/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** An tokenizer for SQL ** ** This file contains C code that splits an SQL input string up into ** individual tokens and sends those tokens one-by-one over to the ** parser for analysis. */ #include "sqliteInt.h" #include /* Character classes for tokenizing ** ** In the sqlite3GetToken() function, a switch() on aiClass[c] is implemented ** using a lookup table, whereas a switch() directly on c uses a binary search. ** The lookup table is much faster. To maximize speed, and to ensure that ** a lookup table is used, all of the classes need to be small integers and ** all of them need to be used within the switch. */ #define CC_X 0 /* The letter 'x', or start of BLOB literal */ #define CC_KYWD0 1 /* First letter of a keyword */ #define CC_KYWD 2 /* Alphabetics or '_'. Usable in a keyword */ #define CC_DIGIT 3 /* Digits */ #define CC_DOLLAR 4 /* '$' */ #define CC_VARALPHA 5 /* '@', '#', ':'. Alphabetic SQL variables */ #define CC_VARNUM 6 /* '?'. Numeric SQL variables */ #define CC_SPACE 7 /* Space characters */ #define CC_QUOTE 8 /* '"', '\'', or '`'. String literals, quoted ids */ #define CC_QUOTE2 9 /* '['. [...] style quoted ids */ #define CC_PIPE 10 /* '|'. Bitwise OR or concatenate */ #define CC_MINUS 11 /* '-'. Minus or SQL-style comment */ #define CC_LT 12 /* '<'. Part of < or <= or <> */ #define CC_GT 13 /* '>'. Part of > or >= */ #define CC_EQ 14 /* '='. Part of = or == */ #define CC_BANG 15 /* '!'. Part of != */ #define CC_SLASH 16 /* '/'. / or c-style comment */ #define CC_LP 17 /* '(' */ #define CC_RP 18 /* ')' */ #define CC_SEMI 19 /* ';' */ #define CC_PLUS 20 /* '+' */ #define CC_STAR 21 /* '*' */ #define CC_PERCENT 22 /* '%' */ #define CC_COMMA 23 /* ',' */ #define CC_AND 24 /* '&' */ #define CC_TILDA 25 /* '~' */ #define CC_DOT 26 /* '.' */ #define CC_ID 27 /* unicode characters usable in IDs */ #define CC_ILLEGAL 28 /* Illegal character */ #define CC_NUL 29 /* 0x00 */ #define CC_BOM 30 /* First byte of UTF8 BOM: 0xEF 0xBB 0xBF */ static const unsigned char aiClass[] = { #ifdef SQLITE_ASCII /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf */ /* 0x */ 29, 28, 28, 28, 28, 28, 28, 28, 28, 7, 7, 28, 7, 7, 28, 28, /* 1x */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, /* 2x */ 7, 15, 8, 5, 4, 22, 24, 8, 17, 18, 21, 20, 23, 11, 26, 16, /* 3x */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 19, 12, 14, 13, 6, /* 4x */ 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 5x */ 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 9, 28, 28, 28, 2, /* 6x */ 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 7x */ 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 28, 10, 28, 25, 28, /* 8x */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* 9x */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* Ax */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* Bx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* Cx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* Dx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, /* Ex */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 30, /* Fx */ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27 #endif #ifdef SQLITE_EBCDIC /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf */ /* 0x */ 29, 28, 28, 28, 28, 7, 28, 28, 28, 28, 28, 28, 7, 7, 28, 28, /* 1x */ 28, 28, 28, 28, 28, 7, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, /* 2x */ 28, 28, 28, 28, 28, 7, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, /* 3x */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, /* 4x */ 7, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 26, 12, 17, 20, 10, /* 5x */ 24, 28, 28, 28, 28, 28, 28, 28, 28, 28, 15, 4, 21, 18, 19, 28, /* 6x */ 11, 16, 28, 28, 28, 28, 