diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 16:49:04 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 16:49:04 +0000 |
commit | 16f504a9dca3fe3b70568f67b7d41241ae485288 (patch) | |
tree | c60f36ada0496ba928b7161059ba5ab1ab224f9d /src/VBox/VMM/VMMAll/VMXAllTemplate.cpp.h | |
parent | Initial commit. (diff) | |
download | virtualbox-16f504a9dca3fe3b70568f67b7d41241ae485288.tar.xz virtualbox-16f504a9dca3fe3b70568f67b7d41241ae485288.zip |
Adding upstream version 7.0.6-dfsg.upstream/7.0.6-dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/VBox/VMM/VMMAll/VMXAllTemplate.cpp.h')
-rw-r--r-- | src/VBox/VMM/VMMAll/VMXAllTemplate.cpp.h | 11987 |
1 files changed, 11987 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMAll/VMXAllTemplate.cpp.h b/src/VBox/VMM/VMMAll/VMXAllTemplate.cpp.h new file mode 100644 index 00000000..5b4edab0 --- /dev/null +++ b/src/VBox/VMM/VMMAll/VMXAllTemplate.cpp.h @@ -0,0 +1,11987 @@ +/* $Id: VMXAllTemplate.cpp.h $ */ +/** @file + * HM VMX (Intel VT-x) - Code template for our own hypervisor and the NEM darwin backend using Apple's Hypervisor.framework. + */ + +/* + * Copyright (C) 2012-2022 Oracle and/or its affiliates. + * + * This file is part of VirtualBox base platform packages, as + * available from https://www.virtualbox.org. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation, in version 3 of the + * License. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, see <https://www.gnu.org/licenses>. + * + * SPDX-License-Identifier: GPL-3.0-only + */ + + +/********************************************************************************************************************************* +* Defined Constants And Macros * +*********************************************************************************************************************************/ +#if !defined(VMX_VMCS_WRITE_16) || !defined(VMX_VMCS_WRITE_32) || !defined(VMX_VMCS_WRITE_64) || !defined(VMX_VMCS_WRITE_64) +# error "At least one of the VMX_VMCS_WRITE_16, VMX_VMCS_WRITE_32, VMX_VMCS_WRITE_64 or VMX_VMCS_WRITE_64 is missing" +#endif + + +#if !defined(VMX_VMCS_READ_16) || !defined(VMX_VMCS_READ_32) || !defined(VMX_VMCS_READ_64) || !defined(VMX_VMCS_READ_64) +# error "At least one of the VMX_VMCS_READ_16, VMX_VMCS_READ_32, VMX_VMCS_READ_64 or VMX_VMCS_READ_64 is missing" +#endif + +/** Enables condensing of VMREAD instructions, see vmxHCReadToTransient(). */ +#define HMVMX_WITH_CONDENSED_VMREADS + +/** Use the function table. */ +#define HMVMX_USE_FUNCTION_TABLE + +/** Determine which tagged-TLB flush handler to use. */ +#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0 +#define HMVMX_FLUSH_TAGGED_TLB_EPT 1 +#define HMVMX_FLUSH_TAGGED_TLB_VPID 2 +#define HMVMX_FLUSH_TAGGED_TLB_NONE 3 + +/** Assert that all the given fields have been read from the VMCS. */ +#ifdef VBOX_STRICT +# define HMVMX_ASSERT_READ(a_pVmxTransient, a_fReadFields) \ + do { \ + uint32_t const fVmcsFieldRead = ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead); \ + Assert((fVmcsFieldRead & (a_fReadFields)) == (a_fReadFields)); \ + } while (0) +#else +# define HMVMX_ASSERT_READ(a_pVmxTransient, a_fReadFields) do { } while (0) +#endif + +/** + * Subset of the guest-CPU state that is kept by VMX R0 code while executing the + * guest using hardware-assisted VMX. + * + * This excludes state like GPRs (other than RSP) which are always are + * swapped and restored across the world-switch and also registers like EFER, + * MSR which cannot be modified by the guest without causing a VM-exit. + */ +#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \ + | CPUMCTX_EXTRN_RFLAGS \ + | CPUMCTX_EXTRN_RSP \ + | CPUMCTX_EXTRN_SREG_MASK \ + | CPUMCTX_EXTRN_TABLE_MASK \ + | CPUMCTX_EXTRN_KERNEL_GS_BASE \ + | CPUMCTX_EXTRN_SYSCALL_MSRS \ + | CPUMCTX_EXTRN_SYSENTER_MSRS \ + | CPUMCTX_EXTRN_TSC_AUX \ + | CPUMCTX_EXTRN_OTHER_MSRS \ + | CPUMCTX_EXTRN_CR0 \ + | CPUMCTX_EXTRN_CR3 \ + | CPUMCTX_EXTRN_CR4 \ + | CPUMCTX_EXTRN_DR7 \ + | CPUMCTX_EXTRN_HWVIRT \ + | CPUMCTX_EXTRN_INHIBIT_INT \ + | CPUMCTX_EXTRN_INHIBIT_NMI) + +/** + * Exception bitmap mask for real-mode guests (real-on-v86). + * + * We need to intercept all exceptions manually except: + * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking + * due to bugs in Intel CPUs. + * - \#PF need not be intercepted even in real-mode if we have nested paging + * support. + */ +#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \ + | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \ + | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \ + | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \ + | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \ + | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \ + | RT_BIT(X86_XCPT_XF)) + +/** Maximum VM-instruction error number. */ +#define HMVMX_INSTR_ERROR_MAX 28 + +/** Profiling macro. */ +#ifdef HM_PROFILE_EXIT_DISPATCH +# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitDispatch, ed) +# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitDispatch, ed) +#else +# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0) +# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0) +#endif + +#ifndef IN_NEM_DARWIN +/** Assert that preemption is disabled or covered by thread-context hooks. */ +# define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \ + || !RTThreadPreemptIsEnabled(NIL_RTTHREAD)) + +/** Assert that we haven't migrated CPUs when thread-context hooks are not + * used. */ +# define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \ + || (a_pVCpu)->hmr0.s.idEnteredCpu == RTMpCpuId(), \ + ("Illegal migration! Entered on CPU %u Current %u\n", \ + (a_pVCpu)->hmr0.s.idEnteredCpu, RTMpCpuId())) +#else +# define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) do { } while (0) +# define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) do { } while (0) +#endif + +/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU + * context. */ +#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \ + ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \ + (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz))) + +/** Log the VM-exit reason with an easily visible marker to identify it in a + * potential sea of logging data. */ +#define HMVMX_LOG_EXIT(a_pVCpu, a_uExitReason) \ + do { \ + Log4(("VM-exit: vcpu[%RU32] %85s -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu, \ + HMGetVmxExitName(a_uExitReason))); \ + } while (0) \ + + +/********************************************************************************************************************************* +* Structures and Typedefs * +*********************************************************************************************************************************/ +/** + * Memory operand read or write access. + */ +typedef enum VMXMEMACCESS +{ + VMXMEMACCESS_READ = 0, + VMXMEMACCESS_WRITE = 1 +} VMXMEMACCESS; + + +/** + * VMX VM-exit handler. + * + * @returns Strict VBox status code (i.e. informational status codes too). + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + */ +#ifndef HMVMX_USE_FUNCTION_TABLE +typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient); +#else +typedef DECLCALLBACKTYPE(VBOXSTRICTRC, FNVMXEXITHANDLER,(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)); +/** Pointer to VM-exit handler. */ +typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER; +#endif + +/** + * VMX VM-exit handler, non-strict status code. + * + * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI. + * + * @returns VBox status code, no informational status code returned. + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + * + * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the + * use of that status code will be replaced with VINF_EM_SOMETHING + * later when switching over to IEM. + */ +#ifndef HMVMX_USE_FUNCTION_TABLE +typedef int FNVMXEXITHANDLERNSRC(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient); +#else +typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC; +#endif + + +/********************************************************************************************************************************* +* Internal Functions * +*********************************************************************************************************************************/ +#ifndef HMVMX_USE_FUNCTION_TABLE +DECLINLINE(VBOXSTRICTRC) vmxHCHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient); +# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC) +# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int) +#else +# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC) +# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL +#endif +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX +DECLINLINE(VBOXSTRICTRC) vmxHCHandleExitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient); +#endif + +static int vmxHCImportGuestStateEx(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint64_t fWhat); + +/** @name VM-exit handler prototypes. + * @{ + */ +static FNVMXEXITHANDLER vmxHCExitXcptOrNmi; +static FNVMXEXITHANDLER vmxHCExitExtInt; +static FNVMXEXITHANDLER vmxHCExitTripleFault; +static FNVMXEXITHANDLERNSRC vmxHCExitIntWindow; +static FNVMXEXITHANDLERNSRC vmxHCExitNmiWindow; +static FNVMXEXITHANDLER vmxHCExitTaskSwitch; +static FNVMXEXITHANDLER vmxHCExitCpuid; +static FNVMXEXITHANDLER vmxHCExitGetsec; +static FNVMXEXITHANDLER vmxHCExitHlt; +static FNVMXEXITHANDLERNSRC vmxHCExitInvd; +static FNVMXEXITHANDLER vmxHCExitInvlpg; +static FNVMXEXITHANDLER vmxHCExitRdpmc; +static FNVMXEXITHANDLER vmxHCExitVmcall; +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX +static FNVMXEXITHANDLER vmxHCExitVmclear; +static FNVMXEXITHANDLER vmxHCExitVmlaunch; +static FNVMXEXITHANDLER vmxHCExitVmptrld; +static FNVMXEXITHANDLER vmxHCExitVmptrst; +static FNVMXEXITHANDLER vmxHCExitVmread; +static FNVMXEXITHANDLER vmxHCExitVmresume; +static FNVMXEXITHANDLER vmxHCExitVmwrite; +static FNVMXEXITHANDLER vmxHCExitVmxoff; +static FNVMXEXITHANDLER vmxHCExitVmxon; +static FNVMXEXITHANDLER vmxHCExitInvvpid; +# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT +static FNVMXEXITHANDLER vmxHCExitInvept; +# endif +#endif +static FNVMXEXITHANDLER vmxHCExitRdtsc; +static FNVMXEXITHANDLER vmxHCExitMovCRx; +static FNVMXEXITHANDLER vmxHCExitMovDRx; +static FNVMXEXITHANDLER vmxHCExitIoInstr; +static FNVMXEXITHANDLER vmxHCExitRdmsr; +static FNVMXEXITHANDLER vmxHCExitWrmsr; +static FNVMXEXITHANDLER vmxHCExitMwait; +static FNVMXEXITHANDLER vmxHCExitMtf; +static FNVMXEXITHANDLER vmxHCExitMonitor; +static FNVMXEXITHANDLER vmxHCExitPause; +static FNVMXEXITHANDLERNSRC vmxHCExitTprBelowThreshold; +static FNVMXEXITHANDLER vmxHCExitApicAccess; +static FNVMXEXITHANDLER vmxHCExitEptViolation; +static FNVMXEXITHANDLER vmxHCExitEptMisconfig; +static FNVMXEXITHANDLER vmxHCExitRdtscp; +static FNVMXEXITHANDLER vmxHCExitPreemptTimer; +static FNVMXEXITHANDLERNSRC vmxHCExitWbinvd; +static FNVMXEXITHANDLER vmxHCExitXsetbv; +static FNVMXEXITHANDLER vmxHCExitInvpcid; +#ifndef VBOX_WITH_NESTED_HWVIRT_VMX_EPT +static FNVMXEXITHANDLERNSRC vmxHCExitSetPendingXcptUD; +#endif +static FNVMXEXITHANDLERNSRC vmxHCExitErrInvalidGuestState; +static FNVMXEXITHANDLERNSRC vmxHCExitErrUnexpected; +/** @} */ + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX +/** @name Nested-guest VM-exit handler prototypes. + * @{ + */ +static FNVMXEXITHANDLER vmxHCExitXcptOrNmiNested; +static FNVMXEXITHANDLER vmxHCExitTripleFaultNested; +static FNVMXEXITHANDLERNSRC vmxHCExitIntWindowNested; +static FNVMXEXITHANDLERNSRC vmxHCExitNmiWindowNested; +static FNVMXEXITHANDLER vmxHCExitTaskSwitchNested; +static FNVMXEXITHANDLER vmxHCExitHltNested; +static FNVMXEXITHANDLER vmxHCExitInvlpgNested; +static FNVMXEXITHANDLER vmxHCExitRdpmcNested; +static FNVMXEXITHANDLER vmxHCExitVmreadVmwriteNested; +static FNVMXEXITHANDLER vmxHCExitRdtscNested; +static FNVMXEXITHANDLER vmxHCExitMovCRxNested; +static FNVMXEXITHANDLER vmxHCExitMovDRxNested; +static FNVMXEXITHANDLER vmxHCExitIoInstrNested; +static FNVMXEXITHANDLER vmxHCExitRdmsrNested; +static FNVMXEXITHANDLER vmxHCExitWrmsrNested; +static FNVMXEXITHANDLER vmxHCExitMwaitNested; +static FNVMXEXITHANDLER vmxHCExitMtfNested; +static FNVMXEXITHANDLER vmxHCExitMonitorNested; +static FNVMXEXITHANDLER vmxHCExitPauseNested; +static FNVMXEXITHANDLERNSRC vmxHCExitTprBelowThresholdNested; +static FNVMXEXITHANDLER vmxHCExitApicAccessNested; +static FNVMXEXITHANDLER vmxHCExitApicWriteNested; +static FNVMXEXITHANDLER vmxHCExitVirtEoiNested; +static FNVMXEXITHANDLER vmxHCExitRdtscpNested; +static FNVMXEXITHANDLERNSRC vmxHCExitWbinvdNested; +static FNVMXEXITHANDLER vmxHCExitInvpcidNested; +static FNVMXEXITHANDLERNSRC vmxHCExitErrInvalidGuestStateNested; +static FNVMXEXITHANDLER vmxHCExitInstrNested; +static FNVMXEXITHANDLER vmxHCExitInstrWithInfoNested; +# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT +static FNVMXEXITHANDLER vmxHCExitEptViolationNested; +static FNVMXEXITHANDLER vmxHCExitEptMisconfigNested; +# endif +/** @} */ +#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */ + + +/********************************************************************************************************************************* +* Global Variables * +*********************************************************************************************************************************/ +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX +/** + * Array of all VMCS fields. + * Any fields added to the VT-x spec. should be added here. + * + * Currently only used to derive shadow VMCS fields for hardware-assisted execution + * of nested-guests. + */ +static const uint32_t g_aVmcsFields[] = +{ + /* 16-bit control fields. */ + VMX_VMCS16_VPID, + VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR, + VMX_VMCS16_EPTP_INDEX, + VMX_VMCS16_HLAT_PREFIX_SIZE, + + /* 16-bit guest-state fields. */ + VMX_VMCS16_GUEST_ES_SEL, + VMX_VMCS16_GUEST_CS_SEL, + VMX_VMCS16_GUEST_SS_SEL, + VMX_VMCS16_GUEST_DS_SEL, + VMX_VMCS16_GUEST_FS_SEL, + VMX_VMCS16_GUEST_GS_SEL, + VMX_VMCS16_GUEST_LDTR_SEL, + VMX_VMCS16_GUEST_TR_SEL, + VMX_VMCS16_GUEST_INTR_STATUS, + VMX_VMCS16_GUEST_PML_INDEX, + + /* 16-bits host-state fields. */ + VMX_VMCS16_HOST_ES_SEL, + VMX_VMCS16_HOST_CS_SEL, + VMX_VMCS16_HOST_SS_SEL, + VMX_VMCS16_HOST_DS_SEL, + VMX_VMCS16_HOST_FS_SEL, + VMX_VMCS16_HOST_GS_SEL, + VMX_VMCS16_HOST_TR_SEL, + + /* 64-bit control fields. */ + VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, + VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH, + VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, + VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH, + VMX_VMCS64_CTRL_MSR_BITMAP_FULL, + VMX_VMCS64_CTRL_MSR_BITMAP_HIGH, + VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, + VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH, + VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, + VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH, + VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, + VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH, + VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL, + VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH, + VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL, + VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH, + VMX_VMCS64_CTRL_TSC_OFFSET_FULL, + VMX_VMCS64_CTRL_TSC_OFFSET_HIGH, + VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, + VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH, + VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, + VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH, + VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL, + VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH, + VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL, + VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH, + VMX_VMCS64_CTRL_EPTP_FULL, + VMX_VMCS64_CTRL_EPTP_HIGH, + VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL, + VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH, + VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL, + VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH, + VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL, + VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH, + VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL, + VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH, + VMX_VMCS64_CTRL_EPTP_LIST_FULL, + VMX_VMCS64_CTRL_EPTP_LIST_HIGH, + VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL, + VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH, + VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL, + VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH, + VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_FULL, + VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_HIGH, + VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL, + VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH, + VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL, + VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH, + VMX_VMCS64_CTRL_SPPTP_FULL, + VMX_VMCS64_CTRL_SPPTP_HIGH, + VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL, + VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH, + VMX_VMCS64_CTRL_PROC_EXEC3_FULL, + VMX_VMCS64_CTRL_PROC_EXEC3_HIGH, + VMX_VMCS64_CTRL_ENCLV_EXITING_BITMAP_FULL, + VMX_VMCS64_CTRL_ENCLV_EXITING_BITMAP_HIGH, + VMX_VMCS64_CTRL_PCONFIG_EXITING_BITMAP_FULL, + VMX_VMCS64_CTRL_PCONFIG_EXITING_BITMAP_HIGH, + VMX_VMCS64_CTRL_HLAT_PTR_FULL, + VMX_VMCS64_CTRL_HLAT_PTR_HIGH, + VMX_VMCS64_CTRL_EXIT2_FULL, + VMX_VMCS64_CTRL_EXIT2_HIGH, + + /* 64-bit read-only data fields. */ + VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, + VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH, + + /* 64-bit guest-state fields. */ + VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, + VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH, + VMX_VMCS64_GUEST_DEBUGCTL_FULL, + VMX_VMCS64_GUEST_DEBUGCTL_HIGH, + VMX_VMCS64_GUEST_PAT_FULL, + VMX_VMCS64_GUEST_PAT_HIGH, + VMX_VMCS64_GUEST_EFER_FULL, + VMX_VMCS64_GUEST_EFER_HIGH, + VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, + VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH, + VMX_VMCS64_GUEST_PDPTE0_FULL, + VMX_VMCS64_GUEST_PDPTE0_HIGH, + VMX_VMCS64_GUEST_PDPTE1_FULL, + VMX_VMCS64_GUEST_PDPTE1_HIGH, + VMX_VMCS64_GUEST_PDPTE2_FULL, + VMX_VMCS64_GUEST_PDPTE2_HIGH, + VMX_VMCS64_GUEST_PDPTE3_FULL, + VMX_VMCS64_GUEST_PDPTE3_HIGH, + VMX_VMCS64_GUEST_BNDCFGS_FULL, + VMX_VMCS64_GUEST_BNDCFGS_HIGH, + VMX_VMCS64_GUEST_RTIT_CTL_FULL, + VMX_VMCS64_GUEST_RTIT_CTL_HIGH, + VMX_VMCS64_GUEST_PKRS_FULL, + VMX_VMCS64_GUEST_PKRS_HIGH, + + /* 