. Correct this if it is the case. */ for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pIdx->nKeyCol==1 ); if( pIdx->aiColumn[0]==i ){ pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]); } } } sqlite3DbFree(db, zColl); } /* Change the most recently parsed column to be a GENERATED ALWAYS AS ** column. */ void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){ #ifndef SQLITE_OMIT_GENERATED_COLUMNS u8 eType = COLFLAG_VIRTUAL; Table *pTab = pParse->pNewTable; Column *pCol; if( pTab==0 ){ /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */ goto generated_done; } pCol = &(pTab->aCol[pTab->nCol-1]); if( IN_DECLARE_VTAB ){ sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns"); goto generated_done; } if( pCol->iDflt>0 ) goto generated_error; if( pType ){ if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){ /* no-op */ }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){ eType = COLFLAG_STORED; }else{ goto generated_error; } } if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--; pCol->colFlags |= eType; assert( TF_HasVirtual==COLFLAG_VIRTUAL ); assert( TF_HasStored==COLFLAG_STORED ); pTab->tabFlags |= eType; if( pCol->colFlags & COLFLAG_PRIMKEY ){ makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */ } sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr); pExpr = 0; goto generated_done; generated_error: sqlite3ErrorMsg(pParse, "error in generated column \"%s\"", pCol->zCnName); generated_done: sqlite3ExprDelete(pParse->db, pExpr); #else /* Throw and error for the GENERATED ALWAYS AS clause if the ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */ sqlite3ErrorMsg(pParse, "generated columns not supported"); sqlite3ExprDelete(pParse->db, pExpr); #endif } /* ** Generate code that will increment the schema cookie. ** ** The schema cookie is used to determine when the schema for the ** database changes. After each schema change, the cookie value ** changes. When a process first reads the schema it records the ** cookie. Thereafter, whenever it goes to access the database, ** it checks the cookie to make sure the schema has not changed ** since it was last read. ** ** This plan is not completely bullet-proof. It is possible for ** the schema to change multiple times and for the cookie to be ** set back to prior value. But schema changes are infrequent ** and the probability of hitting the same cookie value is only ** 1 chance in 2^32. So we're safe enough. ** ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments ** the schema-version whenever the schema changes. */ void sqlite3ChangeCookie(Parse *pParse, int iDb){ sqlite3 *db = pParse->db; Vdbe *v = pParse->pVdbe; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie)); } /* ** Measure the number of characters needed to output the given ** identifier. The number returned includes any quotes used ** but does not include the null terminator. ** ** The estimate is conservative. It might be larger that what is ** really needed. */ static int identLength(const char *z){ int n; for(n=0; *z; n++, z++){ if( *z=='"' ){ n++; } } return n + 2; } /* ** The first parameter is a pointer to an output buffer. The second ** parameter is a pointer to an integer that contains the offset at ** which to write into the output buffer. This function copies the ** nul-terminated string pointed to by the third parameter, zSignedIdent, ** to the specified offset in the buffer and updates *pIdx to refer ** to the first byte after the last byte written before returning. ** ** If the string zSignedIdent consists entirely of alpha-numeric ** characters, does not begin with a digit and is not an SQL keyword, ** then it is copied to the output buffer exactly as it is. Otherwise, ** it is quoted using double-quotes. */ static void identPut(char *z, int *pIdx, char *zSignedIdent){ unsigned char *zIdent = (unsigned char*)zSignedIdent; int i, j, needQuote; i = *pIdx; for(j=0; zIdent[j]; j++){ if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; } needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID || zIdent[j]!=0 || j==0; if( needQuote ) z[i++] = '"'; for(j=0; zIdent[j]; j++){ z[i++] = zIdent[j]; if( zIdent[j]=='"' ) z[i++] = '"'; } if( needQuote ) z[i++] = '"'; z[i] = 0; *pIdx = i; } /* ** Generate a CREATE TABLE statement appropriate for the given ** table. Memory to hold the text of the statement is obtained ** from sqliteMalloc() and must be freed by the calling function. */ static char *createTableStmt(sqlite3 *db, Table *p){ int i, k, n; char *zStmt; char *zSep, *zSep2, *zEnd; Column *pCol; n = 0; for(pCol = p->aCol, i=0; inCol; i++, pCol++){ n += identLength(pCol->zCnName) + 5; } n += identLength(p->zName); if( n<50 ){ zSep = ""; zSep2 = ","; zEnd = ")"; }else{ zSep = "\n "; zSep2 = ",\n "; zEnd = "\n)"; } n += 35 + 6*p->nCol; zStmt = sqlite3DbMallocRaw(0, n); if( zStmt==0 ){ sqlite3OomFault(db); return 0; } sqlite3_snprintf(n, zStmt, "CREATE TABLE "); k = sqlite3Strlen30(zStmt); identPut(zStmt, &k, p->zName); zStmt[k++] = '('; for(pCol=p->aCol, i=0; inCol; i++, pCol++){ static const char * const azType[] = { /* SQLITE_AFF_BLOB */ "", /* SQLITE_AFF_TEXT */ " TEXT", /* SQLITE_AFF_NUMERIC */ " NUM", /* SQLITE_AFF_INTEGER */ " INT", /* SQLITE_AFF_REAL */ " REAL" }; int len; const char *zType; sqlite3_snprintf(n-k, &zStmt[k], zSep); k += sqlite3Strlen30(&zStmt[k]); zSep = zSep2; identPut(zStmt, &k, pCol->zCnName); assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); testcase( pCol->affinity==SQLITE_AFF_BLOB ); testcase( pCol->affinity==SQLITE_AFF_TEXT ); testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); testcase( pCol->affinity==SQLITE_AFF_INTEGER ); testcase( pCol->affinity==SQLITE_AFF_REAL ); zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; len = sqlite3Strlen30(zType); assert( pCol->affinity==SQLITE_AFF_BLOB || pCol->affinity==sqlite3AffinityType(zType, 0) ); memcpy(&zStmt[k], zType, len); k += len; assert( k<=n ); } sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); return zStmt; } /* ** Resize an Index object to hold N columns total. Return SQLITE_OK ** on success and SQLITE_NOMEM on an OOM error. */ static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ char *zExtra; int nByte; if( pIdx->nColumn>=N ) return SQLITE_OK; assert( pIdx->isResized==0 ); nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N; zExtra = sqlite3DbMallocZero(db, nByte); if( zExtra==0 ) return SQLITE_NOMEM_BKPT; memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); pIdx->azColl = (const char**)zExtra; zExtra += sizeof(char*)*N; memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1)); pIdx->aiRowLogEst = (LogEst*)zExtra; zExtra += sizeof(LogEst)*N; memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); pIdx->aiColumn = (i16*)zExtra; zExtra += sizeof(i16)*N; memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); pIdx->aSortOrder = (u8*)zExtra; pIdx->nColumn = N; pIdx->isResized = 1; return SQLITE_OK; } /* ** Estimate the total row width for a table. */ static void estimateTableWidth(Table *pTab){ unsigned wTable = 0; const Column *pTabCol; int i; for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ wTable += pTabCol->szEst; } if( pTab->iPKey<0 ) wTable++; pTab->szTabRow = sqlite3LogEst(wTable*4); } /* ** Estimate the average size of a row for an index. */ static void estimateIndexWidth(Index *pIdx){ unsigned wIndex = 0; int i; const Column *aCol = pIdx->pTable->aCol; for(i=0; inColumn; i++){ i16 x = pIdx->aiColumn[i]; assert( xpTable->nCol ); wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; } pIdx->szIdxRow = sqlite3LogEst(wIndex*4); } /* Return true if column number x is any of the first nCol entries of aiCol[]. ** This is used to determine if the column number x appears in any of the ** first nCol entries of an index. */ static int hasColumn(const i16 *aiCol, int nCol, int x){ while( nCol-- > 0 ){ if( x==*(aiCol++) ){ return 1; } } return 0; } /* ** Return true if any of the first nKey entries of index pIdx exactly ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may ** or may not be the same index as pPk. ** ** The first nKey entries of pIdx are guaranteed to be ordinary columns, ** not a rowid or expression. ** ** This routine differs from hasColumn() in that both the column and the ** collating sequence must match for this routine, but for hasColumn() only ** the column name must match. */ static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){ int i, j; assert( nKey<=pIdx->nColumn ); assert( iColnColumn,pPk->nKeyCol) ); assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY ); assert( pPk->pTable->tabFlags & TF_WithoutRowid ); assert( pPk->pTable==pIdx->pTable ); testcase( pPk==pIdx ); j = pPk->aiColumn[iCol]; assert( j!=XN_ROWID && j!=XN_EXPR ); for(i=0; iaiColumn[i]>=0 || j>=0 ); if( pIdx->aiColumn[i]==j && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0 ){ return 1; } } return 0; } /* Recompute the colNotIdxed field of the Index. ** ** colNotIdxed is a bitmask that has a 0 bit representing each indexed ** columns that are within the first 63 columns of the table and a 1 for ** all other bits (all columns that are not in the index). The ** high-order bit of colNotIdxed is always 1. All unindexed columns ** of the table have a 1. ** ** 2019-10-24: For the purpose of this computation, virtual columns are ** not considered to be covered by the index, even if they are in the ** index, because we do not trust the logic in whereIndexExprTrans() to be ** able to find all instances of a reference to the indexed table column ** and convert them into references to the index. Hence we always want ** the actual table at hand in order to recompute the virtual column, if ** necessary. ** ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask ** to determine if the index is covering index. */ static void recomputeColumnsNotIndexed(Index *pIdx){ Bitmask m = 0; int j; Table *pTab = pIdx->pTable; for(j=pIdx->nColumn-1; j>=0; j--){ int x = pIdx->aiColumn[j]; if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){ testcase( x==BMS-1 ); testcase( x==BMS-2 ); if( xcolNotIdxed = ~m; assert( (pIdx->colNotIdxed>>63)==1 ); /* See note-20221022-a */ } /* ** This routine runs at the end of parsing a CREATE TABLE statement that ** has a WITHOUT ROWID clause. The job of this routine is to convert both ** internal schema data structures and the generated VDBE code so that they ** are appropriate for a WITHOUT ROWID table instead of a rowid table. ** Changes include: ** ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY ** into BTREE_BLOBKEY. ** (3) Bypass the creation of the sqlite_schema table entry ** for the PRIMARY KEY as the primary key index is now ** identified by the sqlite_schema table entry of the table itself. ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the ** schema to the rootpage from the main table. ** (5) Add all table columns to the PRIMARY KEY Index object ** so that the PRIMARY KEY is a covering index. The surplus ** columns are part of KeyInfo.nAllField and are not used for ** sorting or lookup or uniqueness checks. ** (6) Replace the rowid tail on all automatically generated UNIQUE ** indices with the PRIMARY KEY columns. ** ** For virtual tables, only (1) is performed. */ static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ Index *pIdx; Index *pPk; int nPk; int nExtra; int i, j; sqlite3 *db = pParse->db; Vdbe *v = pParse->pVdbe; /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) */ if( !db->init.imposterTable ){ for(i=0; inCol; i++){ if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 && (pTab->aCol[i].notNull==OE_None) ){ pTab->aCol[i].notNull = OE_Abort; } } pTab->tabFlags |= TF_HasNotNull; } /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY ** into BTREE_BLOBKEY. */ assert( !pParse->bReturning ); if( pParse->u1.addrCrTab ){ assert( v ); sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY); } /* Locate the PRIMARY KEY index. Or, if this table was originally ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. */ if( pTab->iPKey>=0 ){ ExprList *pList; Token ipkToken; sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName); pList = sqlite3ExprListAppend(pParse, 0, sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); if( pList==0 ){ pTab->tabFlags &= ~TF_WithoutRowid; return; } if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey); } pList->a[0].fg.sortFlags = pParse->iPkSortOrder; assert( pParse->pNewTable==pTab ); pTab->iPKey = -1; sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, SQLITE_IDXTYPE_PRIMARYKEY); if( pParse->nErr ){ pTab->tabFlags &= ~TF_WithoutRowid; return; } assert( db->mallocFailed==0 ); pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk->nKeyCol==1 ); }else{ pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); /* ** Remove all redundant columns from the PRIMARY KEY. For example, change ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later ** code assumes the PRIMARY KEY contains no repeated columns. */ for(i=j=1; inKeyCol; i++){ if( isDupColumn(pPk, j, pPk, i) ){ pPk->nColumn--; }else{ testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ); pPk->azColl[j] = pPk->azColl[i]; pPk->aSortOrder[j] = pPk->aSortOrder[i]; pPk->aiColumn[j++] = pPk->aiColumn[i]; } } pPk->nKeyCol = j; } assert( pPk!