/* ** 2015-08-12 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This SQLite JSON functions. ** ** This file began as an extension in ext/misc/json1.c in 2015. That ** extension proved so useful that it has now been moved into the core. ** ** For the time being, all JSON is stored as pure text. (We might add ** a JSONB type in the future which stores a binary encoding of JSON in ** a BLOB, but there is no support for JSONB in the current implementation. ** This implementation parses JSON text at 250 MB/s, so it is hard to see ** how JSONB might improve on that.) */ #ifndef SQLITE_OMIT_JSON #include "sqliteInt.h" /* ** Growing our own isspace() routine this way is twice as fast as ** the library isspace() function, resulting in a 7% overall performance ** increase for the parser. (Ubuntu14.10 gcc 4.8.4 x64 with -Os). */ static const char jsonIsSpace[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; #define fast_isspace(x) (jsonIsSpace[(unsigned char)x]) #if !defined(SQLITE_DEBUG) && !defined(SQLITE_COVERAGE_TEST) # define VVA(X) #else # define VVA(X) X #endif /* Objects */ typedef struct JsonString JsonString; typedef struct JsonNode JsonNode; typedef struct JsonParse JsonParse; /* An instance of this object represents a JSON string ** under construction. Really, this is a generic string accumulator ** that can be and is used to create strings other than JSON. */ struct JsonString { sqlite3_context *pCtx; /* Function context - put error messages here */ char *zBuf; /* Append JSON content here */ u64 nAlloc; /* Bytes of storage available in zBuf[] */ u64 nUsed; /* Bytes of zBuf[] currently used */ u8 bStatic; /* True if zBuf is static space */ u8 bErr; /* True if an error has been encountered */ char zSpace[100]; /* Initial static space */ }; /* JSON type values */ #define JSON_NULL 0 #define JSON_TRUE 1 #define JSON_FALSE 2 #define JSON_INT 3 #define JSON_REAL 4 #define JSON_STRING 5 #define JSON_ARRAY 6 #define JSON_OBJECT 7 /* The "subtype" set for JSON values */ #define JSON_SUBTYPE 74 /* Ascii for "J" */ /* ** Names of the various JSON types: */ static const char * const jsonType[] = { "null", "true", "false", "integer", "real", "text", "array", "object" }; /* Bit values for the JsonNode.jnFlag field */ #define JNODE_RAW 0x01 /* Content is raw, not JSON encoded */ #define JNODE_ESCAPE 0x02 /* Content is text with \ escapes */ #define JNODE_REMOVE 0x04 /* Do not output */ #define JNODE_REPLACE 0x08 /* Replace with JsonNode.u.iReplace */ #define JNODE_PATCH 0x10 /* Patch with JsonNode.u.pPatch */ #define JNODE_APPEND 0x20 /* More ARRAY/OBJECT entries at u.iAppend */ #define JNODE_LABEL 0x40 /* Is a label of an object */ /* A single node of parsed JSON */ struct JsonNode { u8 eType; /* One of the JSON_ type values */ u8 jnFlags; /* JNODE flags */ u8 eU; /* Which union element to use */ u32 n; /* Bytes of content, or number of sub-nodes */ union { const char *zJContent; /* 1: Content for INT, REAL, and STRING */ u32 iAppend; /* 2: More terms for ARRAY and OBJECT */ u32 iKey; /* 3: Key for ARRAY objects in json_tree() */ u32 iReplace; /* 4: Replacement content for JNODE_REPLACE */ JsonNode *pPatch; /* 5: Node chain of patch for JNODE_PATCH */ } u; }; /* A completely parsed JSON string */ struct JsonParse { u32 nNode; /* Number of slots of aNode[] used */ u32 nAlloc; /* Number of slots of aNode[] allocated */ JsonNode *aNode; /* Array of nodes containing the parse */ const char *zJson; /* Original JSON string */ u32 *aUp; /* Index of parent of each node */ u8 oom; /* Set to true if out of memory */ u8 nErr; /* Number of errors seen */ u16 iDepth; /* Nesting depth */ int nJson; /* Length of the zJson string in bytes */ u32 iHold; /* Replace cache line with the lowest iHold value */ }; /* ** Maximum nesting depth of JSON for this implementation. ** ** This limit is needed to avoid a stack overflow in the recursive ** descent parser. A depth of 2000 is far deeper than any sane JSON ** should go. */ #define JSON_MAX_DEPTH 2000 /************************************************************************** ** Utility routines for dealing with JsonString objects **************************************************************************/ /* Set the JsonString object to an empty string */ static void jsonZero(JsonString *p){ p->zBuf = p->zSpace; p->nAlloc = sizeof(p->zSpace); p->nUsed = 0; p->bStatic = 1; } /* Initialize the JsonString object */ static void jsonInit(JsonString *p, sqlite3_context *pCtx){ p->pCtx = pCtx; p->bErr = 0; jsonZero(p); } /* Free all allocated memory and reset the JsonString object back to its ** initial state. */ static void jsonReset(JsonString *p){ if( !p->bStatic ) sqlite3_free(p->zBuf); jsonZero(p); } /* Report an out-of-memory (OOM) condition */ static void jsonOom(JsonString *p){ p->bErr = 1; sqlite3_result_error_nomem(p->pCtx); jsonReset(p); } /* Enlarge pJson->zBuf so that it can hold at least N more bytes. ** Return zero on success. Return non-zero on an OOM error */ static int jsonGrow(JsonString *p, u32 N){ u64 nTotal = N<p->nAlloc ? p->nAlloc*2 : p->nAlloc+N+10; char *zNew; if( p->bStatic ){ if( p->bErr ) return 1; zNew = sqlite3_malloc64(nTotal); if( zNew==0 ){ jsonOom(p); return SQLITE_NOMEM; } memcpy(zNew, p->zBuf, (size_t)p->nUsed); p->zBuf = zNew; p->bStatic = 0; }else{ zNew = sqlite3_realloc64(p->zBuf, nTotal); if( zNew==0 ){ jsonOom(p); return SQLITE_NOMEM; } p->zBuf = zNew; } p->nAlloc = nTotal; return SQLITE_OK; } /* Append N bytes from zIn onto the end of the JsonString string. */ static void jsonAppendRaw(JsonString *p, const char *zIn, u32 N){ if( N==0 ) return; if( (N+p->nUsed >= p->nAlloc) && jsonGrow(p,N)!=0 ) return; memcpy(p->zBuf+p->nUsed, zIn, N); p->nUsed += N; } /* Append formatted text (not to exceed N bytes) to the JsonString. */ static void jsonPrintf(int N, JsonString *p, const char *zFormat, ...){ va_list ap; if( (p->nUsed + N >= p->nAlloc) && jsonGrow(p, N) ) return; va_start(ap, zFormat); sqlite3_vsnprintf(N, p->zBuf+p->nUsed, zFormat, ap); va_end(ap); p->nUsed += (int)strlen(p->zBuf+p->nUsed); } /* Append a single character */ static void jsonAppendChar(JsonString *p, char c){ if( p->nUsed>=p->nAlloc && jsonGrow(p,1)!=0 ) return; p->zBuf[p->nUsed++] = c; } /* Append a comma separator to the output buffer, if the previous ** character is not '[' or '{'. */ static void jsonAppendSeparator(JsonString *p){ char c; if( p->nUsed==0 ) return; c = p->zBuf[p->nUsed-1]; if( c!='[' && c!='{' ) jsonAppendChar(p, ','); } /* Append the N-byte string in zIn to the end of the JsonString string ** under construction. Enclose the string in "..." and escape ** any double-quotes or backslash characters contained within the ** string. */ static void jsonAppendString(JsonString *p, const char *zIn, u32 N){ u32 i; if( zIn==0 || ((N+p->nUsed+2 >= p->nAlloc) && jsonGrow(p,N+2)!=0) ) return; p->zBuf[p->nUsed++] = '"'; for(i=0; i<N; i++){ unsigned char c = ((unsigned const char*)zIn)[i]; if( c=='"' || c=='\\' ){ json_simple_escape: if( (p->nUsed+N+3-i > p->nAlloc) && jsonGrow(p,N+3-i)!=0 ) return; p->zBuf[p->nUsed++] = '\\'; }else if( c<=0x1f ){ static const char aSpecial[] = { 0, 0, 0, 0, 0, 0, 0, 0, 'b', 't', 'n', 0, 'f', 'r', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; assert( sizeof(aSpecial)==32 ); assert( aSpecial['\b']=='b' ); assert( aSpecial['\f']=='f' ); assert( aSpecial['\n']=='n' ); assert( aSpecial['\r']=='r' ); assert( aSpecial['\t']=='t' ); if( aSpecial[c] ){ c = aSpecial[c]; goto json_simple_escape; } if( (p->nUsed+N+7+i > p->nAlloc) && jsonGrow(p,N+7-i)!