28, 28, 28, 28, 28, 23, 22, 2, 13, 6, /* 7x */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 8, 5, 5, 5, 8, 14, 8, /* 8x */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28, /* 9x */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28, /* Ax */ 28, 25, 1, 1, 1, 1, 1, 0, 2, 2, 28, 28, 28, 28, 28, 28, /* Bx */ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 9, 28, 28, 28, 28, 28, /* Cx */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28, /* Dx */ 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 28, 28, 28, 28, 28, /* Ex */ 28, 28, 1, 1, 1, 1, 1, 0, 2, 2, 28, 28, 28, 28, 28, 28, /* Fx */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 28, 28, 28, 28, 28, 28, #endif }; /* ** The charMap() macro maps alphabetic characters (only) into their ** lower-case ASCII equivalent. On ASCII machines, this is just ** an upper-to-lower case map. On EBCDIC machines we also need ** to adjust the encoding. The mapping is only valid for alphabetics ** which are the only characters for which this feature is used. ** ** Used by keywordhash.h */ #ifdef SQLITE_ASCII # define charMap(X) sqlite3UpperToLower[(unsigned char)X] #endif #ifdef SQLITE_EBCDIC # define charMap(X) ebcdicToAscii[(unsigned char)X] const unsigned char ebcdicToAscii[] = { /* 0 1 2 3 4 5 6 7 8 9 A B C D E F */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95, 0, 0, /* 6x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7x */ 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* 8x */ 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* 9x */ 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ax */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */ 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* Cx */ 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* Dx */ 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ex */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Fx */ }; #endif /* ** The sqlite3KeywordCode function looks up an identifier to determine if ** it is a keyword. If it is a keyword, the token code of that keyword is ** returned. If the input is not a keyword, TK_ID is returned. ** ** The implementation of this routine was generated by a program, ** mkkeywordhash.c, located in the tool subdirectory of the distribution. ** The output of the mkkeywordhash.c program is written into a file ** named keywordhash.h and then included into this source file by ** the #include below. */ #include "keywordhash.h" /* ** If X is a character that can be used in an identifier then ** IdChar(X) will be true. Otherwise it is false. ** ** For ASCII, any character with the high-order bit set is ** allowed in an identifier. For 7-bit characters, ** sqlite3IsIdChar[X] must be 1. ** ** For EBCDIC, the rules are more complex but have the same ** end result. ** ** Ticket #1066. the SQL standard does not allow '$' in the ** middle of identifiers. But many SQL implementations do. ** SQLite will allow '$' in identifiers for compatibility. ** But the feature is undocumented. */ #ifdef SQLITE_ASCII #define IdChar(C) ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0) #endif #ifdef SQLITE_EBCDIC const char sqlite3IsEbcdicIdChar[] = { /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, /* 6x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* 7x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, /* 8x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, /* 9x */ 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, /* Ax */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */ }; #define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40])) #endif /* Make the IdChar function accessible from ctime.c and alter.c */ int sqlite3IsIdChar(u8 c){ return IdChar(c); } #ifndef SQLITE_OMIT_WINDOWFUNC /* ** Return the id of