=0 ); pPk->isCovering = 1; if( !db->init.imposterTable ) pPk->uniqNotNull = 1; nPk = pPk->nColumn = pPk->nKeyCol; /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema ** table entry. This is only required if currently generating VDBE ** code for a CREATE TABLE (not when parsing one as part of reading ** a database schema). */ if( v && pPk->tnum>0 ){ assert( db->init.busy==0 ); sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto); } /* The root page of the PRIMARY KEY is the table root page */ pPk->tnum = pTab->tnum; /* Update the in-memory representation of all UNIQUE indices by converting ** the final rowid column into one or more columns of the PRIMARY KEY. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int n; if( IsPrimaryKeyIndex(pIdx) ) continue; for(i=n=0; inKeyCol, pPk, i) ){ testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); n++; } } if( n==0 ){ /* This index is a superset of the primary key */ pIdx->nColumn = pIdx->nKeyCol; continue; } if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; for(i=0, j=pIdx->nKeyCol; inKeyCol, pPk, i) ){ testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ); pIdx->aiColumn[j] = pPk->aiColumn[i]; pIdx->azColl[j] = pPk->azColl[i]; if( pPk->aSortOrder[i] ){ /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */ pIdx->bAscKeyBug = 1; } j++; } } assert( pIdx->nColumn>=pIdx->nKeyCol+n ); assert( pIdx->nColumn>=j ); } /* Add all table columns to the PRIMARY KEY index */ nExtra = 0; for(i=0; inCol; i++){ if( !hasColumn(pPk->aiColumn, nPk, i) && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++; } if( resizeIndexObject(db, pPk, nPk+nExtra) ) return; for(i=0, j=nPk; inCol; i++){ if( !hasColumn(pPk->aiColumn, j, i) && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ assert( jnColumn ); pPk->aiColumn[j] = i; pPk->azColl[j] = sqlite3StrBINARY; j++; } } assert( pPk->nColumn==j ); assert( pTab->nNVCol<=j ); recomputeColumnsNotIndexed(pPk); } #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Return true if pTab is a virtual table and zName is a shadow table name ** for that virtual table. */ int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){ int nName; /* Length of zName */ Module *pMod; /* Module for the virtual table */ if( !IsVirtual(pTab) ) return 0; nName = sqlite3Strlen30(pTab->zName); if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0; if( zName[nName]!='_' ) return 0; pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]); if( pMod==0 ) return 0; if( pMod->pModule->iVersion<3 ) return 0; if( pMod->pModule->xShadowName==0 ) return 0; return pMod->pModule->xShadowName(zName+nName+1); } #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Table pTab is a virtual table. If it the virtual table implementation ** exists and has an xShadowName method, then loop over all other ordinary ** tables within the same schema looking for shadow tables of pTab, and mark ** any shadow tables seen using the TF_Shadow flag. */ void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){ int nName; /* Length of pTab->zName */ Module *pMod; /* Module for the virtual table */ HashElem *k; /* For looping through the symbol table */ assert( IsVirtual(pTab) ); pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]); if( pMod==0 ) return; if( NEVER(pMod->pModule==0) ) return; if( pMod->pModule->iVersion<3 ) return; if( pMod->pModule->xShadowName==0 ) return; assert( pTab->zName!=0 ); nName = sqlite3Strlen30(pTab->zName); for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){ Table *pOther = sqliteHashData(k); assert( pOther->zName!=0 ); if( !IsOrdinaryTable(pOther) ) continue; if( pOther->tabFlags & TF_Shadow ) continue; if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0 && pOther->zName[nName]=='_' && pMod->pModule->xShadowName(pOther->zName+nName+1) ){ pOther->tabFlags |= TF_Shadow; } } } #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Return true if zName is a shadow table name in the current database ** connection. ** ** zName is temporarily modified while this routine is running, but is ** restored to its original value prior to this routine returning. */ int sqlite3ShadowTableName(sqlite3 *db, const char *zName){ char *zTail; /* Pointer to the last "_" in zName */ Table *pTab; /* Table that zName is a shadow of */ zTail = strrchr(zName, '_'); if( zTail==0 ) return 0; *zTail = 0; pTab = sqlite3FindTable(db, zName, 0); *zTail = '_'; if( pTab==0 ) return 0; if( !IsVirtual(pTab) ) return 0; return sqlite3IsShadowTableOf(db, pTab, zName); } #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */ #ifdef SQLITE_DEBUG /* ** Mark all nodes of an expression as EP_Immutable, indicating that ** they should not be changed. Expressions attached to a table or ** index definition are tagged this way to help ensure that we do ** not pass them into code generator routines by mistake. */ static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){ ExprSetVVAProperty(pExpr, EP_Immutable); return WRC_Continue; } static void markExprListImmutable(ExprList *pList){ if( pList ){ Walker w; memset(&w, 0, sizeof(w)); w.xExprCallback = markImmutableExprStep; w.xSelectCallback = sqlite3SelectWalkNoop; w.xSelectCallback2 = 0; sqlite3WalkExprList(&w, pList); } } #else #define markExprListImmutable(X) /* no-op */ #endif /* SQLITE_DEBUG */ /* ** This routine is called to report the final ")" that terminates ** a CREATE TABLE statement. ** ** The table structure that other action routines have been building ** is added to the internal hash tables, assuming no errors have ** occurred. ** ** An entry for the table is made in the schema table on disk, unless ** this is a temporary table or db->init.busy==1. When db->init.busy==1 ** it means we are reading the sqlite_schema table because we just ** connected to the database or because the sqlite_schema table has ** recently changed, so the entry for this table already exists in ** the sqlite_schema table. We do not want to create it again. ** ** If the pSelect argument is not NULL, it means that this routine ** was called to create a table generated from a ** "CREATE TABLE ... AS SELECT ..." statement. The column names of ** the new table will match the result set of the SELECT. */ void sqlite3EndTable( Parse *pParse, /* Parse context */ Token *pCons, /* The ',' token after the last column defn. */ Token *pEnd, /* The ')' before options in the CREATE TABLE */ u32 tabOpts, /* Extra table options. Usually 0. */ Select *pSelect /* Select from a "CREATE ... AS SELECT" */ ){ Table *p; /* The new table */ sqlite3 *db = pParse->db; /* The database connection */ int iDb; /* Database in which the table lives */ Index *pIdx; /* An implied index of the table */ if( pEnd==0 && pSelect==0 ){ return; } p = pParse->pNewTable; if( p==0 ) return; if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){ p->tabFlags |= TF_Shadow; } /* If the db->init.busy is 1 it means we are reading the SQL off the ** "sqlite_schema" or "sqlite_temp_schema" table on the disk. ** So do not write to the disk again. Extract the root page number ** for the table from the db->init.newTnum field. (The page number ** should have been put there by the sqliteOpenCb routine.) ** ** If the root page number is 1, that means this is the sqlite_schema ** table itself. So mark it read-only. */ if( db->init.busy ){ if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){ sqlite3ErrorMsg(pParse, ""); return; } p->tnum = db->init.newTnum; if( p->tnum==1 ) p->tabFlags |= TF_Readonly; } /* Special processing for tables that include the STRICT keyword: ** ** * Do not allow custom column datatypes. Every column must have ** a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB. ** ** * If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY, ** then all columns of the PRIMARY KEY must have a NOT NULL ** constraint. */ if( tabOpts & TF_Strict ){ int ii; p->tabFlags |= TF_Strict; for(ii=0; iinCol; ii++){ Column *pCol = &p->aCol[ii]; if( pCol->eCType==COLTYPE_CUSTOM ){ if( pCol->colFlags & COLFLAG_HASTYPE ){ sqlite3ErrorMsg(pParse, "unknown datatype for %s.%s: \"%s\"", p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "") ); }else{ sqlite3ErrorMsg(pParse, "missing datatype for %s.%s", p->zName, pCol->zCnName); } return; }else if( pCol->eCType==COLTYPE_ANY ){ pCol->affinity = SQLITE_AFF_BLOB; } if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0 && p->iPKey!=ii && pCol->notNull == OE_None ){ pCol->notNull = OE_Abort; p->tabFlags |= TF_HasNotNull; } } } assert( (p->tabFlags & TF_HasPrimaryKey)==0 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 ); assert( (p->tabFlags & TF_HasPrimaryKey)!=0 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) ); /* Special processing for WITHOUT ROWID Tables */ if( tabOpts & TF_WithoutRowid ){ if( (p->tabFlags & TF_Autoincrement) ){ sqlite3ErrorMsg(pParse, "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); return; } if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); return; } p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; convertToWithoutRowidTable(pParse, p); } iDb = sqlite3SchemaToIndex(db, p->pSchema); #ifndef SQLITE_OMIT_CHECK /* Resolve names in all CHECK constraint expressions. */ if( p->pCheck ){ sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); if( pParse->nErr ){ /* If errors are seen, delete the CHECK constraints now, else they might ** actually be used if PRAGMA writable_schema=ON is set. */ sqlite3ExprListDelete(db, p->pCheck); p->pCheck = 0; }else{ markExprListImmutable(p->pCheck); } } #endif /* !defined(SQLITE_OMIT_CHECK) */ #ifndef SQLITE_OMIT_GENERATED_COLUMNS if( p->tabFlags & TF_HasGenerated ){ int ii, nNG = 0; testcase( p->tabFlags & TF_HasVirtual ); testcase( p->tabFlags & TF_HasStored ); for(ii=0; iinCol; ii++){ u32 colFlags = p->aCol[ii].colFlags; if( (colFlags & COLFLAG_GENERATED)!=0 ){ Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]); testcase( colFlags & COLFLAG_VIRTUAL ); testcase( colFlags & COLFLAG_STORED ); if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){ /* If there are errors in resolving the expression, change the ** expression to a NULL. This prevents code generators that operate ** on the expression from inserting extra parts into the expression ** tree that have been allocated from lookaside memory, which is ** illegal in a schema and will lead to errors or heap corruption ** when the database connection closes. */ sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii], sqlite3ExprAlloc(db, TK_NULL, 0, 0)); } }else{ nNG++; } } if( nNG==0 ){ sqlite3ErrorMsg(pParse, "must have at least one non-generated column"); return; } } #endif /* Estimate the average row size for the table and for all implied indices */ estimateTableWidth(p); for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ estimateIndexWidth(pIdx); } /* If not initializing, then create a record for the new table ** in the schema table of the database. ** ** If this is a TEMPORARY table, write the entry into the auxiliary ** file instead of into the main database file. */ if( !db->init.busy ){ int n; Vdbe *v; char *zType; /* "view" or "table" */ char *zType2; /* "VIEW" or "TABLE" */ char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ v = sqlite3GetVdbe(pParse); if( NEVER(v==0) ) return; sqlite3VdbeAddOp1(v, OP_Close, 0); /* ** Initialize zType for the new view or table. */ if( IsOrdinaryTable(p) ){ /* A regular table */ zType = "table"; zType2 = "TABLE"; #ifndef SQLITE_OMIT_VIEW }else{ /* A view */ zType = "view"; zType2 = "VIEW"; #endif } /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT ** statement to populate the new table. The root-page number for the ** new table is in register pParse->regRoot. ** ** Once the SELECT has been coded by sqlite3Select(), it is in a ** suitable state to query for the column names and types to be used ** by the new table. ** ** A shared-cache write-lock is not required to write to the new table, ** as a schema-lock must have already been obtained to create it. Since ** a schema-lock excludes all other database users, the write-lock would ** be redundant. */ if( pSelect ){ SelectDest dest; /* Where the SELECT should store results */ int regYield; /* Register holding co-routine entry-point */ int addrTop; /* Top of the co-routine */ int regRec; /* A record to be insert into the new table */ int regRowid; /* Rowid of the next row to insert */ int addrInsLoop; /* Top of the loop for inserting rows */ Table *pSelTab; /* A table that describes the SELECT results */ if( IN_SPECIAL_PARSE ){ pParse->rc = SQLITE_ERROR; pParse->nErr++; return; } regYield = ++pParse->nMem; regRec = ++pParse->nMem; regRowid = ++pParse->nMem; assert(pParse->nTab==1); sqlite3MayAbort(pParse); sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); pParse->nTab = 2; addrTop = sqlite3VdbeCurrentAddr(v) + 1; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); if( pParse->nErr ) return; pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB); if( pSelTab==0 ) return; assert( p->aCol==0 ); p->nCol = p->nNVCol = pSelTab->nCol; p->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; sqlite3DeleteTable(db, pSelTab); sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); sqlite3Select(pParse, pSelect, &dest); if( pParse->nErr ) return; sqlite3VdbeEndCoroutine(v, regYield); sqlite3VdbeJumpHere(v, addrTop - 1); addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); sqlite3TableAffinity(v, p, 0); sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); sqlite3VdbeGoto(v, addrInsLoop); sqlite3VdbeJumpHere(v, addrInsLoop); sqlite3VdbeAddOp1(v, OP_Close, 1); } /* Compute the complete text of the CREATE statement */ if( pSelect ){ zStmt = createTableStmt(db, p); }else{ Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; n = (int)(pEnd2->z - pParse->sNameToken.z); if( pEnd2->z[0]!