=0 ) return; p->zBuf[p->nUsed++] = '\\'; p->zBuf[p->nUsed++] = 'u'; p->zBuf[p->nUsed++] = '0'; p->zBuf[p->nUsed++] = '0'; p->zBuf[p->nUsed++] = '0' + (c>>4); c = "0123456789abcdef"[c&0xf]; } p->zBuf[p->nUsed++] = c; } p->zBuf[p->nUsed++] = '"'; assert( p->nUsed<p->nAlloc ); } /* ** Append a function parameter value to the JSON string under ** construction. */ static void jsonAppendValue( JsonString *p, /* Append to this JSON string */ sqlite3_value *pValue /* Value to append */ ){ switch( sqlite3_value_type(pValue) ){ case SQLITE_NULL: { jsonAppendRaw(p, "null", 4); break; } case SQLITE_INTEGER: case SQLITE_FLOAT: { const char *z = (const char*)sqlite3_value_text(pValue); u32 n = (u32)sqlite3_value_bytes(pValue); jsonAppendRaw(p, z, n); break; } case SQLITE_TEXT: { const char *z = (const char*)sqlite3_value_text(pValue); u32 n = (u32)sqlite3_value_bytes(pValue); if( sqlite3_value_subtype(pValue)==JSON_SUBTYPE ){ jsonAppendRaw(p, z, n); }else{ jsonAppendString(p, z, n); } break; } default: { if( p->bErr==0 ){ sqlite3_result_error(p->pCtx, "JSON cannot hold BLOB values", -1); p->bErr = 2; jsonReset(p); } break; } } } /* Make the JSON in p the result of the SQL function. */ static void jsonResult(JsonString *p){ if( p->bErr==0 ){ sqlite3_result_text64(p->pCtx, p->zBuf, p->nUsed, p->bStatic ? SQLITE_TRANSIENT : sqlite3_free, SQLITE_UTF8); jsonZero(p); } assert( p->bStatic ); } /************************************************************************** ** Utility routines for dealing with JsonNode and JsonParse objects **************************************************************************/ /* ** Return the number of consecutive JsonNode slots need to represent ** the parsed JSON at pNode. The minimum answer is 1. For ARRAY and ** OBJECT types, the number might be larger. ** ** Appended elements are not counted. The value returned is the number ** by which the JsonNode counter should increment in order to go to the ** next peer value. */ static u32 jsonNodeSize(JsonNode *pNode){ return pNode->eType>=JSON_ARRAY ? pNode->n+1 : 1; } /* ** Reclaim all memory allocated by a JsonParse object. But do not ** delete the JsonParse object itself. */ static void jsonParseReset(JsonParse *pParse){ sqlite3_free(pParse->aNode); pParse->aNode = 0; pParse->nNode = 0; pParse->nAlloc = 0; sqlite3_free(pParse->aUp); pParse->aUp = 0; } /* ** Free a JsonParse object that was obtained from sqlite3_malloc(). */ static void jsonParseFree(JsonParse *pParse){ jsonParseReset(pParse); sqlite3_free(pParse); } /* ** Convert the JsonNode pNode into a pure JSON string and ** append to pOut. Subsubstructure is also included. Return ** the number of JsonNode objects that are encoded. */ static void jsonRenderNode( JsonNode *pNode, /* The node to render */ JsonString *pOut, /* Write JSON here */ sqlite3_value **aReplace /* Replacement values */ ){ assert( pNode!=0 ); if( pNode->jnFlags & (JNODE_REPLACE|JNODE_PATCH) ){ if( (pNode->jnFlags & JNODE_REPLACE)!=0 && ALWAYS(aReplace!=0) ){ assert( pNode->eU==4 ); jsonAppendValue(pOut, aReplace[pNode->u.iReplace]); return; } assert( pNode->eU==5 ); pNode = pNode->u.pPatch; } switch( pNode->eType ){ default: { assert( pNode->eType==JSON_NULL ); jsonAppendRaw(pOut, "null", 4); break; } case JSON_TRUE: { jsonAppendRaw(pOut, "true", 4); break; } case JSON_FALSE: { jsonAppendRaw(pOut, "false", 5); break; } case JSON_STRING: { if( pNode->jnFlags & JNODE_RAW ){ assert( pNode->eU==1 ); jsonAppendString(pOut, pNode->u.zJContent, pNode->n); break; } /* no break */ deliberate_fall_through } case JSON_REAL: case JSON_INT: { assert( pNode->eU==1 ); jsonAppendRaw(pOut, pNode->u.zJContent, pNode->n); break; } case JSON_ARRAY: { u32 j = 1; jsonAppendChar(pOut, '['); for(;;){ while( j<=pNode->n ){ if( (pNode[j].jnFlags & JNODE_REMOVE)==0 ){ jsonAppendSeparator(pOut); jsonRenderNode(&pNode[j], pOut, aReplace); } j += jsonNodeSize(&pNode[j]); } if( (pNode->jnFlags & JNODE_APPEND)==0 ) break; assert( pNode->eU==2 ); pNode = &pNode[pNode->u.iAppend]; j = 1; } jsonAppendChar(pOut, ']'); break; } case JSON_OBJECT: { u32 j = 1; jsonAppendChar(pOut, '{'); for(;;){ while( j<=pNode->n ){ if( (pNode[j+1].jnFlags & JNODE_REMOVE)==0 ){ jsonAppendSeparator(pOut); jsonRenderNode(&pNode[j], pOut, aReplace); jsonAppendChar(pOut, ':'); jsonRenderNode(&pNode[j+1], pOut, aReplace); } j += 1 + jsonNodeSize(&pNode[j+1]); } if( (pNode->jnFlags & JNODE_APPEND)==0 ) break; assert( pNode->eU==2 ); pNode = &pNode[pNode->u.iAppend]; j = 1; } jsonAppendChar(pOut, '}'); break; } } } /* ** Return a JsonNode and all its descendents as a JSON string. */ static void jsonReturnJson( JsonNode *pNode, /* Node to return */ sqlite3_context *pCtx, /* Return value for this function */ sqlite3_value **aReplace /* Array of replacement values */ ){ JsonString s; jsonInit(&s, pCtx); jsonRenderNode(pNode, &s, aReplace); jsonResult(&s); sqlite3_result_subtype(pCtx, JSON_SUBTYPE); } /* ** Translate a single byte of Hex into an integer. ** This routine only works if h really is a valid hexadecimal ** character: 0..9a..fA..F */ static u8 jsonHexToInt(int h){ assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); #ifdef SQLITE_EBCDIC h += 9*(1&~(h>>4)); #else h += 9*(1&(h>>6)); #endif return (u8)(h & 0xf); } /* ** Convert a 4-byte hex string into an integer */ static u32 jsonHexToInt4(const char *z){ u32 v; assert( sqlite3Isxdigit(z[0]) ); assert( sqlite3Isxdigit(z[1]) ); assert( sqlite3Isxdigit(z[2]) ); assert( sqlite3Isxdigit(z[3]) ); v = (jsonHexToInt(z[0])<<12) + (jsonHexToInt(z[1])<<8) + (jsonHexToInt(z[2])<<4) + jsonHexToInt(z[3]); return v; } /* ** Make the JsonNode the return value of the function. */ static void jsonReturn( JsonNode *pNode, /* Node to return */ sqlite3_context *pCtx, /* Return value for this function */ sqlite3_value **aReplace /* Array of replacement values */ ){ switch( pNode->eType ){ default: { assert( pNode->eType==JSON_NULL ); sqlite3_result_null(pCtx); break; } case JSON_TRUE: { sqlite3_result_int(pCtx, 1); break; } case JSON_FALSE: { sqlite3_result_int(pCtx, 0); break; } case JSON_INT: { sqlite3_int64 i = 0; const char *z; assert( pNode->eU==1 ); z = pNode->u.zJContent; if( z[0]=='-' ){ z++; } while( z[0]>='0' && z[0]<='9' ){ unsigned v = *(z++) - '0'; if( i>=LARGEST_INT64/10 ){ if( i>LARGEST_INT64/10 ) goto int_as_real; if( z[0]>='0' && z[0]<='9' ) goto int_as_real; if( v==9 ) goto int_as_real; if( v==8 ){ if( pNode->u.zJContent[0]=='-' ){ sqlite3_result_int64(pCtx, SMALLEST_INT64); goto int_done; }else{ goto int_as_real; } } } i = i*10 + v; } if( pNode->u.zJContent[0]=='-' ){ i = -i; } sqlite3_result_int64(pCtx, i); int_done: break; int_as_real: ; /* no break */ deliberate_fall_through } case JSON_REAL: { double r; #ifdef SQLITE_AMALGAMATION const char *z; assert( pNode->eU==1 ); z = pNode->u.zJContent; sqlite3AtoF(z, &r, sqlite3Strlen30(z), SQLITE_UTF8); #else assert( pNode->eU==1 ); r = strtod(pNode->u.zJContent, 0); #endif sqlite3_result_double(pCtx, r); break; } case JSON_STRING: { #if 0 /* Never happens because JNODE_RAW is only set by json_set(), ** json_insert() and json_replace() and those routines do not ** call jsonReturn() */ if( pNode->jnFlags & JNODE_RAW ){ assert( pNode->eU==1 ); sqlite3_result_text(pCtx, pNode->u.zJContent, pNode->n, SQLITE_TRANSIENT); }else #endif assert( (pNode->jnFlags & JNODE_RAW)==0 ); if( (pNode->jnFlags & JNODE_ESCAPE)==0 ){ /* JSON formatted without any backslash-escapes */ assert( pNode->eU==1 ); sqlite3_result_text(pCtx, pNode->u.zJContent+1, pNode->n-2, SQLITE_TRANSIENT); }else{ /* Translate JSON formatted string into raw text */ u32 i; u32 n = pNode->n; const char *z; char *zOut; u32 j; assert( pNode->eU==1 ); z = pNode->u.zJContent; zOut = sqlite3_malloc( n+1 ); if( zOut==0 ){ sqlite3_result_error_nomem(pCtx); break; } for(i=1, j=0; i<n-1; i++){ char c = z[i]; if( c!