the next token in string (*pz). Before returning, set ** (*pz) to point to the byte following the parsed token. */ static int getToken(const unsigned char **pz){ const unsigned char *z = *pz; int t; /* Token type to return */ do { z += sqlite3GetToken(z, &t); }while( t==TK_SPACE ); if( t==TK_ID || t==TK_STRING || t==TK_JOIN_KW || t==TK_WINDOW || t==TK_OVER || sqlite3ParserFallback(t)==TK_ID ){ t = TK_ID; } *pz = z; return t; } /* ** The following three functions are called immediately after the tokenizer ** reads the keywords WINDOW, OVER and FILTER, respectively, to determine ** whether the token should be treated as a keyword or an SQL identifier. ** This cannot be handled by the usual lemon %fallback method, due to ** the ambiguity in some constructions. e.g. ** ** SELECT sum(x) OVER ... ** ** In the above, "OVER" might be a keyword, or it might be an alias for the ** sum(x) expression. If a "%fallback ID OVER" directive were added to ** grammar, then SQLite would always treat "OVER" as an alias, making it ** impossible to call a window-function without a FILTER clause. ** ** WINDOW is treated as a keyword if: ** ** * the following token is an identifier, or a keyword that can fallback ** to being an identifier, and ** * the token after than one is TK_AS. ** ** OVER is a keyword if: ** ** * the previous token was TK_RP, and ** * the next token is either TK_LP or an identifier. ** ** FILTER is a keyword if: ** ** * the previous token was TK_RP, and ** * the next token is TK_LP. */ static int analyzeWindowKeyword(const unsigned char *z){ int t; t = getToken(&z); if( t!=TK_ID ) return TK_ID; t = getToken(&z); if( t!=TK_AS ) return TK_ID; return TK_WINDOW; } static int analyzeOverKeyword(const unsigned char *z, int lastToken){ if( lastToken==TK_RP ){ int t = getToken(&z); if( t==TK_LP || t==TK_ID ) return TK_OVER; } return TK_ID; } static int analyzeFilterKeyword(const unsigned char *z, int lastToken){ if( lastToken==TK_RP && getToken(&z)==TK_LP ){ return TK_FILTER; } return TK_ID; } #endif /* SQLITE_OMIT_WINDOWFUNC */ /* ** Return the length (in bytes) of the token that begins at z[0]. ** Store the token type in *tokenType before returning. */ int sqlite3GetToken(const unsigned char *z, int *tokenType){ int i, c; switch( aiClass[*z] ){ /* Switch on the character-class of the first byte ** of the token. See the comment on the CC_ defines ** above. */ case CC_SPACE: { testcase( z[0]==' ' ); testcase( z[0]=='\t' ); testcase( z[0]=='\n' ); testcase( z[0]=='\f' ); testcase( z[0]=='\r' ); for(i=1; sqlite3Isspace(z[i]); i++){} *tokenType = TK_SPACE; return i; } case CC_MINUS: { if( z[1]=='-' ){ for(i=2; (c=z[i])!=0 && c!='\n'; i++){} *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ return i; }else if( z[1]=='>' ){ *tokenType = TK_PTR; return 2 + (z[2]=='>'); } *tokenType = TK_MINUS; return 1; } case CC_LP: { *tokenType = TK_LP; return 1; } case CC_RP: { *tokenType = TK_RP; return 1; } case CC_SEMI: { *tokenType = TK_SEMI; return 1; } case CC_PLUS: { *tokenType = TK_PLUS; return 1; } case CC_STAR: { *tokenType = TK_STAR; return 1; } case CC_SLASH: { if( z[1]!='*' || z[2]==0 ){ *tokenType = TK_SLASH; return 1; } for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){} if( c ) i++; *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ return i; } case CC_PERCENT: { *tokenType = TK_REM; return 1; } case CC_EQ: { *tokenType = TK_EQ; return 1 + (z[1]=='='); } case CC_LT: { if( (c=z[1])=='=' ){ *tokenType = TK_LE; return 2; }else if( c=='>' ){ *tokenType = TK_NE; return 2; }else if( c=='<' ){ *tokenType = TK_LSHIFT; return 2; }else{ *tokenType = TK_LT; return 1; } } case CC_GT: { if( (c=z[1])=='=' ){ *tokenType = TK_GE; return 2; }else if( c=='>' ){ *tokenType = TK_RSHIFT; return 2; }else{ *tokenType = TK_GT; return 1; } } case CC_BANG: { if( z[1]!