=';' ) n += pEnd2->n; zStmt = sqlite3MPrintf(db, "CREATE %s %.*s", zType2, n, pParse->sNameToken.z ); } /* A slot for the record has already been allocated in the ** schema table. We just need to update that slot with all ** the information we've collected. */ sqlite3NestedParse(pParse, "UPDATE %Q." LEGACY_SCHEMA_TABLE " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q" " WHERE rowid=#%d", db->aDb[iDb].zDbSName, zType, p->zName, p->zName, pParse->regRoot, zStmt, pParse->regRowid ); sqlite3DbFree(db, zStmt); sqlite3ChangeCookie(pParse, iDb); #ifndef SQLITE_OMIT_AUTOINCREMENT /* Check to see if we need to create an sqlite_sequence table for ** keeping track of autoincrement keys. */ if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){ Db *pDb = &db->aDb[iDb]; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); if( pDb->pSchema->pSeqTab==0 ){ sqlite3NestedParse(pParse, "CREATE TABLE %Q.sqlite_sequence(name,seq)", pDb->zDbSName ); } } #endif /* Reparse everything to update our internal data structures */ sqlite3VdbeAddParseSchemaOp(v, iDb, sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0); } /* Add the table to the in-memory representation of the database. */ if( db->init.busy ){ Table *pOld; Schema *pSchema = p->pSchema; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); assert( HasRowid(p) || p->iPKey<0 ); pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); if( pOld ){ assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ sqlite3OomFault(db); return; } pParse->pNewTable = 0; db->mDbFlags |= DBFLAG_SchemaChange; /* If this is the magic sqlite_sequence table used by autoincrement, ** then record a pointer to this table in the main database structure ** so that INSERT can find the table easily. */ assert( !pParse->nested ); #ifndef SQLITE_OMIT_AUTOINCREMENT if( strcmp(p->zName, "sqlite_sequence")==0 ){ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); p->pSchema->pSeqTab = p; } #endif } #ifndef SQLITE_OMIT_ALTERTABLE if( !pSelect && IsOrdinaryTable(p) ){ assert( pCons && pEnd ); if( pCons->z==0 ){ pCons = pEnd; } p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z); } #endif } #ifndef SQLITE_OMIT_VIEW /* ** The parser calls this routine in order to create a new VIEW */ void sqlite3CreateView( Parse *pParse, /* The parsing context */ Token *pBegin, /* The CREATE token that begins the statement */ Token *pName1, /* The token that holds the name of the view */ Token *pName2, /* The token that holds the name of the view */ ExprList *pCNames, /* Optional list of view column names */ Select *pSelect, /* A SELECT statement that will become the new view */ int isTemp, /* TRUE for a TEMPORARY view */ int noErr /* Suppress error messages if VIEW already exists */ ){ Table *p; int n; const char *z; Token sEnd; DbFixer sFix; Token *pName = 0; int iDb; sqlite3 *db = pParse->db; if( pParse->nVar>0 ){ sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); goto create_view_fail; } sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); p = pParse->pNewTable; if( p==0 || pParse->nErr ) goto create_view_fail; /* Legacy versions of SQLite allowed the use of the magic "rowid" column ** on a view, even though views do not have rowids. The following flag ** setting fixes this problem. But the fix can be disabled by compiling ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that ** depend upon the old buggy behavior. */ #ifndef SQLITE_ALLOW_ROWID_IN_VIEW p->tabFlags |= TF_NoVisibleRowid; #endif sqlite3TwoPartName(pParse, pName1, pName2, &pName); iDb = sqlite3SchemaToIndex(db, p->pSchema); sqlite3FixInit(&sFix, pParse, iDb, "view", pName); if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; /* Make a copy of the entire SELECT statement that defines the view. ** This will force all the Expr.token.z values to be dynamically ** allocated rather than point to the input string - which means that ** they will persist after the current sqlite3_exec() call returns. */ pSelect->selFlags |= SF_View; if( IN_RENAME_OBJECT ){ p->u.view.pSelect = pSelect; pSelect = 0; }else{ p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); } p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); p->eTabType = TABTYP_VIEW; if( db->mallocFailed ) goto create_view_fail; /* Locate the end of the CREATE VIEW statement. Make sEnd point to ** the end. */ sEnd = pParse->sLastToken; assert( sEnd.z[0]!=0 || sEnd.n==0 ); if( sEnd.z[0]!=';' ){ sEnd.z += sEnd.n; } sEnd.n = 0; n = (int)(sEnd.z - pBegin->z); assert( n>0 ); z = pBegin->z; while( sqlite3Isspace(z[n-1]) ){ n--; } sEnd.z = &z[n-1]; sEnd.n = 1; /* Use sqlite3EndTable() to add the view to the schema table */ sqlite3EndTable(pParse, 0, &sEnd, 0, 0); create_view_fail: sqlite3SelectDelete(db, pSelect); if( IN_RENAME_OBJECT ){ sqlite3RenameExprlistUnmap(pParse, pCNames); } sqlite3ExprListDelete(db, pCNames); return; } #endif /* SQLITE_OMIT_VIEW */ #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) /* ** The Table structure pTable is really a VIEW. Fill in the names of ** the columns of the view in the pTable structure. Return the number ** of errors. If an error is seen leave an error message in pParse->zErrMsg. */ static SQLITE_NOINLINE int viewGetColumnNames(Parse *pParse, Table *pTable){ Table *pSelTab; /* A fake table from which we get the result set */ Select *pSel; /* Copy of the SELECT that implements the view */ int nErr = 0; /* Number of errors encountered */ sqlite3 *db = pParse->db; /* Database connection for malloc errors */ #ifndef SQLITE_OMIT_VIRTUALTABLE int rc; #endif #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth; /* Saved xAuth pointer */ #endif assert( pTable ); #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTable) ){ db->nSchemaLock++; rc = sqlite3VtabCallConnect(pParse, pTable); db->nSchemaLock--; return rc; } #endif #ifndef SQLITE_OMIT_VIEW /* A positive nCol means the columns names for this view are ** already known. This routine is not called unless either the ** table is virtual or nCol is zero. */ assert( pTable->nCol<=0 ); /* A negative nCol is a special marker meaning that we are currently ** trying to compute the column names. If we enter this routine with ** a negative nCol, it means two or more views form a loop, like this: ** ** CREATE VIEW one AS SELECT * FROM two; ** CREATE VIEW two AS SELECT * FROM one; ** ** Actually, the error above is now caught prior to reaching this point. ** But the following test is still important as it does come up ** in the following: ** ** CREATE TABLE main.ex1(a); ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; ** SELECT * FROM temp.ex1; */ if( pTable->nCol<0 ){ sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); return 1; } assert( pTable->nCol>=0 ); /* If we get this far, it means we need to compute the table names. ** Note that the call to sqlite3ResultSetOfSelect() will expand any ** "*" elements in the results set of the view and will assign cursors ** to the elements of the FROM clause. But we do not want these changes ** to be permanent. So the computation is done on a copy of the SELECT ** statement that defines the view. */ assert( IsView(pTable) ); pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0); if( pSel ){ u8 eParseMode = pParse->eParseMode; int nTab = pParse->nTab; int nSelect = pParse->nSelect; pParse->eParseMode = PARSE_MODE_NORMAL; sqlite3SrcListAssignCursors(pParse, pSel->pSrc); pTable->nCol = -1; DisableLookaside; #ifndef SQLITE_OMIT_AUTHORIZATION xAuth = db->xAuth; db->xAuth = 0; pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); db->xAuth = xAuth; #else pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE); #endif pParse->nTab = nTab; pParse->nSelect = nSelect; if( pSelTab==0 ){ pTable->nCol = 0; nErr++; }else if( pTable->pCheck ){ /* CREATE VIEW name(arglist) AS ... ** The names of the columns in the table are taken from ** arglist which is stored in pTable->pCheck. The pCheck field ** normally holds CHECK constraints on an ordinary table, but for ** a VIEW it holds the list of column names. */ sqlite3ColumnsFromExprList(pParse, pTable->pCheck, &pTable->nCol, &pTable->aCol); if( pParse->nErr==0 && pTable->nCol==pSel->pEList->nExpr ){ assert( db->mallocFailed==0 ); sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel, SQLITE_AFF_NONE); } }else{ /* CREATE VIEW name AS... without an argument list. Construct ** the column names from the SELECT statement that defines the view. */ assert( pTable->aCol==0 ); pTable->nCol = pSelTab->nCol; pTable->aCol = pSelTab->aCol; pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT); pSelTab->nCol = 0; pSelTab->aCol = 0; assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); } pTable->nNVCol = pTable->nCol; sqlite3DeleteTable(db, pSelTab); sqlite3SelectDelete(db, pSel); EnableLookaside; pParse->eParseMode = eParseMode; } else { nErr++; } pTable->pSchema->schemaFlags |= DB_UnresetViews; if( db->mallocFailed ){ sqlite3DeleteColumnNames(db, pTable); } #endif /* SQLITE_OMIT_VIEW */ return nErr; } int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ assert( pTable!=0 ); if( !IsVirtual(pTable) && pTable->nCol>0 ) return 0; return viewGetColumnNames(pParse, pTable); } #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ #ifndef SQLITE_OMIT_VIEW /* ** Clear the column names from every VIEW in database idx. */ static void sqliteViewResetAll(sqlite3 *db, int idx){ HashElem *i; assert( sqlite3SchemaMutexHeld(db, idx, 0) ); if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ Table *pTab = sqliteHashData(i); if( IsView(pTab) ){ sqlite3DeleteColumnNames(db, pTab); } } DbClearProperty(db, idx, DB_UnresetViews); } #else # define sqliteViewResetAll(A,B) #endif /* SQLITE_OMIT_VIEW */ /* ** This function is called by the VDBE to adjust the internal schema ** used by SQLite when the btree layer moves a table root page. The ** root-page of a table or index in database iDb has changed from iFrom ** to iTo. ** ** Ticket #1728: The symbol table might still contain information ** on tables and/or indices that are the process of being deleted. ** If you are unlucky, one of those deleted indices or tables might ** have the same rootpage number as the real table or index that is ** being moved. So we cannot stop searching after the first match ** because the first match might be for one of the deleted indices ** or tables and not the table/index that is actually being moved. ** We must continue looping until all tables and indices with ** rootpage==iFrom have been converted to have a rootpage of iTo ** in order to be certain that we got the right one. */ #ifndef SQLITE_OMIT_AUTOVACUUM void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){ HashElem *pElem; Hash *pHash; Db *pDb; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); pDb = &db->aDb[iDb]; pHash = &pDb->pSchema->tblHash; for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); if( pTab->tnum==iFrom ){ pTab->tnum = iTo; } } pHash = &pDb->pSchema->idxHash; for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ Index *pIdx = sqliteHashData(pElem); if( pIdx->tnum==iFrom ){ pIdx->tnum = iTo; } } } #endif /* ** Write code to erase the table with root-page iTable from database iDb. ** Also write code to modify the sqlite_schema table and internal schema ** if a root-page of another table is moved by the btree-layer whilst ** erasing iTable (this can happen with an auto-vacuum database). */ static void destroyRootPage(Parse *pParse, int iTable, int iDb){ Vdbe *v = sqlite3GetVdbe(pParse); int r1 = sqlite3GetTempReg(pParse); if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); sqlite3MayAbort(pParse); #ifndef SQLITE_OMIT_AUTOVACUUM /* OP_Destroy stores an in integer r1. If this integer ** is non-zero, then it is the root page number of a table moved to ** location iTable. The following code modifies the sqlite_schema table to ** reflect this. ** ** The "#NNN" in the SQL is a special constant that means whatever value ** is in register NNN. See grammar rules associated with the TK_REGISTER ** token for additional information. */ sqlite3NestedParse(pParse, "UPDATE %Q." LEGACY_SCHEMA_TABLE " SET rootpage=%d WHERE #%d AND rootpage=#%d", pParse->db->aDb[iDb].zDbSName, iTable, r1, r1); #endif sqlite3ReleaseTempReg(pParse, r1); } /* ** Write VDBE code to erase table pTab and all associated indices on disk. ** Code to update the sqlite_schema tables and internal schema definitions ** in case a root-page belonging to another table is moved by the btree layer ** is also added (this can happen with an auto-vacuum database). */ static void destroyTable(Parse *pParse, Table *pTab){ /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM ** is not defined), then it is important to call OP_Destroy on the ** table and index root-pages in order, starting with the numerically ** largest root-page number. This guarantees that none of the root-pages ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the ** following were coded: ** ** OP_Destroy 4 0 ** ... ** OP_Destroy 5 0 ** ** and root page 5 happened to be the largest root-page number in the ** database, then root page 5 would be moved to page 4 by the ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit ** a free-list page. */ Pgno iTab = pTab->tnum; Pgno iDestroyed = 0; while( 1 ){ Index *pIdx; Pgno iLargest = 0; if( iDestroyed==0 || iTabpIndex; pIdx; pIdx=pIdx->pNext){ Pgno iIdx = pIdx->tnum; assert( pIdx->pSchema==pTab->pSchema ); if( (iDestroyed==0 || (iIdxiLargest ){ iLargest = iIdx; } } if( iLargest==0 ){ return; }else{ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); assert( iDb>=0 && iDbdb->nDb ); destroyRootPage(pParse, iLargest, iDb); iDestroyed = iLargest; } } } /* ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) ** after a DROP INDEX or DROP TABLE command. */ static void sqlite3ClearStatTables( Parse *pParse, /* The parsing context */ int iDb, /* The database number */ const char *zType, /* "idx" or "tbl" */ const char *zName /* Name of index or table */ ){ int i; const char *zDbName = pParse->db->aDb[iDb].zDbSName; for(i=1; i<=4; i++){ char zTab[24]; sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ sqlite3NestedParse(pParse, "DELETE FROM %Q.