='\\' ){ zOut[j++] = c; }else{ c = z[++i]; if( c=='u' ){ u32 v = jsonHexToInt4(z+i+1); i += 4; if( v==0 ) break; if( v<=0x7f ){ zOut[j++] = (char)v; }else if( v<=0x7ff ){ zOut[j++] = (char)(0xc0 | (v>>6)); zOut[j++] = 0x80 | (v&0x3f); }else{ u32 vlo; if( (v&0xfc00)==0xd800 && i<n-6 && z[i+1]=='\\' && z[i+2]=='u' && ((vlo = jsonHexToInt4(z+i+3))&0xfc00)==0xdc00 ){ /* We have a surrogate pair */ v = ((v&0x3ff)<<10) + (vlo&0x3ff) + 0x10000; i += 6; zOut[j++] = 0xf0 | (v>>18); zOut[j++] = 0x80 | ((v>>12)&0x3f); zOut[j++] = 0x80 | ((v>>6)&0x3f); zOut[j++] = 0x80 | (v&0x3f); }else{ zOut[j++] = 0xe0 | (v>>12); zOut[j++] = 0x80 | ((v>>6)&0x3f); zOut[j++] = 0x80 | (v&0x3f); } } }else{ if( c=='b' ){ c = '\b'; }else if( c=='f' ){ c = '\f'; }else if( c=='n' ){ c = '\n'; }else if( c=='r' ){ c = '\r'; }else if( c=='t' ){ c = '\t'; } zOut[j++] = c; } } } zOut[j] = 0; sqlite3_result_text(pCtx, zOut, j, sqlite3_free); } break; } case JSON_ARRAY: case JSON_OBJECT: { jsonReturnJson(pNode, pCtx, aReplace); break; } } } /* Forward reference */ static int jsonParseAddNode(JsonParse*,u32,u32,const char*); /* ** A macro to hint to the compiler that a function should not be ** inlined. */ #if defined(__GNUC__) # define JSON_NOINLINE __attribute__((noinline)) #elif defined(_MSC_VER) && _MSC_VER>=1310 # define JSON_NOINLINE __declspec(noinline) #else # define JSON_NOINLINE #endif static JSON_NOINLINE int jsonParseAddNodeExpand( JsonParse *pParse, /* Append the node to this object */ u32 eType, /* Node type */ u32 n, /* Content size or sub-node count */ const char *zContent /* Content */ ){ u32 nNew; JsonNode *pNew; assert( pParse->nNode>=pParse->nAlloc ); if( pParse->oom ) return -1; nNew = pParse->nAlloc*2 + 10; pNew = sqlite3_realloc64(pParse->aNode, sizeof(JsonNode)*nNew); if( pNew==0 ){ pParse->oom = 1; return -1; } pParse->nAlloc = nNew; pParse->aNode = pNew; assert( pParse->nNode<pParse->nAlloc ); return jsonParseAddNode(pParse, eType, n, zContent); } /* ** Create a new JsonNode instance based on the arguments and append that ** instance to the JsonParse. Return the index in pParse->aNode[] of the ** new node, or -1 if a memory allocation fails. */ static int jsonParseAddNode( JsonParse *pParse, /* Append the node to this object */ u32 eType, /* Node type */ u32 n, /* Content size or sub-node count */ const char *zContent /* Content */ ){ JsonNode *p; if( pParse->aNode==0 || pParse->nNode>=pParse->nAlloc ){ return jsonParseAddNodeExpand(pParse, eType, n, zContent); } p = &pParse->aNode[pParse->nNode]; p->eType = (u8)eType; p->jnFlags = 0; VVA( p->eU = zContent ? 1 : 0 ); p->n = n; p->u.zJContent = zContent; return pParse->nNode++; } /* ** Return true if z[] begins with 4 (or more) hexadecimal digits */ static int jsonIs4Hex(const char *z){ int i; for(i=0; i<4; i++) if( !sqlite3Isxdigit(z[i]) ) return 0; return 1; } /* ** Parse a single JSON value which begins at pParse->zJson[i]. Return the ** index of the first character past the end of the value parsed. ** ** Return negative for a syntax error. Special cases: return -2 if the ** first non-whitespace character is '}' and return -3 if the first ** non-whitespace character is ']'. */ static int jsonParseValue(JsonParse *pParse, u32 i){ char c; u32 j; int iThis; int x; JsonNode *pNode; const char *z = pParse->zJson; while( fast_isspace(z[i]) ){ i++; } if( (c = z[i])=='{' ){ /* Parse object */ iThis = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0); if( iThis<0 ) return -1; for(j=i+1;;j++){ while( fast_isspace(z[j]) ){ j++; } if( ++pParse->iDepth > JSON_MAX_DEPTH ) return -1; x = jsonParseValue(pParse, j); if( x<0 ){ pParse->iDepth--; if( x==(-2) && pParse->nNode==(u32)iThis+1 ) return j+1; return -1; } if( pParse->oom ) return -1; pNode = &pParse->aNode[pParse->nNode-1]; if( pNode->eType!=JSON_STRING ) return -1; pNode->jnFlags |= JNODE_LABEL; j = x; while( fast_isspace(z[j]) ){ j++; } if( z[j]!=':' ) return -1; j++; x = jsonParseValue(pParse, j); pParse->iDepth--; if( x<0 ) return -1; j = x; while( fast_isspace(z[j]) ){ j++; } c = z[j]; if( c==',' ) continue; if( c!='}' ) return -1; break; } pParse->aNode[iThis].n = pParse->nNode - (u32)iThis - 1; return j+1; }else if( c=='[' ){ /* Parse array */ iThis = jsonParseAddNode(pParse, JSON_ARRAY, 0, 0); if( iThis<0 ) return -1; memset(&pParse->aNode[iThis].u, 0, sizeof(pParse->aNode[iThis].u)); for(j=i+1;;j++){ while( fast_isspace(z[j]) ){ j++; } if( ++pParse->iDepth > JSON_MAX_DEPTH ) return -1; x = jsonParseValue(pParse, j); pParse->iDepth--; if( x<0 ){ if( x==(-3) && pParse->nNode==(u32)iThis+1 ) return j+1; return -1; } j = x; while( fast_isspace(z[j]) ){ j++; } c = z[j]; if( c==',' ) continue; if( c!=']' ) return -1; break; } pParse->aNode[iThis].n = pParse->nNode - (u32)iThis - 1; return j+1; }else if( c=='"' ){ /* Parse string */ u8 jnFlags = 0; j = i+1; for(;;){ c = z[j]; if( (c & ~0x1f)==0 ){ /* Control characters are not allowed in strings */ return -1; } if( c=='\\' ){ c = z[++j]; if( c=='"' || c=='\\' || c=='/' || c=='b' || c=='f' || c=='n' || c=='r' || c=='t' || (c=='u' && jsonIs4Hex(z+j+1)) ){ jnFlags = JNODE_ESCAPE; }else{ return -1; } }else if( c=='"' ){ break; } j++; } jsonParseAddNode(pParse, JSON_STRING, j+1-i, &z[i]); if( !pParse->oom ) pParse->aNode[pParse->nNode-1].jnFlags = jnFlags; return j+1; }else if( c=='n' && strncmp(z+i,"null",4)==0 && !sqlite3Isalnum(z[i+4]) ){ jsonParseAddNode(pParse, JSON_NULL, 0, 0); return i+4; }else if( c=='t' && strncmp(z+i,"true",4)==0 && !sqlite3Isalnum(z[i+4]) ){ jsonParseAddNode(pParse, JSON_TRUE, 0, 0); return i+4; }else if( c=='f' && strncmp(z+i,"false",5)==0 && !sqlite3Isalnum(z[i+5]) ){ jsonParseAddNode(pParse, JSON_FALSE, 0, 0); return i+5; }else if( c=='-' || (c>='0' && c<='9') ){ /* Parse number */ u8 seenDP = 0; u8 seenE = 0; assert( '-' < '0' ); if( c<='0' ){ j = c=='-' ? i+1 : i; if( z[j]=='0' && z[j+1]>='0' && z[j+1]<='9' ) return -1; } j = i+1; for(;; j++){ c = z[j]; if( c>='0' && c<='9' ) continue; if( c=='.' ){ if( z[j-1]=='-' ) return -1; if( seenDP ) return -1; seenDP = 1; continue; } if( c=='e' || c=='E' ){ if( z[j-1]<'0' ) return -1; if( seenE ) return -1; seenDP = seenE = 1; c = z[j+1]; if( c=='+' || c=='-' ){ j++; c = z[j+1]; } if( c<'0' || c>'9' ) return -1; continue; } break; } if( z[j-1]<'0' ) return -1; jsonParseAddNode(pParse, seenDP ? JSON_REAL : JSON_INT, j - i, &z[i]); return j; }else if( c=='}' ){ return -2; /* End of {...} */ }else if( c==']' ){ return -3; /* End of [...] */ }else if( c==0 ){ return 0; /* End of file */ }else{ return -1; /* Syntax error */ } } /* ** Parse a complete JSON string. Return 0 on success or non-zero if there ** are any errors. If an error occurs, free all memory associated with ** pParse. ** ** pParse is uninitialized when this routine is called. */ static int jsonParse( JsonParse *pParse, /* Initialize and fill this JsonParse object */ sqlite3_context *pCtx, /* Report errors here */ const char *zJson /* Input JSON text to be parsed */ ){ int i; memset(pParse, 0, sizeof(*pParse)); if( zJson==0 ) return 1; pParse->zJson = zJson; i = jsonParseValue(pParse, 0); if( pParse->oom ) i = -1; if( i>0 ){ assert( pParse->iDepth==0 ); while( fast_isspace(zJson[i]) ) i++; if( zJson[i] ) i = -1; } if( i<=0 ){ if( pCtx!=0 ){ if( pParse->oom ){ sqlite3_result_error_nomem(pCtx); }else{ sqlite3_result_error(pCtx, "malformed JSON", -1); } } jsonParseReset(pParse); return 1; } return 0; } /* Mark node i of pParse as being a child of iParent. Call recursively ** to fill in all the descendants of node i. */ static void jsonParseFillInParentage(JsonParse *pParse, u32 i, u32 iParent){ JsonNode *pNode = &pParse->aNode[i]; u32 j; pParse->aUp[i] = iParent; switch( pNode->eType ){ case JSON_ARRAY: { for(j=1; j<=pNode->n; j += jsonNodeSize(pNode+j)){ jsonParseFillInParentage(pParse, i+j, i); } break; } case JSON_OBJECT: { for(j=1; j<=pNode->n; j += jsonNodeSize(pNode+j+1)+1){ pParse->aUp[i+j] = i; jsonParseFillInParentage(pParse, i+j+1, i); } break; } default: { break; } } } /* ** Compute the parentage of all nodes in a completed parse. */ static int jsonParseFindParents(JsonParse *pParse){ u32 *aUp; assert( pParse->aUp==0 ); aUp = pParse->aUp = sqlite3_malloc64( sizeof(u32)*pParse->nNode ); if( aUp==0 ){ pParse->oom = 1; return SQLITE_NOMEM; } jsonParseFillInParentage(pParse, 0, 0); return SQLITE_OK; } /* ** Magic number used for the JSON parse cache in sqlite3_get_auxdata() */ #define JSON_CACHE_ID (-429938) /* First cache entry */ #define JSON_CACHE_SZ 4 /* Max number of cache entries */ /* ** Obtain a complete parse of the JSON found in the first argument ** of the argv array. Use the sqlite3_get_auxdata() cache for this ** parse if it is available. If the cache is not available or if it ** is no longer valid, parse the JSON again and return the new parse, ** and also register the new parse so that it will be available for ** future sqlite3_get_auxdata() calls. */ static JsonParse *jsonParseCached( sqlite3_context *pCtx, sqlite3_value **argv, sqlite3_context *pErrCtx ){ const char *zJson = (const char*)sqlite3_value_text(argv[0]); int nJson = sqlite3_value_bytes(argv[0]); JsonParse *p; JsonParse *pMatch = 0; int iKey; int iMinKey = 0; u32 iMinHold = 0xffffffff; u32 iMaxHold = 0; if( zJson==0 ) return 0; for(iKey=0; iKey<JSON_CACHE_SZ; iKey++){ p = (JsonParse*)sqlite3_get_auxdata(pCtx, JSON_CACHE_ID+iKey); if( p==0 ){ iMinKey = iKey; break; } if( pMatch==0 && p->nJson==nJson && memcmp(p->zJson,zJson,nJson)==0 ){ p->nErr = 0; pMatch = p; }else if( p->iHold<iMinHold ){ iMinHold = p->iHold; iMinKey = iKey; } if( p->iHold>iMaxHold ){ iMaxHold = p->iHold; } } if( pMatch ){ pMatch->nErr = 0; pMatch->iHold = iMaxHold+1; return pMatch; } p = sqlite3_malloc64( sizeof(*p) + nJson + 1 ); if( p==0 ){ sqlite3_result_error_nomem(pCtx); return 0; } memset(p, 0, sizeof(*p)); p->zJson = (char*)&p[1]; memcpy((char*)p->zJson, zJson, nJson+1); if( jsonParse(p, pErrCtx, p->zJson) ){ sqlite3_free(p); return 0; } p->nJson = nJson; p->iHold = iMaxHold+1; sqlite3_set_auxdata(pCtx, JSON_CACHE_ID+iMinKey, p, (void(*)(void*))jsonParseFree); return (JsonParse*)sqlite3_get_auxdata(pCtx, JSON_CACHE_ID+iMinKey); } /* ** Compare the OBJECT label at pNode against zKey,nKey. Return true on ** a match. */ static int jsonLabelCompare(JsonNode *pNode, const char *zKey, u32 nKey){ assert( pNode->eU==1 ); if( pNode->jnFlags & JNODE_RAW ){ if( pNode->n!