='=' ){ *tokenType = TK_ILLEGAL; return 1; }else{ *tokenType = TK_NE; return 2; } } case CC_PIPE: { if( z[1]!='|' ){ *tokenType = TK_BITOR; return 1; }else{ *tokenType = TK_CONCAT; return 2; } } case CC_COMMA: { *tokenType = TK_COMMA; return 1; } case CC_AND: { *tokenType = TK_BITAND; return 1; } case CC_TILDA: { *tokenType = TK_BITNOT; return 1; } case CC_QUOTE: { int delim = z[0]; testcase( delim=='`' ); testcase( delim=='\'' ); testcase( delim=='"' ); for(i=1; (c=z[i])!=0; i++){ if( c==delim ){ if( z[i+1]==delim ){ i++; }else{ break; } } } if( c=='\'' ){ *tokenType = TK_STRING; return i+1; }else if( c!=0 ){ *tokenType = TK_ID; return i+1; }else{ *tokenType = TK_ILLEGAL; return i; } } case CC_DOT: { #ifndef SQLITE_OMIT_FLOATING_POINT if( !sqlite3Isdigit(z[1]) ) #endif { *tokenType = TK_DOT; return 1; } /* If the next character is a digit, this is a floating point ** number that begins with ".". Fall thru into the next case */ /* no break */ deliberate_fall_through } case CC_DIGIT: { testcase( z[0]=='0' ); testcase( z[0]=='1' ); testcase( z[0]=='2' ); testcase( z[0]=='3' ); testcase( z[0]=='4' ); testcase( z[0]=='5' ); testcase( z[0]=='6' ); testcase( z[0]=='7' ); testcase( z[0]=='8' ); testcase( z[0]=='9' ); *tokenType = TK_INTEGER; #ifndef SQLITE_OMIT_HEX_INTEGER if( z[0]=='0' && (z[1]=='x' || z[1]=='X') && sqlite3Isxdigit(z[2]) ){ for(i=3; sqlite3Isxdigit(z[i]); i++){} return i; } #endif for(i=0; sqlite3Isdigit(z[i]); i++){} #ifndef SQLITE_OMIT_FLOATING_POINT if( z[i]=='.' ){ i++; while( sqlite3Isdigit(z[i]) ){ i++; } *tokenType = TK_FLOAT; } if( (z[i]=='e' || z[i]=='E') && ( sqlite3Isdigit(z[i+1]) || ((z[i+1]=='+' || z[i+1]=='-') && sqlite3Isdigit(z[i+2])) ) ){ i += 2; while( sqlite3Isdigit(z[i]) ){ i++; } *tokenType = TK_FLOAT; } #endif while( IdChar(z[i]) ){ *tokenType = TK_ILLEGAL; i++; } return i; } case CC_QUOTE2: { for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} *tokenType = c==']' ? TK_ID : TK_ILLEGAL; return i; } case CC_VARNUM: { *tokenType = TK_VARIABLE; for(i=1; sqlite3Isdigit(z[i]); i++){} return i; } case CC_DOLLAR: case CC_VARALPHA: { int n = 0; testcase( z[0]=='$' ); testcase( z[0]=='@' ); testcase( z[0]==':' ); testcase( z[0]=='#' ); *tokenType = TK_VARIABLE; for(i=1; (c=z[i])!=0; i++){ if( IdChar(c) ){ n++; #ifndef SQLITE_OMIT_TCL_VARIABLE }else if( c=='(' && n>0 ){ do{ i++; }while( (c=z[i])!=0 && !sqlite3Isspace(c) && c!=')' ); if( c==')' ){ i++; }else{ *tokenType = TK_ILLEGAL; } break; }else if( c==':' && z[i+1]==':' ){ i++; #endif }else{ break; } } if( n==0 ) *tokenType = TK_ILLEGAL; return i; } case CC_KYWD0: { for(i=1; aiClass[z[i]]<=CC_KYWD; i++){} if( IdChar(z[i]) ){ /* This token started out using characters that can appear in keywords, ** but z[i] is a character not allowed within keywords, so this must ** be an identifier instead */ i++; break; } *tokenType = TK_ID; return keywordCode((char*)z, i, tokenType); } case CC_X: { #ifndef SQLITE_OMIT_BLOB_LITERAL testcase( z[0]=='x' ); testcase( z[0]=='X' ); if( z[1]=='\'' ){ *tokenType = TK_BLOB; for(i=2; sqlite3Isxdigit(z[i]); i++){} if( z[i]!='\'' || i%2 ){ *tokenType = TK_ILLEGAL; while( z[i] && z[i]!='\'' ){ i++; } } if( z[i] ) i++; return i; } #endif /* If it is not a BLOB literal, then it must be an ID, since no ** SQL keywords start with the letter 'x'. Fall through */ /* no break */ deliberate_fall_through } case CC_KYWD: case CC_ID: { i = 1; break; } case CC_BOM: { if( z[1]==0xbb && z[2]==0xbf ){ *tokenType = TK_SPACE; return 3; } i = 1; break; } case CC_NUL: { *tokenType = TK_ILLEGAL; return 0; } default: { *tokenType = TK_ILLEGAL; return 1; } } while( IdChar(z[i]) ){ i++; } *tokenType = TK_ID; return i; } /* ** Run the parser on the given SQL string. */ int sqlite3RunParser(Parse *pParse, const