%s WHERE %s=%Q", zDbName, zTab, zType, zName ); } } } /* ** Generate code to drop a table. */ void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ Vdbe *v; sqlite3 *db = pParse->db; Trigger *pTrigger; Db *pDb = &db->aDb[iDb]; v = sqlite3GetVdbe(pParse); assert( v!=0 ); sqlite3BeginWriteOperation(pParse, 1, iDb); #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ sqlite3VdbeAddOp0(v, OP_VBegin); } #endif /* Drop all triggers associated with the table being dropped. Code ** is generated to remove entries from sqlite_schema and/or ** sqlite_temp_schema if required. */ pTrigger = sqlite3TriggerList(pParse, pTab); while( pTrigger ){ assert( pTrigger->pSchema==pTab->pSchema || pTrigger->pSchema==db->aDb[1].pSchema ); sqlite3DropTriggerPtr(pParse, pTrigger); pTrigger = pTrigger->pNext; } #ifndef SQLITE_OMIT_AUTOINCREMENT /* Remove any entries of the sqlite_sequence table associated with ** the table being dropped. This is done before the table is dropped ** at the btree level, in case the sqlite_sequence table needs to ** move as a result of the drop (can happen in auto-vacuum mode). */ if( pTab->tabFlags & TF_Autoincrement ){ sqlite3NestedParse(pParse, "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", pDb->zDbSName, pTab->zName ); } #endif /* Drop all entries in the schema table that refer to the ** table. The program name loops through the schema table and deletes ** every row that refers to a table of the same name as the one being ** dropped. Triggers are handled separately because a trigger can be ** created in the temp database that refers to a table in another ** database. */ sqlite3NestedParse(pParse, "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE tbl_name=%Q and type!='trigger'", pDb->zDbSName, pTab->zName); if( !isView && !IsVirtual(pTab) ){ destroyTable(pParse, pTab); } /* Remove the table entry from SQLite's internal schema and modify ** the schema cookie. */ if( IsVirtual(pTab) ){ sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); sqlite3MayAbort(pParse); } sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); sqlite3ChangeCookie(pParse, iDb); sqliteViewResetAll(db, iDb); } /* ** Return TRUE if shadow tables should be read-only in the current ** context. */ int sqlite3ReadOnlyShadowTables(sqlite3 *db){ #ifndef SQLITE_OMIT_VIRTUALTABLE if( (db->flags & SQLITE_Defensive)!=0 && db->pVtabCtx==0 && db->nVdbeExec==0 && !sqlite3VtabInSync(db) ){ return 1; } #endif return 0; } /* ** Return true if it is not allowed to drop the given table */ static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0; if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0; return 1; } if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){ return 1; } if( pTab->tabFlags & TF_Eponymous ){ return 1; } return 0; } /* ** This routine is called to do the work of a DROP TABLE statement. ** pName is the name of the table to be dropped. */ void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ Table *pTab; Vdbe *v; sqlite3 *db = pParse->db; int iDb; if( db->mallocFailed ){ goto exit_drop_table; } assert( pParse->nErr==0 ); assert( pName->nSrc==1 ); if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; if( noErr ) db->suppressErr++; assert( isView==0 || isView==LOCATE_VIEW ); pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); if( noErr ) db->suppressErr--; if( pTab==0 ){ if( noErr ){ sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); sqlite3ForceNotReadOnly(pParse); } goto exit_drop_table; } iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 && iDbnDb ); /* If pTab is a virtual table, call ViewGetColumnNames() to ensure ** it is initialized. */ if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ goto exit_drop_table; } #ifndef SQLITE_OMIT_AUTHORIZATION { int code; const char *zTab = SCHEMA_TABLE(iDb); const char *zDb = db->aDb[iDb].zDbSName; const char *zArg2 = 0; if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ goto exit_drop_table; } if( isView ){ if( !OMIT_TEMPDB && iDb==1 ){ code = SQLITE_DROP_TEMP_VIEW; }else{ code = SQLITE_DROP_VIEW; } #ifndef SQLITE_OMIT_VIRTUALTABLE }else if( IsVirtual(pTab) ){ code = SQLITE_DROP_VTABLE; zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; #endif }else{ if( !OMIT_TEMPDB && iDb==1 ){ code = SQLITE_DROP_TEMP_TABLE; }else{ code = SQLITE_DROP_TABLE; } } if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ goto exit_drop_table; } if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ goto exit_drop_table; } } #endif if( tableMayNotBeDropped(db, pTab) ){ sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); goto exit_drop_table; } #ifndef SQLITE_OMIT_VIEW /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used ** on a table. */ if( isView && !IsView(pTab) ){ sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); goto exit_drop_table; } if( !isView && IsView(pTab) ){ sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); goto exit_drop_table; } #endif /* Generate code to remove the table from the schema table ** on disk. */ v = sqlite3GetVdbe(pParse); if( v ){ sqlite3BeginWriteOperation(pParse, 1, iDb); if( !isView ){ sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); sqlite3FkDropTable(pParse, pName, pTab); } sqlite3CodeDropTable(pParse, pTab, iDb, isView); } exit_drop_table: sqlite3SrcListDelete(db, pName); } /* ** This routine is called to create a new foreign key on the table ** currently under construction. pFromCol determines which columns ** in the current table point to the foreign key. If pFromCol==0 then ** connect the key to the last column inserted. pTo is the name of ** the table referred to (a.k.a the "parent" table). pToCol is a list ** of tables in the parent pTo table. flags contains all ** information about the conflict resolution algorithms specified ** in the ON DELETE, ON UPDATE and ON INSERT clauses. ** ** An FKey structure is created and added to the table currently ** under construction in the pParse->pNewTable field. ** ** The foreign key is set for IMMEDIATE processing. A subsequent call ** to sqlite3DeferForeignKey() might change this to DEFERRED. */ void sqlite3CreateForeignKey( Parse *pParse, /* Parsing context */ ExprList *pFromCol, /* Columns in this table that point to other table */ Token *pTo, /* Name of the other table */ ExprList *pToCol, /* Columns in the other table */ int flags /* Conflict resolution algorithms. */ ){ sqlite3 *db = pParse->db; #ifndef SQLITE_OMIT_FOREIGN_KEY FKey *pFKey = 0; FKey *pNextTo; Table *p = pParse->pNewTable; i64 nByte; int i; int nCol; char *z; assert( pTo!=0 ); if( p==0 || IN_DECLARE_VTAB ) goto fk_end; if( pFromCol==0 ){ int iCol = p->nCol-1; if( NEVER(iCol<0) ) goto fk_end; if( pToCol && pToCol->nExpr!=1 ){ sqlite3ErrorMsg(pParse, "foreign key on %s" " should reference only one column of table %T", p->aCol[iCol].zCnName, pTo); goto fk_end; } nCol = 1; }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ sqlite3ErrorMsg(pParse, "number of columns in foreign key does not match the number of " "columns in the referenced table"); goto fk_end; }else{ nCol = pFromCol->nExpr; } nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; if( pToCol ){ for(i=0; inExpr; i++){ nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1; } } pFKey = sqlite3DbMallocZero(db, nByte ); if( pFKey==0 ){ goto fk_end; } pFKey->pFrom = p; assert( IsOrdinaryTable(p) ); pFKey->pNextFrom = p->u.tab.pFKey; z = (char*)&pFKey->aCol[nCol]; pFKey->zTo = z; if( IN_RENAME_OBJECT ){ sqlite3RenameTokenMap(pParse, (void*)z, pTo); } memcpy(z, pTo->z, pTo->n); z[pTo->n] = 0; sqlite3Dequote(z); z += pTo->n+1; pFKey->nCol = nCol; if( pFromCol==0 ){ pFKey->aCol[0].iFrom = p->nCol-1; }else{ for(i=0; inCol; j++){ if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){ pFKey->aCol[i].iFrom = j; break; } } if( j>=p->nCol ){ sqlite3ErrorMsg(pParse, "unknown column \"%s\" in foreign key definition", pFromCol->a[i].zEName); goto fk_end; } if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName); } } } if( pToCol ){ for(i=0; ia[i].zEName); pFKey->aCol[i].zCol = z; if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName); } memcpy(z, pToCol->a[i].zEName, n); z[n] = 0; z += n+1; } } pFKey->isDeferred = 0; pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, pFKey->zTo, (void *)pFKey ); if( pNextTo==pFKey ){ sqlite3OomFault(db); goto fk_end; } if( pNextTo ){ assert( pNextTo->pPrevTo==0 ); pFKey->pNextTo = pNextTo; pNextTo->pPrevTo = pFKey; } /* Link the foreign key to the table as the last step. */ assert( IsOrdinaryTable(p) ); p->u.tab.pFKey = pFKey; pFKey = 0; fk_end: sqlite3DbFree(db, pFKey); #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ sqlite3ExprListDelete(db, pFromCol); sqlite3ExprListDelete(db, pToCol); } /* ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED ** clause is seen as part of a foreign key definition. The isDeferred ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. ** The behavior of the most recently created foreign key is adjusted ** accordingly. */ void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ #ifndef SQLITE_OMIT_FOREIGN_KEY Table *pTab; FKey *pFKey; if( (pTab = pParse->pNewTable)==0 ) return; if( NEVER(!IsOrdinaryTable(pTab)) ) return; if( (pFKey = pTab->u.tab.pFKey)==0 ) return; assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ pFKey->isDeferred = (u8)isDeferred; #endif } /* ** Generate code that will erase and refill index *pIdx. This is ** used to initialize a newly created index or to recompute the ** content of an index in response to a REINDEX command. ** ** if memRootPage is not negative, it means that the index is newly ** created. The register specified by memRootPage contains the ** root page number of the index. If memRootPage is negative, then ** the index already exists and must be cleared before being refilled and ** the root page number of the index is taken from pIndex->tnum. */ static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ Table *pTab = pIndex->pTable; /* The table that is indexed */ int iTab = pParse->nTab++; /* Btree cursor used for pTab */ int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ int iSorter; /* Cursor opened by OpenSorter (if in use) */ int addr1; /* Address of top of loop */ int addr2; /* Address to jump to for next iteration */ Pgno tnum; /* Root page of index */ int iPartIdxLabel; /* Jump to this label to skip a row */ Vdbe *v; /* Generate code into this virtual machine */ KeyInfo *pKey; /* KeyInfo for index */ int regRecord; /* Register holding assembled index record */ sqlite3 *db = pParse->db; /* The database connection */ int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); #ifndef SQLITE_OMIT_AUTHORIZATION if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, db->aDb[iDb].zDbSName ) ){ return; } #endif /* Require a write-lock on the table to perform this operation */ sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); v = sqlite3GetVdbe(pParse); if( v==0 ) return; if( memRootPage>=0 ){ tnum = (Pgno)memRootPage; }else{ tnum = pIndex->tnum; } pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); assert( pKey!=0 || pParse->nErr ); /* Open the sorter cursor if we are to use one. */ iSorter = pParse->nTab++; sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) sqlite3KeyInfoRef(pKey), P4_KEYINFO); /* Open the table. Loop through all rows of the table, inserting index ** records into the sorter. */ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); regRecord = sqlite3GetTempReg(pParse); sqlite3MultiWrite(pParse); sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb, (char *)pKey, P4_KEYINFO); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); if( IsUniqueIndex(pIndex) ){ int j2 = sqlite3VdbeGoto(v, 1); addr2 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeVerifyAbortable(v, OE_Abort); sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, pIndex->nKeyCol); VdbeCoverage(v); sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); sqlite3VdbeJumpHere(v, j2); }else{ /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not ** abort. The exception is if one of the indexed expressions contains a ** user function that throws an exception when it is evaluated. But the ** overhead of adding a statement journal to a CREATE INDEX statement is ** very small (since most of the pages written do not contain content that ** needs to be restored if the statement aborts), so we call ** sqlite3MayAbort() for all CREATE INDEX statements. */ sqlite3MayAbort(pParse); addr2 = sqlite3VdbeCurrentAddr(v); } sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); if( !pIndex->bAscKeyBug ){ /* This OP_SeekEnd opcode makes index insert for a REINDEX go much ** faster by avoiding unnecessary seeks. But the optimization does ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables ** with DESC primary keys, since those indexes have there keys in ** a different order from the main table. ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf */ sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); } sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3ReleaseTempReg(pParse, regRecord); sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp1(v, OP_Close, iTab); sqlite3VdbeAddOp1(v, OP_Close, iIdx); sqlite3VdbeAddOp1(v, OP_Close, iSorter); } /* ** Allocate heap space to hold an Index object with nCol columns. ** ** Increase the allocation size to provide an extra nExtra bytes ** of 8-byte aligned space after the Index object and return a ** pointer to this extra space in *ppExtra. */ Index *sqlite3AllocateIndexObject( sqlite3 *db, /* Database connection */ i16 nCol, /* Total number of columns in the index */ int nExtra, /* Number of bytes of extra space to alloc */ char **ppExtra /* Pointer to the "extra" space */ ){ Index *p; /* Allocated index object */ int nByte; /* Bytes of space for Index object + arrays */ nByte = ROUND8(sizeof(Index)) + /* Index structure */ ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ sizeof(i16)*nCol + /* Index.aiColumn */ sizeof(u8)*nCol); /* Index.aSortOrder */ p = sqlite3DbMallocZero(db, nByte + nExtra); if( p ){ char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; p->aSortOrder = (u8*)pExtra; p->nColumn = nCol; p->nKeyCol = nCol - 1; *ppExtra = ((char*)p) + nByte; } return p; } /* ** If expression list pList contains an expression that was parsed with ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in ** pParse and return non-zero. Otherwise, return zero. */ int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){ if( pList ){ int i; for(i=0; inExpr; i++){ if( pList->a[i].fg.bNulls ){ u8 sf = pList->a[i].fg.sortFlags; sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s", (sf==0 || sf==3) ? "FIRST" : "LAST" ); return 1; } } } return 0; } /* ** Create a new index for an SQL table. pName1.pName2 is the name of the index ** and pTblList is the name of the table that is to be indexed. Both will ** be NULL for a primary key or an index that is created to satisfy a ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable ** as the table to be indexed. pParse->pNewTable is a table that is ** currently being constructed by a CREATE TABLE statement. ** ** pList is a list of columns to be indexed. pList will be NULL if this ** is a primary key or unique-constraint on the most recent column added ** to the table currently under construction. */ void sqlite3CreateIndex( Parse *pParse, /* All information about this parse */ Token *pName1, /* First part of index name. May be NULL */ Token *pName2, /* Second part of index name. May be NULL */ SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ ExprList *pList, /* A list of columns to be indexed */ int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ Token *pStart, /* The CREATE token that begins this statement */ Expr *pPIWhere, /* WHERE clause for partial indices */ int sortOrder, /* Sort order of primary key when pList==NULL */ int ifNotExist, /* Omit error if index already exists */ u8 idxType /* The index type */ ){ Table *pTab = 0; /* Table to be indexed */ Index *pIndex = 0; /* The index to be created */ char *zName = 0; /* Name of the index */ int nName; /* Number of characters in zName */ int i, j; DbFixer sFix; /* For assigning database names to pTable */ int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ sqlite3 *db = pParse->db; Db *pDb; /* The specific table containing the indexed database */ int iDb; /* Index of the database that is being written */ Token *pName = 0; /* Unqualified name of the index to create */ struct ExprList_item *pListItem; /* For looping over pList */ int nExtra = 0; /* Space allocated for zExtra[] */ int nExtraCol; /* Number of extra columns needed */ char *zExtra = 0; /* Extra space after the Index object */ Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ assert( db->pParse==pParse ); if( pParse->nErr ){ goto exit_create_index; } assert( db->mallocFailed==0 ); if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ goto exit_create_index; } if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto exit_create_index; } if( sqlite3HasExplicitNulls(pParse, pList) ){ goto exit_create_index; } /* ** Find the table that is to be indexed. Return early if not found. */ if( pTblName!=0 ){ /* Use the two-part index name to determine the database ** to search for the table. 'Fix' the table name to this db ** before looking up the table. */ assert( pName1 && pName2 ); iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); if( iDb<0 ) goto exit_create_index; assert( pName && pName->z ); #ifndef SQLITE_OMIT_TEMPDB /* If the index name was unqualified, check if the table ** is a temp table. If so, set the database to 1. Do not do this ** if initialising a database schema. */ if( !db->init.busy ){ pTab = sqlite3SrcListLookup(pParse, pTblName); if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ iDb = 1; } } #endif sqlite3FixInit(&sFix, pParse, iDb, "index", pName); if( sqlite3FixSrcList(&sFix, pTblName) ){ /* Because the parser constructs pTblName from a single identifier, ** sqlite3FixSrcList can never fail. */ assert(0); } pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); assert( db->mallocFailed==0 || pTab==0 ); if( pTab==0 ) goto exit_create_index; if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ sqlite3ErrorMsg(pParse, "cannot create a TEMP index on non-TEMP table \"%s\"", pTab->zName); goto exit_create_index; } if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); }else{ assert( pName==0 ); assert( pStart==0 ); pTab = pParse->pNewTable; if( !pTab ) goto exit_create_index; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); } pDb = &db->aDb[iDb]; assert( pTab!=0 ); if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 && db->init.busy==0 && pTblName!=0 #if SQLITE_USER_AUTHENTICATION && sqlite3UserAuthTable(pTab->zName)==0 #endif ){ sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); goto exit_create_index; } #ifndef SQLITE_OMIT_VIEW if( IsView(pTab) ){ sqlite3ErrorMsg(pParse, "views may not be indexed"); goto exit_create_index; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); goto exit_create_index; } #endif /* ** Find the name of the index. Make sure there is not already another ** index or table with the same name. ** ** Exception: If we are reading the names of permanent indices from the ** sqlite_schema table (because some other process changed the schema) and ** one of the index names collides with the name of a temporary table or ** index, then we will continue to process this index. ** ** If pName==0 it means that we are ** dealing with a primary key or UNIQUE constraint. We have to invent our ** own name. */ if( pName ){ zName = sqlite3NameFromToken(db, pName); if( zName==0 ) goto exit_create_index; assert( pName->z!=0 ); if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){ goto exit_create_index; } if( !IN_RENAME_OBJECT ){ if( !db->init.busy ){ if( sqlite3FindTable(db, zName, pDb->zDbSName)!=0 ){ sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); goto exit_create_index; } } if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ if( !ifNotExist ){ sqlite3ErrorMsg(pParse, "index %s already exists", zName); }else{ assert( !db->init.busy ); sqlite3CodeVerifySchema(pParse, iDb); sqlite3ForceNotReadOnly(pParse); } goto exit_create_index; } } }else{ int n; Index *pLoop; for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); if( zName==0 ){ goto exit_create_index; } /* Automatic index names generated from within sqlite3_declare_vtab() ** must have names that are distinct from normal automatic index names. ** The following statement converts "sqlite3_autoindex..." into ** "sqlite3_butoindex..." in order to make the names distinct. ** The "vtab_err.test" test demonstrates the need of this statement. */ if( IN_SPECIAL_PARSE ) zName[7]++; } /* Check for authorization to create an index. */ #ifndef SQLITE_OMIT_AUTHORIZATION if( !IN_RENAME_OBJECT ){ const char *zDb = pDb->zDbSName; if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ goto exit_create_index; } i = SQLITE_CREATE_INDEX; if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ goto exit_create_index; } } #endif /* If pList==0, it means this routine was called to make a primary ** key out of the last column added to the table under construction. ** So create a fake list to simulate this. */ if( pList==0 ){ Token prevCol; Column *pCol = &pTab->aCol[pTab->nCol-1]; pCol->colFlags |= COLFLAG_UNIQUE; sqlite3TokenInit(&prevCol, pCol->zCnName); pList = sqlite3ExprListAppend(pParse, 0, sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); if( pList==0 ) goto exit_create_index; assert( pList->nExpr==1 ); sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED); }else{ sqlite3ExprListCheckLength(pParse, pList, "index"); if( pParse->nErr ) goto exit_create_index; } /* Figure out how many bytes of space are required to store explicitly ** specified collation sequence names. */ for(i=0; inExpr; i++){ Expr *pExpr = pList->a[i].pExpr; assert( pExpr!=0 ); if( pExpr->op==TK_COLLATE ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); } } /* ** Allocate the index structure. */ nName = sqlite3Strlen30(zName); nExtraCol = pPk ? pPk->nKeyCol : 1; assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ ); pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, nName + nExtra + 1, &zExtra); if( db->mallocFailed ){ goto exit_create_index; } assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); pIndex->zName = zExtra; zExtra += nName + 1; memcpy(pIndex->zName, zName, nName+1); pIndex->pTable = pTab; pIndex->onError = (u8)onError; pIndex->uniqNotNull = onError!=OE_None; pIndex->idxType = idxType; pIndex->pSchema = db->aDb[iDb].pSchema; pIndex->nKeyCol = pList->nExpr; if( pPIWhere ){ sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); pIndex->pPartIdxWhere = pPIWhere; pPIWhere = 0; } assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); /* Check to see if we should honor DESC requests on index columns */ if( pDb->pSchema->file_format>=4 ){ sortOrderMask = -1; /* Honor DESC */ }else{ sortOrderMask = 0; /* Ignore DESC */ } /* Analyze the list of expressions that form the terms of the index and ** report any errors. In the common case where the expression is exactly ** a table column, store that column in aiColumn[]. For general expressions, ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. ** ** TODO: Issue a warning if two or more columns of the index are identical. ** TODO: Issue a warning if the table primary key is used as part of the ** index key. */ pListItem = pList->a; if( IN_RENAME_OBJECT ){ pIndex->aColExpr = pList; pList = 0; } for(i=0; inKeyCol; i++, pListItem++){ Expr *pCExpr; /* The i-th index expression */ int requestedSortOrder; /* ASC or DESC on the i-th expression */ const char *zColl; /* Collation sequence name */ sqlite3StringToId(pListItem->pExpr); sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); if( pParse->nErr ) goto exit_create_index; pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); if( pCExpr->op!=TK_COLUMN ){ if( pTab==pParse->pNewTable ){ sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " "UNIQUE constraints"); goto exit_create_index; } if( pIndex->aColExpr==0 ){ pIndex->aColExpr = pList; pList = 0; } j = XN_EXPR; pIndex->aiColumn[i] = XN_EXPR; pIndex->uniqNotNull = 0; pIndex->bHasExpr = 1; }else{ j = pCExpr->iColumn; assert( j<=0x7fff ); if( j<0 ){ j = pTab->iPKey; }else{ if( pTab->aCol[j].notNull==0 ){ pIndex->uniqNotNull = 0; } if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){ pIndex->bHasVCol = 1; pIndex->bHasExpr = 1; } } pIndex->aiColumn[i] = (i16)j; } zColl = 0; if( pListItem->pExpr->op==TK_COLLATE ){ int nColl; assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) ); zColl = pListItem->pExpr->u.zToken; nColl = sqlite3Strlen30(zColl) + 1; assert( nExtra>=nColl ); memcpy(zExtra, zColl, nColl); zColl = zExtra; zExtra += nColl; nExtra -= nColl; }else if( j>=0 ){ zColl = sqlite3ColumnColl(&pTab->aCol[j]); } if( !zColl ) zColl = sqlite3StrBINARY; if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ goto exit_create_index; } pIndex->azColl[i] = zColl; requestedSortOrder = pListItem->fg.sortFlags & sortOrderMask; pIndex->aSortOrder[i] = (u8)requestedSortOrder; } /* Append the table key to the end of the index. For WITHOUT ROWID ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For ** normal tables (when pPk==0) this will be the rowid. */ if( pPk ){ for(j=0; jnKeyCol; j++){ int x = pPk->aiColumn[j]; assert( x>=0 ); if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){ pIndex->nColumn--; }else{ testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) ); pIndex->aiColumn[i] = x; pIndex->azColl[i] = pPk->azColl[j]; pIndex->aSortOrder[i] = pPk->aSortOrder[j]; i++; } } assert( i==pIndex->nColumn ); }else{ pIndex->aiColumn[i] = XN_ROWID; pIndex->azColl[i] = sqlite3StrBINARY; } sqlite3DefaultRowEst(pIndex); if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); /* If this index contains every column of its table, then mark ** it as a covering index */ assert( HasRowid(pTab) || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 ); recomputeColumnsNotIndexed(pIndex); if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ pIndex->isCovering = 1; for(j=0; jnCol; j++){ if( j==pTab->iPKey ) continue; if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue; pIndex->isCovering = 0; break; } } if( pTab==pParse->pNewTable ){ /* This routine has been called to create an automatic index as a ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or ** a PRIMARY KEY or UNIQUE clause following the column definitions. ** i.e. one of: ** ** CREATE TABLE t(x PRIMARY KEY, y); ** CREATE TABLE t(x, y, UNIQUE(x, y)); ** ** Either way, check to see if the table already has such an index. If ** so, don't bother creating this one. This only applies to ** automatically created indices. Users can do as they wish with ** explicit indices. ** ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent ** (and thus suppressing the second one) even if they have different ** sort orders. ** ** If there are different collating sequences or if the columns of ** the constraint occur in different orders, then the constraints are ** considered distinct and both result in separate indices. */ Index *pIdx; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int k; assert( IsUniqueIndex(pIdx) ); assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); assert( IsUniqueIndex(pIndex) ); if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; for(k=0; knKeyCol; k++){ const char *z1; const char *z2; assert( pIdx->aiColumn[k]>=0 ); if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; z1 = pIdx->azColl[k]; z2 = pIndex->azColl[k]; if( sqlite3StrICmp(z1, z2) ) break; } if( k==pIdx->nKeyCol ){ if( pIdx->onError!