=nKey ) return 0; return strncmp(pNode->u.zJContent, zKey, nKey)==0; }else{ if( pNode->n!=nKey+2 ) return 0; return strncmp(pNode->u.zJContent+1, zKey, nKey)==0; } } /* forward declaration */ static JsonNode *jsonLookupAppend(JsonParse*,const char*,int*,const char**); /* ** Search along zPath to find the node specified. Return a pointer ** to that node, or NULL if zPath is malformed or if there is no such ** node. ** ** If pApnd!=0, then try to append new nodes to complete zPath if it is ** possible to do so and if no existing node corresponds to zPath. If ** new nodes are appended *pApnd is set to 1. */ static JsonNode *jsonLookupStep( JsonParse *pParse, /* The JSON to search */ u32 iRoot, /* Begin the search at this node */ const char *zPath, /* The path to search */ int *pApnd, /* Append nodes to complete path if not NULL */ const char **pzErr /* Make *pzErr point to any syntax error in zPath */ ){ u32 i, j, nKey; const char *zKey; JsonNode *pRoot = &pParse->aNode[iRoot]; if( zPath[0]==0 ) return pRoot; if( pRoot->jnFlags & JNODE_REPLACE ) return 0; if( zPath[0]=='.' ){ if( pRoot->eType!=JSON_OBJECT ) return 0; zPath++; if( zPath[0]=='"' ){ zKey = zPath + 1; for(i=1; zPath[i] && zPath[i]!='"'; i++){} nKey = i-1; if( zPath[i] ){ i++; }else{ *pzErr = zPath; return 0; } testcase( nKey==0 ); }else{ zKey = zPath; for(i=0; zPath[i] && zPath[i]!='.' && zPath[i]!='['; i++){} nKey = i; if( nKey==0 ){ *pzErr = zPath; return 0; } } j = 1; for(;;){ while( j<=pRoot->n ){ if( jsonLabelCompare(pRoot+j, zKey, nKey) ){ return jsonLookupStep(pParse, iRoot+j+1, &zPath[i], pApnd, pzErr); } j++; j += jsonNodeSize(&pRoot[j]); } if( (pRoot->jnFlags & JNODE_APPEND)==0 ) break; assert( pRoot->eU==2 ); iRoot += pRoot->u.iAppend; pRoot = &pParse->aNode[iRoot]; j = 1; } if( pApnd ){ u32 iStart, iLabel; JsonNode *pNode; iStart = jsonParseAddNode(pParse, JSON_OBJECT, 2, 0); iLabel = jsonParseAddNode(pParse, JSON_STRING, nKey, zKey); zPath += i; pNode = jsonLookupAppend(pParse, zPath, pApnd, pzErr); if( pParse->oom ) return 0; if( pNode ){ pRoot = &pParse->aNode[iRoot]; assert( pRoot->eU==0 ); pRoot->u.iAppend = iStart - iRoot; pRoot->jnFlags |= JNODE_APPEND; VVA( pRoot->eU = 2 ); pParse->aNode[iLabel].jnFlags |= JNODE_RAW; } return pNode; } }else if( zPath[0]=='[' ){ i = 0; j = 1; while( sqlite3Isdigit(zPath[j]) ){ i = i*10 + zPath[j] - '0'; j++; } if( j<2 || zPath[j]!=']' ){ if( zPath[1]=='#' ){ JsonNode *pBase = pRoot; int iBase = iRoot; if( pRoot->eType!=JSON_ARRAY ) return 0; for(;;){ while( j<=pBase->n ){ if( (pBase[j].jnFlags & JNODE_REMOVE)==0 ) i++; j += jsonNodeSize(&pBase[j]); } if( (pBase->jnFlags & JNODE_APPEND)==0 ) break; assert( pBase->eU==2 ); iBase += pBase->u.iAppend; pBase = &pParse->aNode[iBase]; j = 1; } j = 2; if( zPath[2]=='-' && sqlite3Isdigit(zPath[3]) ){ unsigned int x = 0; j = 3; do{ x = x*10 + zPath[j] - '0'; j++; }while( sqlite3Isdigit(zPath[j]) ); if( x>i ) return 0; i -= x; } if( zPath[j]!=']' ){ *pzErr = zPath; return 0; } }else{ *pzErr = zPath; return 0; } } if( pRoot->eType!=JSON_ARRAY ) return 0; zPath += j + 1; j = 1; for(;;){ while( j<=pRoot->n && (i>0 || (pRoot[j].jnFlags & JNODE_REMOVE)!=0) ){ if( (pRoot[j].jnFlags & JNODE_REMOVE)==0 ) i--; j += jsonNodeSize(&pRoot[j]); } if( (pRoot->jnFlags & JNODE_APPEND)==0 ) break; assert( pRoot->eU==2 ); iRoot += pRoot->u.iAppend; pRoot = &pParse->aNode[iRoot]; j = 1; } if( j<=pRoot->n ){ return jsonLookupStep(pParse, iRoot+j, zPath, pApnd, pzErr); } if( i==0 && pApnd ){ u32 iStart; JsonNode *pNode; iStart = jsonParseAddNode(pParse, JSON_ARRAY, 1, 0); pNode = jsonLookupAppend(pParse, zPath, pApnd, pzErr); if( pParse->oom ) return 0; if( pNode ){ pRoot = &pParse->aNode[iRoot]; assert( pRoot->eU==0 ); pRoot->u.iAppend = iStart - iRoot; pRoot->jnFlags |= JNODE_APPEND; VVA( pRoot->eU = 2 ); } return pNode; } }else{ *pzErr = zPath; } return 0; } /* ** Append content to pParse that will complete zPath. Return a pointer ** to the inserted node, or return NULL if the append fails. */ static JsonNode *jsonLookupAppend( JsonParse *pParse, /* Append content to the JSON parse */ const char *zPath, /* Description of content to append */ int *pApnd, /* Set this flag to 1 */ const char **pzErr /* Make this point to any syntax error */ ){ *pApnd = 1; if( zPath[0]==0 ){ jsonParseAddNode(pParse, JSON_NULL, 0, 0); return pParse->oom ? 0 : &pParse->aNode[pParse->nNode-1]; } if( zPath[0]=='.' ){ jsonParseAddNode(pParse, JSON_OBJECT, 0, 0); }else if( strncmp(zPath,"[0]",3)==0 ){ jsonParseAddNode(pParse, JSON_ARRAY, 0, 0); }else{ return 0; } if( pParse->oom ) return 0; return jsonLookupStep(pParse, pParse->nNode-1, zPath, pApnd, pzErr); } /* ** Return the text of a syntax error message on a JSON path. Space is ** obtained from sqlite3_malloc(). */ static char *jsonPathSyntaxError(const char *zErr){ return sqlite3_mprintf("JSON path error near '%q'", zErr); } /* ** Do a node lookup using zPath. Return a pointer to the node on success. ** Return NULL if not found or if there is an error. ** ** On an error, write an error message into pCtx and increment the ** pParse->nErr counter. ** ** If pApnd!=NULL then try to append missing nodes and set *pApnd = 1 if ** nodes are appended. */ static JsonNode *jsonLookup( JsonParse *pParse, /* The JSON to search */ const char *zPath, /* The path to search */ int *pApnd, /* Append nodes to complete path if not NULL */ sqlite3_context *pCtx /* Report errors here, if not NULL */ ){ const char *zErr = 0; JsonNode *pNode = 0; char *zMsg; if( zPath==0 ) return 0; if( zPath[0]!='$' ){ zErr = zPath; goto lookup_err; } zPath++; pNode = jsonLookupStep(pParse, 0, zPath, pApnd, &zErr); if( zErr==0 ) return pNode; lookup_err: pParse->nErr++; assert( zErr!=0 && pCtx!=0 ); zMsg = jsonPathSyntaxError(zErr); if( zMsg ){ sqlite3_result_error(pCtx, zMsg, -1); sqlite3_free(zMsg); }else{ sqlite3_result_error_nomem(pCtx); } return 0; } /* ** Report the wrong number of arguments for json_insert(), json_replace() ** or json_set(). */ static void jsonWrongNumArgs( sqlite3_context *pCtx, const char *zFuncName ){ char *zMsg = sqlite3_mprintf("json_%s() needs an odd number of arguments", zFuncName); sqlite3_result_error(pCtx, zMsg, -1); sqlite3_free(zMsg); } /* ** Mark all NULL entries in the Object passed in as JNODE_REMOVE. */ static void jsonRemoveAllNulls(JsonNode *pNode){ int i, n; assert( pNode->eType==JSON_OBJECT ); n = pNode->n; for(i=2; i<=n; i += jsonNodeSize(&pNode[i])+1){ switch( pNode[i].eType ){ case JSON_NULL: pNode[i].jnFlags |= JNODE_REMOVE; break; case JSON_OBJECT: jsonRemoveAllNulls(&pNode[i]); break; } } } /**************************************************************************** ** SQL functions used for testing and debugging ****************************************************************************/ #ifdef SQLITE_DEBUG /* ** The json_parse(JSON) function returns a string which describes ** a parse of the JSON provided. Or it returns NULL if JSON is not ** well-formed. */ static void jsonParseFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonString s; /* Output string - not real JSON */ JsonParse x; /* The parse */ u32 i; assert( argc==1 ); if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return; jsonParseFindParents(&x); jsonInit(&s, ctx); for(i=0; i<x.nNode; i++){ const char *zType; if( x.aNode[i].jnFlags & JNODE_LABEL ){ assert( x.aNode[i].eType==JSON_STRING ); zType = "label"; }else{ zType = jsonType[x.aNode[i].eType]; } jsonPrintf(100, &s,"node %3u: %7s n=%-4d up=%-4d", i, zType, x.aNode[i].n, x.aUp[i]); assert( x.aNode[i].eU==0 || x.aNode[i].eU==1 ); if( x.aNode[i].u.zJContent!