char *zSql){ int nErr = 0; /* Number of errors encountered */ void *pEngine; /* The LEMON-generated LALR(1) parser */ int n = 0; /* Length of the next token token */ int tokenType; /* type of the next token */ int lastTokenParsed = -1; /* type of the previous token */ sqlite3 *db = pParse->db; /* The database connection */ int mxSqlLen; /* Max length of an SQL string */ Parse *pParentParse = 0; /* Outer parse context, if any */ #ifdef sqlite3Parser_ENGINEALWAYSONSTACK yyParser sEngine; /* Space to hold the Lemon-generated Parser object */ #endif VVA_ONLY( u8 startedWithOom = db->mallocFailed ); assert( zSql!=0 ); mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; if( db->nVdbeActive==0 ){ AtomicStore(&db->u1.isInterrupted, 0); } pParse->rc = SQLITE_OK; pParse->zTail = zSql; #ifdef SQLITE_DEBUG if( db->flags & SQLITE_ParserTrace ){ printf("parser: [[[%s]]]\n", zSql); sqlite3ParserTrace(stdout, "parser: "); }else{ sqlite3ParserTrace(0, 0); } #endif #ifdef sqlite3Parser_ENGINEALWAYSONSTACK pEngine = &sEngine; sqlite3ParserInit(pEngine, pParse); #else pEngine = sqlite3ParserAlloc(sqlite3Malloc, pParse); if( pEngine==0 ){ sqlite3OomFault(db); return SQLITE_NOMEM_BKPT; } #endif assert( pParse->pNewTable==0 ); assert( pParse->pNewTrigger==0 ); assert( pParse->nVar==0 ); assert( pParse->pVList==0 ); pParentParse = db->pParse; db->pParse = pParse; while( 1 ){ n = sqlite3GetToken((u8*)zSql, &tokenType); mxSqlLen -= n; if( mxSqlLen<0 ){ pParse->rc = SQLITE_TOOBIG; pParse->nErr++; break; } #ifndef SQLITE_OMIT_WINDOWFUNC if( tokenType>=TK_WINDOW ){ assert( tokenType==TK_SPACE || tokenType==TK_OVER || tokenType==TK_FILTER || tokenType==TK_ILLEGAL || tokenType==TK_WINDOW ); #else if( tokenType>=TK_SPACE ){ assert( tokenType==TK_SPACE || tokenType==TK_ILLEGAL ); #endif /* SQLITE_OMIT_WINDOWFUNC */ if( AtomicLoad(&db->u1.isInterrupted) ){ pParse->rc = SQLITE_INTERRUPT; pParse->nErr++; break; } if( tokenType==TK_SPACE ){ zSql += n; continue; } if( zSql[0]==0 ){ /* Upon reaching the end of input, call the parser two more times ** with tokens TK_SEMI and 0, in that order. */ if( lastTokenParsed==TK_SEMI ){ tokenType = 0; }else if( lastTokenParsed==0 ){ break; }else{ tokenType = TK_SEMI; } n = 0; #ifndef SQLITE_OMIT_WINDOWFUNC }else if( tokenType==TK_WINDOW ){ assert( n==6 ); tokenType = analyzeWindowKeyword((const u8*)&zSql[6]); }else if( tokenType==TK_OVER ){ assert( n==4 ); tokenType = analyzeOverKeyword((const u8*)&zSql[4], lastTokenParsed); }else if( tokenType==TK_FILTER ){ assert( n==6 ); tokenType = analyzeFilterKeyword((const u8*)&zSql[6], lastTokenParsed); #endif /* SQLITE_OMIT_WINDOWFUNC */ }else{ Token x; x.z = zSql; x.n = n; sqlite3ErrorMsg(pParse, "unrecognized token: \"%T\"", &x); break; } } pParse->sLastToken.z = zSql; pParse->sLastToken.n = n; sqlite3Parser(pEngine, tokenType, pParse->sLastToken); lastTokenParsed = tokenType; zSql += n; assert( db->mallocFailed==0 || pParse->rc!=SQLITE_OK || startedWithOom ); if( pParse->rc!=SQLITE_OK ) break; } assert( nErr==0 ); #ifdef YYTRACKMAXSTACKDEPTH sqlite3_mutex_enter(sqlite3MallocMutex()); sqlite3StatusHighwater(SQLITE_STATUS_PARSER_STACK, sqlite3ParserStackPeak(pEngine) ); sqlite3_mutex_leave(sqlite3MallocMutex()); #endif /* YYDEBUG */ #ifdef sqlite3Parser_ENGINEALWAYSONSTACK sqlite3ParserFinalize(pEngine); #else sqlite3ParserFree(pEngine, sqlite3_free); #endif if( db->mallocFailed ){ pParse->rc = SQLITE_NOMEM_BKPT; } if( pParse->zErrMsg || (pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE) ){ if( pParse->zErrMsg==0 ){ pParse->zErrMsg = sqlite3MPrintf(db, "%s", sqlite3ErrStr(pParse->rc)); } sqlite3_log(pParse->rc, "%s in \"%s\"", pParse->zErrMsg, pParse->zTail); nErr++; } pParse->zTail = zSql; #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3_free(pParse->apVtabLock); #endif if( pParse->pNewTable && !IN_SPECIAL_PARSE ){ /* If the pParse->declareVtab flag is set, do not delete any table ** structure built up in pParse->pNewTable. The calling code (see vtab.c) ** will take responsibility for freeing the Table structure. */ sqlite3DeleteTable(db, pParse->pNewTable); } if( pParse->pNewTrigger && !IN_RENAME_OBJECT ){ sqlite3DeleteTrigger(db, pParse->pNewTrigger); } if( pParse->pVList ) sqlite3DbNNFreeNN(db, pParse->pVList); db->pParse = pParentParse; assert( nErr==0 || pParse->rc!