=pIndex->onError ){ /* This constraint creates the same index as a previous ** constraint specified somewhere in the CREATE TABLE statement. ** However the ON CONFLICT clauses are different. If both this ** constraint and the previous equivalent constraint have explicit ** ON CONFLICT clauses this is an error. Otherwise, use the ** explicitly specified behavior for the index. */ if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ sqlite3ErrorMsg(pParse, "conflicting ON CONFLICT clauses specified", 0); } if( pIdx->onError==OE_Default ){ pIdx->onError = pIndex->onError; } } if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; if( IN_RENAME_OBJECT ){ pIndex->pNext = pParse->pNewIndex; pParse->pNewIndex = pIndex; pIndex = 0; } goto exit_create_index; } } } if( !IN_RENAME_OBJECT ){ /* Link the new Index structure to its table and to the other ** in-memory database structures. */ assert( pParse->nErr==0 ); if( db->init.busy ){ Index *p; assert( !IN_SPECIAL_PARSE ); assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); if( pTblName!=0 ){ pIndex->tnum = db->init.newTnum; if( sqlite3IndexHasDuplicateRootPage(pIndex) ){ sqlite3ErrorMsg(pParse, "invalid rootpage"); pParse->rc = SQLITE_CORRUPT_BKPT; goto exit_create_index; } } p = sqlite3HashInsert(&pIndex->pSchema->idxHash, pIndex->zName, pIndex); if( p ){ assert( p==pIndex ); /* Malloc must have failed */ sqlite3OomFault(db); goto exit_create_index; } db->mDbFlags |= DBFLAG_SchemaChange; } /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then ** emit code to allocate the index rootpage on disk and make an entry for ** the index in the sqlite_schema table and populate the index with ** content. But, do not do this if we are simply reading the sqlite_schema ** table to parse the schema, or if this index is the PRIMARY KEY index ** of a WITHOUT ROWID table. ** ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY ** or UNIQUE index in a CREATE TABLE statement. Since the table ** has just been created, it contains no data and the index initialization ** step can be skipped. */ else if( HasRowid(pTab) || pTblName!=0 ){ Vdbe *v; char *zStmt; int iMem = ++pParse->nMem; v = sqlite3GetVdbe(pParse); if( v==0 ) goto exit_create_index; sqlite3BeginWriteOperation(pParse, 1, iDb); /* Create the rootpage for the index using CreateIndex. But before ** doing so, code a Noop instruction and store its address in ** Index.tnum. This is required in case this index is actually a ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In ** that case the convertToWithoutRowidTable() routine will replace ** the Noop with a Goto to jump over the VDBE code generated below. */ pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop); sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY); /* Gather the complete text of the CREATE INDEX statement into ** the zStmt variable */ assert( pName!=0 || pStart==0 ); if( pStart ){ int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; if( pName->z[n-1]==';' ) n--; /* A named index with an explicit CREATE INDEX statement */ zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", onError==OE_None ? "" : " UNIQUE", n, pName->z); }else{ /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ /* zStmt = sqlite3MPrintf(""); */ zStmt = 0; } /* Add an entry in sqlite_schema for this index */ sqlite3NestedParse(pParse, "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);", db->aDb[iDb].zDbSName, pIndex->zName, pTab->zName, iMem, zStmt ); sqlite3DbFree(db, zStmt); /* Fill the index with data and reparse the schema. Code an OP_Expire ** to invalidate all pre-compiled statements. */ if( pTblName ){ sqlite3RefillIndex(pParse, pIndex, iMem); sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddParseSchemaOp(v, iDb, sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0); sqlite3VdbeAddOp2(v, OP_Expire, 0, 1); } sqlite3VdbeJumpHere(v, (int)pIndex->tnum); } } if( db->init.busy || pTblName==0 ){ pIndex->pNext = pTab->pIndex; pTab->pIndex = pIndex; pIndex = 0; } else if( IN_RENAME_OBJECT ){ assert( pParse->pNewIndex==0 ); pParse->pNewIndex = pIndex; pIndex = 0; } /* Clean up before exiting */ exit_create_index: if( pIndex ) sqlite3FreeIndex(db, pIndex); if( pTab ){ /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list. ** The list was already ordered when this routine was entered, so at this ** point at most a single index (the newly added index) will be out of ** order. So we have to reorder at most one index. */ Index **ppFrom; Index *pThis; for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){ Index *pNext; if( pThis->onError!=OE_Replace ) continue; while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){ *ppFrom = pNext; pThis->pNext = pNext->pNext; pNext->pNext = pThis; ppFrom = &pNext->pNext; } break; } #ifdef SQLITE_DEBUG /* Verify that all REPLACE indexes really are now at the end ** of the index list. In other words, no other index type ever ** comes after a REPLACE index on the list. */ for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){ assert( pThis->onError!=OE_Replace || pThis->pNext==0 || pThis->pNext->onError==OE_Replace ); } #endif } sqlite3ExprDelete(db, pPIWhere); sqlite3ExprListDelete(db, pList); sqlite3SrcListDelete(db, pTblName); sqlite3DbFree(db, zName); } /* ** Fill the Index.aiRowEst[] array with default information - information ** to be used when we have not run the ANALYZE command. ** ** aiRowEst[0] is supposed to contain the number of elements in the index. ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the ** number of rows in the table that match any particular value of the ** first column of the index. aiRowEst[2] is an estimate of the number ** of rows that match any particular combination of the first 2 columns ** of the index. And so forth. It must always be the case that * ** aiRowEst[N]<=aiRowEst[N-1] ** aiRowEst[N]>=1 ** ** Apart from that, we have little to go on besides intuition as to ** how aiRowEst[] should be initialized. The numbers generated here ** are based on typical values found in actual indices. */ void sqlite3DefaultRowEst(Index *pIdx){ /* 10, 9, 8, 7, 6 */ static const LogEst aVal[] = { 33, 32, 30, 28, 26 }; LogEst *a = pIdx->aiRowLogEst; LogEst x; int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); int i; /* Indexes with default row estimates should not have stat1 data */ assert( !pIdx->hasStat1 ); /* Set the first entry (number of rows in the index) to the estimated ** number of rows in the table, or half the number of rows in the table ** for a partial index. ** ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1 ** table but other parts we are having to guess at, then do not let the ** estimated number of rows in the table be less than 1000 (LogEst 99). ** Failure to do this can cause the indexes for which we do not have ** stat1 data to be ignored by the query planner. */ x = pIdx->pTable->nRowLogEst; assert( 99==sqlite3LogEst(1000) ); if( x<99 ){ pIdx->pTable->nRowLogEst = x = 99; } if( pIdx->pPartIdxWhere!=0 ){ x -= 10; assert( 10==sqlite3LogEst(2) ); } a[0] = x; /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is ** 6 and each subsequent value (if any) is 5. */ memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ a[i] = 23; assert( 23==sqlite3LogEst(5) ); } assert( 0==sqlite3LogEst(1) ); if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; } /* ** This routine will drop an existing named index. This routine ** implements the DROP INDEX statement. */ void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ Index *pIndex; Vdbe *v; sqlite3 *db = pParse->db; int iDb; if( db->mallocFailed ){ goto exit_drop_index; } assert( pParse->nErr==0 ); /* Never called with prior non-OOM errors */ assert( pName->nSrc==1 ); if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto exit_drop_index; } pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); if( pIndex==0 ){ if( !ifExists ){ sqlite3ErrorMsg(pParse, "no such index: %S", pName->a); }else{ sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); sqlite3ForceNotReadOnly(pParse); } pParse->checkSchema = 1; goto exit_drop_index; } if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ sqlite3ErrorMsg(pParse, "index associated with UNIQUE " "or PRIMARY KEY constraint cannot be dropped", 0); goto exit_drop_index; } iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); #ifndef SQLITE_OMIT_AUTHORIZATION { int code = SQLITE_DROP_INDEX; Table *pTab = pIndex->pTable; const char *zDb = db->aDb[iDb].zDbSName; const char *zTab = SCHEMA_TABLE(iDb); if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ goto exit_drop_index; } if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX; if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ goto exit_drop_index; } } #endif /* Generate code to remove the index and from the schema table */ v = sqlite3GetVdbe(pParse); if( v ){ sqlite3BeginWriteOperation(pParse, 1, iDb); sqlite3NestedParse(pParse, "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'", db->aDb[iDb].zDbSName, pIndex->zName ); sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); sqlite3ChangeCookie(pParse, iDb); destroyRootPage(pParse, pIndex->tnum, iDb); sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); } exit_drop_index: sqlite3SrcListDelete(db, pName); } /* ** pArray is a pointer to an array of objects. Each object in the ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() ** to extend the array so that there is space for a new object at the end. ** ** When this function is called, *pnEntry contains the current size of ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes ** in total). ** ** If the realloc() is successful (i.e. if no OOM condition occurs), the ** space allocated for the new object is zeroed, *pnEntry updated to ** reflect the new size of the array and a pointer to the new allocation ** returned. *pIdx is set to the index of the new array entry in this case. ** ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains ** unchanged and a copy of pArray returned. */ void *sqlite3ArrayAllocate( sqlite3 *db, /* Connection to notify of malloc failures */ void *pArray, /* Array of objects. Might be reallocated */ int szEntry, /* Size of each object in the array */ int *pnEntry, /* Number of objects currently in use */ int *pIdx /* Write the index of a new slot here */ ){ char *z; sqlite3_int64 n = *pIdx = *pnEntry; if( (n & (n-1))==0 ){ sqlite3_int64 sz = (n==0) ? 1 : 2*n; void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); if( pNew==0 ){ *pIdx = -1; return pArray; } pArray = pNew; } z = (char*)pArray; memset(&z[n * szEntry], 0, szEntry); ++*pnEntry; return pArray; } /* ** Append a new element to the given IdList. Create a new IdList if ** need be. ** ** A new IdList is returned, or NULL if malloc() fails. */ IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){ sqlite3 *db = pParse->db; int i; if( pList==0 ){ pList = sqlite3DbMallocZero(db, sizeof(IdList) ); if( pList==0 ) return 0; }else{ IdList *pNew; pNew = sqlite3DbRealloc(db, pList, sizeof(IdList) + pList->nId*sizeof(pList->a)); if( pNew==0 ){ sqlite3IdListDelete(db, pList); return 0; } pList = pNew; } i = pList->nId++; pList->a[i].zName = sqlite3NameFromToken(db, pToken); if( IN_RENAME_OBJECT && pList->a[i].zName ){ sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken); } return pList; } /* ** Delete an IdList. */ void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ int i; assert( db!=0 ); if( pList==0 ) return; assert( pList->eU4!=EU4_EXPR ); /* EU4_EXPR mode is not currently used */ for(i=0; inId; i++){ sqlite3DbFree(db, pList->a[i].zName); } sqlite3DbNNFreeNN(db, pList); } /* ** Return the index in pList of the identifier named zId. Return -1 ** if not found. */ int sqlite3IdListIndex(IdList *pList, const char *zName){ int i; assert( pList!