64-bit host-state fields. */ + VMX_VMCS64_HOST_PAT_FULL, + VMX_VMCS64_HOST_PAT_HIGH, + VMX_VMCS64_HOST_EFER_FULL, + VMX_VMCS64_HOST_EFER_HIGH, + VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL, + VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH, + VMX_VMCS64_HOST_PKRS_FULL, + VMX_VMCS64_HOST_PKRS_HIGH, + + /* 32-bit control fields. */ + VMX_VMCS32_CTRL_PIN_EXEC, + VMX_VMCS32_CTRL_PROC_EXEC, + VMX_VMCS32_CTRL_EXCEPTION_BITMAP, + VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, + VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, + VMX_VMCS32_CTRL_CR3_TARGET_COUNT, + VMX_VMCS32_CTRL_EXIT, + VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, + VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, + VMX_VMCS32_CTRL_ENTRY, + VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, + VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, + VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, + VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, + VMX_VMCS32_CTRL_TPR_THRESHOLD, + VMX_VMCS32_CTRL_PROC_EXEC2, + VMX_VMCS32_CTRL_PLE_GAP, + VMX_VMCS32_CTRL_PLE_WINDOW, + + /* 32-bits read-only fields. */ + VMX_VMCS32_RO_VM_INSTR_ERROR, + VMX_VMCS32_RO_EXIT_REASON, + VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, + VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, + VMX_VMCS32_RO_IDT_VECTORING_INFO, + VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, + VMX_VMCS32_RO_EXIT_INSTR_LENGTH, + VMX_VMCS32_RO_EXIT_INSTR_INFO, + + /* 32-bit guest-state fields. */ + VMX_VMCS32_GUEST_ES_LIMIT, + VMX_VMCS32_GUEST_CS_LIMIT, + VMX_VMCS32_GUEST_SS_LIMIT, + VMX_VMCS32_GUEST_DS_LIMIT, + VMX_VMCS32_GUEST_FS_LIMIT, + VMX_VMCS32_GUEST_GS_LIMIT, + VMX_VMCS32_GUEST_LDTR_LIMIT, + VMX_VMCS32_GUEST_TR_LIMIT, + VMX_VMCS32_GUEST_GDTR_LIMIT, + VMX_VMCS32_GUEST_IDTR_LIMIT, + VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, + VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS, + VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS, + VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS, + VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS, + VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS, + VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, + VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, + VMX_VMCS32_GUEST_INT_STATE, + VMX_VMCS32_GUEST_ACTIVITY_STATE, + VMX_VMCS32_GUEST_SMBASE, + VMX_VMCS32_GUEST_SYSENTER_CS, + VMX_VMCS32_PREEMPT_TIMER_VALUE, + + /* 32-bit host-state fields. */ + VMX_VMCS32_HOST_SYSENTER_CS, + + /* Natural-width control fields. */ + VMX_VMCS_CTRL_CR0_MASK, + VMX_VMCS_CTRL_CR4_MASK, + VMX_VMCS_CTRL_CR0_READ_SHADOW, + VMX_VMCS_CTRL_CR4_READ_SHADOW, + VMX_VMCS_CTRL_CR3_TARGET_VAL0, + VMX_VMCS_CTRL_CR3_TARGET_VAL1, + VMX_VMCS_CTRL_CR3_TARGET_VAL2, + VMX_VMCS_CTRL_CR3_TARGET_VAL3, + + /* Natural-width read-only data fields. */ + VMX_VMCS_RO_EXIT_QUALIFICATION, + VMX_VMCS_RO_IO_RCX, + VMX_VMCS_RO_IO_RSI, + VMX_VMCS_RO_IO_RDI, + VMX_VMCS_RO_IO_RIP, + VMX_VMCS_RO_GUEST_LINEAR_ADDR, + + /* Natural-width guest-state field */ + VMX_VMCS_GUEST_CR0, + VMX_VMCS_GUEST_CR3, + VMX_VMCS_GUEST_CR4, + VMX_VMCS_GUEST_ES_BASE, + VMX_VMCS_GUEST_CS_BASE, + VMX_VMCS_GUEST_SS_BASE, + VMX_VMCS_GUEST_DS_BASE, + VMX_VMCS_GUEST_FS_BASE, + VMX_VMCS_GUEST_GS_BASE, + VMX_VMCS_GUEST_LDTR_BASE, + VMX_VMCS_GUEST_TR_BASE, + VMX_VMCS_GUEST_GDTR_BASE, + VMX_VMCS_GUEST_IDTR_BASE, + VMX_VMCS_GUEST_DR7, + VMX_VMCS_GUEST_RSP, + VMX_VMCS_GUEST_RIP, + VMX_VMCS_GUEST_RFLAGS, + VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, + VMX_VMCS_GUEST_SYSENTER_ESP, + VMX_VMCS_GUEST_SYSENTER_EIP, + VMX_VMCS_GUEST_S_CET, + VMX_VMCS_GUEST_SSP, + VMX_VMCS_GUEST_INTR_SSP_TABLE_ADDR, + + /* Natural-width host-state fields */ + VMX_VMCS_HOST_CR0, + VMX_VMCS_HOST_CR3, + VMX_VMCS_HOST_CR4, + VMX_VMCS_HOST_FS_BASE, + VMX_VMCS_HOST_GS_BASE, + VMX_VMCS_HOST_TR_BASE, + VMX_VMCS_HOST_GDTR_BASE, + VMX_VMCS_HOST_IDTR_BASE, + VMX_VMCS_HOST_SYSENTER_ESP, + VMX_VMCS_HOST_SYSENTER_EIP, + VMX_VMCS_HOST_RSP, + VMX_VMCS_HOST_RIP, + VMX_VMCS_HOST_S_CET, + VMX_VMCS_HOST_SSP, + VMX_VMCS_HOST_INTR_SSP_TABLE_ADDR +}; +#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */ + +#ifdef HMVMX_USE_FUNCTION_TABLE +/** + * VMX_EXIT dispatch table. + */ +static const struct CLANG11NOTHROWWEIRDNESS { PFNVMXEXITHANDLER pfn; } g_aVMExitHandlers[VMX_EXIT_MAX + 1] = +{ + /* 0 VMX_EXIT_XCPT_OR_NMI */ { vmxHCExitXcptOrNmi }, + /* 1 VMX_EXIT_EXT_INT */ { vmxHCExitExtInt }, + /* 2 VMX_EXIT_TRIPLE_FAULT */ { vmxHCExitTripleFault }, + /* 3 VMX_EXIT_INIT_SIGNAL */ { vmxHCExitErrUnexpected }, + /* 4 VMX_EXIT_SIPI */ { vmxHCExitErrUnexpected }, + /* 5 VMX_EXIT_IO_SMI */ { vmxHCExitErrUnexpected }, + /* 6 VMX_EXIT_SMI */ { vmxHCExitErrUnexpected }, + /* 7 VMX_EXIT_INT_WINDOW */ { vmxHCExitIntWindow }, + /* 8 VMX_EXIT_NMI_WINDOW */ { vmxHCExitNmiWindow }, + /* 9 VMX_EXIT_TASK_SWITCH */ { vmxHCExitTaskSwitch }, + /* 10 VMX_EXIT_CPUID */ { vmxHCExitCpuid }, + /* 11 VMX_EXIT_GETSEC */ { vmxHCExitGetsec }, + /* 12 VMX_EXIT_HLT */ { vmxHCExitHlt }, + /* 13 VMX_EXIT_INVD */ { vmxHCExitInvd }, + /* 14 VMX_EXIT_INVLPG */ { vmxHCExitInvlpg }, + /* 15 VMX_EXIT_RDPMC */ { vmxHCExitRdpmc }, + /* 16 VMX_EXIT_RDTSC */ { vmxHCExitRdtsc }, + /* 17 VMX_EXIT_RSM */ { vmxHCExitErrUnexpected }, + /* 18 VMX_EXIT_VMCALL */ { vmxHCExitVmcall }, +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + /* 19 VMX_EXIT_VMCLEAR */ { vmxHCExitVmclear }, + /* 20 VMX_EXIT_VMLAUNCH */ { vmxHCExitVmlaunch }, + /* 21 VMX_EXIT_VMPTRLD */ { vmxHCExitVmptrld }, + /* 22 VMX_EXIT_VMPTRST */ { vmxHCExitVmptrst }, + /* 23 VMX_EXIT_VMREAD */ { vmxHCExitVmread }, + /* 24 VMX_EXIT_VMRESUME */ { vmxHCExitVmresume }, + /* 25 VMX_EXIT_VMWRITE */ { vmxHCExitVmwrite }, + /* 26 VMX_EXIT_VMXOFF */ { vmxHCExitVmxoff }, + /* 27 VMX_EXIT_VMXON */ { vmxHCExitVmxon }, +#else + /* 19 VMX_EXIT_VMCLEAR */ { vmxHCExitSetPendingXcptUD }, + /* 20 VMX_EXIT_VMLAUNCH */ { vmxHCExitSetPendingXcptUD }, + /* 21 VMX_EXIT_VMPTRLD */ { vmxHCExitSetPendingXcptUD }, + /* 22 VMX_EXIT_VMPTRST */ { vmxHCExitSetPendingXcptUD }, + /* 23 VMX_EXIT_VMREAD */ { vmxHCExitSetPendingXcptUD }, + /* 24 VMX_EXIT_VMRESUME */ { vmxHCExitSetPendingXcptUD }, + /* 25 VMX_EXIT_VMWRITE */ { vmxHCExitSetPendingXcptUD }, + /* 26 VMX_EXIT_VMXOFF */ { vmxHCExitSetPendingXcptUD }, + /* 27 VMX_EXIT_VMXON */ { vmxHCExitSetPendingXcptUD }, +#endif + /* 28 VMX_EXIT_MOV_CRX */ { vmxHCExitMovCRx }, + /* 29 VMX_EXIT_MOV_DRX */ { vmxHCExitMovDRx }, + /* 30 VMX_EXIT_IO_INSTR */ { vmxHCExitIoInstr }, + /* 31 VMX_EXIT_RDMSR */ { vmxHCExitRdmsr }, + /* 32 VMX_EXIT_WRMSR */ { vmxHCExitWrmsr }, + /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ { vmxHCExitErrInvalidGuestState }, + /* 34 VMX_EXIT_ERR_MSR_LOAD */ { vmxHCExitErrUnexpected }, + /* 35 UNDEFINED */ { vmxHCExitErrUnexpected }, + /* 36 VMX_EXIT_MWAIT */ { vmxHCExitMwait }, + /* 37 VMX_EXIT_MTF */ { vmxHCExitMtf }, + /* 38 UNDEFINED */ { vmxHCExitErrUnexpected }, + /* 39 VMX_EXIT_MONITOR */ { vmxHCExitMonitor }, + /* 40 VMX_EXIT_PAUSE */ { vmxHCExitPause }, + /* 41 VMX_EXIT_ERR_MACHINE_CHECK */ { vmxHCExitErrUnexpected }, + /* 42 UNDEFINED */ { vmxHCExitErrUnexpected }, + /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ { vmxHCExitTprBelowThreshold }, + /* 44 VMX_EXIT_APIC_ACCESS */ { vmxHCExitApicAccess }, + /* 45 VMX_EXIT_VIRTUALIZED_EOI */ { vmxHCExitErrUnexpected }, + /* 46 VMX_EXIT_GDTR_IDTR_ACCESS */ { vmxHCExitErrUnexpected }, + /* 47 VMX_EXIT_LDTR_TR_ACCESS */ { vmxHCExitErrUnexpected }, + /* 48 VMX_EXIT_EPT_VIOLATION */ { vmxHCExitEptViolation }, + /* 49 VMX_EXIT_EPT_MISCONFIG */ { vmxHCExitEptMisconfig }, +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT + /* 50 VMX_EXIT_INVEPT */ { vmxHCExitInvept }, +#else + /* 50 VMX_EXIT_INVEPT */ { vmxHCExitSetPendingXcptUD }, +#endif + /* 51 VMX_EXIT_RDTSCP */ { vmxHCExitRdtscp }, + /* 52 VMX_EXIT_PREEMPT_TIMER */ { vmxHCExitPreemptTimer }, +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + /* 53 VMX_EXIT_INVVPID */ { vmxHCExitInvvpid }, +#else + /* 53 VMX_EXIT_INVVPID */ { vmxHCExitSetPendingXcptUD }, +#endif + /* 54 VMX_EXIT_WBINVD */ { vmxHCExitWbinvd }, + /* 55 VMX_EXIT_XSETBV */ { vmxHCExitXsetbv }, + /* 56 VMX_EXIT_APIC_WRITE */ { vmxHCExitErrUnexpected }, + /* 57 VMX_EXIT_RDRAND */ { vmxHCExitErrUnexpected }, + /* 58 VMX_EXIT_INVPCID */ { vmxHCExitInvpcid }, + /* 59 VMX_EXIT_VMFUNC */ { vmxHCExitErrUnexpected }, + /* 60 VMX_EXIT_ENCLS */ { vmxHCExitErrUnexpected }, + /* 61 VMX_EXIT_RDSEED */ { vmxHCExitErrUnexpected }, + /* 62 VMX_EXIT_PML_FULL */ { vmxHCExitErrUnexpected }, + /* 63 VMX_EXIT_XSAVES */ { vmxHCExitErrUnexpected }, + /* 64 VMX_EXIT_XRSTORS */ { vmxHCExitErrUnexpected }, + /* 65 UNDEFINED */ { vmxHCExitErrUnexpected }, + /* 66 VMX_EXIT_SPP_EVENT */ { vmxHCExitErrUnexpected }, + /* 67 VMX_EXIT_UMWAIT */ { vmxHCExitErrUnexpected }, + /* 68 VMX_EXIT_TPAUSE */ { vmxHCExitErrUnexpected }, + /* 69 VMX_EXIT_LOADIWKEY */ { vmxHCExitErrUnexpected }, +}; +#endif /* HMVMX_USE_FUNCTION_TABLE */ + +#if defined(VBOX_STRICT) && defined(LOG_ENABLED) +static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] = +{ + /* 0 */ "(Not Used)", + /* 1 */ "VMCALL executed in VMX root operation.", + /* 2 */ "VMCLEAR with invalid physical address.", + /* 3 */ "VMCLEAR with VMXON pointer.", + /* 4 */ "VMLAUNCH with non-clear VMCS.", + /* 5 */ "VMRESUME with non-launched VMCS.", + /* 6 */ "VMRESUME after VMXOFF", + /* 7 */ "VM-entry with invalid control fields.", + /* 8 */ "VM-entry with invalid host state fields.", + /* 9 */ "VMPTRLD with invalid physical address.", + /* 10 */ "VMPTRLD with VMXON pointer.", + /* 11 */ "VMPTRLD with incorrect revision identifier.", + /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.", + /* 13 */ "VMWRITE to read-only VMCS component.", + /* 14 */ "(Not Used)", + /* 15 */ "VMXON executed in VMX root operation.", + /* 16 */ "VM-entry with invalid executive-VMCS pointer.", + /* 17 */ "VM-entry with non-launched executing VMCS.", + /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.", + /* 19 */ "VMCALL with non-clear VMCS.", + /* 20 */ "VMCALL with invalid VM-exit control fields.", + /* 21 */ "(Not Used)", + /* 22 */ "VMCALL with incorrect MSEG revision identifier.", + /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.", + /* 24 */ "VMCALL with invalid SMM-monitor features.", + /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.", + /* 26 */ "VM-entry with events blocked by MOV SS.", + /* 27 */ "(Not Used)", + /* 28 */ "Invalid operand to INVEPT/INVVPID." +}; +#endif /* VBOX_STRICT && LOG_ENABLED */ + + +/** + * Gets the CR0 guest/host mask. + * + * These bits typically does not change through the lifetime of a VM. Any bit set in + * this mask is owned by the host/hypervisor and would cause a VM-exit when modified + * by the guest. + * + * @returns The CR0 guest/host mask. + * @param pVCpu The cross context virtual CPU structure. + */ +static uint64_t vmxHCGetFixedCr0Mask(PCVMCPUCC pVCpu) +{ + /* + * Modifications to CR0 bits that VT-x ignores saving/restoring (CD, ET, NW) and + * to CR0 bits that we require for shadow paging (PG) by the guest must cause VM-exits. + * + * Furthermore, modifications to any bits that are reserved/unspecified currently + * by the Intel spec. must also cause a VM-exit. This prevents unpredictable behavior + * when future CPUs specify and use currently reserved/unspecified bits. + */ + /** @todo Avoid intercepting CR0.PE with unrestricted guest execution. Fix PGM + * enmGuestMode to be in-sync with the current mode. See @bugref{6398} + * and @bugref{6944}. */ + PCVMCC pVM = pVCpu->CTX_SUFF(pVM); + return ( X86_CR0_PE + | X86_CR0_NE + | (VM_IS_VMX_NESTED_PAGING(pVM) ? 0 : X86_CR0_WP) + | X86_CR0_PG + | VMX_EXIT_HOST_CR0_IGNORE_MASK); +} + + +/** + * Gets the CR4 guest/host mask. + * + * These bits typically does not change through the lifetime of a VM. Any bit set in + * this mask is owned by the host/hypervisor and would cause a VM-exit when modified + * by the guest. + * + * @returns The CR4 guest/host mask. + * @param pVCpu The cross context virtual CPU structure. + */ +static uint64_t vmxHCGetFixedCr4Mask(PCVMCPUCC pVCpu) +{ + /* + * We construct a mask of all CR4 bits that the guest can modify without causing + * a VM-exit. Then invert this mask to obtain all CR4 bits that should cause + * a VM-exit when the guest attempts to modify them when executing using + * hardware-assisted VMX. + * + * When a feature is not exposed to the guest (and may be present on the host), + * we want to intercept guest modifications to the bit so we can emulate proper + * behavior (e.g., #GP). + * + * Furthermore, only modifications to those bits that don't require immediate + * emulation is allowed. For e.g., PCIDE is excluded because the behavior + * depends on CR3 which might not always be the guest value while executing + * using hardware-assisted VMX. + */ + PCVMCC pVM = pVCpu->CTX_SUFF(pVM); + bool fFsGsBase = pVM->cpum.ro.GuestFeatures.fFsGsBase; +#ifdef IN_NEM_DARWIN + bool fXSaveRstor = pVM->cpum.ro.GuestFeatures.fXSaveRstor; +#endif + bool fFxSaveRstor = pVM->cpum.ro.GuestFeatures.fFxSaveRstor; + + /* + * Paranoia. + * Ensure features exposed to the guest are present on the host. + */ + AssertStmt(!fFsGsBase || g_CpumHostFeatures.s.fFsGsBase, fFsGsBase = 0); +#ifdef IN_NEM_DARWIN + AssertStmt(!fXSaveRstor || g_CpumHostFeatures.s.fXSaveRstor, fXSaveRstor = 0); +#endif + AssertStmt(!fFxSaveRstor || g_CpumHostFeatures.s.fFxSaveRstor, fFxSaveRstor = 0); + + uint64_t const fGstMask = X86_CR4_PVI + | X86_CR4_TSD + | X86_CR4_DE + | X86_CR4_MCE + | X86_CR4_PCE + | X86_CR4_OSXMMEEXCPT + | (fFsGsBase ? X86_CR4_FSGSBASE : 0) +#ifdef IN_NEM_DARWIN /* On native VT-x setting OSXSAVE must exit as we need to load guest XCR0 (see + fLoadSaveGuestXcr0). These exits are not needed on Darwin as that's not our problem. */ + | (fXSaveRstor ? X86_CR4_OSXSAVE : 0) +#endif + | (fFxSaveRstor ? X86_CR4_OSFXSR : 0); + return ~fGstMask; +} + + +/** + * Adds one or more exceptions to the exception bitmap and commits it to the current + * VMCS. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + * @param uXcptMask The exception(s) to add. + */ +static void vmxHCAddXcptInterceptMask(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t uXcptMask) +{ + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap; + if ((uXcptBitmap & uXcptMask) != uXcptMask) + { + uXcptBitmap |= uXcptMask; + int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap); + AssertRC(rc); + pVmcsInfo->u32XcptBitmap = uXcptBitmap; + } +} + + +/** + * Adds an exception to the exception bitmap and commits it to the current VMCS. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + * @param uXcpt The exception to add. + */ +static void vmxHCAddXcptIntercept(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint8_t uXcpt) +{ + Assert(uXcpt <= X86_XCPT_LAST); + vmxHCAddXcptInterceptMask(pVCpu, pVmxTransient, RT_BIT_32(uXcpt)); +} + + +/** + * Remove one or more exceptions from the exception bitmap and commits it to the + * current VMCS. + * + * This takes care of not removing the exception intercept if a nested-guest + * requires the exception to be intercepted. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + * @param uXcptMask The exception(s) to remove. + */ +static int vmxHCRemoveXcptInterceptMask(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t uXcptMask) +{ + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap; + if (uXcptBitmap & uXcptMask) + { +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if (!pVmxTransient->fIsNestedGuest) + { /* likely */ } + else + uXcptMask &= ~pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32XcptBitmap; +#endif +#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS + uXcptMask &= ~( RT_BIT(X86_XCPT_BP) + | RT_BIT(X86_XCPT_DE) + | RT_BIT(X86_XCPT_NM) + | RT_BIT(X86_XCPT_TS) + | RT_BIT(X86_XCPT_UD) + | RT_BIT(X86_XCPT_NP) + | RT_BIT(X86_XCPT_SS) + | RT_BIT(X86_XCPT_GP) + | RT_BIT(X86_XCPT_PF) + | RT_BIT(X86_XCPT_MF)); +#elif defined(HMVMX_ALWAYS_TRAP_PF) + uXcptMask &= ~RT_BIT(X86_XCPT_PF); +#endif + if (uXcptMask) + { + /* Validate we are not removing any essential exception intercepts. */ +#ifndef IN_NEM_DARWIN + Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging || !(uXcptMask & RT_BIT(X86_XCPT_PF))); +#else + Assert(!(uXcptMask & RT_BIT(X86_XCPT_PF))); +#endif + NOREF(pVCpu); + Assert(!(uXcptMask & RT_BIT(X86_XCPT_DB))); + Assert(!(uXcptMask & RT_BIT(X86_XCPT_AC))); + + /* Remove it from the exception bitmap. */ + uXcptBitmap &= ~uXcptMask; + + /* Commit and update the cache if necessary. */ + if (pVmcsInfo->u32XcptBitmap != uXcptBitmap) + { + int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap); + AssertRC(rc); + pVmcsInfo->u32XcptBitmap = uXcptBitmap; + } + } + } + return VINF_SUCCESS; +} + + +/** + * Remove an exceptions from the exception bitmap and commits it to the current + * VMCS. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + * @param uXcpt The exception to remove. + */ +static int vmxHCRemoveXcptIntercept(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint8_t uXcpt) +{ + return vmxHCRemoveXcptInterceptMask(pVCpu, pVmxTransient, RT_BIT(uXcpt)); +} + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + +/** + * Loads the shadow VMCS specified by the VMCS info. object. + * + * @returns VBox status code. + * @param pVmcsInfo The VMCS info. object. + * + * @remarks Can be called with interrupts disabled. + */ +static int vmxHCLoadShadowVmcs(PVMXVMCSINFO pVmcsInfo) +{ + Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); + Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS); + + int rc = VMXLoadVmcs(pVmcsInfo->HCPhysShadowVmcs); + if (RT_SUCCESS(rc)) + pVmcsInfo->fShadowVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT; + return rc; +} + + +/** + * Clears the shadow VMCS specified by the VMCS info. object. + * + * @returns VBox status code. + * @param pVmcsInfo The VMCS info. object. + * + * @remarks Can be called with interrupts disabled. + */ +static int vmxHCClearShadowVmcs(PVMXVMCSINFO pVmcsInfo) +{ + Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); + Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS); + + int rc = VMXClearVmcs(pVmcsInfo->HCPhysShadowVmcs); + if (RT_SUCCESS(rc)) + pVmcsInfo->fShadowVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR; + return rc; +} + + +/** + * Switches from and to the specified VMCSes. + * + * @returns VBox status code. + * @param pVmcsInfoFrom The VMCS info. object we are switching from. + * @param pVmcsInfoTo The VMCS info. object we are switching to. + * + * @remarks Called with interrupts disabled. + */ +static int vmxHCSwitchVmcs(PVMXVMCSINFO pVmcsInfoFrom, PVMXVMCSINFO pVmcsInfoTo) +{ + /* + * Clear the VMCS we are switching out if it has not already been cleared. + * This will sync any CPU internal data back to the VMCS. + */ + if (pVmcsInfoFrom->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR) + { + int rc = hmR0VmxClearVmcs(pVmcsInfoFrom); + if (RT_SUCCESS(rc)) + { + /* + * The shadow VMCS, if any, would not be active at this point since we + * would have cleared it while importing the virtual hardware-virtualization + * state as part the VMLAUNCH/VMRESUME VM-exit. Hence, there's no need to + * clear the shadow VMCS here, just assert for safety. + */ + Assert(!pVmcsInfoFrom->pvShadowVmcs || pVmcsInfoFrom->fShadowVmcsState == VMX_V_VMCS_LAUNCH_STATE_CLEAR); + } + else + return rc; + } + + /* + * Clear the VMCS we are switching to if it has not already been cleared. + * This will initialize the VMCS launch state to "clear" required for loading it. + * + * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine". + */ + if (pVmcsInfoTo->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR) + { + int rc = hmR0VmxClearVmcs(pVmcsInfoTo); + if (RT_SUCCESS(rc)) + { /* likely */ } + else + return rc; + } + + /* + * Finally, load the VMCS we are switching to. + */ + return hmR0VmxLoadVmcs(pVmcsInfoTo); +} + + +/** + * Switches between the guest VMCS and the nested-guest VMCS as specified by the + * caller. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param fSwitchToNstGstVmcs Whether to switch to the nested-guest VMCS (pass + * true) or guest VMCS (pass false). + */ +static int vmxHCSwitchToGstOrNstGstVmcs(PVMCPUCC pVCpu, bool fSwitchToNstGstVmcs) +{ + /* Ensure we have synced everything from the guest-CPU context to the VMCS before switching. */ + HMVMX_CPUMCTX_ASSERT(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL); + + PVMXVMCSINFO pVmcsInfoFrom; + PVMXVMCSINFO pVmcsInfoTo; + if (fSwitchToNstGstVmcs) + { + pVmcsInfoFrom = &pVCpu->hmr0.s.vmx.VmcsInfo; + pVmcsInfoTo = &pVCpu->hmr0.s.vmx.VmcsInfoNstGst; + } + else + { + pVmcsInfoFrom = &pVCpu->hmr0.s.vmx.VmcsInfoNstGst; + pVmcsInfoTo = &pVCpu->hmr0.s.vmx.VmcsInfo; + } + + /* + * Disable interrupts to prevent being preempted while we switch the current VMCS as the + * preemption hook code path acquires the current VMCS. + */ + RTCCUINTREG const fEFlags = ASMIntDisableFlags(); + + int rc = vmxHCSwitchVmcs(pVmcsInfoFrom, pVmcsInfoTo); + if (RT_SUCCESS(rc)) + { + pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs = fSwitchToNstGstVmcs; + pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3 = fSwitchToNstGstVmcs; + + /* + * If we are switching to a VMCS that was executed on a different host CPU or was + * never executed before, flag that we need to export the host state before executing + * guest/nested-guest code using hardware-assisted VMX. + * + * This could probably be done in a preemptible context since the preemption hook + * will flag the necessary change in host context. However, since preemption is + * already disabled and to avoid making assumptions about host specific code in + * RTMpCpuId when called with preemption enabled, we'll do this while preemption is + * disabled. + */ + if (pVmcsInfoTo->idHostCpuState == RTMpCpuId()) + { /* likely */ } + else + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE); + + ASMSetFlags(fEFlags); + + /* + * We use a different VM-exit MSR-store areas for the guest and nested-guest. Hence, + * flag that we need to update the host MSR values there. Even if we decide in the + * future to share the VM-exit MSR-store area page between the guest and nested-guest, + * if its content differs, we would have to update the host MSRs anyway. + */ + pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs = false; + } + else + ASMSetFlags(fEFlags); + return rc; +} + +#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */ +#ifdef VBOX_STRICT + +/** + * Reads the VM-entry interruption-information field from the VMCS into the VMX + * transient structure. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + */ +DECLINLINE(void) vmxHCReadEntryIntInfoVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo); + AssertRC(rc); +} + + +/** + * Reads the VM-entry exception error code field from the VMCS into + * the VMX transient structure. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + */ +DECLINLINE(void) vmxHCReadEntryXcptErrorCodeVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode); + AssertRC(rc); +} + + +/** + * Reads the VM-entry exception error code field from the VMCS into + * the VMX transient structure. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + */ +DECLINLINE(void) vmxHCReadEntryInstrLenVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr); + AssertRC(rc); +} + +#endif /* VBOX_STRICT */ + + +/** + * Reads VMCS fields into the VMXTRANSIENT structure, slow path version. + * + * Don't call directly unless the it's likely that some or all of the fields + * given in @a a_fReadMask have already been read. + * + * @tparam a_fReadMask The fields to read. + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + */ +template<uint32_t const a_fReadMask> +static void vmxHCReadToTransientSlow(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + AssertCompile((a_fReadMask & ~( HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_LEN + | HMVMX_READ_EXIT_INSTR_INFO + | HMVMX_READ_IDT_VECTORING_INFO + | HMVMX_READ_IDT_VECTORING_ERROR_CODE + | HMVMX_READ_EXIT_INTERRUPTION_INFO + | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE + | HMVMX_READ_GUEST_LINEAR_ADDR + | HMVMX_READ_GUEST_PHYSICAL_ADDR + | HMVMX_READ_GUEST_PENDING_DBG_XCPTS + )) == 0); + + if ((pVmxTransient->fVmcsFieldsRead & a_fReadMask) != a_fReadMask) + { + uint32_t const fVmcsFieldsRead = pVmxTransient->fVmcsFieldsRead; + + if ( (a_fReadMask & HMVMX_READ_EXIT_QUALIFICATION) + && !(fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION)) + { + int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual); + AssertRC(rc); + } + if ( (a_fReadMask & HMVMX_READ_EXIT_INSTR_LEN) + && !(fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN)) + { + int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbExitInstr); + AssertRC(rc); + } + if ( (a_fReadMask & HMVMX_READ_EXIT_INSTR_INFO) + && !(fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO)) + { + int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u); + AssertRC(rc); + } + if ( (a_fReadMask & HMVMX_READ_IDT_VECTORING_INFO) + && !(fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO)) + { + int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo); + AssertRC(rc); + } + if ( (a_fReadMask & HMVMX_READ_IDT_VECTORING_ERROR_CODE) + && !(fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE)) + { + int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode); + AssertRC(rc); + } + if ( (a_fReadMask & HMVMX_READ_EXIT_INTERRUPTION_INFO) + && !(fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO)) + { + int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo); + AssertRC(rc); + } + if ( (a_fReadMask & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE) + && !(fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE)) + { + int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode); + AssertRC(rc); + } + if ( (a_fReadMask & HMVMX_READ_GUEST_LINEAR_ADDR) + && !(fVmcsFieldsRead & HMVMX_READ_GUEST_LINEAR_ADDR)) + { + int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr); + AssertRC(rc); + } + if ( (a_fReadMask & HMVMX_READ_GUEST_PHYSICAL_ADDR) + && !(fVmcsFieldsRead & HMVMX_READ_GUEST_PHYSICAL_ADDR)) + { + int const rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &pVmxTransient->uGuestPhysicalAddr); + AssertRC(rc); + } + if ( (a_fReadMask & HMVMX_READ_GUEST_PENDING_DBG_XCPTS) + && !(fVmcsFieldsRead & HMVMX_READ_GUEST_PENDING_DBG_XCPTS)) + { + int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &pVmxTransient->uGuestPendingDbgXcpts); + AssertRC(rc); + } + + pVmxTransient->fVmcsFieldsRead |= a_fReadMask; + } +} + + +/** + * Reads VMCS fields into the VMXTRANSIENT structure. + * + * This optimizes for the case where none of @a a_fReadMask has been read yet, + * generating an optimized read sequences w/o any conditionals between in + * non-strict builds. + * + * @tparam a_fReadMask The fields to read. One or more of the + * HMVMX_READ_XXX fields ORed together. + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + */ +template<uint32_t const a_fReadMask> +DECLINLINE(void) vmxHCReadToTransient(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + AssertCompile((a_fReadMask & ~( HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_LEN + | HMVMX_READ_EXIT_INSTR_INFO + | HMVMX_READ_IDT_VECTORING_INFO + | HMVMX_READ_IDT_VECTORING_ERROR_CODE + | HMVMX_READ_EXIT_INTERRUPTION_INFO + | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE + | HMVMX_READ_GUEST_LINEAR_ADDR + | HMVMX_READ_GUEST_PHYSICAL_ADDR + | HMVMX_READ_GUEST_PENDING_DBG_XCPTS + )) == 0); + + if (RT_LIKELY(!(pVmxTransient->fVmcsFieldsRead & a_fReadMask))) + { + if (a_fReadMask & HMVMX_READ_EXIT_QUALIFICATION) + { + int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual); + AssertRC(rc); + } + if (a_fReadMask & HMVMX_READ_EXIT_INSTR_LEN) + { + int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbExitInstr); + AssertRC(rc); + } + if (a_fReadMask & HMVMX_READ_EXIT_INSTR_INFO) + { + int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u); + AssertRC(rc); + } + if (a_fReadMask & HMVMX_READ_IDT_VECTORING_INFO) + { + int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo); + AssertRC(rc); + } + if (a_fReadMask & HMVMX_READ_IDT_VECTORING_ERROR_CODE) + { + int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode); + AssertRC(rc); + } + if (a_fReadMask & HMVMX_READ_EXIT_INTERRUPTION_INFO) + { + int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo); + AssertRC(rc); + } + if (a_fReadMask & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE) + { + int const rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode); + AssertRC(rc); + } + if (a_fReadMask & HMVMX_READ_GUEST_LINEAR_ADDR) + { + int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr); + AssertRC(rc); + } + if (a_fReadMask & HMVMX_READ_GUEST_PHYSICAL_ADDR) + { + int const rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &pVmxTransient->uGuestPhysicalAddr); + AssertRC(rc); + } + if (a_fReadMask & HMVMX_READ_GUEST_PENDING_DBG_XCPTS) + { + int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &pVmxTransient->uGuestPendingDbgXcpts); + AssertRC(rc); + } + + pVmxTransient->fVmcsFieldsRead |= a_fReadMask; + } + else + { + STAM_REL_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatReadToTransientFallback); + Log11Func(("a_fReadMask=%#x fVmcsFieldsRead=%#x => %#x - Taking inefficient code path!\n", + a_fReadMask, pVmxTransient->fVmcsFieldsRead, a_fReadMask & pVmxTransient->fVmcsFieldsRead)); + vmxHCReadToTransientSlow<a_fReadMask>(pVCpu, pVmxTransient); + } +} + + +#ifdef HMVMX_ALWAYS_SAVE_RO_GUEST_STATE +/** + * Reads all relevant read-only VMCS fields into the VMX transient structure. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + */ +static void vmxHCReadAllRoFieldsVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + int rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual); + rc |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbExitInstr); + rc |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u); + rc |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo); + rc |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode); + rc |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo); + rc |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode); + rc |= VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr); + rc |= VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &pVmxTransient->uGuestPhysicalAddr); + AssertRC(rc); + pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_LEN + | HMVMX_READ_EXIT_INSTR_INFO + | HMVMX_READ_IDT_VECTORING_INFO + | HMVMX_READ_IDT_VECTORING_ERROR_CODE + | HMVMX_READ_EXIT_INTERRUPTION_INFO + | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE + | HMVMX_READ_GUEST_LINEAR_ADDR + | HMVMX_READ_GUEST_PHYSICAL_ADDR; +} +#endif + +/** + * Verifies that our cached values of the VMCS fields are all consistent with + * what's actually present in the VMCS. + * + * @returns VBox status code. + * @retval VINF_SUCCESS if all our caches match their respective VMCS fields. + * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the + * VMCS content. HMCPU error-field is + * updated, see VMX_VCI_XXX. + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + * @param fIsNstGstVmcs Whether this is a nested-guest VMCS. + */ +static int vmxHCCheckCachedVmcsCtls(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs) +{ + const char * const pcszVmcs = fIsNstGstVmcs ? "Nested-guest VMCS" : "VMCS"; + + uint32_t u32Val; + int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY, &u32Val); + AssertRC(rc); + AssertMsgReturnStmt(pVmcsInfo->u32EntryCtls == u32Val, + ("%s entry controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32EntryCtls, u32Val), + VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_ENTRY, + VERR_VMX_VMCS_FIELD_CACHE_INVALID); + + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_EXIT, &u32Val); + AssertRC(rc); + AssertMsgReturnStmt(pVmcsInfo->u32ExitCtls == u32Val, + ("%s exit controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ExitCtls, u32Val), + VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_EXIT, + VERR_VMX_VMCS_FIELD_CACHE_INVALID); + + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); + AssertRC(rc); + AssertMsgReturnStmt(pVmcsInfo->u32PinCtls == u32Val, + ("%s pin controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32PinCtls, u32Val), + VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_PIN_EXEC, + VERR_VMX_VMCS_FIELD_CACHE_INVALID); + + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); + AssertRC(rc); + AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls == u32Val, + ("%s proc controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ProcCtls, u32Val), + VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_PROC_EXEC, + VERR_VMX_VMCS_FIELD_CACHE_INVALID); + + if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS) + { + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); + AssertRC(rc); + AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls2 == u32Val, + ("%s proc2 controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ProcCtls2, u32Val), + VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_PROC_EXEC2, + VERR_VMX_VMCS_FIELD_CACHE_INVALID); + } + + uint64_t u64Val; + if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TERTIARY_CTLS) + { + rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_CTRL_PROC_EXEC3_FULL, &u64Val); + AssertRC(rc); + AssertMsgReturnStmt(pVmcsInfo->u64ProcCtls3 == u64Val, + ("%s proc3 controls mismatch: Cache=%#RX32 VMCS=%#RX64\n", pcszVmcs, pVmcsInfo->u64ProcCtls3, u64Val), + VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_PROC_EXEC3, + VERR_VMX_VMCS_FIELD_CACHE_INVALID); + } + + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); + AssertRC(rc); + AssertMsgReturnStmt(pVmcsInfo->u32XcptBitmap == u32Val, + ("%s exception bitmap mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32XcptBitmap, u32Val), + VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_XCPT_BITMAP, + VERR_VMX_VMCS_FIELD_CACHE_INVALID); + + rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val); + AssertRC(rc); + AssertMsgReturnStmt(pVmcsInfo->u64TscOffset == u64Val, + ("%s TSC offset mismatch: Cache=%#RX64 VMCS=%#RX64\n", pcszVmcs, pVmcsInfo->u64TscOffset, u64Val), + VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_TSC_OFFSET, + VERR_VMX_VMCS_FIELD_CACHE_INVALID); + + NOREF(pcszVmcs); + return VINF_SUCCESS; +} + + +/** + * Exports the guest state with appropriate VM-entry and VM-exit controls in the + * VMCS. + * + * This is typically required when the guest changes paging mode. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + * + * @remarks Requires EFER. + * @remarks No-long-jump zone!!! + */ +static int vmxHCExportGuestEntryExitCtls(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient) +{ + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS) + { + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + + /* + * VM-entry controls. + */ + { + uint32_t fVal = g_HmMsrs.u.vmx.EntryCtls.n.allowed0; /* Bits set here must be set in the VMCS. */ + uint32_t const fZap = g_HmMsrs.u.vmx.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */ + + /* + * Load the guest debug controls (DR7 and IA32_DEBUGCTL MSR) on VM-entry. + * The first VT-x capable CPUs only supported the 1-setting of this bit. + * + * For nested-guests, this is a mandatory VM-entry control. It's also + * required because we do not want to leak host bits to the nested-guest. + */ + fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG; + + /* + * Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. + * + * For nested-guests, the "IA-32e mode guest" control we initialize with what is + * required to get the nested-guest working with hardware-assisted VMX execution. + * It depends on the nested-guest's IA32_EFER.LMA bit. Remember, a nested hypervisor + * can skip intercepting changes to the EFER MSR. This is why it needs to be done + * here rather than while merging the guest VMCS controls. + */ + if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)) + { + Assert(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME); + fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST; + } + else + Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST)); + + /* + * If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. + * + * For nested-guests, we use the "load IA32_EFER" if the hardware supports it, + * regardless of whether the nested-guest VMCS specifies it because we are free to + * load whatever MSRs we require and we do not need to modify the guest visible copy + * of the VM-entry MSR load area. + */ + if ( g_fHmVmxSupportsVmcsEfer +#ifndef IN_NEM_DARWIN + && hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient) +#endif + ) + fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR; + else + Assert(!