=SQLITE_OK ); return nErr; } #ifdef SQLITE_ENABLE_NORMALIZE /* ** Insert a single space character into pStr if the current string ** ends with an identifier */ static void addSpaceSeparator(sqlite3_str *pStr){ if( pStr->nChar && sqlite3IsIdChar(pStr->zText[pStr->nChar-1]) ){ sqlite3_str_append(pStr, " ", 1); } } /* ** Compute a normalization of the SQL given by zSql[0..nSql-1]. Return ** the normalization in space obtained from sqlite3DbMalloc(). Or return ** NULL if anything goes wrong or if zSql is NULL. */ char *sqlite3Normalize( Vdbe *pVdbe, /* VM being reprepared */ const char *zSql /* The original SQL string */ ){ sqlite3 *db; /* The database connection */ int i; /* Next unread byte of zSql[] */ int n; /* length of current token */ int tokenType; /* type of current token */ int prevType = 0; /* Previous non-whitespace token */ int nParen; /* Number of nested levels of parentheses */ int iStartIN; /* Start of RHS of IN operator in z[] */ int nParenAtIN; /* Value of nParent at start of RHS of IN operator */ u32 j; /* Bytes of normalized SQL generated so far */ sqlite3_str *pStr; /* The normalized SQL string under construction */ db = sqlite3VdbeDb(pVdbe); tokenType = -1; nParen = iStartIN = nParenAtIN = 0; pStr = sqlite3_str_new(db); assert( pStr!=0 ); /* sqlite3_str_new() never returns NULL */ for(i=0; zSql[i] && pStr->accError==0; i+=n){ if( tokenType!=TK_SPACE ){ prevType = tokenType; } n = sqlite3GetToken((unsigned char*)zSql+i, &tokenType); if( NEVER(n<=0) ) break; switch( tokenType ){ case TK_SPACE: { break; } case TK_NULL: { if( prevType==TK_IS || prevType==TK_NOT ){ sqlite3_str_append(pStr, " NULL", 5); break; } /* Fall through */ } case TK_STRING: case TK_INTEGER: case TK_FLOAT: case TK_VARIABLE: case TK_BLOB: { sqlite3_str_append(pStr, "?", 1); break; } case TK_LP: { nParen++; if( prevType==TK_IN ){ iStartIN = pStr->nChar; nParenAtIN = nParen; } sqlite3_str_append(pStr, "(", 1); break; } case TK_RP: { if( iStartIN>0 && nParen==nParenAtIN ){ assert( pStr->nChar>=(u32)iStartIN ); pStr->nChar = iStartIN+1; sqlite3_str_append(pStr, "?,?,?", 5); iStartIN = 0; } nParen--; sqlite3_str_append(pStr, ")", 1); break; } case TK_ID: { iStartIN = 0; j = pStr->nChar; if( sqlite3Isquote(zSql[i]) ){ char *zId = sqlite3DbStrNDup(db, zSql+i, n); int nId; int eType = 0; if( zId==0 ) break; sqlite3Dequote(zId); if( zSql[i]=='"' && sqlite3VdbeUsesDoubleQuotedString(pVdbe, zId) ){ sqlite3_str_append(pStr, "?", 1); sqlite3DbFree(db, zId); break; } nId = sqlite3Strlen30(zId); if( sqlite3GetToken((u8*)zId, &eType)==nId && eType==TK_ID ){ addSpaceSeparator(pStr); sqlite3_str_append(pStr, zId, nId); }else{ sqlite3_str_appendf(pStr, "\"%w\"", zId); } sqlite3DbFree(db, zId); }else{ addSpaceSeparator(pStr); sqlite3_str_append(pStr, zSql+i, n); } while( jnChar ){ pStr->zText[j] = sqlite3Tolower(pStr->zText[j]); j++; } break; } case TK_SELECT: { iStartIN = 0; /* fall through */ } default: { if( sqlite3IsIdChar(zSql[i]) ) addSpaceSeparator(pStr); j = pStr->nChar; sqlite3_str_append(pStr, zSql+i, n); while( jnChar ){ pStr->zText[j] = sqlite3Toupper(pStr->zText[j]); j++; } break; } } } if( tokenType!=TK_SEMI ) sqlite3_str_append(pStr, ";", 1); return sqlite3_str_finish(pStr); } #endif /* SQLITE_ENABLE_NORMALIZE */