summaryrefslogtreecommitdiffstats
path: root/test/sort4.test
blob: 13d9a5999a8ac38ecb9c4a3edbca037a439c3948 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# 2014 May 6.
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library. 
#
# The tests in this file are brute force tests of the multi-threaded
# sorter.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix sort4
db close
sqlite3_shutdown
sqlite3_config_pmasz 10
sqlite3_initialize
sqlite3 db test.db


# Configure the sorter to use 3 background threads.
#
# EVIDENCE-OF: R-19249-32353 SQLITE_LIMIT_WORKER_THREADS The maximum
# number of auxiliary worker threads that a single prepared statement
# may start.
#
do_test sort4-init001 {
  db eval {PRAGMA threads=5}
  sqlite3_limit db SQLITE_LIMIT_WORKER_THREADS -1
} {5}
do_test sort4-init002 {
  sqlite3_limit db SQLITE_LIMIT_WORKER_THREADS 3
  db eval {PRAGMA threads}
} {3}


# Minimum number of seconds to run for. If the value is 0, each test
# is run exactly once. Otherwise, tests are repeated until the timeout
# expires.
set SORT4TIMEOUT 0
if {[permutation] == "multithread"} { set SORT4TIMEOUT 300 }

#--------------------------------------------------------------------
# Set up a table "t1" containing $nRow rows. Each row contains also
# contains blob fields that collectively contain at least $nPayload 
# bytes of content. The table schema is as follows:
#
#   CREATE TABLE t1(a INTEGER, <extra-columns>, b INTEGER);
#
# For each row, the values of columns "a" and "b" are set to the same
# pseudo-randomly selected integer. The "extra-columns", of which there
# are at most eight, are named c0, c1, c2 etc. Column c0 contains a 4
# byte string. Column c1 an 8 byte string. Field c2 16 bytes, and so on.
#
# This table is intended to be used for testing queries of the form: 
#
#   SELECT a, <cols>, b FROM t1 ORDER BY a;
#
# The test code checks that rows are returned in order, and that the 
# values of "a" and "b" are the same for each row (the idea being that
# if field "b" at the end of the sorter record has not been corrupted, 
# the rest of the record is probably Ok as well).
#
proc populate_table {nRow nPayload} {
  set nCol 0

  set n 0
  for {set nCol 0} {$n < $nPayload} {incr nCol} {
    incr n [expr (4 << $nCol)]
  }

  set cols [lrange [list xxx c0 c1 c2 c3 c4 c5 c6 c7] 1 $nCol]
  set data [lrange [list xxx \
      randomblob(4) randomblob(8) randomblob(16) randomblob(32) \
      randomblob(64) randomblob(128) randomblob(256) randomblob(512) \
  ] 1 $nCol]

  execsql { DROP TABLE IF EXISTS t1 }

  db transaction {
    execsql "CREATE TABLE t1(a, [join $cols ,], b);"
    set insert "INSERT INTO t1 VALUES(:k, [join $data ,], :k)"
    for {set i 0} {$i < $nRow} {incr i} {
      set k [expr int(rand()*1000000000)]
      execsql $insert
    }
  }
}

# Helper for [do_sorter_test]
#
proc sorter_test {nRow nRead nPayload} {
  set res [list]

  set nLoad [expr ($nRow > $nRead) ? $nRead : $nRow]

  set nPayload [expr (($nPayload+3)/4) * 4]
  set cols [list]
  foreach {mask col} { 
    0x04  c0 0x08  c1 0x10  c2 0x20  c3 
    0x40  c4 0x80  c5 0x100 c6 0x200 c7 
  } {
    if {$nPayload & $mask} { lappend cols $col }
  }

  # Create two SELECT statements. Statement $sql1 uses the sorter to sort
  # $nRow records of a bit over $nPayload bytes each read from the "t1"
  # table created by [populate_table] proc above. Rows are sorted in order
  # of the integer field in each "t1" record.
  #
  # The second SQL statement sorts the same set of rows as the first, but
  # uses a LIMIT clause, causing SQLite to use a temp table instead of the
  # sorter for sorting.
  #
  set sql1 "SELECT a, [join $cols ,], b FROM t1 WHERE rowid<=$nRow ORDER BY a"
  set sql2 "SELECT a FROM t1 WHERE rowid<=$nRow ORDER BY a LIMIT $nRead"

  # Pass the two SQL statements to a helper command written in C. This
  # command steps statement $sql1 $nRead times and compares the integer
  # values in the rows returned with the results of executing $sql2. If
  # the comparison fails (indicating some bug in the sorter), a Tcl
  # exception is thrown.
  #
  sorter_test_sort4_helper db $sql1 $nRead $sql2
  set {} {} 
}

# Usage:
#
#   do_sorter_test <testname> <args>...
#
# where <args> are any of the following switches:
#
#   -rows N          (number of rows to have sorter sort)
#   -read N          (number of rows to read out of sorter)
#   -payload N       (bytes of payload to read with each row)
#   -cachesize N     (Value for "PRAGMA cache_size = ?")
#   -repeats N       (number of times to repeat test)
#   -fakeheap BOOL   (true to use separate allocations for in-memory records)
#
proc do_sorter_test {tn args} {
  set a(-rows)      1000
  set a(-repeats)   1
  set a(-read)      100
  set a(-payload)   100
  set a(-cachesize) 100
  set a(-fakeheap)  0

  foreach {s val} $args {
    if {[info exists a($s)]==0} { 
      unset a(-cachesize)
      set optlist "[join [array names a] ,] or -cachesize"
      error "Unknown option $s, expected $optlist"
    }
    set a($s) $val
  }
  if {[permutation] == "memsys3" || [permutation] == "memsys5"} {
    set a(-fakeheap) 0
  }
  if {$a(-fakeheap)} { sorter_test_fakeheap 1 }


  db eval "PRAGMA cache_size = $a(-cachesize)"
  do_test $tn [subst -nocommands {
    for {set i 0} {[set i] < $a(-repeats)} {incr i} {
      sorter_test $a(-rows) $a(-read) $a(-payload)
    }
  }] {}

  if {$a(-fakeheap)} { sorter_test_fakeheap 0 }
}

proc clock_seconds {} {
  db one {SELECT strftime('%s')}
}

#-------------------------------------------------------------------------
# Begin tests here.

# Create a test database.
do_test 1 {
  execsql "PRAGMA page_size = 4096"
  populate_table 100000 500
} {}

set iTimeLimit [expr [clock_seconds] + $SORT4TIMEOUT]

for {set t 2} {1} {incr tn} {
  do_sorter_test $t.2 -repeats 10 -rows 1000   -read 100
  do_sorter_test $t.3 -repeats 10 -rows 100000 -read 1000
  do_sorter_test $t.4 -repeats 10 -rows 100000 -read 1000 -payload 500
  do_sorter_test $t.5 -repeats 10 -rows 100000 -read 100000 -payload 8
  do_sorter_test $t.6 -repeats 10 -rows 100000 -read 10 -payload 8
  do_sorter_test $t.7 -repeats 10 -rows 10000 -read 10000 -payload 8 -fakeheap 1
  do_sorter_test $t.8 -repeats 10 -rows 100000 -read 10000 -cachesize 250

  set iNow [clock_seconds]
  if {$iNow>=$iTimeLimit} break
  do_test "$testprefix-([expr $iTimeLimit-$iNow] seconds remain)" {} {}
}

finish_test