=0 ); for(i=0; inId; i++){ if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; } return -1; } /* ** Maximum size of a SrcList object. ** The SrcList object is used to represent the FROM clause of a ** SELECT statement, and the query planner cannot deal with more ** than 64 tables in a join. So any value larger than 64 here ** is sufficient for most uses. Smaller values, like say 10, are ** appropriate for small and memory-limited applications. */ #ifndef SQLITE_MAX_SRCLIST # define SQLITE_MAX_SRCLIST 200 #endif /* ** Expand the space allocated for the given SrcList object by ** creating nExtra new slots beginning at iStart. iStart is zero based. ** New slots are zeroed. ** ** For example, suppose a SrcList initially contains two entries: A,B. ** To append 3 new entries onto the end, do this: ** ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); ** ** After the call above it would contain: A, B, nil, nil, nil. ** If the iStart argument had been 1 instead of 2, then the result ** would have been: A, nil, nil, nil, B. To prepend the new slots, ** the iStart value would be 0. The result then would ** be: nil, nil, nil, A, B. ** ** If a memory allocation fails or the SrcList becomes too large, leave ** the original SrcList unchanged, return NULL, and leave an error message ** in pParse. */ SrcList *sqlite3SrcListEnlarge( Parse *pParse, /* Parsing context into which errors are reported */ SrcList *pSrc, /* The SrcList to be enlarged */ int nExtra, /* Number of new slots to add to pSrc->a[] */ int iStart /* Index in pSrc->a[] of first new slot */ ){ int i; /* Sanity checking on calling parameters */ assert( iStart>=0 ); assert( nExtra>=1 ); assert( pSrc!=0 ); assert( iStart<=pSrc->nSrc ); /* Allocate additional space if needed */ if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ SrcList *pNew; sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra; sqlite3 *db = pParse->db; if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){ sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d", SQLITE_MAX_SRCLIST); return 0; } if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST; pNew = sqlite3DbRealloc(db, pSrc, sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); if( pNew==0 ){ assert( db->mallocFailed ); return 0; } pSrc = pNew; pSrc->nAlloc = nAlloc; } /* Move existing slots that come after the newly inserted slots ** out of the way */ for(i=pSrc->nSrc-1; i>=iStart; i--){ pSrc->a[i+nExtra] = pSrc->a[i]; } pSrc->nSrc += nExtra; /* Zero the newly allocated slots */ memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); for(i=iStart; ia[i].iCursor = -1; } /* Return a pointer to the enlarged SrcList */ return pSrc; } /* ** Append a new table name to the given SrcList. Create a new SrcList if ** need be. A new entry is created in the SrcList even if pTable is NULL. ** ** A SrcList is returned, or NULL if there is an OOM error or if the ** SrcList grows to large. The returned ** SrcList might be the same as the SrcList that was input or it might be ** a new one. If an OOM error does occurs, then the prior value of pList ** that is input to this routine is automatically freed. ** ** If pDatabase is not null, it means that the table has an optional ** database name prefix. Like this: "database.table". The pDatabase ** points to the table name and the pTable points to the database name. ** The SrcList.a[].zName field is filled with the table name which might ** come from pTable (if pDatabase is NULL) or from pDatabase. ** SrcList.a[].zDatabase is filled with the database name from pTable, ** or with NULL if no database is specified. ** ** In other words, if call like this: ** ** sqlite3SrcListAppend(D,A,B,0); ** ** Then B is a table name and the database name is unspecified. If called ** like this: ** ** sqlite3SrcListAppend(D,A,B,C); ** ** Then C is the table name and B is the database name. If C is defined ** then so is B. In other words, we never have a case where: ** ** sqlite3SrcListAppend(D,A,0,C); ** ** Both pTable and pDatabase are assumed to be quoted. They are dequoted ** before being added to the SrcList. */ SrcList *sqlite3SrcListAppend( Parse *pParse, /* Parsing context, in which errors are reported */ SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ Token *pTable, /* Table to append */ Token *pDatabase /* Database of the table */ ){ SrcItem *pItem; sqlite3 *db; assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ assert( pParse!=0 ); assert( pParse->db!=0 ); db = pParse->db; if( pList==0 ){ pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) ); if( pList==0 ) return 0; pList->nAlloc = 1; pList->nSrc = 1; memset(&pList->a[0], 0, sizeof(pList->a[0])); pList->a[0].iCursor = -1; }else{ SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc); if( pNew==0 ){ sqlite3SrcListDelete(db, pList); return 0; }else{ pList = pNew; } } pItem = &pList->a[pList->nSrc-1]; if( pDatabase && pDatabase->z==0 ){ pDatabase = 0; } if( pDatabase ){ pItem->zName = sqlite3NameFromToken(db, pDatabase); pItem->zDatabase = sqlite3NameFromToken(db, pTable); }else{ pItem->zName = sqlite3NameFromToken(db, pTable); pItem->zDatabase = 0; } return pList; } /* ** Assign VdbeCursor index numbers to all tables in a SrcList */ void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ int i; SrcItem *pItem; assert( pList || pParse->db->mallocFailed ); if( ALWAYS(pList) ){ for(i=0, pItem=pList->a; inSrc; i++, pItem++){ if( pItem->iCursor>=0 ) continue; pItem->iCursor = pParse->nTab++; if( pItem->pSelect ){ sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); } } } } /* ** Delete an entire SrcList including all its substructure. */ void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ int i; SrcItem *pItem; assert( db!=0 ); if( pList==0 ) return; for(pItem=pList->a, i=0; inSrc; i++, pItem++){ if( pItem->zDatabase ) sqlite3DbNNFreeNN(db, pItem->zDatabase); if( pItem->zName ) sqlite3DbNNFreeNN(db, pItem->zName); if( pItem->zAlias ) sqlite3DbNNFreeNN(db, pItem->zAlias); if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); sqlite3DeleteTable(db, pItem->pTab); if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect); if( pItem->fg.isUsing ){ sqlite3IdListDelete(db, pItem->u3.pUsing); }else if( pItem->u3.pOn ){ sqlite3ExprDelete(db, pItem->u3.pOn); } } sqlite3DbNNFreeNN(db, pList); } /* ** This routine is called by the parser to add a new term to the ** end of a growing FROM clause. The "p" parameter is the part of ** the FROM clause that has already been constructed. "p" is NULL ** if this is the first term of the FROM clause. pTable and pDatabase ** are the name of the table and database named in the FROM clause term. ** pDatabase is NULL if the database name qualifier is missing - the ** usual case. If the term has an alias, then pAlias points to the ** alias token. If the term is a subquery, then pSubquery is the ** SELECT statement that the subquery encodes. The pTable and ** pDatabase parameters are NULL for subqueries. The pOn and pUsing ** parameters are the content of the ON and USING clauses. ** ** Return a new SrcList which encodes is the FROM with the new ** term added. */ SrcList *sqlite3SrcListAppendFromTerm( Parse *pParse, /* Parsing context */ SrcList *p, /* The left part of the FROM clause already seen */ Token *pTable, /* Name of the table to add to the FROM clause */ Token *pDatabase, /* Name of the database containing pTable */ Token *pAlias, /* The right-hand side of the AS subexpression */ Select *pSubquery, /* A subquery used in place of a table name */ OnOrUsing *pOnUsing /* Either the ON clause or the USING clause */ ){ SrcItem *pItem; sqlite3 *db = pParse->db; if( !p && pOnUsing!=0 && (pOnUsing->pOn || pOnUsing->pUsing) ){ sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", (pOnUsing->pOn ? "ON" : "USING") ); goto append_from_error; } p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase); if( p==0 ){ goto append_from_error; } assert( p->nSrc>0 ); pItem = &p->a[p->nSrc-1]; assert( (pTable==0)==(pDatabase==0) ); assert( pItem->zName==0 || pDatabase!=0 ); if( IN_RENAME_OBJECT && pItem->zName ){ Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable; sqlite3RenameTokenMap(pParse, pItem->zName, pToken); } assert( pAlias!=0 ); if( pAlias->n ){ pItem->zAlias = sqlite3NameFromToken(db, pAlias); } if( pSubquery ){ pItem->pSelect = pSubquery; if( pSubquery->selFlags & SF_NestedFrom ){ pItem->fg.isNestedFrom = 1; } } assert( pOnUsing==0 || pOnUsing->pOn==0 || pOnUsing->pUsing==0 ); assert( pItem->fg.isUsing==0 ); if( pOnUsing==0 ){ pItem->u3.pOn = 0; }else if( pOnUsing->pUsing ){ pItem->fg.isUsing = 1; pItem->u3.pUsing = pOnUsing->pUsing; }else{ pItem->u3.pOn = pOnUsing->pOn; } return p; append_from_error: assert( p==0 ); sqlite3ClearOnOrUsing(db, pOnUsing); sqlite3SelectDelete(db, pSubquery); return 0; } /* ** Add an INDEXED BY or NOT INDEXED clause to the most recently added ** element of the source-list passed as the second argument. */ void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ assert( pIndexedBy!=0 ); if( p && pIndexedBy->n>0 ){ SrcItem *pItem; assert( p->nSrc>0 ); pItem = &p->a[p->nSrc-1]; assert( pItem->fg.notIndexed==0 ); assert( pItem->fg.isIndexedBy==0 ); assert( pItem->fg.isTabFunc==0 ); if( pIndexedBy->n==1 && !pIndexedBy->z ){ /* A "NOT INDEXED" clause was supplied. See parse.y ** construct "indexed_opt" for details. */ pItem->fg.notIndexed = 1; }else{ pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); pItem->fg.isIndexedBy = 1; assert( pItem->fg.isCte==0 ); /* No collision on union u2 */ } } } /* ** Append the contents of SrcList p2 to SrcList p1 and return the resulting ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2 ** are deleted by this function. */ SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){ assert( p1 && p1->nSrc==1 ); if( p2 ){ SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1); if( pNew==0 ){ sqlite3SrcListDelete(pParse->db, p2); }else{ p1 = pNew; memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem)); sqlite3DbFree(pParse->db, p2); p1->a[0].fg.jointype |= (JT_LTORJ & p1->a[1].fg.jointype); } } return p1; } /* ** Add the list of function arguments to the SrcList entry for a ** table-valued-function. */ void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ if( p ){ SrcItem *pItem = &p->a[p->nSrc-1]; assert( pItem->fg.notIndexed==0 ); assert( pItem->fg.isIndexedBy==0 ); assert( pItem->fg.isTabFunc==0 ); pItem->u1.pFuncArg = pList; pItem->fg.isTabFunc = 1; }else{ sqlite3ExprListDelete(pParse->db, pList); } } /* ** When building up a FROM clause in the parser, the join operator ** is initially attached to the left operand. But the code generator ** expects the join operator to be on the right operand. This routine ** Shifts all join operators from left to right for an entire FROM ** clause. ** ** Example: Suppose the join is like this: ** ** A natural cross join B ** ** The operator is "natural cross join". The A and B operands are stored ** in p->a[0] and p->a[1], respectively. The parser initially stores the ** operator with A. This routine shifts that operator over to B. ** ** Additional changes: ** ** * All tables to the left of the right-most RIGHT JOIN are tagged with ** JT_LTORJ (mnemonic: Left Table Of Right Join) so that the ** code generator can easily tell that the table is part of ** the left operand of at least one RIGHT JOIN. */ void sqlite3SrcListShiftJoinType(Parse *pParse, SrcList *p){ (void)pParse; if( p && p->nSrc>1 ){ int i = p->nSrc-1; u8 allFlags = 0; do{ allFlags |= p->a[i].fg.jointype = p->a[i-1].fg.jointype; }while( (--i)>0 ); p->a[0].fg.jointype = 0; /* All terms to the left of a RIGHT JOIN should be tagged with the ** JT_LTORJ flags */ if( allFlags & JT_RIGHT ){ for(i=p->nSrc-1; ALWAYS(i>0) && (p->a[i].fg.jointype&JT_RIGHT)==0; i--){} i--; assert( i>=0 ); do{ p->a[i].fg.jointype |= JT_LTORJ; }while( (--i)>=0 ); } } } /* ** Generate VDBE code for a BEGIN statement. */ void sqlite3BeginTransaction(Parse *pParse, int type){ sqlite3 *db; Vdbe *v; int i; assert( pParse!=0 ); db = pParse->db; assert( db!=0 ); if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ return; } v = sqlite3GetVdbe(pParse); if( !v ) return; if( type!=TK_DEFERRED ){ for(i=0; inDb; i++){ int eTxnType; Btree *pBt = db->aDb[i].pBt; if( pBt && sqlite3BtreeIsReadonly(pBt) ){ eTxnType = 0; /* Read txn */ }else if( type==TK_EXCLUSIVE ){ eTxnType = 2; /* Exclusive txn */ }else{ eTxnType = 1; /* Write txn */ } sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType); sqlite3VdbeUsesBtree(v, i); } } sqlite3VdbeAddOp0(v, OP_AutoCommit); } /* ** Generate VDBE code for a COMMIT or ROLLBACK statement. ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise ** code is generated for a COMMIT. */ void sqlite3EndTransaction(Parse *pParse, int eType){ Vdbe *v; int isRollback; assert( pParse!=0 ); assert( pParse->db!=0 ); assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK ); isRollback = eType==TK_ROLLBACK; if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){ return; } v = sqlite3GetVdbe(pParse); if( v ){ sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback); } } /* ** This function is called by the parser when it parses a command to create, ** release or rollback an SQL savepoint. */ void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ char *zName = sqlite3NameFromToken(pParse->db, pName); if( zName ){ Vdbe *v = sqlite3GetVdbe(pParse); #ifndef SQLITE_OMIT_AUTHORIZATION static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); #endif if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ sqlite3DbFree(pParse->db, zName); return; } sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); } } /* ** Make sure the TEMP database is open and available for use. Return ** the number of errors. Leave any error messages in the pParse structure. */ int sqlite3OpenTempDatabase(Parse *pParse){ sqlite3 *db = pParse->db; if( db->aDb[1].pBt==0 && !pParse->explain ){ int rc; Btree *pBt; static const int flags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_TEMP_DB; rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); if( rc!