=0 ){ assert( x.aNode[i].eU==1 ); jsonAppendRaw(&s, " ", 1); jsonAppendRaw(&s, x.aNode[i].u.zJContent, x.aNode[i].n); }else{ assert( x.aNode[i].eU==0 ); } jsonAppendRaw(&s, "\n", 1); } jsonParseReset(&x); jsonResult(&s); } /* ** The json_test1(JSON) function return true (1) if the input is JSON ** text generated by another json function. It returns (0) if the input ** is not known to be JSON. */ static void jsonTest1Func( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ UNUSED_PARAMETER(argc); sqlite3_result_int(ctx, sqlite3_value_subtype(argv[0])==JSON_SUBTYPE); } #endif /* SQLITE_DEBUG */ /**************************************************************************** ** Scalar SQL function implementations ****************************************************************************/ /* ** Implementation of the json_QUOTE(VALUE) function. Return a JSON value ** corresponding to the SQL value input. Mostly this means putting ** double-quotes around strings and returning the unquoted string "null" ** when given a NULL input. */ static void jsonQuoteFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonString jx; UNUSED_PARAMETER(argc); jsonInit(&jx, ctx); jsonAppendValue(&jx, argv[0]); jsonResult(&jx); sqlite3_result_subtype(ctx, JSON_SUBTYPE); } /* ** Implementation of the json_array(VALUE,...) function. Return a JSON ** array that contains all values given in arguments. Or if any argument ** is a BLOB, throw an error. */ static void jsonArrayFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ int i; JsonString jx; jsonInit(&jx, ctx); jsonAppendChar(&jx, '['); for(i=0; i<argc; i++){ jsonAppendSeparator(&jx); jsonAppendValue(&jx, argv[i]); } jsonAppendChar(&jx, ']'); jsonResult(&jx); sqlite3_result_subtype(ctx, JSON_SUBTYPE); } /* ** json_array_length(JSON) ** json_array_length(JSON, PATH) ** ** Return the number of elements in the top-level JSON array. ** Return 0 if the input is not a well-formed JSON array. */ static void jsonArrayLengthFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ sqlite3_int64 n = 0; u32 i; JsonNode *pNode; p = jsonParseCached(ctx, argv, ctx); if( p==0 ) return; assert( p->nNode ); if( argc==2 ){ const char *zPath = (const char*)sqlite3_value_text(argv[1]); pNode = jsonLookup(p, zPath, 0, ctx); }else{ pNode = p->aNode; } if( pNode==0 ){ return; } if( pNode->eType==JSON_ARRAY ){ assert( (pNode->jnFlags & JNODE_APPEND)==0 ); for(i=1; i<=pNode->n; n++){ i += jsonNodeSize(&pNode[i]); } } sqlite3_result_int64(ctx, n); } /* ** Bit values for the flags passed into jsonExtractFunc() or ** jsonSetFunc() via the user-data value. */ #define JSON_JSON 0x01 /* Result is always JSON */ #define JSON_SQL 0x02 /* Result is always SQL */ #define JSON_ABPATH 0x03 /* Allow abbreviated JSON path specs */ #define JSON_ISSET 0x04 /* json_set(), not json_insert() */ /* ** json_extract(JSON, PATH, ...) ** "->"(JSON,PATH) ** "->>"(JSON,PATH) ** ** Return the element described by PATH. Return NULL if that PATH element ** is not found. ** ** If JSON_JSON is set or if more that one PATH argument is supplied then ** always return a JSON representation of the result. If JSON_SQL is set, ** then always return an SQL representation of the result. If neither flag ** is present and argc==2, then return JSON for objects and arrays and SQL ** for all other values. ** ** When multiple PATH arguments are supplied, the result is a JSON array ** containing the result of each PATH. ** ** Abbreviated JSON path expressions are allows if JSON_ABPATH, for ** compatibility with PG. */ static void jsonExtractFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ JsonNode *pNode; const char *zPath; int flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx)); JsonString jx; if( argc<2 ) return; p = jsonParseCached(ctx, argv, ctx); if( p==0 ) return; if( argc==2 ){ /* With a single PATH argument */ zPath = (const char*)sqlite3_value_text(argv[1]); if( zPath==0 ) return; if( flags & JSON_ABPATH ){ if( zPath[0]!='$' ){ /* The -> and ->> operators accept abbreviated PATH arguments. This ** is mostly for compatibility with PostgreSQL, but also for ** convenience. ** ** NUMBER ==> $[NUMBER] // PG compatible ** LABEL ==> $.LABEL // PG compatible ** [NUMBER] ==> $[NUMBER] // Not PG. Purely for convenience */ jsonInit(&jx, ctx); if( sqlite3Isdigit(zPath[0]) ){ jsonAppendRaw(&jx, "$[", 2); jsonAppendRaw(&jx, zPath, (int)strlen(zPath)); jsonAppendRaw(&jx, "]", 2); }else{ jsonAppendRaw(&jx, "$.", 1 + (zPath[0]!='[')); jsonAppendRaw(&jx, zPath, (int)strlen(zPath)); jsonAppendChar(&jx, 0); } pNode = jx.bErr ? 0 : jsonLookup(p, jx.zBuf, 0, ctx); jsonReset(&jx); }else{ pNode = jsonLookup(p, zPath, 0, ctx); } if( pNode ){ if( flags & JSON_JSON ){ jsonReturnJson(pNode, ctx, 0); }else{ jsonReturn(pNode, ctx, 0); sqlite3_result_subtype(ctx, 0); } } }else{ pNode = jsonLookup(p, zPath, 0, ctx); if( p->nErr==0 && pNode ) jsonReturn(pNode, ctx, 0); } }else{ /* Two or more PATH arguments results in a JSON array with each ** element of the array being the value selected by one of the PATHs */ int i; jsonInit(&jx, ctx); jsonAppendChar(&jx, '['); for(i=1; i<argc; i++){ zPath = (const char*)sqlite3_value_text(argv[i]); pNode = jsonLookup(p, zPath, 0, ctx); if( p->nErr ) break; jsonAppendSeparator(&jx); if( pNode ){ jsonRenderNode(pNode, &jx, 0); }else{ jsonAppendRaw(&jx, "null", 4); } } if( i==argc ){ jsonAppendChar(&jx, ']'); jsonResult(&jx); sqlite3_result_subtype(ctx, JSON_SUBTYPE); } jsonReset(&jx); } } /* This is the RFC 7396 MergePatch algorithm. */ static JsonNode *jsonMergePatch( JsonParse *pParse, /* The JSON parser that contains the TARGET */ u32 iTarget, /* Node of the TARGET in pParse */ JsonNode *pPatch /* The PATCH */ ){ u32 i, j; u32 iRoot; JsonNode *pTarget; if( pPatch->eType!=JSON_OBJECT ){ return pPatch; } assert( iTarget<pParse->nNode ); pTarget = &pParse->aNode[iTarget]; assert( (pPatch->jnFlags & JNODE_APPEND)==0 ); if( pTarget->eType!=JSON_OBJECT ){ jsonRemoveAllNulls(pPatch); return pPatch; } iRoot = iTarget; for(i=1; i<pPatch->n; i += jsonNodeSize(&pPatch[i+1])+1){ u32 nKey; const char *zKey; assert( pPatch[i].eType==JSON_STRING ); assert( pPatch[i].jnFlags & JNODE_LABEL ); assert( pPatch[i].eU==1 ); nKey = pPatch[i].n; zKey = pPatch[i].u.zJContent; assert( (pPatch[i].jnFlags & JNODE_RAW)==0 ); for(j=1; j<pTarget->n; j += jsonNodeSize(&pTarget[j+1])+1 ){ assert( pTarget[j].eType==JSON_STRING ); assert( pTarget[j].jnFlags & JNODE_LABEL ); assert( (pPatch[i].jnFlags & JNODE_RAW)==0 ); if( pTarget[j].n==nKey && strncmp(pTarget[j].u.zJContent,zKey,nKey)==0 ){ if( pTarget[j+1].jnFlags & (JNODE_REMOVE|JNODE_PATCH) ) break; if( pPatch[i+1].eType==JSON_NULL ){ pTarget[j+1].jnFlags |= JNODE_REMOVE; }else{ JsonNode *pNew = jsonMergePatch(pParse, iTarget+j+1, &pPatch[i+1]); if( pNew==0 ) return 0; pTarget = &pParse->aNode[iTarget]; if( pNew!=&pTarget[j+1] ){ assert( pTarget[j+1].eU==0 || pTarget[j+1].eU==1 || pTarget[j+1].eU==2 ); testcase( pTarget[j+1].eU==1 ); testcase( pTarget[j+1].eU==2 ); VVA( pTarget[j+1].eU = 5 ); pTarget[j+1].u.pPatch = pNew; pTarget[j+1].jnFlags |= JNODE_PATCH; } } break; } } if( j>=pTarget->n && pPatch[i+1].eType!=JSON_NULL ){ int iStart, iPatch; iStart = jsonParseAddNode(pParse, JSON_OBJECT, 2, 0); jsonParseAddNode(pParse, JSON_STRING, nKey, zKey); iPatch = jsonParseAddNode(pParse, JSON_TRUE, 0, 0); if( pParse->oom ) return 0; jsonRemoveAllNulls(pPatch); pTarget = &pParse->aNode[iTarget]; assert( pParse->aNode[iRoot].eU==0 || pParse->aNode[iRoot].eU==2 ); testcase( pParse->aNode[iRoot].eU==2 ); pParse->aNode[iRoot].jnFlags |= JNODE_APPEND; VVA( pParse->aNode[iRoot].eU = 2 ); pParse->aNode[iRoot].u.iAppend = iStart - iRoot; iRoot = iStart; assert( pParse->aNode[iPatch].eU==0 ); VVA( pParse->aNode[iPatch].eU = 5 ); pParse->aNode[iPatch].jnFlags |= JNODE_PATCH; pParse->aNode[iPatch].u.pPatch = &pPatch[i+1]; } } return pTarget; } /* ** Implementation of the json_mergepatch(JSON1,JSON2) function. Return a JSON ** object that is the result of running the RFC 7396 MergePatch() algorithm ** on the two arguments. */ static void jsonPatchFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse x; /* The JSON that is being patched */ JsonParse y; /* The patch */ JsonNode *pResult; /* The result of the merge */ UNUSED_PARAMETER(argc); if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return; if( jsonParse(&y, ctx, (const char*)sqlite3_value_text(argv[1])) ){ jsonParseReset(&x); return; } pResult = jsonMergePatch(&x, 0, y.aNode); assert( pResult!