(fVal & VMX_ENTRY_CTLS_LOAD_EFER_MSR)); + + /* + * The following should -not- be set (since we're not in SMM mode): + * - VMX_ENTRY_CTLS_ENTRY_TO_SMM + * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON + */ + + /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR, + * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */ + + if ((fVal & fZap) == fVal) + { /* likely */ } + else + { + Log4Func(("Invalid VM-entry controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n", + g_HmMsrs.u.vmx.EntryCtls.n.allowed0, fVal, fZap)); + VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_UFC_CTRL_ENTRY; + return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO; + } + + /* Commit it to the VMCS. */ + if (pVmcsInfo->u32EntryCtls != fVal) + { + int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_ENTRY, fVal); + AssertRC(rc); + pVmcsInfo->u32EntryCtls = fVal; + } + } + + /* + * VM-exit controls. + */ + { + uint32_t fVal = g_HmMsrs.u.vmx.ExitCtls.n.allowed0; /* Bits set here must be set in the VMCS. */ + uint32_t const fZap = g_HmMsrs.u.vmx.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */ + + /* + * Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only + * supported the 1-setting of this bit. + * + * For nested-guests, we set the "save debug controls" as the converse + * "load debug controls" is mandatory for nested-guests anyway. + */ + fVal |= VMX_EXIT_CTLS_SAVE_DEBUG; + + /* + * Set the host long mode active (EFER.LMA) bit (which Intel calls + * "Host address-space size") if necessary. On VM-exit, VT-x sets both the + * host EFER.LMA and EFER.LME bit to this value. See assertion in + * vmxHCExportHostMsrs(). + * + * For nested-guests, we always set this bit as we do not support 32-bit + * hosts. + */ + fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE; + +#ifndef IN_NEM_DARWIN + /* + * If the VMCS EFER MSR fields are supported by the hardware, we use it. + * + * For nested-guests, we should use the "save IA32_EFER" control if we also + * used the "load IA32_EFER" control while exporting VM-entry controls. + */ + if ( g_fHmVmxSupportsVmcsEfer + && hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient)) + { + fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR + | VMX_EXIT_CTLS_LOAD_EFER_MSR; + } +#endif + + /* + * Enable saving of the VMX-preemption timer value on VM-exit. + * For nested-guests, currently not exposed/used. + */ + /** @todo r=bird: Measure performance hit because of this vs. always rewriting + * the timer value. */ + if (VM_IS_VMX_PREEMPT_TIMER_USED(pVM)) + { + Assert(g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER); + fVal |= VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER; + } + + /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */ + Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT)); + + /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR, + * VMX_EXIT_CTLS_SAVE_PAT_MSR, + * VMX_EXIT_CTLS_LOAD_PAT_MSR. */ + + if ((fVal & fZap) == fVal) + { /* likely */ } + else + { + Log4Func(("Invalid VM-exit controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n", + g_HmMsrs.u.vmx.ExitCtls.n.allowed0, fVal, fZap)); + VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_UFC_CTRL_EXIT; + return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO; + } + + /* Commit it to the VMCS. */ + if (pVmcsInfo->u32ExitCtls != fVal) + { + int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_EXIT, fVal); + AssertRC(rc); + pVmcsInfo->u32ExitCtls = fVal; + } + } + + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_VMX_ENTRY_EXIT_CTLS); + } + return VINF_SUCCESS; +} + + +/** + * Sets the TPR threshold in the VMCS. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + * @param u32TprThreshold The TPR threshold (task-priority class only). + */ +DECLINLINE(void) vmxHCApicSetTprThreshold(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t u32TprThreshold) +{ + Assert(!(u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)); /* Bits 31:4 MBZ. */ + Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW); + RT_NOREF(pVmcsInfo); + int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold); + AssertRC(rc); +} + + +/** + * Exports the guest APIC TPR state into the VMCS. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + * + * @remarks No-long-jump zone!!! + */ +static void vmxHCExportGuestApicTpr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient) +{ + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR) + { + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR); + + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + if (!pVmxTransient->fIsNestedGuest) + { + if ( PDMHasApic(pVCpu->CTX_SUFF(pVM)) + && APICIsEnabled(pVCpu)) + { + /* + * Setup TPR shadowing. + */ + if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW) + { + bool fPendingIntr = false; + uint8_t u8Tpr = 0; + uint8_t u8PendingIntr = 0; + int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr); + AssertRC(rc); + + /* + * If there are interrupts pending but masked by the TPR, instruct VT-x to + * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the + * priority of the pending interrupt so we can deliver the interrupt. If there + * are no interrupts pending, set threshold to 0 to not cause any + * TPR-below-threshold VM-exits. + */ + uint32_t u32TprThreshold = 0; + if (fPendingIntr) + { + /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR + (which is the Task-Priority Class). */ + const uint8_t u8PendingPriority = u8PendingIntr >> 4; + const uint8_t u8TprPriority = u8Tpr >> 4; + if (u8PendingPriority <= u8TprPriority) + u32TprThreshold = u8PendingPriority; + } + + vmxHCApicSetTprThreshold(pVCpu, pVmcsInfo, u32TprThreshold); + } + } + } + /* else: the TPR threshold has already been updated while merging the nested-guest VMCS. */ + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR); + } +} + + +/** + * Gets the guest interruptibility-state and updates related force-flags. + * + * @returns Guest's interruptibility-state. + * @param pVCpu The cross context virtual CPU structure. + * + * @remarks No-long-jump zone!!! + */ +static uint32_t vmxHCGetGuestIntrStateAndUpdateFFs(PVMCPUCC pVCpu) +{ + uint32_t fIntrState; + + /* + * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS. + */ + if (!CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx)) + fIntrState = 0; + else + { + /* If inhibition is active, RIP should've been imported from the VMCS already. */ + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP); + + if (CPUMIsInInterruptShadowAfterSs(&pVCpu->cpum.GstCtx)) + fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS; + else + { + fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI; + + /* Block-by-STI must not be set when interrupts are disabled. */ + AssertStmt(pVCpu->cpum.GstCtx.eflags.Bits.u1IF, fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS); + } + } + + /* + * Check if we should inhibit NMI delivery. + */ + if (!CPUMAreInterruptsInhibitedByNmiEx(&pVCpu->cpum.GstCtx)) + { /* likely */ } + else + fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI; + + /* + * Validate. + */ + /* We don't support block-by-SMI yet.*/ + Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); + + return fIntrState; +} + + +/** + * Exports the exception intercepts required for guest execution in the VMCS. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + * + * @remarks No-long-jump zone!!! + */ +static void vmxHCExportGuestXcptIntercepts(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient) +{ + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_VMX_XCPT_INTERCEPTS) + { + /* When executing a nested-guest, we do not need to trap GIM hypercalls by intercepting #UD. */ + if ( !pVmxTransient->fIsNestedGuest + && VCPU_2_VMXSTATE(pVCpu).fGIMTrapXcptUD) + vmxHCAddXcptIntercept(pVCpu, pVmxTransient, X86_XCPT_UD); + else + vmxHCRemoveXcptIntercept(pVCpu, pVmxTransient, X86_XCPT_UD); + + /* Other exception intercepts are handled elsewhere, e.g. while exporting guest CR0. */ + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_VMX_XCPT_INTERCEPTS); + } +} + + +/** + * Exports the guest's RIP into the guest-state area in the VMCS. + * + * @param pVCpu The cross context virtual CPU structure. + * + * @remarks No-long-jump zone!!! + */ +static void vmxHCExportGuestRip(PVMCPUCC pVCpu) +{ + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_RIP) + { + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP); + + int rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip); + AssertRC(rc); + + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_RIP); + Log4Func(("rip=%#RX64\n", pVCpu->cpum.GstCtx.rip)); + } +} + + +/** + * Exports the guest's RFLAGS into the guest-state area in the VMCS. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + * + * @remarks No-long-jump zone!!! + */ +static void vmxHCExportGuestRflags(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient) +{ + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_RFLAGS) + { + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS); + + /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits + of RFLAGS are reserved (MBZ). We use bits 63:24 for internal purposes, so no need + to assert this, the CPUMX86EFLAGS/CPUMX86RFLAGS union masks these off for us. + Use 32-bit VMWRITE. */ + uint32_t fEFlags = pVCpu->cpum.GstCtx.eflags.u; + Assert((fEFlags & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK); + AssertMsg(!(fEFlags & ~(X86_EFL_LIVE_MASK | X86_EFL_RA1_MASK)), ("%#x\n", fEFlags)); + +#ifndef IN_NEM_DARWIN + /* + * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so + * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x + * can run the real-mode guest code under Virtual 8086 mode. + */ + PVMXVMCSINFOSHARED pVmcsInfo = pVmxTransient->pVmcsInfo->pShared; + if (pVmcsInfo->RealMode.fRealOnV86Active) + { + Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS); + Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM))); + Assert(!pVmxTransient->fIsNestedGuest); + pVmcsInfo->RealMode.Eflags.u32 = fEFlags; /* Save the original eflags of the real-mode guest. */ + fEFlags |= X86_EFL_VM; /* Set the Virtual 8086 mode bit. */ + fEFlags &= ~X86_EFL_IOPL; /* Change IOPL to 0, otherwise certain instructions won't fault. */ + } +#else + RT_NOREF(pVmxTransient); +#endif + + int rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_RFLAGS, fEFlags); + AssertRC(rc); + + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS); + Log4Func(("eflags=%#RX32\n", fEFlags)); + } +} + + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX +/** + * Copies the nested-guest VMCS to the shadow VMCS. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + * + * @remarks No-long-jump zone!!! + */ +static int vmxHCCopyNstGstToShadowVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo) +{ + PVMCC const pVM = pVCpu->CTX_SUFF(pVM); + PCVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs; + + /* + * Disable interrupts so we don't get preempted while the shadow VMCS is the + * current VMCS, as we may try saving guest lazy MSRs. + * + * Strictly speaking the lazy MSRs are not in the VMCS, but I'd rather not risk + * calling the import VMCS code which is currently performing the guest MSR reads + * (on 64-bit hosts) and accessing the auto-load/store MSR area on 32-bit hosts + * and the rest of the VMX leave session machinery. + */ + RTCCUINTREG const fEFlags = ASMIntDisableFlags(); + + int rc = vmxHCLoadShadowVmcs(pVmcsInfo); + if (RT_SUCCESS(rc)) + { + /* + * Copy all guest read/write VMCS fields. + * + * We don't check for VMWRITE failures here for performance reasons and + * because they are not expected to fail, barring irrecoverable conditions + * like hardware errors. + */ + uint32_t const cShadowVmcsFields = pVM->hmr0.s.vmx.cShadowVmcsFields; + for (uint32_t i = 0; i < cShadowVmcsFields; i++) + { + uint64_t u64Val; + uint32_t const uVmcsField = pVM->hmr0.s.vmx.paShadowVmcsFields[i]; + IEMReadVmxVmcsField(pVmcsNstGst, uVmcsField, &u64Val); + VMX_VMCS_WRITE_64(pVCpu, uVmcsField, u64Val); + } + + /* + * If the host CPU supports writing all VMCS fields, copy the guest read-only + * VMCS fields, so the guest can VMREAD them without causing a VM-exit. + */ + if (g_HmMsrs.u.vmx.u64Misc & VMX_MISC_VMWRITE_ALL) + { + uint32_t const cShadowVmcsRoFields = pVM->hmr0.s.vmx.cShadowVmcsRoFields; + for (uint32_t i = 0; i < cShadowVmcsRoFields; i++) + { + uint64_t u64Val; + uint32_t const uVmcsField = pVM->hmr0.s.vmx.paShadowVmcsRoFields[i]; + IEMReadVmxVmcsField(pVmcsNstGst, uVmcsField, &u64Val); + VMX_VMCS_WRITE_64(pVCpu, uVmcsField, u64Val); + } + } + + rc = vmxHCClearShadowVmcs(pVmcsInfo); + rc |= hmR0VmxLoadVmcs(pVmcsInfo); + } + + ASMSetFlags(fEFlags); + return rc; +} + + +/** + * Copies the shadow VMCS to the nested-guest VMCS. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + * + * @remarks Called with interrupts disabled. + */ +static int vmxHCCopyShadowToNstGstVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo) +{ + Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); + PVMCC const pVM = pVCpu->CTX_SUFF(pVM); + PVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs; + + int rc = vmxHCLoadShadowVmcs(pVmcsInfo); + if (RT_SUCCESS(rc)) + { + /* + * Copy guest read/write fields from the shadow VMCS. + * Guest read-only fields cannot be modified, so no need to copy them. + * + * We don't check for VMREAD failures here for performance reasons and + * because they are not expected to fail, barring irrecoverable conditions + * like hardware errors. + */ + uint32_t const cShadowVmcsFields = pVM->hmr0.s.vmx.cShadowVmcsFields; + for (uint32_t i = 0; i < cShadowVmcsFields; i++) + { + uint64_t u64Val; + uint32_t const uVmcsField = pVM->hmr0.s.vmx.paShadowVmcsFields[i]; + VMX_VMCS_READ_64(pVCpu, uVmcsField, &u64Val); + IEMWriteVmxVmcsField(pVmcsNstGst, uVmcsField, u64Val); + } + + rc = vmxHCClearShadowVmcs(pVmcsInfo); + rc |= hmR0VmxLoadVmcs(pVmcsInfo); + } + return rc; +} + + +/** + * Enables VMCS shadowing for the given VMCS info. object. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + * + * @remarks No-long-jump zone!!! + */ +static void vmxHCEnableVmcsShadowing(PCVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo) +{ + uint32_t uProcCtls2 = pVmcsInfo->u32ProcCtls2; + if (!(uProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)) + { + Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS); + uProcCtls2 |= VMX_PROC_CTLS2_VMCS_SHADOWING; + int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, uProcCtls2); AssertRC(rc); + rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, pVmcsInfo->HCPhysShadowVmcs); AssertRC(rc); + pVmcsInfo->u32ProcCtls2 = uProcCtls2; + pVmcsInfo->u64VmcsLinkPtr = pVmcsInfo->HCPhysShadowVmcs; + Log4Func(("Enabled\n")); + } +} + + +/** + * Disables VMCS shadowing for the given VMCS info. object. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + * + * @remarks No-long-jump zone!!! + */ +static void vmxHCDisableVmcsShadowing(PCVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo) +{ + /* + * We want all VMREAD and VMWRITE instructions to cause VM-exits, so we clear the + * VMCS shadowing control. However, VM-entry requires the shadow VMCS indicator bit + * to match the VMCS shadowing control if the VMCS link pointer is not NIL_RTHCPHYS. + * Hence, we must also reset the VMCS link pointer to ensure VM-entry does not fail. + * + * See Intel spec. 26.2.1.1 "VM-Execution Control Fields". + * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State". + */ + uint32_t uProcCtls2 = pVmcsInfo->u32ProcCtls2; + if (uProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING) + { + uProcCtls2 &= ~VMX_PROC_CTLS2_VMCS_SHADOWING; + int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, uProcCtls2); AssertRC(rc); + rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS); AssertRC(rc); + pVmcsInfo->u32ProcCtls2 = uProcCtls2; + pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS; + Log4Func(("Disabled\n")); + } +} +#endif + + +/** + * Exports the guest CR0 control register into the guest-state area in the VMCS. + * + * The guest FPU state is always pre-loaded hence we don't need to bother about + * sharing FPU related CR0 bits between the guest and host. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + * + * @remarks No-long-jump zone!!! + */ +static int vmxHCExportGuestCR0(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient) +{ + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_CR0) + { + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + + uint64_t fSetCr0 = g_HmMsrs.u.vmx.u64Cr0Fixed0; + uint64_t const fZapCr0 = g_HmMsrs.u.vmx.u64Cr0Fixed1; + if (VM_IS_VMX_UNRESTRICTED_GUEST(pVM)) + fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG); + else + Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG)); + + if (!pVmxTransient->fIsNestedGuest) + { + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0); + uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0; + uint64_t const u64ShadowCr0 = u64GuestCr0; + Assert(!RT_HI_U32(u64GuestCr0)); + + /* + * Setup VT-x's view of the guest CR0. + */ + uint32_t uProcCtls = pVmcsInfo->u32ProcCtls; + if (VM_IS_VMX_NESTED_PAGING(pVM)) + { +#ifndef HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS + if (CPUMIsGuestPagingEnabled(pVCpu)) + { + /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */ + uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT + | VMX_PROC_CTLS_CR3_STORE_EXIT); + } + else + { + /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */ + uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT + | VMX_PROC_CTLS_CR3_STORE_EXIT; + } + + /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */ + if (VM_IS_VMX_UNRESTRICTED_GUEST(pVM)) + uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT; +#endif + } + else + { + /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */ + u64GuestCr0 |= X86_CR0_WP; + } + + /* + * Guest FPU bits. + * + * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state + * using CR0.TS. + * + * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be + * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks. + */ + u64GuestCr0 |= X86_CR0_NE; + + /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */ + bool const fInterceptMF = !