=SQLITE_OK ){ sqlite3ErrorMsg(pParse, "unable to open a temporary database " "file for storing temporary tables"); pParse->rc = rc; return 1; } db->aDb[1].pBt = pBt; assert( db->aDb[1].pSchema ); if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){ sqlite3OomFault(db); return 1; } } return 0; } /* ** Record the fact that the schema cookie will need to be verified ** for database iDb. The code to actually verify the schema cookie ** will occur at the end of the top-level VDBE and will be generated ** later, by sqlite3FinishCoding(). */ static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){ assert( iDb>=0 && iDbdb->nDb ); assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 ); assert( iDbdb, iDb, 0) ); if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ DbMaskSet(pToplevel->cookieMask, iDb); if( !OMIT_TEMPDB && iDb==1 ){ sqlite3OpenTempDatabase(pToplevel); } } } void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb); } /* ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each ** attached database. Otherwise, invoke it for the database named zDb only. */ void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ sqlite3 *db = pParse->db; int i; for(i=0; inDb; i++){ Db *pDb = &db->aDb[i]; if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ sqlite3CodeVerifySchema(pParse, i); } } } /* ** Generate VDBE code that prepares for doing an operation that ** might change the database. ** ** This routine starts a new transaction if we are not already within ** a transaction. If we are already within a transaction, then a checkpoint ** is set if the setStatement parameter is true. A checkpoint should ** be set for operations that might fail (due to a constraint) part of ** the way through and which will need to undo some writes without having to ** rollback the whole transaction. For operations where all constraints ** can be checked before any changes are made to the database, it is never ** necessary to undo a write and the checkpoint should not be set. */ void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ Parse *pToplevel = sqlite3ParseToplevel(pParse); sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb); DbMaskSet(pToplevel->writeMask, iDb); pToplevel->isMultiWrite |= setStatement; } /* ** Indicate that the statement currently under construction might write ** more than one entry (example: deleting one row then inserting another, ** inserting multiple rows in a table, or inserting a row and index entries.) ** If an abort occurs after some of these writes have completed, then it will ** be necessary to undo the completed writes. */ void sqlite3MultiWrite(Parse *pParse){ Parse *pToplevel = sqlite3ParseToplevel(pParse); pToplevel->isMultiWrite = 1; } /* ** The code generator calls this routine if is discovers that it is ** possible to abort a statement prior to completion. In order to ** perform this abort without corrupting the database, we need to make ** sure that the statement is protected by a statement transaction. ** ** Technically, we only need to set the mayAbort flag if the ** isMultiWrite flag was previously set. There is a time dependency ** such that the abort must occur after the multiwrite. This makes ** some statements involving the REPLACE conflict resolution algorithm ** go a little faster. But taking advantage of this time dependency ** makes it more difficult to prove that the code is correct (in ** particular, it prevents us from writing an effective ** implementation of sqlite3AssertMayAbort()) and so we have chosen ** to take the safe route and skip the optimization. */ void sqlite3MayAbort(Parse *pParse){ Parse *pToplevel = sqlite3ParseToplevel(pParse); pToplevel->mayAbort = 1; } /* ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT ** error. The onError parameter determines which (if any) of the statement ** and/or current transaction is rolled back. */ void sqlite3HaltConstraint( Parse *pParse, /* Parsing context */ int errCode, /* extended error code */ int onError, /* Constraint type */ char *p4, /* Error message */ i8 p4type, /* P4_STATIC or P4_TRANSIENT */ u8 p5Errmsg /* P5_ErrMsg type */ ){ Vdbe *v; assert( pParse->pVdbe!=0 ); v = sqlite3GetVdbe(pParse); assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested ); if( onError==OE_Abort ){ sqlite3MayAbort(pParse); } sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); sqlite3VdbeChangeP5(v, p5Errmsg); } /* ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. */ void sqlite3UniqueConstraint( Parse *pParse, /* Parsing context */ int onError, /* Constraint type */ Index *pIdx /* The index that triggers the constraint */ ){ char *zErr; int j; StrAccum errMsg; Table *pTab = pIdx->pTable; sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, pParse->db->aLimit[SQLITE_LIMIT_LENGTH]); if( pIdx->aColExpr ){ sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName); }else{ for(j=0; jnKeyCol; j++){ char *zCol; assert( pIdx->aiColumn[j]>=0 ); zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName; if( j ) sqlite3_str_append(&errMsg, ", ", 2); sqlite3_str_appendall(&errMsg, pTab->zName); sqlite3_str_append(&errMsg, ".", 1); sqlite3_str_appendall(&errMsg, zCol); } } zErr = sqlite3StrAccumFinish(&errMsg); sqlite3HaltConstraint(pParse, IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY : SQLITE_CONSTRAINT_UNIQUE, onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); } /* ** Code an OP_Halt due to non-unique rowid. */ void sqlite3RowidConstraint( Parse *pParse, /* Parsing context */ int onError, /* Conflict resolution algorithm */ Table *pTab /* The table with the non-unique rowid */ ){ char *zMsg; int rc; if( pTab->iPKey>=0 ){ zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, pTab->aCol[pTab->iPKey].zCnName); rc = SQLITE_CONSTRAINT_PRIMARYKEY; }else{ zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); rc = SQLITE_CONSTRAINT_ROWID; } sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, P5_ConstraintUnique); } /* ** Check to see if pIndex uses the collating sequence pColl. Return ** true if it does and false if it does not. */ #ifndef SQLITE_OMIT_REINDEX static int collationMatch(const char *zColl, Index *pIndex){ int i; assert( zColl!=0 ); for(i=0; inColumn; i++){ const char *z = pIndex->azColl[i]; assert( z!=0 || pIndex->aiColumn[i]<0 ); if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ return 1; } } return 0; } #endif /* ** Recompute all indices of pTab that use the collating sequence pColl. ** If pColl==0 then recompute all indices of pTab. */ #ifndef SQLITE_OMIT_REINDEX static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ if( !IsVirtual(pTab) ){ Index *pIndex; /* An index associated with pTab */ for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ if( zColl==0 || collationMatch(zColl, pIndex) ){ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3RefillIndex(pParse, pIndex, -1); } } } } #endif /* ** Recompute all indices of all tables in all databases where the ** indices use the collating sequence pColl. If pColl==0 then recompute ** all indices everywhere. */ #ifndef SQLITE_OMIT_REINDEX static void reindexDatabases(Parse *pParse, char const *zColl){ Db *pDb; /* A single database */ int iDb; /* The database index number */ sqlite3 *db = pParse->db; /* The database connection */ HashElem *k; /* For looping over tables in pDb */ Table *pTab; /* A table in the database */ assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ for(iDb=0, pDb=db->aDb; iDbnDb; iDb++, pDb++){ assert( pDb!=0 ); for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ pTab = (Table*)sqliteHashData(k); reindexTable(pParse, pTab, zColl); } } } #endif /* ** Generate code for the REINDEX command. ** ** REINDEX -- 1 ** REINDEX -- 2 ** REINDEX ?.? -- 3 ** REINDEX ?.? -- 4 ** ** Form 1 causes all indices in all attached databases to be rebuilt. ** Form 2 rebuilds all indices in all databases that use the named ** collating function. Forms 3 and 4 rebuild the named index or all ** indices associated with the named table. */ #ifndef SQLITE_OMIT_REINDEX void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ char *z; /* Name of a table or index */ const char *zDb; /* Name of the database */ Table *pTab; /* A table in the database */ Index *pIndex; /* An index associated with pTab */ int iDb; /* The database index number */ sqlite3 *db = pParse->db; /* The database connection */ Token *pObjName; /* Name of the table or index to be reindexed */ /* Read the database schema. If an error occurs, leave an error message ** and code in pParse and return NULL. */ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ return; } if( pName1==0 ){ reindexDatabases(pParse, 0); return; }else if( NEVER(pName2==0) || pName2->z==0 ){ char *zColl; assert( pName1->z ); zColl = sqlite3NameFromToken(pParse->db, pName1); if( !zColl ) return; pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); if( pColl ){ reindexDatabases(pParse, zColl); sqlite3DbFree(db, zColl); return; } sqlite3DbFree(db, zColl); } iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); if( iDb<0 ) return; z = sqlite3NameFromToken(db, pObjName); if( z==0 ) return; zDb = db->aDb[iDb].zDbSName; pTab = sqlite3FindTable(db, z, zDb); if( pTab ){ reindexTable(pParse, pTab, 0); sqlite3DbFree(db, z); return; } pIndex = sqlite3FindIndex(db, z, zDb); sqlite3DbFree(db, z); if( pIndex ){ sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3RefillIndex(pParse, pIndex, -1); return; } sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); } #endif /* ** Return a KeyInfo structure that is appropriate for the given Index. ** ** The caller should invoke sqlite3KeyInfoUnref() on the returned object ** when it has finished using it. */ KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ int i; int nCol = pIdx->nColumn; int nKey = pIdx->nKeyCol; KeyInfo *pKey; if( pParse->nErr ) return 0; if( pIdx->uniqNotNull ){ pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); }else{ pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); } if( pKey ){ assert( sqlite3KeyInfoIsWriteable(pKey) ); for(i=0; iazColl[i]; pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : sqlite3LocateCollSeq(pParse, zColl); pKey->aSortFlags[i] = pIdx->aSortOrder[i]; assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) ); } if( pParse->nErr ){ assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ ); if( pIdx->bNoQuery==0 ){ /* Deactivate the index because it contains an unknown collating ** sequence. The only way to reactive the index is to reload the ** schema. Adding the missing collating sequence later does not ** reactive the index. The application had the chance to register ** the missing index using the collation-needed callback. For ** simplicity, SQLite will not give the application a second chance. */ pIdx->bNoQuery = 1; pParse->rc = SQLITE_ERROR_RETRY; } sqlite3KeyInfoUnref(pKey); pKey = 0; } } return pKey; } #ifndef SQLITE_OMIT_CTE /* ** Create a new CTE object */ Cte *sqlite3CteNew( Parse *pParse, /* Parsing context */ Token *pName, /* Name of the common-table */ ExprList *pArglist, /* Optional column name list for the table */ Select *pQuery, /* Query used to initialize the table */ u8 eM10d /* The MATERIALIZED flag */ ){ Cte *pNew; sqlite3 *db = pParse->db; pNew = sqlite3DbMallocZero(db, sizeof(*pNew)); assert( pNew!=0 || db->mallocFailed ); if( db->mallocFailed ){ sqlite3ExprListDelete(db, pArglist); sqlite3SelectDelete(db, pQuery); }else{ pNew->pSelect = pQuery; pNew->pCols = pArglist; pNew->zName = sqlite3NameFromToken(pParse->db, pName); pNew->eM10d = eM10d; } return pNew; } /* ** Clear information from a Cte object, but do not deallocate storage ** for the object itself. */ static void cteClear(sqlite3 *db, Cte *pCte){ assert( pCte!=0 ); sqlite3ExprListDelete(db, pCte->pCols); sqlite3SelectDelete(db, pCte->pSelect); sqlite3DbFree(db, pCte->zName); } /* ** Free the contents of the CTE object passed as the second argument. */ void sqlite3CteDelete(sqlite3 *db, Cte *pCte){ assert( pCte!=0 ); cteClear(db, pCte); sqlite3DbFree(db, pCte); } /* ** This routine is invoked once per CTE by the parser while parsing a ** WITH clause. The CTE described by teh third argument is added to ** the WITH clause of the second argument. If the second argument is ** NULL, then a new WITH argument is created. */ With *sqlite3WithAdd( Parse *pParse, /* Parsing context */ With *pWith, /* Existing WITH clause, or NULL */ Cte *pCte /* CTE to add to the WITH clause */ ){ sqlite3 *db = pParse->db; With *pNew; char *zName; if( pCte==0 ){ return pWith; } /* Check that the CTE name is unique within this WITH clause. If ** not, store an error in the Parse structure. */ zName = pCte->zName; if( zName && pWith ){ int i; for(i=0; inCte; i++){ if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); } } } if( pWith ){ sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); pNew = sqlite3DbRealloc(db, pWith, nByte); }else{ pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); } assert( (pNew!=0 && zName!=0) || db->mallocFailed ); if( db->mallocFailed ){ sqlite3CteDelete(db, pCte); pNew = pWith; }else{ pNew->a[pNew->nCte++] = *pCte; sqlite3DbFree(db, pCte); } return pNew; } /* ** Free the contents of the With object passed as the second argument. */ void sqlite3WithDelete(sqlite3 *db, With *pWith){ if( pWith ){ int i; for(i=0; inCte; i++){ cteClear(db, &pWith->a[i]); } sqlite3DbFree(db, pWith); } } #endif /* !defined(SQLITE_OMIT_CTE) */