=0 || x.oom ); if( pResult ){ jsonReturnJson(pResult, ctx, 0); }else{ sqlite3_result_error_nomem(ctx); } jsonParseReset(&x); jsonParseReset(&y); } /* ** Implementation of the json_object(NAME,VALUE,...) function. Return a JSON ** object that contains all name/value given in arguments. Or if any name ** is not a string or if any value is a BLOB, throw an error. */ static void jsonObjectFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ int i; JsonString jx; const char *z; u32 n; if( argc&1 ){ sqlite3_result_error(ctx, "json_object() requires an even number " "of arguments", -1); return; } jsonInit(&jx, ctx); jsonAppendChar(&jx, '{'); for(i=0; i<argc; i+=2){ if( sqlite3_value_type(argv[i])!=SQLITE_TEXT ){ sqlite3_result_error(ctx, "json_object() labels must be TEXT", -1); jsonReset(&jx); return; } jsonAppendSeparator(&jx); z = (const char*)sqlite3_value_text(argv[i]); n = (u32)sqlite3_value_bytes(argv[i]); jsonAppendString(&jx, z, n); jsonAppendChar(&jx, ':'); jsonAppendValue(&jx, argv[i+1]); } jsonAppendChar(&jx, '}'); jsonResult(&jx); sqlite3_result_subtype(ctx, JSON_SUBTYPE); } /* ** json_remove(JSON, PATH, ...) ** ** Remove the named elements from JSON and return the result. malformed ** JSON or PATH arguments result in an error. */ static void jsonRemoveFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse x; /* The parse */ JsonNode *pNode; const char *zPath; u32 i; if( argc<1 ) return; if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return; assert( x.nNode ); for(i=1; i<(u32)argc; i++){ zPath = (const char*)sqlite3_value_text(argv[i]); if( zPath==0 ) goto remove_done; pNode = jsonLookup(&x, zPath, 0, ctx); if( x.nErr ) goto remove_done; if( pNode ) pNode->jnFlags |= JNODE_REMOVE; } if( (x.aNode[0].jnFlags & JNODE_REMOVE)==0 ){ jsonReturnJson(x.aNode, ctx, 0); } remove_done: jsonParseReset(&x); } /* ** json_replace(JSON, PATH, VALUE, ...) ** ** Replace the value at PATH with VALUE. If PATH does not already exist, ** this routine is a no-op. If JSON or PATH is malformed, throw an error. */ static void jsonReplaceFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse x; /* The parse */ JsonNode *pNode; const char *zPath; u32 i; if( argc<1 ) return; if( (argc&1)==0 ) { jsonWrongNumArgs(ctx, "replace"); return; } if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return; assert( x.nNode ); for(i=1; i<(u32)argc; i+=2){ zPath = (const char*)sqlite3_value_text(argv[i]); pNode = jsonLookup(&x, zPath, 0, ctx); if( x.nErr ) goto replace_err; if( pNode ){ assert( pNode->eU==0 || pNode->eU==1 || pNode->eU==4 ); testcase( pNode->eU!=0 && pNode->eU!=1 ); pNode->jnFlags |= (u8)JNODE_REPLACE; VVA( pNode->eU = 4 ); pNode->u.iReplace = i + 1; } } if( x.aNode[0].jnFlags & JNODE_REPLACE ){ assert( x.aNode[0].eU==4 ); sqlite3_result_value(ctx, argv[x.aNode[0].u.iReplace]); }else{ jsonReturnJson(x.aNode, ctx, argv); } replace_err: jsonParseReset(&x); } /* ** json_set(JSON, PATH, VALUE, ...) ** ** Set the value at PATH to VALUE. Create the PATH if it does not already ** exist. Overwrite existing values that do exist. ** If JSON or PATH is malformed, throw an error. ** ** json_insert(JSON, PATH, VALUE, ...) ** ** Create PATH and initialize it to VALUE. If PATH already exists, this ** routine is a no-op. If JSON or PATH is malformed, throw an error. */ static void jsonSetFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse x; /* The parse */ JsonNode *pNode; const char *zPath; u32 i; int bApnd; int bIsSet = sqlite3_user_data(ctx)!=0; if( argc<1 ) return; if( (argc&1)==0 ) { jsonWrongNumArgs(ctx, bIsSet ? "set" : "insert"); return; } if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return; assert( x.nNode ); for(i=1; i<(u32)argc; i+=2){ zPath = (const char*)sqlite3_value_text(argv[i]); bApnd = 0; pNode = jsonLookup(&x, zPath, &bApnd, ctx); if( x.oom ){ sqlite3_result_error_nomem(ctx); goto jsonSetDone; }else if( x.nErr ){ goto jsonSetDone; }else if( pNode && (bApnd || bIsSet) ){ testcase( pNode->eU!=0 && pNode->eU!=1 ); assert( pNode->eU!=3 && pNode->eU!=5 ); VVA( pNode->eU = 4 ); pNode->jnFlags |= (u8)JNODE_REPLACE; pNode->u.iReplace = i + 1; } } if( x.aNode[0].jnFlags & JNODE_REPLACE ){ assert( x.aNode[0].eU==4 ); sqlite3_result_value(ctx, argv[x.aNode[0].u.iReplace]); }else{ jsonReturnJson(x.aNode, ctx, argv); } jsonSetDone: jsonParseReset(&x); } /* ** json_type(JSON) ** json_type(JSON, PATH) ** ** Return the top-level "type" of a JSON string. json_type() raises an ** error if either the JSON or PATH inputs are not well-formed. */ static void jsonTypeFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ const char *zPath; JsonNode *pNode; p = jsonParseCached(ctx, argv, ctx); if( p==0 ) return; if( argc==2 ){ zPath = (const char*)sqlite3_value_text(argv[1]); pNode = jsonLookup(p, zPath, 0, ctx); }else{ pNode = p->aNode; } if( pNode ){ sqlite3_result_text(ctx, jsonType[pNode->eType], -1, SQLITE_STATIC); } } /* ** json_valid(JSON) ** ** Return 1 if JSON is a well-formed JSON string according to RFC-7159. ** Return 0 otherwise. */ static void jsonValidFunc( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonParse *p; /* The parse */ UNUSED_PARAMETER(argc); p = jsonParseCached(ctx, argv, 0); sqlite3_result_int(ctx, p!=0); } /**************************************************************************** ** Aggregate SQL function implementations ****************************************************************************/ /* ** json_group_array(VALUE) ** ** Return a JSON array composed of all values in the aggregate. */ static void jsonArrayStep( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonString *pStr; UNUSED_PARAMETER(argc); pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr)); if( pStr ){ if( pStr->zBuf==0 ){ jsonInit(pStr, ctx); jsonAppendChar(pStr, '['); }else if( pStr->nUsed>1 ){ jsonAppendChar(pStr, ','); } pStr->pCtx = ctx; jsonAppendValue(pStr, argv[0]); } } static void jsonArrayCompute(sqlite3_context *ctx, int isFinal){ JsonString *pStr; pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0); if( pStr ){ pStr->pCtx = ctx; jsonAppendChar(pStr, ']'); if( pStr->bErr ){ if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx); assert( pStr->bStatic ); }else if( isFinal ){ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, pStr->bStatic ? SQLITE_TRANSIENT : sqlite3_free); pStr->bStatic = 1; }else{ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT); pStr->nUsed--; } }else{ sqlite3_result_text(ctx, "[]", 2, SQLITE_STATIC); } sqlite3_result_subtype(ctx, JSON_SUBTYPE); } static void jsonArrayValue(sqlite3_context *ctx){ jsonArrayCompute(ctx, 0); } static void jsonArrayFinal(sqlite3_context *ctx){ jsonArrayCompute(ctx, 1); } #ifndef SQLITE_OMIT_WINDOWFUNC /* ** This method works for both json_group_array() and json_group_object(). ** It works by removing the first element of the group by searching forward ** to the first comma (",") that is not within a string and deleting all ** text through that comma. */ static void jsonGroupInverse( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ unsigned int i; int inStr = 0; int nNest = 0; char *z; char c; JsonString *pStr; UNUSED_PARAMETER(argc); UNUSED_PARAMETER(argv); pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0); #ifdef NEVER /* pStr is always non-NULL since jsonArrayStep() or jsonObjectStep() will ** always have been called to initalize it */ if( NEVER(!pStr) ) return; #endif z = pStr->zBuf; for(i=1; i<pStr->nUsed && ((c = z[i])!