(u64ShadowCr0 & X86_CR0_NE); + + /* + * Update exception intercepts. + */ + uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap; +#ifndef IN_NEM_DARWIN + if (pVmcsInfo->pShared->RealMode.fRealOnV86Active) + { + Assert(PDMVmmDevHeapIsEnabled(pVM)); + Assert(pVM->hm.s.vmx.pRealModeTSS); + uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK; + } + else +#endif + { + /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */ + uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK; + if (fInterceptMF) + uXcptBitmap |= RT_BIT(X86_XCPT_MF); + } + + /* Additional intercepts for debugging, define these yourself explicitly. */ +#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS + uXcptBitmap |= 0 + | RT_BIT(X86_XCPT_BP) + | RT_BIT(X86_XCPT_DE) + | RT_BIT(X86_XCPT_NM) + | RT_BIT(X86_XCPT_TS) + | RT_BIT(X86_XCPT_UD) + | RT_BIT(X86_XCPT_NP) + | RT_BIT(X86_XCPT_SS) + | RT_BIT(X86_XCPT_GP) + | RT_BIT(X86_XCPT_PF) + | RT_BIT(X86_XCPT_MF) + ; +#elif defined(HMVMX_ALWAYS_TRAP_PF) + uXcptBitmap |= RT_BIT(X86_XCPT_PF); +#endif + if (VCPU_2_VMXSTATE(pVCpu).fTrapXcptGpForLovelyMesaDrv) + uXcptBitmap |= RT_BIT(X86_XCPT_GP); + if (VCPU_2_VMXSTATE(pVCpu).fGCMTrapXcptDE) + uXcptBitmap |= RT_BIT(X86_XCPT_DE); + Assert(VM_IS_VMX_NESTED_PAGING(pVM) || (uXcptBitmap & RT_BIT(X86_XCPT_PF))); + + /* Apply the hardware specified CR0 fixed bits and enable caching. */ + u64GuestCr0 |= fSetCr0; + u64GuestCr0 &= fZapCr0; + u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW); + + /* Commit the CR0 and related fields to the guest VMCS. */ + int rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_CR0, u64GuestCr0); AssertRC(rc); + rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0); AssertRC(rc); + if (uProcCtls != pVmcsInfo->u32ProcCtls) + { + rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls); + AssertRC(rc); + } + if (uXcptBitmap != pVmcsInfo->u32XcptBitmap) + { + rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap); + AssertRC(rc); + } + + /* Update our caches. */ + pVmcsInfo->u32ProcCtls = uProcCtls; + pVmcsInfo->u32XcptBitmap = uXcptBitmap; + + Log4Func(("cr0=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0)); + } + else + { + /* + * With nested-guests, we may have extended the guest/host mask here since we + * merged in the outer guest's mask. Thus, the merged mask can include more bits + * (to read from the nested-guest CR0 read-shadow) than the nested hypervisor + * originally supplied. We must copy those bits from the nested-guest CR0 into + * the nested-guest CR0 read-shadow. + */ + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0); + uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0; + uint64_t const u64ShadowCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVmcsInfo->u64Cr0Mask); + Assert(!RT_HI_U32(u64GuestCr0)); + Assert(u64GuestCr0 & X86_CR0_NE); + + /* Apply the hardware specified CR0 fixed bits and enable caching. */ + u64GuestCr0 |= fSetCr0; + u64GuestCr0 &= fZapCr0; + u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW); + + /* Commit the CR0 and CR0 read-shadow to the nested-guest VMCS. */ + int rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_CR0, u64GuestCr0); AssertRC(rc); + rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0); AssertRC(rc); + + Log4Func(("cr0=%#RX64 shadow=%#RX64 (set=%#RX64 zap=%#RX64)\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0)); + } + + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_CR0); + } + + return VINF_SUCCESS; +} + + +/** + * Exports the guest control registers (CR3, CR4) into the guest-state area + * in the VMCS. + * + * @returns VBox strict status code. + * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code + * without unrestricted guest access and the VMMDev is not presently + * mapped (e.g. EFI32). + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + * + * @remarks No-long-jump zone!!! + */ +static VBOXSTRICTRC vmxHCExportGuestCR3AndCR4(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient) +{ + int rc = VINF_SUCCESS; + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + + /* + * Guest CR2. + * It's always loaded in the assembler code. Nothing to do here. + */ + + /* + * Guest CR3. + */ + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_CR3) + { + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3); + + if (VM_IS_VMX_NESTED_PAGING(pVM)) + { +#ifndef IN_NEM_DARWIN + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + pVmcsInfo->HCPhysEPTP = PGMGetHyperCR3(pVCpu); + + /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */ + Assert(pVmcsInfo->HCPhysEPTP != NIL_RTHCPHYS); + Assert(!(pVmcsInfo->HCPhysEPTP & UINT64_C(0xfff0000000000000))); + Assert(!(pVmcsInfo->HCPhysEPTP & 0xfff)); + + /* VMX_EPT_MEMTYPE_WB support is already checked in vmxHCSetupTaggedTlb(). */ + pVmcsInfo->HCPhysEPTP |= RT_BF_MAKE(VMX_BF_EPTP_MEMTYPE, VMX_EPTP_MEMTYPE_WB) + | RT_BF_MAKE(VMX_BF_EPTP_PAGE_WALK_LENGTH, VMX_EPTP_PAGE_WALK_LENGTH_4); + + /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */ + AssertMsg( ((pVmcsInfo->HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */ + && ((pVmcsInfo->HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */ + ("EPTP %#RX64\n", pVmcsInfo->HCPhysEPTP)); + AssertMsg( !((pVmcsInfo->HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */ + || (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY), + ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVmcsInfo->HCPhysEPTP)); + + rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_CTRL_EPTP_FULL, pVmcsInfo->HCPhysEPTP); + AssertRC(rc); +#endif + + PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + uint64_t u64GuestCr3 = pCtx->cr3; + if ( VM_IS_VMX_UNRESTRICTED_GUEST(pVM) + || CPUMIsGuestPagingEnabledEx(pCtx)) + { + /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */ + if (CPUMIsGuestInPAEModeEx(pCtx)) + { + rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_PDPTE0_FULL, pCtx->aPaePdpes[0].u); AssertRC(rc); + rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_PDPTE1_FULL, pCtx->aPaePdpes[1].u); AssertRC(rc); + rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_PDPTE2_FULL, pCtx->aPaePdpes[2].u); AssertRC(rc); + rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_PDPTE3_FULL, pCtx->aPaePdpes[3].u); AssertRC(rc); + } + + /* + * The guest's view of its CR3 is unblemished with nested paging when the + * guest is using paging or we have unrestricted guest execution to handle + * the guest when it's not using paging. + */ + } +#ifndef IN_NEM_DARWIN + else + { + /* + * The guest is not using paging, but the CPU (VT-x) has to. While the guest + * thinks it accesses physical memory directly, we use our identity-mapped + * page table to map guest-linear to guest-physical addresses. EPT takes care + * of translating it to host-physical addresses. + */ + RTGCPHYS GCPhys; + Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable); + + /* We obtain it here every time as the guest could have relocated this PCI region. */ + rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys); + if (RT_SUCCESS(rc)) + { /* likely */ } + else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS) + { + Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n")); + return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */ + } + else + AssertMsgFailedReturn(("%Rrc\n", rc), rc); + + u64GuestCr3 = GCPhys; + } +#endif + + Log4Func(("guest_cr3=%#RX64 (GstN)\n", u64GuestCr3)); + rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_CR3, u64GuestCr3); + AssertRC(rc); + } + else + { + Assert(!pVmxTransient->fIsNestedGuest); + /* Non-nested paging case, just use the hypervisor's CR3. */ + RTHCPHYS const HCPhysGuestCr3 = PGMGetHyperCR3(pVCpu); + + Log4Func(("guest_cr3=%#RX64 (HstN)\n", HCPhysGuestCr3)); + rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_CR3, HCPhysGuestCr3); + AssertRC(rc); + } + + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_CR3); + } + + /* + * Guest CR4. + * ASSUMES this is done everytime we get in from ring-3! (XCR0) + */ + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_CR4) + { + PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + + uint64_t const fSetCr4 = g_HmMsrs.u.vmx.u64Cr4Fixed0; + uint64_t const fZapCr4 = g_HmMsrs.u.vmx.u64Cr4Fixed1; + + /* + * With nested-guests, we may have extended the guest/host mask here (since we + * merged in the outer guest's mask, see hmR0VmxMergeVmcsNested). This means, the + * mask can include more bits (to read from the nested-guest CR4 read-shadow) than + * the nested hypervisor originally supplied. Thus, we should, in essence, copy + * those bits from the nested-guest CR4 into the nested-guest CR4 read-shadow. + */ + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4); + uint64_t u64GuestCr4 = pCtx->cr4; + uint64_t const u64ShadowCr4 = !pVmxTransient->fIsNestedGuest + ? pCtx->cr4 + : CPUMGetGuestVmxMaskedCr4(pCtx, pVmcsInfo->u64Cr4Mask); + Assert(!RT_HI_U32(u64GuestCr4)); + +#ifndef IN_NEM_DARWIN + /* + * Setup VT-x's view of the guest CR4. + * + * If we're emulating real-mode using virtual-8086 mode, we want to redirect software + * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt + * redirection bitmap is already all 0, see hmR3InitFinalizeR0()) + * + * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode". + */ + if (pVmcsInfo->pShared->RealMode.fRealOnV86Active) + { + Assert(pVM->hm.s.vmx.pRealModeTSS); + Assert(PDMVmmDevHeapIsEnabled(pVM)); + u64GuestCr4 &= ~(uint64_t)X86_CR4_VME; + } +#endif + + if (VM_IS_VMX_NESTED_PAGING(pVM)) + { + if ( !CPUMIsGuestPagingEnabledEx(pCtx) + && !VM_IS_VMX_UNRESTRICTED_GUEST(pVM)) + { + /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */ + u64GuestCr4 |= X86_CR4_PSE; + /* Our identity mapping is a 32-bit page directory. */ + u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE; + } + /* else use guest CR4.*/ + } + else + { + Assert(!pVmxTransient->fIsNestedGuest); + + /* + * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host + * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables. + */ + switch (VCPU_2_VMXSTATE(pVCpu).enmShadowMode) + { + case PGMMODE_REAL: /* Real-mode. */ + case PGMMODE_PROTECTED: /* Protected mode without paging. */ + case PGMMODE_32_BIT: /* 32-bit paging. */ + { + u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE; + break; + } + + case PGMMODE_PAE: /* PAE paging. */ + case PGMMODE_PAE_NX: /* PAE paging with NX. */ + { + u64GuestCr4 |= X86_CR4_PAE; + break; + } + + case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */ + case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */ + { +#ifdef VBOX_WITH_64_BITS_GUESTS + /* For our assumption in vmxHCShouldSwapEferMsr. */ + Assert(u64GuestCr4 & X86_CR4_PAE); + break; +#endif + } + default: + AssertFailed(); + return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE; + } + } + + /* Apply the hardware specified CR4 fixed bits (mainly CR4.VMXE). */ + u64GuestCr4 |= fSetCr4; + u64GuestCr4 &= fZapCr4; + + /* Commit the CR4 and CR4 read-shadow to the guest VMCS. */ + rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_CR4, u64GuestCr4); AssertRC(rc); + rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_CTRL_CR4_READ_SHADOW, u64ShadowCr4); AssertRC(rc); + +#ifndef IN_NEM_DARWIN + /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */ + bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0(); + if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0) + { + pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0; + hmR0VmxUpdateStartVmFunction(pVCpu); + } +#endif + + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_CR4); + + Log4Func(("cr4=%#RX64 shadow=%#RX64 (set=%#RX64 zap=%#RX64)\n", u64GuestCr4, u64ShadowCr4, fSetCr4, fZapCr4)); + } + return rc; +} + + +#ifdef VBOX_STRICT +/** + * Strict function to validate segment registers. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + * + * @remarks Will import guest CR0 on strict builds during validation of + * segments. + */ +static void vmxHCValidateSegmentRegs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo) +{ + /* + * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". + * + * The reason we check for attribute value 0 in this function and not just the unusable bit is + * because vmxHCExportGuestSegReg() only updates the VMCS' copy of the value with the + * unusable bit and doesn't change the guest-context value. + */ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + vmxHCImportGuestStateEx(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0); + if ( !VM_IS_VMX_UNRESTRICTED_GUEST(pVM) + && ( !CPUMIsGuestInRealModeEx(pCtx) + && !CPUMIsGuestInV86ModeEx(pCtx))) + { + /* Protected mode checks */ + /* CS */ + Assert(pCtx->cs.Attr.n.u1Present); + Assert(!(pCtx->cs.Attr.u & 0xf00)); + Assert(!(pCtx->cs.Attr.u & 0xfffe0000)); + Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff + || !(pCtx->cs.Attr.n.u1Granularity)); + Assert( !(pCtx->cs.u32Limit & 0xfff00000) + || (pCtx->cs.Attr.n.u1Granularity)); + /* CS cannot be loaded with NULL in protected mode. */ + Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */ + if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11) + Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl); + else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15) + Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl); + else + AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl)); + /* SS */ + Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL)); + Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL)); + if ( !(pCtx->cr0 & X86_CR0_PE) + || pCtx->cs.Attr.n.u4Type == 3) + { + Assert(!pCtx->ss.Attr.n.u2Dpl); + } + if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE)) + { + Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL)); + Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7); + Assert(pCtx->ss.Attr.n.u1Present); + Assert(!(pCtx->ss.Attr.u & 0xf00)); + Assert(!(pCtx->ss.Attr.u & 0xfffe0000)); + Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff + || !(pCtx->ss.Attr.n.u1Granularity)); + Assert( !(pCtx->ss.u32Limit & 0xfff00000) + || (pCtx->ss.Attr.n.u1Granularity)); + } + /* DS, ES, FS, GS - only check for usable selectors, see vmxHCExportGuestSegReg(). */ + if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE)) + { + Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED); + Assert(pCtx->ds.Attr.n.u1Present); + Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL)); + Assert(!(pCtx->ds.Attr.u & 0xf00)); + Assert(!(pCtx->ds.Attr.u & 0xfffe0000)); + Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff + || !(pCtx->ds.Attr.n.u1Granularity)); + Assert( !(pCtx->ds.u32Limit & 0xfff00000) + || (pCtx->ds.Attr.n.u1Granularity)); + Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE) + || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ)); + } + if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE)) + { + Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED); + Assert(pCtx->es.Attr.n.u1Present); + Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL)); + Assert(!(pCtx->es.Attr.u & 0xf00)); + Assert(!(pCtx->es.Attr.u & 0xfffe0000)); + Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff + || !(pCtx->es.Attr.n.u1Granularity)); + Assert( !(pCtx->es.u32Limit & 0xfff00000) + || (pCtx->es.Attr.n.u1Granularity)); + Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE) + || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ)); + } + if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE)) + { + Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED); + Assert(pCtx->fs.Attr.n.u1Present); + Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL)); + Assert(!(pCtx->fs.Attr.u & 0xf00)); + Assert(!(pCtx->fs.Attr.u & 0xfffe0000)); + Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff + || !(pCtx->fs.Attr.n.u1Granularity)); + Assert( !(pCtx->fs.u32Limit & 0xfff00000) + || (pCtx->fs.Attr.n.u1Granularity)); + Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE) + || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ)); + } + if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE)) + { + Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED); + Assert(pCtx->gs.Attr.n.u1Present); + Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL)); + Assert(!(pCtx->gs.Attr.u & 0xf00)); + Assert(!(pCtx->gs.Attr.u & 0xfffe0000)); + Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff + || !(pCtx->gs.Attr.n.u1Granularity)); + Assert( !(pCtx->gs.u32Limit & 0xfff00000) + || (pCtx->gs.Attr.n.u1Granularity)); + Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE) + || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ)); + } + /* 64-bit capable CPUs. */ + Assert(!RT_HI_U32(pCtx->cs.u64Base)); + Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base)); + Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base)); + Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base)); + } + else if ( CPUMIsGuestInV86ModeEx(pCtx) + || ( CPUMIsGuestInRealModeEx(pCtx) + && !VM_IS_VMX_UNRESTRICTED_GUEST(pVM))) + { + /* Real and v86 mode checks. */ + /* vmxHCExportGuestSegReg() writes the modified in VMCS. We want what we're feeding to VT-x. */ + uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr; +#ifndef IN_NEM_DARWIN + if (pVmcsInfo->pShared->RealMode.fRealOnV86Active) + { + u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; + u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3; + } + else +#endif + { + u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u; + u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u; + } + + /* CS */ + AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel)); + Assert(pCtx->cs.u32Limit == 0xffff); + AssertMsg(u32CSAttr == 0xf3, ("cs=%#x %#x ", pCtx->cs.Sel, u32CSAttr)); + /* SS */ + Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4); + Assert(pCtx->ss.u32Limit == 0xffff); + Assert(u32SSAttr == 0xf3); + /* DS */ + Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4); + Assert(pCtx->ds.u32Limit == 0xffff); + Assert(u32DSAttr == 0xf3); + /* ES */ + Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4); + Assert(pCtx->es.u32Limit == 0xffff); + Assert(u32ESAttr == 0xf3); + /* FS */ + Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4); + Assert(pCtx->fs.u32Limit == 0xffff); + Assert(u32FSAttr == 0xf3); + /* GS */ + Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4); + Assert(pCtx->gs.u32Limit == 0xffff); + Assert(u32GSAttr == 0xf3); + /* 64-bit capable CPUs. */ + Assert(!RT_HI_U32(pCtx->cs.u64Base)); + Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base)); + Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base)); + Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base)); + } +} +#endif /* VBOX_STRICT */ + + +/** + * Exports a guest segment register into the guest-state area in the VMCS. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + * @param iSegReg The segment register number (X86_SREG_XXX). + * @param pSelReg Pointer to the segment selector. + * + * @remarks No-long-jump zone!!! + */ +static int vmxHCExportGuestSegReg(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, uint32_t iSegReg, PCCPUMSELREG pSelReg) +{ + Assert(iSegReg < X86_SREG_COUNT); + + uint32_t u32Access = pSelReg->Attr.u; +#ifndef IN_NEM_DARWIN + if (!pVmcsInfo->pShared->RealMode.fRealOnV86Active) +#endif + { + /* + * The way to differentiate between whether this is really a null selector or was just + * a selector loaded with 0 in real-mode is using the segment attributes. A selector + * loaded in real-mode with the value 0 is valid and usable in protected-mode and we + * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures + * NULL selectors loaded in protected-mode have their attribute as 0. + */ + if (u32Access) + { } + else + u32Access = X86DESCATTR_UNUSABLE; + } +#ifndef IN_NEM_DARWIN + else + { + /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */ + u32Access = 0xf3; + Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS); + Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM))); + RT_NOREF_PV(pVCpu); + } +#else + RT_NOREF(pVmcsInfo); +#endif + + /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */ + AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED), + ("Access bit not set for usable segment. %.2s sel=%#x attr %#x\n", "ESCSSSDSFSGS" + iSegReg * 2, pSelReg, pSelReg->Attr.u)); + + /* + * Commit it to the VMCS. + */ + int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS16_GUEST_SEG_SEL(iSegReg), pSelReg->Sel); AssertRC(rc); + rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_SEG_LIMIT(iSegReg), pSelReg->u32Limit); AssertRC(rc); + rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_SEG_BASE(iSegReg), pSelReg->u64Base); AssertRC(rc); + rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_SEG_ACCESS_RIGHTS(iSegReg), u32Access); AssertRC(rc); + return VINF_SUCCESS; +} + + +/** + * Exports the guest segment registers, GDTR, IDTR, LDTR, TR into the guest-state + * area in the VMCS. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + * + * @remarks Will import guest CR0 on strict builds during validation of + * segments. + * @remarks No-long-jump zone!!! + */ +static int vmxHCExportGuestSegRegsXdtr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient) +{ + int rc = VERR_INTERNAL_ERROR_5; +#ifndef IN_NEM_DARWIN + PVMCC pVM = pVCpu->CTX_SUFF(pVM); +#endif + PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; +#ifndef IN_NEM_DARWIN + PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared; +#endif + + /* + * Guest Segment registers: CS, SS, DS, ES, FS, GS. + */ + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK) + { + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_CS) + { + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS); +#ifndef IN_NEM_DARWIN + if (pVmcsInfoShared->RealMode.fRealOnV86Active) + pVmcsInfoShared->RealMode.AttrCS.u = pCtx->cs.Attr.u; +#endif + rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_CS, &pCtx->cs); + AssertRC(rc); + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_CS); + } + + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_SS) + { + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS); +#ifndef IN_NEM_DARWIN + if (pVmcsInfoShared->RealMode.fRealOnV86Active) + pVmcsInfoShared->RealMode.AttrSS.u = pCtx->ss.Attr.u; +#endif + rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_SS, &pCtx->ss); + AssertRC(rc); + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_SS); + } + + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_DS) + { + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS); +#ifndef IN_NEM_DARWIN + if (pVmcsInfoShared->RealMode.fRealOnV86Active) + pVmcsInfoShared->RealMode.AttrDS.u = pCtx->ds.Attr.u; +#endif + rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_DS, &pCtx->ds); + AssertRC(rc); + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_DS); + } + + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_ES) + { + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES); +#ifndef IN_NEM_DARWIN + if (pVmcsInfoShared->RealMode.fRealOnV86Active) + pVmcsInfoShared->RealMode.AttrES.u = pCtx->es.Attr.u; +#endif + rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_ES, &pCtx->es); + AssertRC(rc); + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_ES); + } + + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_FS) + { + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS); +#ifndef IN_NEM_DARWIN + if (pVmcsInfoShared->RealMode.fRealOnV86Active) + pVmcsInfoShared->RealMode.AttrFS.u = pCtx->fs.Attr.u; +#endif + rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_FS, &pCtx->fs); + AssertRC(rc); + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_FS); + } + + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_GS) + { + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS); +#ifndef IN_NEM_DARWIN + if (pVmcsInfoShared->RealMode.fRealOnV86Active) + pVmcsInfoShared->RealMode.AttrGS.u = pCtx->gs.Attr.u; +#endif + rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_GS, &pCtx->gs); + AssertRC(rc); + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_GS); + } + +#ifdef VBOX_STRICT + vmxHCValidateSegmentRegs(pVCpu, pVmcsInfo); +#endif + Log4Func(("cs={%#04x base=%#RX64 limit=%#RX32 attr=%#RX32}\n", pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, + pCtx->cs.Attr.u)); + } + + /* + * Guest TR. + */ + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_TR) + { + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR); + + /* + * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is + * achieved using the interrupt redirection bitmap (all bits cleared to let the guest + * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup. + */ + uint16_t u16Sel; + uint32_t u32Limit; + uint64_t u64Base; + uint32_t u32AccessRights; +#ifndef IN_NEM_DARWIN + if (!pVmcsInfoShared->RealMode.fRealOnV86Active) +#endif + { + u16Sel = pCtx->tr.Sel; + u32Limit = pCtx->tr.u32Limit; + u64Base = pCtx->tr.u64Base; + u32AccessRights = pCtx->tr.Attr.u; + } +#ifndef IN_NEM_DARWIN + else + { + Assert(!pVmxTransient->fIsNestedGuest); + Assert(pVM->hm.s.vmx.pRealModeTSS); + Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */ + + /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */ + RTGCPHYS GCPhys; + rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys); + AssertRCReturn(rc, rc); + + X86DESCATTR DescAttr; + DescAttr.u = 0; + DescAttr.n.u1Present = 1; + DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; + + u16Sel = 0; + u32Limit = HM_VTX_TSS_SIZE; + u64Base = GCPhys; + u32AccessRights = DescAttr.u; + } +#endif + + /* Validate. */ + Assert(!(u16Sel & RT_BIT(2))); + AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY + || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights)); + AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights)); + Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/ + Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/ + Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */ + Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */ + Assert( (u32Limit & 0xfff) == 0xfff + || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */ + Assert( !(pCtx->tr.u32Limit & 0xfff00000) + || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */ + + rc = VMX_VMCS_WRITE_16(pVCpu, VMX_VMCS16_GUEST_TR_SEL, u16Sel); AssertRC(rc); + rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_TR_LIMIT, u32Limit); AssertRC(rc); + rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights); AssertRC(rc); + rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_TR_BASE, u64Base); AssertRC(rc); + + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_TR); + Log4Func(("tr base=%#RX64 limit=%#RX32\n", pCtx->tr.u64Base, pCtx->tr.u32Limit)); + } + + /* + * Guest GDTR. + */ + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_GDTR) + { + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR); + + rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt); AssertRC(rc); + rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt); AssertRC(rc); + + /* Validate. */ + Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */ + + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_GDTR); + Log4Func(("gdtr base=%#RX64 limit=%#RX32\n", pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt)); + } + + /* + * Guest LDTR. + */ + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_LDTR) + { + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR); + + /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */ + uint32_t u32Access; + if ( !pVmxTransient->fIsNestedGuest + && !pCtx->ldtr.Attr.u) + u32Access = X86DESCATTR_UNUSABLE; + else + u32Access = pCtx->ldtr.Attr.u; + + rc = VMX_VMCS_WRITE_16(pVCpu, VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel); AssertRC(rc); + rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit); AssertRC(rc); + rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access); AssertRC(rc); + rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base); AssertRC(rc); + + /* Validate. */ + if (!(u32Access & X86DESCATTR_UNUSABLE)) + { + Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */ + Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */ + Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */ + Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */ + Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */ + Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */ + Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff + || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */ + Assert( !(pCtx->ldtr.u32Limit & 0xfff00000) + || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */ + } + + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_LDTR); + Log4Func(("ldtr base=%#RX64 limit=%#RX32\n", pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit)); + } + + /* + * Guest IDTR. + */ + if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_IDTR) + { + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR); + + rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt); AssertRC(rc); + rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt); AssertRC(rc); + + /* Validate. */ + Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */ + + ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_IDTR); + Log4Func(("idtr base=%#RX64 limit=%#RX32\n", pCtx->idtr.pIdt, pCtx->idtr.cbIdt)); + } + + return VINF_SUCCESS; +} + + +/** + * Gets the IEM exception flags for the specified vector and IDT vectoring / + * VM-exit interruption info type. + * + * @returns The IEM exception flags. + * @param uVector The event vector. + * @param uVmxEventType The VMX event type. + * + * @remarks This function currently only constructs flags required for + * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code + * and CR2 aspects of an exception are not included). + */ +static uint32_t vmxHCGetIemXcptFlags(uint8_t uVector, uint32_t uVmxEventType) +{ + uint32_t fIemXcptFlags; + switch (uVmxEventType) + { + case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT: + case VMX_IDT_VECTORING_INFO_TYPE_NMI: + fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT; + break; + + case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT: + fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT; + break; + + case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT: + fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR; + break; + + case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: + { + fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT; + if (uVector == X86_XCPT_BP) + fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR; + else if (uVector == X86_XCPT_OF) + fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR; + else + { + fIemXcptFlags = 0; + AssertMsgFailed(("Unexpected vector for software exception. uVector=%#x", uVector)); + } + break; + } + + case VMX_IDT_VECTORING_INFO_TYPE_SW_INT: + fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT; + break; + + default: + fIemXcptFlags = 0; + AssertMsgFailed(("Unexpected vector type! uVmxEventType=%#x uVector=%#x", uVmxEventType, uVector)); + break; + } + return fIemXcptFlags; +} + + +/** + * Sets an event as a pending event to be injected into the guest. + * + * @param pVCpu The cross context virtual CPU structure. + * @param u32IntInfo The VM-entry interruption-information field. + * @param cbInstr The VM-entry instruction length in bytes (for + * software interrupts, exceptions and privileged + * software exceptions). + * @param u32ErrCode The VM-entry exception error code. + * @param GCPtrFaultAddress The fault-address (CR2) in case it's a + * page-fault. + */ +DECLINLINE(void) vmxHCSetPendingEvent(PVMCPUCC pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode, + RTGCUINTPTR GCPtrFaultAddress) +{ + Assert(!VCPU_2_VMXSTATE(pVCpu).Event.fPending); + VCPU_2_VMXSTATE(pVCpu).Event.fPending = true; + VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo = u32IntInfo; + VCPU_2_VMXSTATE(pVCpu).Event.u32ErrCode = u32ErrCode; + VCPU_2_VMXSTATE(pVCpu).Event.cbInstr = cbInstr; + VCPU_2_VMXSTATE(pVCpu).Event.GCPtrFaultAddress = GCPtrFaultAddress; +} + + +/** + * Sets an external interrupt as pending-for-injection into the VM. + * + * @param pVCpu The cross context virtual CPU structure. + * @param u8Interrupt The external interrupt vector. + */ +DECLINLINE(void) vmxHCSetPendingExtInt(PVMCPUCC pVCpu, uint8_t u8Interrupt) +{ + uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, u8Interrupt) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_EXT_INT) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1); + vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */); +} + + +/** + * Sets an NMI (\#NMI) exception as pending-for-injection into the VM. + * + * @param pVCpu The cross context virtual CPU structure. + */ +DECLINLINE(void) vmxHCSetPendingXcptNmi(PVMCPUCC pVCpu) +{ + uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_NMI) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_NMI) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1); + vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */); +} + + +/** + * Sets a double-fault (\#DF) exception as pending-for-injection into the VM. + * + * @param pVCpu The cross context virtual CPU structure. + */ +DECLINLINE(void) vmxHCSetPendingXcptDF(PVMCPUCC pVCpu) +{ + uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1); + vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */); +} + + +/** + * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM. + * + * @param pVCpu The cross context virtual CPU structure. + */ +DECLINLINE(void) vmxHCSetPendingXcptUD(PVMCPUCC pVCpu) +{ + uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1); + vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */); +} + + +/** + * Sets a debug (\#DB) exception as pending-for-injection into the VM. + * + * @param pVCpu The cross context virtual CPU structure. + */ +DECLINLINE(void) vmxHCSetPendingXcptDB(PVMCPUCC pVCpu) +{ + uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1); + vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */); +} + + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX +/** + * Sets a general-protection (\#GP) exception as pending-for-injection into the VM. + * + * @param pVCpu The cross context virtual CPU structure. + * @param u32ErrCode The error code for the general-protection exception. + */ +DECLINLINE(void) vmxHCSetPendingXcptGP(PVMCPUCC pVCpu, uint32_t u32ErrCode) +{ + uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1); + vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */); +} + + +/** + * Sets a stack (\#SS) exception as pending-for-injection into the VM. + * + * @param pVCpu The cross context virtual CPU structure. + * @param u32ErrCode The error code for the stack exception. + */ +DECLINLINE(void) vmxHCSetPendingXcptSS(PVMCPUCC pVCpu, uint32_t u32ErrCode) +{ + uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1); + vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */); +} +#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */ + + +/** + * Fixes up attributes for the specified segment register. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pSelReg The segment register that needs fixing. + * @param pszRegName The register name (for logging and assertions). + */ +static void vmxHCFixUnusableSegRegAttr(PVMCPUCC pVCpu, PCPUMSELREG pSelReg, const char *pszRegName) +{ + Assert(pSelReg->Attr.u & X86DESCATTR_UNUSABLE); + + /* + * If VT-x marks the segment as unusable, most other bits remain undefined: + * - For CS the L, D and G bits have meaning. + * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox). + * - For the remaining data segments no bits are defined. + * + * The present bit and the unusable bit has been observed to be set at the + * same time (the selector was supposed to be invalid as we started executing + * a V8086 interrupt in ring-0). + * + * What should be important for the rest of the VBox code, is that the P bit is + * cleared. Some of the other VBox code recognizes the unusable bit, but + * AMD-V certainly don't, and REM doesn't really either. So, to be on the + * safe side here, we'll strip off P and other bits we don't care about. If + * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed. + * + * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers". + */ +#ifdef VBOX_STRICT + uint32_t const uAttr = pSelReg->Attr.u; +#endif + + /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */ + pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G + | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT; + +#ifdef VBOX_STRICT +# ifndef IN_NEM_DARWIN + VMMRZCallRing3Disable(pVCpu); +# endif + Log4Func(("Unusable %s: sel=%#x attr=%#x -> %#x\n", pszRegName, pSelReg->Sel, uAttr, pSelReg->Attr.u)); +# ifdef DEBUG_bird + AssertMsg((uAttr & ~X86DESCATTR_P) == pSelReg->Attr.u, + ("%s: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n", + pszRegName, uAttr, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit)); +# endif +# ifndef IN_NEM_DARWIN + VMMRZCallRing3Enable(pVCpu); +# endif + NOREF(uAttr); +#endif + RT_NOREF2(pVCpu, pszRegName); +} + + +/** + * Imports a guest segment register from the current VMCS into the guest-CPU + * context. + * + * @param pVCpu The cross context virtual CPU structure. + * @tparam a_iSegReg The segment register number (X86_SREG_XXX). + * + * @remarks Called with interrupts and/or preemption disabled. + */ +template<uint32_t const a_iSegReg> +DECLINLINE(void) vmxHCImportGuestSegReg(PVMCPUCC pVCpu) +{ + AssertCompile(a_iSegReg < X86_SREG_COUNT); + /* Check that the macros we depend upon here and in the export parenter function works: */ +#define MY_SEG_VMCS_FIELD(a_FieldPrefix, a_FieldSuff) \ + ( a_iSegReg == X86_SREG_ES ? a_FieldPrefix ## ES ## a_FieldSuff \ + : a_iSegReg == X86_SREG_CS ? a_FieldPrefix ## CS ## a_FieldSuff \ + : a_iSegReg == X86_SREG_SS ? a_FieldPrefix ## SS ## a_FieldSuff \ + : a_iSegReg == X86_SREG_DS ? a_FieldPrefix ## DS ## a_FieldSuff \ + : a_iSegReg == X86_SREG_FS ? a_FieldPrefix ## FS ## a_FieldSuff \ + : a_iSegReg == X86_SREG_GS ? a_FieldPrefix ## GS ## a_FieldSuff : 0) + AssertCompile(VMX_VMCS_GUEST_SEG_BASE(a_iSegReg) == MY_SEG_VMCS_FIELD(VMX_VMCS_GUEST_,_BASE)); + AssertCompile(VMX_VMCS16_GUEST_SEG_SEL(a_iSegReg) == MY_SEG_VMCS_FIELD(VMX_VMCS16_GUEST_,_SEL)); + AssertCompile(VMX_VMCS32_GUEST_SEG_LIMIT(a_iSegReg) == MY_SEG_VMCS_FIELD(VMX_VMCS32_GUEST_,_LIMIT)); + AssertCompile(VMX_VMCS32_GUEST_SEG_ACCESS_RIGHTS(a_iSegReg) == MY_SEG_VMCS_FIELD(VMX_VMCS32_GUEST_,_ACCESS_RIGHTS)); + + PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[a_iSegReg]; + + uint16_t u16Sel; + int rc = VMX_VMCS_READ_16(pVCpu, VMX_VMCS16_GUEST_SEG_SEL(a_iSegReg), &u16Sel); AssertRC(rc); + pSelReg->Sel = u16Sel; + pSelReg->ValidSel = u16Sel; + + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_SEG_LIMIT(a_iSegReg), &pSelReg->u32Limit); AssertRC(rc); + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_SEG_BASE(a_iSegReg), &pSelReg->u64Base); AssertRC(rc); + + uint32_t u32Attr; + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_SEG_ACCESS_RIGHTS(a_iSegReg), &u32Attr); AssertRC(rc); + pSelReg->Attr.u = u32Attr; + if (u32Attr & X86DESCATTR_UNUSABLE) + vmxHCFixUnusableSegRegAttr(pVCpu, pSelReg, "ES\0CS\0SS\0DS\0FS\0GS" + a_iSegReg * 3); + + pSelReg->fFlags = CPUMSELREG_FLAGS_VALID; +} + + +/** + * Imports the guest LDTR from the current VMCS into the guest-CPU context. + * + * @param pVCpu The cross context virtual CPU structure. + * + * @remarks Called with interrupts and/or preemption disabled. + */ +DECLINLINE(void) vmxHCImportGuestLdtr(PVMCPUCC pVCpu) +{ + uint16_t u16Sel; + uint64_t u64Base; + uint32_t u32Limit, u32Attr; + int rc = VMX_VMCS_READ_16(pVCpu, VMX_VMCS16_GUEST_LDTR_SEL, &u16Sel); AssertRC(rc); + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_LDTR_LIMIT, &u32Limit); AssertRC(rc); + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, &u32Attr); AssertRC(rc); + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_LDTR_BASE, &u64Base); AssertRC(rc); + + pVCpu->cpum.GstCtx.ldtr.Sel = u16Sel; + pVCpu->cpum.GstCtx.ldtr.ValidSel = u16Sel; + pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.ldtr.u32Limit = u32Limit; + pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base; + pVCpu->cpum.GstCtx.ldtr.Attr.u = u32Attr; + if (u32Attr & X86DESCATTR_UNUSABLE) + vmxHCFixUnusableSegRegAttr(pVCpu, &pVCpu->cpum.GstCtx.ldtr, "LDTR"); +} + + +/** + * Imports the guest TR from the current VMCS into the guest-CPU context. + * + * @param pVCpu The cross context virtual CPU structure. + * + * @remarks Called with interrupts and/or preemption disabled. + */ +DECLINLINE(void) vmxHCImportGuestTr(PVMCPUCC pVCpu) +{ + uint16_t u16Sel; + uint64_t u64Base; + uint32_t u32Limit, u32Attr; + int rc = VMX_VMCS_READ_16(pVCpu, VMX_VMCS16_GUEST_TR_SEL, &u16Sel); AssertRC(rc); + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_TR_LIMIT, &u32Limit); AssertRC(rc); + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, &u32Attr); AssertRC(rc); + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_TR_BASE, &u64Base); AssertRC(rc); + + pVCpu->cpum.GstCtx.tr.Sel = u16Sel; + pVCpu->cpum.GstCtx.tr.ValidSel = u16Sel; + pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID; + pVCpu->cpum.GstCtx.tr.u32Limit = u32Limit; + pVCpu->cpum.GstCtx.tr.u64Base = u64Base; + pVCpu->cpum.GstCtx.tr.Attr.u = u32Attr; + /* TR is the only selector that can never be unusable. */ + Assert(!(u32Attr & X86DESCATTR_UNUSABLE)); +} + + +/** + * Core: Imports the guest RIP from the VMCS back into the guest-CPU context. + * + * @returns The RIP value. + * @param pVCpu The cross context virtual CPU structure. + * + * @remarks Called with interrupts and/or preemption disabled, should not assert! + * @remarks Do -not- call this function directly! + */ +DECL_FORCE_INLINE(uint64_t) vmxHCImportGuestCoreRip(PVMCPUCC pVCpu) +{ + uint64_t u64Val; + int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_RIP, &u64Val); + AssertRC(rc); + + pVCpu->cpum.GstCtx.rip = u64Val; + + return u64Val; +} + + +/** + * Imports the guest RIP from the VMCS back into the guest-CPU context. + * + * @param pVCpu The cross context virtual CPU structure. + * + * @remarks Called with interrupts and/or preemption disabled, should not assert! + * @remarks Do -not- call this function directly, use vmxHCImportGuestState() + * instead!!! + */ +DECLINLINE(void) vmxHCImportGuestRip(PVMCPUCC pVCpu) +{ + if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP) + { + EMHistoryUpdatePC(pVCpu, vmxHCImportGuestCoreRip(pVCpu), false); + pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RIP; + } +} + + +/** + * Core: Imports the guest RFLAGS from the VMCS back into the guest-CPU context. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + * + * @remarks Called with interrupts and/or preemption disabled, should not assert! + * @remarks Do -not- call this function directly! + */ +DECL_FORCE_INLINE(void) vmxHCImportGuestCoreRFlags(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo) +{ + uint64_t fRFlags; + int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_RFLAGS, &fRFlags); + AssertRC(rc); + + Assert((fRFlags & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK); + Assert((fRFlags & ~(uint64_t)(X86_EFL_1 | X86_EFL_LIVE_MASK)) == 0); + + pVCpu->cpum.GstCtx.rflags.u = fRFlags; +#ifndef IN_NEM_DARWIN + PCVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared; + if (!pVmcsInfoShared->RealMode.fRealOnV86Active) + { /* mostly likely */ } + else + { + pVCpu->cpum.GstCtx.eflags.Bits.u1VM = 0; + pVCpu->cpum.GstCtx.eflags.Bits.u2IOPL = pVmcsInfoShared->RealMode.Eflags.Bits.u2IOPL; + } +#else + RT_NOREF(pVmcsInfo); +#endif +} + + +/** + * Imports the guest RFLAGS from the VMCS back into the guest-CPU context. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + * + * @remarks Called with interrupts and/or preemption disabled, should not assert! + * @remarks Do -not- call this function directly, use vmxHCImportGuestState() + * instead!!! + */ +DECLINLINE(void) vmxHCImportGuestRFlags(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo) +{ + if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RFLAGS) + { + vmxHCImportGuestCoreRFlags(pVCpu, pVmcsInfo); + pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RFLAGS; + } +} + + +/** + * Worker for vmxHCImportGuestIntrState that handles the case where any of the + * relevant VMX_VMCS32_GUEST_INT_STATE bits are set. + */ +DECL_NO_INLINE(static,void) vmxHCImportGuestIntrStateSlow(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, uint32_t fGstIntState) +{ + /* + * We must import RIP here to set our EM interrupt-inhibited state. + * We also import RFLAGS as our code that evaluates pending interrupts + * before VM-entry requires it. + */ + vmxHCImportGuestRip(pVCpu); + vmxHCImportGuestRFlags(pVCpu, pVmcsInfo); + + CPUMUpdateInterruptShadowSsStiEx(&pVCpu->cpum.GstCtx, + RT_BOOL(fGstIntState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS), + RT_BOOL(fGstIntState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI), + pVCpu->cpum.GstCtx.rip); + CPUMUpdateInterruptInhibitingByNmiEx(&pVCpu->cpum.GstCtx, RT_BOOL(fGstIntState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)); +} + + +/** + * Imports the guest interruptibility-state from the VMCS back into the guest-CPU + * context. + * + * @note May import RIP and RFLAGS if interrupt or NMI are blocked. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + * + * @remarks Called with interrupts and/or preemption disabled, try not to assert and + * do not log! + * @remarks Do -not- call this function directly, use vmxHCImportGuestState() + * instead!!! + */ +DECLINLINE(void) vmxHCImportGuestIntrState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo) +{ + uint32_t u32Val; + int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &u32Val); AssertRC(rc); + if (!u32Val) + { + CPUMClearInterruptShadow(&pVCpu->cpum.GstCtx); + CPUMClearInterruptInhibitingByNmiEx(&pVCpu->cpum.GstCtx); + } + else + vmxHCImportGuestIntrStateSlow(pVCpu, pVmcsInfo, u32Val); +} + + +/** + * Worker for VMXR0ImportStateOnDemand. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + * @param fWhat What to import, CPUMCTX_EXTRN_XXX. + */ +static int vmxHCImportGuestStateEx(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint64_t fWhat) +{ + int rc = VINF_SUCCESS; + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + uint32_t u32Val; + + /* + * Note! This is hack to workaround a mysterious BSOD observed with release builds + * on Windows 10 64-bit hosts. Profile and debug builds are not affected and + * neither are other host platforms. + * + * Committing this temporarily as it prevents BSOD. + * + * Update: This is very likely a compiler optimization bug, see @bugref{9180}. + */ +#ifdef RT_OS_WINDOWS + if (pVM == 0 || pVM == (void *)(uintptr_t)-1) + return VERR_HM_IPE_1; +#endif + + STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatImportGuestState, x); + +#ifndef IN_NEM_DARWIN + /* + * We disable interrupts to make the updating of the state and in particular + * the fExtrn modification atomic wrt to preemption hooks. + */ + RTCCUINTREG const fEFlags = ASMIntDisableFlags(); +#endif + + fWhat &= pCtx->fExtrn; + if (fWhat) + { + do + { + if (fWhat & CPUMCTX_EXTRN_RIP) + vmxHCImportGuestRip(pVCpu); + + if (fWhat & CPUMCTX_EXTRN_RFLAGS) + vmxHCImportGuestRFlags(pVCpu, pVmcsInfo); + + /* Note! vmxHCImportGuestIntrState may also include RIP and RFLAGS and update fExtrn. */ + if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)) + vmxHCImportGuestIntrState(pVCpu, pVmcsInfo); + + if (fWhat & CPUMCTX_EXTRN_RSP) + { + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_RSP, &pCtx->rsp); + AssertRC(rc); + } + + if (fWhat & CPUMCTX_EXTRN_SREG_MASK) + { + PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared; +#ifndef IN_NEM_DARWIN + bool const fRealOnV86Active = pVmcsInfoShared->RealMode.fRealOnV86Active; +#else + bool const fRealOnV86Active = false; /* HV supports only unrestricted guest execution. */ +#endif + if (fWhat & CPUMCTX_EXTRN_CS) + { + vmxHCImportGuestSegReg<X86_SREG_CS>(pVCpu); + vmxHCImportGuestRip(pVCpu); /** @todo WTF? */ + if (fRealOnV86Active) + pCtx->cs.Attr.u = pVmcsInfoShared->RealMode.AttrCS.u; + EMHistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true /* fFlattened */); + } + if (fWhat & CPUMCTX_EXTRN_SS) + { + vmxHCImportGuestSegReg<X86_SREG_SS>(pVCpu); + if (fRealOnV86Active) + pCtx->ss.Attr.u = pVmcsInfoShared->RealMode.AttrSS.u; + } + if (fWhat & CPUMCTX_EXTRN_DS) + { + vmxHCImportGuestSegReg<X86_SREG_DS>(pVCpu); + if (fRealOnV86Active) + pCtx->ds.Attr.u = pVmcsInfoShared->RealMode.AttrDS.u; + } + if (fWhat & CPUMCTX_EXTRN_ES) + { + vmxHCImportGuestSegReg<X86_SREG_ES>(pVCpu); + if (fRealOnV86Active) + pCtx->es.Attr.u = pVmcsInfoShared->RealMode.AttrES.u; + } + if (fWhat & CPUMCTX_EXTRN_FS) + { + vmxHCImportGuestSegReg<X86_SREG_FS>(pVCpu); + if (fRealOnV86Active) + pCtx->fs.Attr.u = pVmcsInfoShared->RealMode.AttrFS.u; + } + if (fWhat & CPUMCTX_EXTRN_GS) + { + vmxHCImportGuestSegReg<X86_SREG_GS>(pVCpu); + if (fRealOnV86Active) + pCtx->gs.Attr.u = pVmcsInfoShared->RealMode.AttrGS.u; + } + } + + if (fWhat & CPUMCTX_EXTRN_TABLE_MASK) + { + if (fWhat & CPUMCTX_EXTRN_LDTR) + vmxHCImportGuestLdtr(pVCpu); + + if (fWhat & CPUMCTX_EXTRN_GDTR) + { + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_GDTR_BASE, &pCtx->gdtr.pGdt); AssertRC(rc); + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRC(rc); + pCtx->gdtr.cbGdt = u32Val; + } + + /* Guest IDTR. */ + if (fWhat & CPUMCTX_EXTRN_IDTR) + { + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_IDTR_BASE, &pCtx->idtr.pIdt); AssertRC(rc); + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRC(rc); + pCtx->idtr.cbIdt = u32Val; + } + + /* Guest TR. */ + if (fWhat & CPUMCTX_EXTRN_TR) + { +#ifndef IN_NEM_DARWIN + /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR, + don't need to import that one. */ + if (!pVmcsInfo->pShared->RealMode.fRealOnV86Active) +#endif + vmxHCImportGuestTr(pVCpu); + } + } + + if (fWhat & CPUMCTX_EXTRN_DR7) + { +#ifndef IN_NEM_DARWIN + if (!pVCpu->hmr0.s.fUsingHyperDR7) +#endif + { + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_DR7, &pCtx->dr[7]); + AssertRC(rc); + } + } + + if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS) + { + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip); AssertRC(rc); + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp); AssertRC(rc); + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRC(rc); + pCtx->SysEnter.cs = u32Val; + } + +#ifndef IN_NEM_DARWIN + if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE) + { + if ( pVM->hmr0.s.fAllow64BitGuests + && (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)) + pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE); + } + + if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS) + { + if ( pVM->hmr0.s.fAllow64BitGuests + && (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)) + { + pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR); + pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR); + pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK); + } + } + + if (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS)) + { + PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared; + PCVMXAUTOMSR pMsrs = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore; + uint32_t const cMsrs = pVmcsInfo->cExitMsrStore; + Assert(pMsrs); + Assert(cMsrs <= VMX_MISC_MAX_MSRS(g_HmMsrs.u.vmx.u64Misc)); + Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE); + for (uint32_t i = 0; i < cMsrs; i++) + { + uint32_t const idMsr = pMsrs[i].u32Msr; + switch (idMsr) + { + case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsrs[i].u64Value); break; + case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsrs[i].u64Value); break; + case MSR_K6_EFER: /* Can't be changed without causing a VM-exit */ break; + default: + { + uint32_t idxLbrMsr; + if (VM_IS_VMX_LBR(pVM)) + { + if (hmR0VmxIsLbrBranchFromMsr(pVM, idMsr, &idxLbrMsr)) + { + Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr)); + pVmcsInfoShared->au64LbrFromIpMsr[idxLbrMsr] = pMsrs[i].u64Value; + break; + } + if (hmR0VmxIsLbrBranchToMsr(pVM, idMsr, &idxLbrMsr)) + { + Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr)); + pVmcsInfoShared->au64LbrToIpMsr[idxLbrMsr] = pMsrs[i].u64Value; + break; + } + if (idMsr == pVM->hmr0.s.vmx.idLbrTosMsr) + { + pVmcsInfoShared->u64LbrTosMsr = pMsrs[i].u64Value; + break; + } + /* Fallthru (no break) */ + } + pCtx->fExtrn = 0; + VCPU_2_VMXSTATE(pVCpu).u32HMError = pMsrs->u32Msr; + ASMSetFlags(fEFlags); + AssertMsgFailed(("Unexpected MSR in auto-load/store area. idMsr=%#RX32 cMsrs=%u\n", idMsr, cMsrs)); + return VERR_HM_UNEXPECTED_LD_ST_MSR; + } + } + } + } +#endif + + if (fWhat & CPUMCTX_EXTRN_CR_MASK) + { + if (fWhat & CPUMCTX_EXTRN_CR0) + { + uint64_t u64Cr0; + uint64_t u64Shadow; + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR0, &u64Cr0); AssertRC(rc); + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Shadow); AssertRC(rc); +#ifndef VBOX_WITH_NESTED_HWVIRT_VMX + u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask) + | (u64Shadow & pVmcsInfo->u64Cr0Mask); +#else + if (!CPUMIsGuestInVmxNonRootMode(pCtx)) + { + u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask) + | (u64Shadow & pVmcsInfo->u64Cr0Mask); + } + else + { + /* + * We've merged the guest and nested-guest's CR0 guest/host mask while executing + * the nested-guest using hardware-assisted VMX. Accordingly we need to + * re-construct CR0. See @bugref{9180#c95} for details. + */ + PCVMXVMCSINFO const pVmcsInfoGst = &pVCpu->hmr0.s.vmx.VmcsInfo; + PVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs; + u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask) + | (pVmcsNstGst->u64GuestCr0.u & pVmcsNstGst->u64Cr0Mask.u) + | (u64Shadow & (pVmcsInfoGst->u64Cr0Mask & ~pVmcsNstGst->u64Cr0Mask.u)); + } +#endif +#ifndef IN_NEM_DARWIN + VMMRZCallRing3Disable(pVCpu); /* May call into PGM which has Log statements. */ +#endif + CPUMSetGuestCR0(pVCpu, u64Cr0); +#ifndef IN_NEM_DARWIN + VMMRZCallRing3Enable(pVCpu); +#endif + } + + if (fWhat & CPUMCTX_EXTRN_CR4) + { + uint64_t u64Cr4; + uint64_t u64Shadow; + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR4, &u64Cr4); AssertRC(rc); + rc |= VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Shadow); AssertRC(rc); +#ifndef VBOX_WITH_NESTED_HWVIRT_VMX + u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask) + | (u64Shadow & pVmcsInfo->u64Cr4Mask); +#else + if (!CPUMIsGuestInVmxNonRootMode(pCtx)) + { + u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask) + | (u64Shadow & pVmcsInfo->u64Cr4Mask); + } + else + { + /* + * We've merged the guest and nested-guest's CR4 guest/host mask while executing + * the nested-guest using hardware-assisted VMX. Accordingly we need to + * re-construct CR4. See @bugref{9180#c95} for details. + */ + PCVMXVMCSINFO const pVmcsInfoGst = &pVCpu->hmr0.s.vmx.VmcsInfo; + PVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs; + u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask) + | (pVmcsNstGst->u64GuestCr4.u & pVmcsNstGst->u64Cr4Mask.u) + | (u64Shadow & (pVmcsInfoGst->u64Cr4Mask & ~pVmcsNstGst->u64Cr4Mask.u)); + } +#endif + pCtx->cr4 = u64Cr4; + } + + if (fWhat & CPUMCTX_EXTRN_CR3) + { + /* CR0.PG bit changes are always intercepted, so it's up to date. */ + if ( VM_IS_VMX_UNRESTRICTED_GUEST(pVM) + || ( VM_IS_VMX_NESTED_PAGING(pVM) + && CPUMIsGuestPagingEnabledEx(pCtx))) + { + uint64_t u64Cr3; + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR3, &u64Cr3); AssertRC(rc); + if (pCtx->cr3 != u64Cr3) + { + pCtx->cr3 = u64Cr3; + VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3); + } + + /* + * If the guest is in PAE mode, sync back the PDPE's