=',' || inStr || nNest); i++){ if( c=='"' ){ inStr = !inStr; }else if( c=='\\' ){ i++; }else if( !inStr ){ if( c=='{' || c=='[' ) nNest++; if( c=='}' || c==']' ) nNest--; } } if( i<pStr->nUsed ){ pStr->nUsed -= i; memmove(&z[1], &z[i+1], (size_t)pStr->nUsed-1); z[pStr->nUsed] = 0; }else{ pStr->nUsed = 1; } } #else # define jsonGroupInverse 0 #endif /* ** json_group_obj(NAME,VALUE) ** ** Return a JSON object composed of all names and values in the aggregate. */ static void jsonObjectStep( sqlite3_context *ctx, int argc, sqlite3_value **argv ){ JsonString *pStr; const char *z; u32 n; UNUSED_PARAMETER(argc); pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr)); if( pStr ){ if( pStr->zBuf==0 ){ jsonInit(pStr, ctx); jsonAppendChar(pStr, '{'); }else if( pStr->nUsed>1 ){ jsonAppendChar(pStr, ','); } pStr->pCtx = ctx; z = (const char*)sqlite3_value_text(argv[0]); n = (u32)sqlite3_value_bytes(argv[0]); jsonAppendString(pStr, z, n); jsonAppendChar(pStr, ':'); jsonAppendValue(pStr, argv[1]); } } static void jsonObjectCompute(sqlite3_context *ctx, int isFinal){ JsonString *pStr; pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0); if( pStr ){ jsonAppendChar(pStr, '}'); if( pStr->bErr ){ if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx); assert( pStr->bStatic ); }else if( isFinal ){ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, pStr->bStatic ? SQLITE_TRANSIENT : sqlite3_free); pStr->bStatic = 1; }else{ sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT); pStr->nUsed--; } }else{ sqlite3_result_text(ctx, "{}", 2, SQLITE_STATIC); } sqlite3_result_subtype(ctx, JSON_SUBTYPE); } static void jsonObjectValue(sqlite3_context *ctx){ jsonObjectCompute(ctx, 0); } static void jsonObjectFinal(sqlite3_context *ctx){ jsonObjectCompute(ctx, 1); } #ifndef SQLITE_OMIT_VIRTUALTABLE /**************************************************************************** ** The json_each virtual table ****************************************************************************/ typedef struct JsonEachCursor JsonEachCursor; struct JsonEachCursor { sqlite3_vtab_cursor base; /* Base class - must be first */ u32 iRowid; /* The rowid */ u32 iBegin; /* The first node of the scan */ u32 i; /* Index in sParse.aNode[] of current row */ u32 iEnd; /* EOF when i equals or exceeds this value */ u8 eType; /* Type of top-level element */ u8 bRecursive; /* True for json_tree(). False for json_each() */ char *zJson; /* Input JSON */ char *zRoot; /* Path by which to filter zJson */ JsonParse sParse; /* Parse of the input JSON */ }; /* Constructor for the json_each virtual table */ static int jsonEachConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ sqlite3_vtab *pNew; int rc; /* Column numbers */ #define JEACH_KEY 0 #define JEACH_VALUE 1 #define JEACH_TYPE 2 #define JEACH_ATOM 3 #define JEACH_ID 4 #define JEACH_PARENT 5 #define JEACH_FULLKEY 6 #define JEACH_PATH 7 /* The xBestIndex method assumes that the JSON and ROOT columns are ** the last two columns in the table. Should this ever changes, be ** sure to update the xBestIndex method. */ #define JEACH_JSON 8 #define JEACH_ROOT 9 UNUSED_PARAMETER(pzErr); UNUSED_PARAMETER(argv); UNUSED_PARAMETER(argc); UNUSED_PARAMETER(pAux); rc = sqlite3_declare_vtab(db, "CREATE TABLE x(key,value,type,atom,id,parent,fullkey,path," "json HIDDEN,root HIDDEN)"); if( rc==SQLITE_OK ){ pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) ); if( pNew==0 ) return SQLITE_NOMEM; memset(pNew, 0, sizeof(*pNew)); sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS); } return rc; } /* destructor for json_each virtual table */ static int jsonEachDisconnect(sqlite3_vtab *pVtab){ sqlite3_free(pVtab); return SQLITE_OK; } /* constructor for a JsonEachCursor object for json_each(). */ static int jsonEachOpenEach(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){ JsonEachCursor *pCur; UNUSED_PARAMETER(p); pCur = sqlite3_malloc( sizeof(*pCur) ); if( pCur==0 ) return SQLITE_NOMEM; memset(pCur, 0, sizeof(*pCur)); *ppCursor = &pCur->base; return SQLITE_OK; } /* constructor for a JsonEachCursor object for json_tree(). */ static int jsonEachOpenTree(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){ int rc = jsonEachOpenEach(p, ppCursor); if( rc==SQLITE_OK ){ JsonEachCursor *pCur = (JsonEachCursor*)*ppCursor; pCur->bRecursive = 1; } return rc; } /* Reset a JsonEachCursor back to its original state. Free any memory ** held. */ static void jsonEachCursorReset(JsonEachCursor *p){ sqlite3_free(p->zJson); sqlite3_free(p->zRoot); jsonParseReset(&p->sParse); p->iRowid = 0; p->i = 0; p->iEnd = 0; p->eType = 0; p->zJson = 0; p->zRoot = 0; } /* Destructor for a jsonEachCursor object */ static int jsonEachClose(sqlite3_vtab_cursor *cur){ JsonEachCursor *p = (JsonEachCursor*)cur; jsonEachCursorReset(p); sqlite3_free(cur); return SQLITE_OK; } /* Return TRUE if the jsonEachCursor object has been advanced off the end ** of the JSON object */ static int jsonEachEof(sqlite3_vtab_cursor *cur){ JsonEachCursor *p = (JsonEachCursor*)cur; return p->i >= p->iEnd; } /* Advance the cursor to the next element for json_tree() */ static int jsonEachNext(sqlite3_vtab_cursor *cur){ JsonEachCursor *p = (JsonEachCursor*)cur; if( p->bRecursive ){ if( p->sParse.aNode[p->i].jnFlags & JNODE_LABEL ) p->i++; p->i++; p->iRowid++; if( p->i<p->iEnd ){ u32 iUp = p->sParse.aUp[p->i]; JsonNode *pUp = &p->sParse.aNode[iUp]; p->eType = pUp->eType; if( pUp->eType==JSON_ARRAY ){ assert( pUp->eU==0 || pUp->eU==3 ); testcase( pUp->eU==3 ); VVA( pUp->eU = 3 ); if( iUp==p->i-1 ){ pUp->u.iKey = 0; }else{ pUp->u.iKey++; } } } }else{ switch( p->eType ){ case JSON_ARRAY: { p->i += jsonNodeSize(&p->sParse.aNode[p->i]); p->iRowid++; break; } case JSON_OBJECT: { p->i += 1 + jsonNodeSize(&p->sParse.aNode[p->i+1]); p->iRowid++; break; } default: { p->i = p->iEnd; break; } } } return SQLITE_OK; } /* Append an object label to the JSON Path being constructed ** in pStr. */ static void jsonAppendObjectPathElement( JsonString *pStr, JsonNode *pNode ){ int jj, nn; const char *z; assert( pNode->eType==JSON_STRING ); assert( pNode->jnFlags & JNODE_LABEL ); assert( pNode->eU==1 ); z = pNode->u.zJContent; nn = pNode->n; assert( nn>=2 ); assert( z[0]=='"' ); assert( z[nn-1]=='"' ); if( nn>2 && sqlite3Isalpha(z[1]) ){ for(jj=2; jj<nn-1 && sqlite3Isalnum(z[jj]); jj++){} if( jj==nn-1 ){ z++; nn -= 2; } } jsonPrintf(nn+2, pStr, ".%.*s", nn, z); } /* Append the name of the path for element i to pStr */ static void jsonEachComputePath( JsonEachCursor *p, /* The cursor */ JsonString *pStr, /* Write the path here */ u32 i /* Path to this element */ ){ JsonNode *pNode, *pUp; u32 iUp; if( i==0 ){ jsonAppendChar(pStr, '$'); return; } iUp = p->sParse.aUp[i]; jsonEachComputePath(p, pStr, iUp); pNode = &p->sParse.aNode[i]; pUp = &p->sParse.aNode[iUp]; if( pUp->eType==JSON_ARRAY ){ assert( pUp->eU==3 || (pUp->eU==0 && pUp->u.iKey==0) ); testcase( pUp->eU==0 ); jsonPrintf(30, pStr, "[%d]", pUp->u.iKey); }else{ assert( pUp->eType==JSON_OBJECT ); if( (pNode->jnFlags & JNODE_LABEL)==0 ) pNode--; jsonAppendObjectPathElement(pStr, pNode); } } /* Return the value of a column */ static int jsonEachColumn( sqlite3_vtab_cursor *cur, /* The cursor */ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ int i /* Which column to return */ ){ JsonEachCursor *p = (JsonEachCursor*)cur; JsonNode *pThis = &p->sParse.aNode[p->i]; switch( i ){ case JEACH_KEY: { if( p->i==0 ) break; if( p->eType==JSON_OBJECT ){ jsonReturn(pThis, ctx, 0); }else if( p->eType==JSON_ARRAY ){ u32 iKey; if( p->bRecursive ){ if( p->iRowid==0 ) break; assert( p->sParse.aNode[p->sParse.aUp[p->i]].eU==3 ); iKey = p->sParse.aNode[p->sParse.aUp[p->i]].u.iKey; }else{ iKey = p->iRowid; } sqlite3_result_int64(ctx, (sqlite3_int64)iKey); } break; } case JEACH_VALUE: { if( pThis->jnFlags & JNODE_LABEL ) pThis++; jsonReturn(pThis, ctx, 0); break; } case JEACH_TYPE: { if( pThis->jnFlags & JNODE_LABEL ) pThis++; sqlite3_result_text(ctx, jsonType[pThis->eType], -1, SQLITE_STATIC); break; } case JEACH_ATOM: { if( pThis->jnFlags & JNODE_LABEL ) pThis++; if( pThis->eType>=JSON_ARRAY ) break; jsonReturn(pThis, ctx, 0); break; } case JEACH_ID: { sqlite3_result_int64(ctx, (sqlite3_int64)p->i + ((pThis->jnFlags & JNODE_LABEL)!=0)); break; } case JEACH_PARENT: { if( p->i>p->iBegin && p->bRecursive ){ sqlite3_result_int64(ctx, (sqlite3_int64)p->sParse.aUp[p->i]); } break; } case JEACH_FULLKEY: { JsonString x; jsonInit(&x, ctx); if( p->bRecursive ){ jsonEachComputePath(p, &x, p->i); }else{ if( p->zRoot ){ jsonAppendRaw(&x, p->zRoot, (int)strlen(p->zRoot)); }else{ jsonAppendChar(&x, '$'); } if( p->eType==JSON_ARRAY ){ jsonPrintf(30, &x, "[%d]", p->iRowid); }else if( p->eType==JSON_OBJECT ){ jsonAppendObjectPathElement(&x, pThis); } } jsonResult(&x); break; } case JEACH_PATH: { if( p->bRecursive ){ JsonString x; jsonInit(&x, ctx); jsonEachComputePath(p, &x, p->sParse.aUp[p->i]); jsonResult(&x); break; } /* For json_each() path and root are the same so fall through ** into the root case */ /* no break */ deliberate_fall_through } default: { const char *zRoot = p->zRoot; if( zRoot==0 ) zRoot = "$"; sqlite3_result_text(ctx, zRoot, -1, SQLITE_STATIC); break; } case JEACH_JSON: { assert( i==JEACH_JSON ); sqlite3_result_text(ctx, p->sParse.zJson, -1, SQLITE_STATIC); break; } } return SQLITE_OK; } /* Return the current rowid value */ static int jsonEachRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ JsonEachCursor *p = (JsonEachCursor*)cur; *pRowid = p->iRowid; return SQLITE_OK; } /* The query strategy is to look for an equality constraint on the json ** column. Without such a constraint, the table cannot operate. idxNum is ** 1 if the constraint is found, 3 if the constraint and zRoot are found, ** and 0 otherwise. */ static int jsonEachBestIndex( sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo ){ int i; /* Loop counter or computed array index */ int aIdx[2]; /* Index of constraints for JSON and ROOT */ int unusableMask = 0; /* Mask of unusable JSON and ROOT constraints */ int idxMask = 0; /* Mask of usable == constraints JSON and ROOT */ const struct sqlite3_index_constraint *pConstraint; /* This implementation assumes that JSON and ROOT are the last two ** columns in the table */ assert( JEACH_ROOT == JEACH_JSON+1 ); UNUSED_PARAMETER(tab); aIdx[0] = aIdx[1] = -1; pConstraint = pIdxInfo->aConstraint; for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ int iCol; int iMask; if( pConstraint->iColumn < JEACH_JSON ) continue; iCol = pConstraint->iColumn - JEACH_JSON; assert( iCol==0 || iCol==1 ); testcase( iCol==0 ); iMask = 1 << iCol; if( pConstraint->usable==0 ){ unusableMask |= iMask; }else if( pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ aIdx[iCol] = i; idxMask |= iMask; } } if( (unusableMask & ~idxMask)!=0 ){ /* If there are any unusable constraints on JSON or ROOT, then reject ** this entire plan */ return SQLITE_CONSTRAINT; } if( aIdx[0]<0 ){ /* No JSON input. Leave estimatedCost at the huge value that it was ** initialized to to discourage the query planner from selecting this ** plan. */ pIdxInfo->idxNum = 0; }else{ pIdxInfo->estimatedCost = 1.0; i = aIdx[0]; pIdxInfo->aConstraintUsage[i].argvIndex = 1; pIdxInfo->aConstraintUsage[i].omit = 1; if( aIdx[1]<0 ){ pIdxInfo->idxNum = 1; /* Only JSON supplied. Plan 1 */ }else{ i = aIdx[1]; pIdxInfo->aConstraintUsage[i].argvIndex = 2; pIdxInfo->aConstraintUsage[i].omit = 1; pIdxInfo->idxNum = 3; /* Both JSON and ROOT are supplied. Plan 3 */ } } return SQLITE_OK; } /* Start a search on a new JSON string */ static int jsonEachFilter( sqlite3_vtab_cursor *cur, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ JsonEachCursor *p = (JsonEachCursor*)cur; const char *z; const char *zRoot = 0; sqlite3_int64 n; UNUSED_PARAMETER(idxStr); UNUSED_PARAMETER(argc); jsonEachCursorReset(p); if( idxNum==0 ) return SQLITE_OK; z = (const char*)sqlite3_value_text(argv[0]); if( z==0 ) return SQLITE_OK; n = sqlite3_value_bytes(argv[0]); p->zJson = sqlite3_malloc64( n+1 ); if( p->zJson==0 ) return SQLITE_NOMEM; memcpy(p->zJson, z, (size_t)n+1); if( jsonParse(&p->sParse, 0, p->zJson) ){ int rc = SQLITE_NOMEM; if( p->sParse.oom==0 ){ sqlite3_free(cur->pVtab->zErrMsg); cur->pVtab->zErrMsg = sqlite3_mprintf("malformed JSON"); if( cur->pVtab->zErrMsg ) rc = SQLITE_ERROR; } jsonEachCursorReset(p); return rc; }else if( p->bRecursive && jsonParseFindParents(&p->sParse) ){ jsonEachCursorReset(p); return SQLITE_NOMEM; }else{ JsonNode *pNode = 0; if( idxNum==3 ){ const char *zErr = 0; zRoot = (const char*)sqlite3_value_text(argv[1]); if( zRoot==0 ) return SQLITE_OK; n = sqlite3_value_bytes(argv[1]); p->zRoot = sqlite3_malloc64( n+1 ); if( p->zRoot==0 ) return SQLITE_NOMEM; memcpy(p->zRoot, zRoot, (size_t)n+1); if( zRoot[0]!='$' ){ zErr = zRoot; }else{ pNode = jsonLookupStep(&p->sParse, 0, p->zRoot+1, 0, &zErr); } if( zErr ){ sqlite3_free(cur->pVtab->zErrMsg); cur->pVtab->zErrMsg = jsonPathSyntaxError(zErr); jsonEachCursorReset(p); return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM; }else if( pNode==0 ){ return SQLITE_OK; } }else{ pNode = p->sParse.aNode; } p->iBegin = p->i = (int)(pNode - p->sParse.aNode); p->eType = pNode->eType; if( p->eType>=JSON_ARRAY ){ assert( pNode->eU==0 ); VVA( pNode->eU = 3 ); pNode->u.iKey = 0; p->iEnd = p->i + pNode->n + 1; if( p->bRecursive ){ p->eType = p->sParse.aNode[p->sParse.aUp[p->i]].eType; if( p->i>0 && (p->sParse.aNode[p->i-1].jnFlags & JNODE_LABEL)!=0 ){ p->i--; } }else{ p->i++; } }else{ p->iEnd = p->i+1; } } return SQLITE_OK; } /* The methods of the json_each virtual table */ static sqlite3_module jsonEachModule = { 0, /* iVersion */ 0, /* xCreate */ jsonEachConnect, /* xConnect */ jsonEachBestIndex, /* xBestIndex */ jsonEachDisconnect, /* xDisconnect */ 0, /* xDestroy */ jsonEachOpenEach, /* xOpen - open a cursor */ jsonEachClose, /* xClose - close a cursor */ jsonEachFilter, /* xFilter - configure scan constraints */ jsonEachNext, /* xNext - advance a cursor */ jsonEachEof, /* xEof - check for end of scan */ jsonEachColumn, /* xColumn - read data */ jsonEachRowid, /* xRowid - read data */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0 /* xShadowName */ }; /* The methods of the json_tree virtual table. */ static sqlite3_module jsonTreeModule = { 0, /* iVersion */ 0, /* xCreate */ jsonEachConnect, /* xConnect */ jsonEachBestIndex, /* xBestIndex */ jsonEachDisconnect, /* xDisconnect */ 0, /* xDestroy */ jsonEachOpenTree, /* xOpen - open a cursor */ jsonEachClose, /* xClose - close a cursor */ jsonEachFilter, /* xFilter - configure scan constraints */ jsonEachNext, /* xNext - advance a cursor */ jsonEachEof, /* xEof - check for end of scan */ jsonEachColumn, /* xColumn - read data */ jsonEachRowid, /* xRowid - read data */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0 /* xShadowName */ }; #endif /* SQLITE_OMIT_VIRTUALTABLE */ #endif /* !defined(SQLITE_OMIT_JSON) */ /* ** Register JSON functions. */ void sqlite3RegisterJsonFunctions(void){ #ifndef SQLITE_OMIT_JSON static FuncDef aJsonFunc[] = { JFUNCTION(json, 1, 0, jsonRemoveFunc), JFUNCTION(json_array, -1, 0, jsonArrayFunc), JFUNCTION(json_array_length, 1, 0, jsonArrayLengthFunc), JFUNCTION(json_array_length, 2, 0, jsonArrayLengthFunc), JFUNCTION(json_extract, -1, 0, jsonExtractFunc), JFUNCTION(->, 2, JSON_JSON, jsonExtractFunc), JFUNCTION(->>, 2, JSON_SQL, jsonExtractFunc), JFUNCTION(json_insert, -1, 0, jsonSetFunc), JFUNCTION(json_object, -1, 0, jsonObjectFunc), JFUNCTION(json_patch, 2, 0, jsonPatchFunc), JFUNCTION(json_quote, 1, 0, jsonQuoteFunc), JFUNCTION(json_remove, -1, 0, jsonRemoveFunc), JFUNCTION(json_replace, -1, 0, jsonReplaceFunc), JFUNCTION(json_set, -1, JSON_ISSET, jsonSetFunc), JFUNCTION(json_type, 1, 0, jsonTypeFunc), JFUNCTION(json_type, 2, 0, jsonTypeFunc), JFUNCTION(json_valid, 1, 0, jsonValidFunc), #if SQLITE_DEBUG JFUNCTION(json_parse, 1, 0, jsonParseFunc), JFUNCTION(json_test1, 1, 0, jsonTest1Func), #endif WAGGREGATE(json_group_array, 1, 0, 0, jsonArrayStep, jsonArrayFinal, jsonArrayValue, jsonGroupInverse, SQLITE_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS), WAGGREGATE(json_group_object, 2, 0, 0, jsonObjectStep, jsonObjectFinal, jsonObjectValue, jsonGroupInverse, SQLITE_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS) }; sqlite3InsertBuiltinFuncs(aJsonFunc, ArraySize(aJsonFunc)); #endif } #if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON) /* ** Register the JSON table-valued functions */ int sqlite3JsonTableFunctions(sqlite3 *db){ int rc = SQLITE_OK; static const struct { const char *zName; sqlite3_module *pModule; } aMod[] = { { "json_each", &jsonEachModule }, { "json_tree", &jsonTreeModule }, }; unsigned int i; for(i=0; i<sizeof(aMod)/sizeof(aMod[0]) && rc==SQLITE_OK; i++){ rc = sqlite3_create_module(db, aMod[i].zName, aMod[i].pModule, 0); } return rc; } #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON) */