into the guest state. + * CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date. + */ + if (CPUMIsGuestInPAEModeEx(pCtx)) + { + X86PDPE aPaePdpes[4]; + rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE0_FULL, &aPaePdpes[0].u); AssertRC(rc); + rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE1_FULL, &aPaePdpes[1].u); AssertRC(rc); + rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE2_FULL, &aPaePdpes[2].u); AssertRC(rc); + rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE3_FULL, &aPaePdpes[3].u); AssertRC(rc); + if (memcmp(&aPaePdpes[0], &pCtx->aPaePdpes[0], sizeof(aPaePdpes))) + { + memcpy(&pCtx->aPaePdpes[0], &aPaePdpes[0], sizeof(aPaePdpes)); + /* PGM now updates PAE PDPTEs while updating CR3. */ + VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3); + } + } + } + } + } + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if (fWhat & CPUMCTX_EXTRN_HWVIRT) + { + if ( (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING) + && !CPUMIsGuestInVmxNonRootMode(pCtx)) + { + Assert(CPUMIsGuestInVmxRootMode(pCtx)); + rc = vmxHCCopyShadowToNstGstVmcs(pVCpu, pVmcsInfo); + if (RT_SUCCESS(rc)) + { /* likely */ } + else + break; + } + } +#endif + } while (0); + + if (RT_SUCCESS(rc)) + { + /* Update fExtrn. */ + pCtx->fExtrn &= ~fWhat; + + /* If everything has been imported, clear the HM keeper bit. */ + if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL)) + { +#ifndef IN_NEM_DARWIN + pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM; +#else + pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_NEM; +#endif + Assert(!pCtx->fExtrn); + } + } + } +#ifndef IN_NEM_DARWIN + else + AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn)); + + /* + * Restore interrupts. + */ + ASMSetFlags(fEFlags); +#endif + + STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatImportGuestState, x); + + if (RT_SUCCESS(rc)) + { /* likely */ } + else + return rc; + + /* + * Honor any pending CR3 updates. + * + * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> VMXR0CallRing3Callback() + * -> VMMRZCallRing3Disable() -> vmxHCImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp + * -> continue with VM-exit handling -> vmxHCImportGuestState() and here we are. + * + * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus + * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that + * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should + * -NOT- check if CPUMCTX_EXTRN_CR3 is set! + * + * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here. + * + * The force-flag is checked first as it's cheaper for potential superfluous calls to this function. + */ + if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3) +#ifndef IN_NEM_DARWIN + && VMMRZCallRing3IsEnabled(pVCpu) +#endif + ) + { + Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3)); + PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu)); + Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3)); + } + + return VINF_SUCCESS; +} + + +/** + * Internal state fetcher, inner version where we fetch all of a_fWhat. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + * @param fEFlags Saved EFLAGS for restoring the interrupt flag. Ignored + * in NEM/darwin context. + * @tparam a_fWhat What to import, zero or more bits from + * HMVMX_CPUMCTX_EXTRN_ALL. + */ +template<uint64_t const a_fWhat> +static int vmxHCImportGuestStateInner(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t fEFlags) +{ + Assert(a_fWhat != 0); /* No AssertCompile as the assertion probably kicks in before the compiler (clang) discards it. */ + AssertCompile(!(a_fWhat & ~HMVMX_CPUMCTX_EXTRN_ALL)); + Assert( (pVCpu->cpum.GstCtx.fExtrn & a_fWhat) == a_fWhat + || (pVCpu->cpum.GstCtx.fExtrn & a_fWhat) == (a_fWhat & ~(CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS))); + + STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatImportGuestState, x); + + PVMCC const pVM = pVCpu->CTX_SUFF(pVM); + + /* RIP and RFLAGS may have been imported already by the post exit code + together with the CPUMCTX_EXTRN_INHIBIT_INT/NMI state, so this part + of the code is skipping this part of the code. */ + if ( (a_fWhat & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)) + && pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)) + { + if (a_fWhat & CPUMCTX_EXTRN_RFLAGS) + vmxHCImportGuestCoreRFlags(pVCpu, pVmcsInfo); + + if (a_fWhat & CPUMCTX_EXTRN_RIP) + { + if (!(a_fWhat & CPUMCTX_EXTRN_CS)) + EMHistoryUpdatePC(pVCpu, vmxHCImportGuestCoreRip(pVCpu), false); + else + vmxHCImportGuestCoreRip(pVCpu); + } + } + + /* Note! vmxHCImportGuestIntrState may also include RIP and RFLAGS and update fExtrn. */ + if (a_fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)) + vmxHCImportGuestIntrState(pVCpu, pVmcsInfo); + + if (a_fWhat & (CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TR)) + { + if (a_fWhat & CPUMCTX_EXTRN_CS) + { + vmxHCImportGuestSegReg<X86_SREG_CS>(pVCpu); + /** @todo try get rid of this carp, it smells and is probably never ever + * used: */ + if ( !(a_fWhat & CPUMCTX_EXTRN_RIP) + && (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP)) + { + vmxHCImportGuestCoreRip(pVCpu); + pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_RIP; + } + EMHistoryUpdatePC(pVCpu, pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, true /* fFlattened */); + } + if (a_fWhat & CPUMCTX_EXTRN_SS) + vmxHCImportGuestSegReg<X86_SREG_SS>(pVCpu); + if (a_fWhat & CPUMCTX_EXTRN_DS) + vmxHCImportGuestSegReg<X86_SREG_DS>(pVCpu); + if (a_fWhat & CPUMCTX_EXTRN_ES) + vmxHCImportGuestSegReg<X86_SREG_ES>(pVCpu); + if (a_fWhat & CPUMCTX_EXTRN_FS) + vmxHCImportGuestSegReg<X86_SREG_FS>(pVCpu); + if (a_fWhat & CPUMCTX_EXTRN_GS) + vmxHCImportGuestSegReg<X86_SREG_GS>(pVCpu); + + /* Guest TR. + Real-mode emulation using virtual-8086 mode has the fake TSS + (pRealModeTSS) in TR, don't need to import that one. */ +#ifndef IN_NEM_DARWIN + PVMXVMCSINFOSHARED const pVmcsInfoShared = pVmcsInfo->pShared; + bool const fRealOnV86Active = pVmcsInfoShared->RealMode.fRealOnV86Active; + if ((a_fWhat & CPUMCTX_EXTRN_TR) && !fRealOnV86Active) +#else + if (a_fWhat & CPUMCTX_EXTRN_TR) +#endif + vmxHCImportGuestTr(pVCpu); + +#ifndef IN_NEM_DARWIN /* NEM/Darwin: HV supports only unrestricted guest execution. */ + if (fRealOnV86Active) + { + if (a_fWhat & CPUMCTX_EXTRN_CS) + pVCpu->cpum.GstCtx.cs.Attr.u = pVmcsInfoShared->RealMode.AttrCS.u; + if (a_fWhat & CPUMCTX_EXTRN_SS) + pVCpu->cpum.GstCtx.ss.Attr.u = pVmcsInfoShared->RealMode.AttrSS.u; + if (a_fWhat & CPUMCTX_EXTRN_DS) + pVCpu->cpum.GstCtx.ds.Attr.u = pVmcsInfoShared->RealMode.AttrDS.u; + if (a_fWhat & CPUMCTX_EXTRN_ES) + pVCpu->cpum.GstCtx.es.Attr.u = pVmcsInfoShared->RealMode.AttrES.u; + if (a_fWhat & CPUMCTX_EXTRN_FS) + pVCpu->cpum.GstCtx.fs.Attr.u = pVmcsInfoShared->RealMode.AttrFS.u; + if (a_fWhat & CPUMCTX_EXTRN_GS) + pVCpu->cpum.GstCtx.gs.Attr.u = pVmcsInfoShared->RealMode.AttrGS.u; + } +#endif + } + + if (a_fWhat & CPUMCTX_EXTRN_RSP) + { + int const rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_RSP, &pVCpu->cpum.GstCtx.rsp); + AssertRC(rc); + } + + if (a_fWhat & CPUMCTX_EXTRN_LDTR) + vmxHCImportGuestLdtr(pVCpu); + + if (a_fWhat & CPUMCTX_EXTRN_GDTR) + { + int const rc1 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_GDTR_BASE, &pVCpu->cpum.GstCtx.gdtr.pGdt); AssertRC(rc1); + uint32_t u32Val; + int const rc2 = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRC(rc2); + pVCpu->cpum.GstCtx.gdtr.cbGdt = (uint16_t)u32Val; + } + + /* Guest IDTR. */ + if (a_fWhat & CPUMCTX_EXTRN_IDTR) + { + int const rc1 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_IDTR_BASE, &pVCpu->cpum.GstCtx.idtr.pIdt); AssertRC(rc1); + uint32_t u32Val; + int const rc2 = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRC(rc2); + pVCpu->cpum.GstCtx.idtr.cbIdt = (uint64_t)u32Val; + } + + if (a_fWhat & CPUMCTX_EXTRN_DR7) + { +#ifndef IN_NEM_DARWIN + if (!pVCpu->hmr0.s.fUsingHyperDR7) +#endif + { + int rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_DR7, &pVCpu->cpum.GstCtx.dr[7]); + AssertRC(rc); + } + } + + if (a_fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS) + { + int const rc1 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_SYSENTER_EIP, &pVCpu->cpum.GstCtx.SysEnter.eip); AssertRC(rc1); + int const rc2 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_SYSENTER_ESP, &pVCpu->cpum.GstCtx.SysEnter.esp); AssertRC(rc2); + uint32_t u32Val; + int const rc3 = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRC(rc3); + pVCpu->cpum.GstCtx.SysEnter.cs = u32Val; + } + +#ifndef IN_NEM_DARWIN + if (a_fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE) + { + if ( (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST) + && pVM->hmr0.s.fAllow64BitGuests) + pVCpu->cpum.GstCtx.msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE); + } + + if (a_fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS) + { + if ( (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST) + && pVM->hmr0.s.fAllow64BitGuests) + { + pVCpu->cpum.GstCtx.msrLSTAR = ASMRdMsr(MSR_K8_LSTAR); + pVCpu->cpum.GstCtx.msrSTAR = ASMRdMsr(MSR_K6_STAR); + pVCpu->cpum.GstCtx.msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK); + } + } + + if (a_fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS)) + { + PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared; + PCVMXAUTOMSR pMsrs = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore; + uint32_t const cMsrs = pVmcsInfo->cExitMsrStore; + Assert(pMsrs); + Assert(cMsrs <= VMX_MISC_MAX_MSRS(g_HmMsrs.u.vmx.u64Misc)); + Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE); + for (uint32_t i = 0; i < cMsrs; i++) + { + uint32_t const idMsr = pMsrs[i].u32Msr; + switch (idMsr) + { + case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsrs[i].u64Value); break; + case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsrs[i].u64Value); break; + case MSR_K6_EFER: /* Can't be changed without causing a VM-exit */ break; + default: + { + uint32_t idxLbrMsr; + if (VM_IS_VMX_LBR(pVM)) + { + if (hmR0VmxIsLbrBranchFromMsr(pVM, idMsr, &idxLbrMsr)) + { + Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr)); + pVmcsInfoShared->au64LbrFromIpMsr[idxLbrMsr] = pMsrs[i].u64Value; + break; + } + if (hmR0VmxIsLbrBranchToMsr(pVM, idMsr, &idxLbrMsr)) + { + Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr)); + pVmcsInfoShared->au64LbrToIpMsr[idxLbrMsr] = pMsrs[i].u64Value; + break; + } + if (idMsr == pVM->hmr0.s.vmx.idLbrTosMsr) + { + pVmcsInfoShared->u64LbrTosMsr = pMsrs[i].u64Value; + break; + } + } + pVCpu->cpum.GstCtx.fExtrn = 0; + VCPU_2_VMXSTATE(pVCpu).u32HMError = pMsrs->u32Msr; + ASMSetFlags(fEFlags); + AssertMsgFailed(("Unexpected MSR in auto-load/store area. idMsr=%#RX32 cMsrs=%u\n", idMsr, cMsrs)); + return VERR_HM_UNEXPECTED_LD_ST_MSR; + } + } + } + } +#endif + + if (a_fWhat & CPUMCTX_EXTRN_CR0) + { + uint64_t u64Cr0; + uint64_t u64Shadow; + int const rc1 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR0, &u64Cr0); AssertRC(rc1); + int const rc2 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Shadow); AssertRC(rc2); +#ifndef VBOX_WITH_NESTED_HWVIRT_VMX + u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask) + | (u64Shadow & pVmcsInfo->u64Cr0Mask); +#else + if (!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)) + u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask) + | (u64Shadow & pVmcsInfo->u64Cr0Mask); + else + { + /* + * We've merged the guest and nested-guest's CR0 guest/host mask while executing + * the nested-guest using hardware-assisted VMX. Accordingly we need to + * re-construct CR0. See @bugref{9180#c95} for details. + */ + PCVMXVMCSINFO const pVmcsInfoGst = &pVCpu->hmr0.s.vmx.VmcsInfo; + PVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs; + u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask) + | (pVmcsNstGst->u64GuestCr0.u & pVmcsNstGst->u64Cr0Mask.u) + | (u64Shadow & (pVmcsInfoGst->u64Cr0Mask & ~pVmcsNstGst->u64Cr0Mask.u)); + } +#endif +#ifndef IN_NEM_DARWIN + VMMRZCallRing3Disable(pVCpu); /* May call into PGM which has Log statements. */ +#endif + CPUMSetGuestCR0(pVCpu, u64Cr0); +#ifndef IN_NEM_DARWIN + VMMRZCallRing3Enable(pVCpu); +#endif + } + + if (a_fWhat & CPUMCTX_EXTRN_CR4) + { + uint64_t u64Cr4; + uint64_t u64Shadow; + int rc1 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR4, &u64Cr4); AssertRC(rc1); + int rc2 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Shadow); AssertRC(rc2); +#ifndef VBOX_WITH_NESTED_HWVIRT_VMX + u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask) + | (u64Shadow & pVmcsInfo->u64Cr4Mask); +#else + if (!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)) + u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask) + | (u64Shadow & pVmcsInfo->u64Cr4Mask); + else + { + /* + * We've merged the guest and nested-guest's CR4 guest/host mask while executing + * the nested-guest using hardware-assisted VMX. Accordingly we need to + * re-construct CR4. See @bugref{9180#c95} for details. + */ + PCVMXVMCSINFO const pVmcsInfoGst = &pVCpu->hmr0.s.vmx.VmcsInfo; + PVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs; + u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask) + | (pVmcsNstGst->u64GuestCr4.u & pVmcsNstGst->u64Cr4Mask.u) + | (u64Shadow & (pVmcsInfoGst->u64Cr4Mask & ~pVmcsNstGst->u64Cr4Mask.u)); + } +#endif + pVCpu->cpum.GstCtx.cr4 = u64Cr4; + } + + if (a_fWhat & CPUMCTX_EXTRN_CR3) + { + /* CR0.PG bit changes are always intercepted, so it's up to date. */ + if ( VM_IS_VMX_UNRESTRICTED_GUEST(pVM) + || ( VM_IS_VMX_NESTED_PAGING(pVM) + && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))) + { + uint64_t u64Cr3; + int const rc0 = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR3, &u64Cr3); AssertRC(rc0); + if (pVCpu->cpum.GstCtx.cr3 != u64Cr3) + { + pVCpu->cpum.GstCtx.cr3 = u64Cr3; + VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3); + } + + /* + * If the guest is in PAE mode, sync back the PDPE's into the guest state. + * CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date. + */ + if (CPUMIsGuestInPAEModeEx(&pVCpu->cpum.GstCtx)) + { + X86PDPE aPaePdpes[4]; + int const rc1 = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE0_FULL, &aPaePdpes[0].u); AssertRC(rc1); + int const rc2 = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE1_FULL, &aPaePdpes[1].u); AssertRC(rc2); + int const rc3 = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE2_FULL, &aPaePdpes[2].u); AssertRC(rc3); + int const rc4 = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE3_FULL, &aPaePdpes[3].u); AssertRC(rc4); + if (memcmp(&aPaePdpes[0], &pVCpu->cpum.GstCtx.aPaePdpes[0], sizeof(aPaePdpes))) + { + memcpy(&pVCpu->cpum.GstCtx.aPaePdpes[0], &aPaePdpes[0], sizeof(aPaePdpes)); + /* PGM now updates PAE PDPTEs while updating CR3. */ + VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3); + } + } + } + } + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if (a_fWhat & CPUMCTX_EXTRN_HWVIRT) + { + if ( (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING) + && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)) + { + Assert(CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx)); + int const rc = vmxHCCopyShadowToNstGstVmcs(pVCpu, pVmcsInfo); + AssertRCReturn(rc, rc); + } + } +#endif + + /* Update fExtrn. */ + pVCpu->cpum.GstCtx.fExtrn &= ~a_fWhat; + + /* If everything has been imported, clear the HM keeper bit. */ + if (!(pVCpu->cpum.GstCtx.fExtrn & HMVMX_CPUMCTX_EXTRN_ALL)) + { +#ifndef IN_NEM_DARWIN + pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM; +#else + pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_KEEPER_NEM; +#endif + Assert(!pVCpu->cpum.GstCtx.fExtrn); + } + + STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatImportGuestState, x); + + /* + * Honor any pending CR3 updates. + * + * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> VMXR0CallRing3Callback() + * -> VMMRZCallRing3Disable() -> vmxHCImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp + * -> continue with VM-exit handling -> vmxHCImportGuestState() and here we are. + * + * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus + * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that + * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should + * -NOT- check if CPUMCTX_EXTRN_CR3 is set! + * + * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here. + * + * The force-flag is checked first as it's cheaper for potential superfluous calls to this function. + */ +#ifndef IN_NEM_DARWIN + if (!(a_fWhat & CPUMCTX_EXTRN_CR3) + ? RT_LIKELY(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3) || !VMMRZCallRing3IsEnabled(pVCpu)) + : !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3) || !VMMRZCallRing3IsEnabled(pVCpu) ) + return VINF_SUCCESS; + ASMSetFlags(fEFlags); +#else + if (!(a_fWhat & CPUMCTX_EXTRN_CR3) + ? RT_LIKELY(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3)) + : !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3) ) + return VINF_SUCCESS; + RT_NOREF_PV(fEFlags); +#endif + + Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3)); + PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu)); + Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3)); + return VINF_SUCCESS; +} + + +/** + * Internal state fetcher. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + * @param pszCaller For logging. + * @tparam a_fWhat What needs to be imported, CPUMCTX_EXTRN_XXX. + * @tparam a_fDoneLocal What's ASSUMED to have been retrieved locally + * already. This is ORed together with @a a_fWhat when + * calculating what needs fetching (just for safety). + * @tparam a_fDonePostExit What's ASSUMED to been been retrieved by + * hmR0VmxPostRunGuest()/nemR3DarwinHandleExitCommon() + * already. This is ORed together with @a a_fWhat when + * calculating what needs fetching (just for safety). + */ +template<uint64_t const a_fWhat, + uint64_t const a_fDoneLocal = 0, + uint64_t const a_fDonePostExit = 0 +#ifndef IN_NEM_DARWIN + | CPUMCTX_EXTRN_INHIBIT_INT + | CPUMCTX_EXTRN_INHIBIT_NMI +# if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE) + | HMVMX_CPUMCTX_EXTRN_ALL +# elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS) + | CPUMCTX_EXTRN_RFLAGS +# endif +#else /* IN_NEM_DARWIN */ + | CPUMCTX_EXTRN_ALL /** @todo optimize */ +#endif /* IN_NEM_DARWIN */ +> +DECLINLINE(int) vmxHCImportGuestState(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, const char *pszCaller) +{ + RT_NOREF_PV(pszCaller); + if ((a_fWhat | a_fDoneLocal | a_fDonePostExit) & HMVMX_CPUMCTX_EXTRN_ALL) + { +#ifndef IN_NEM_DARWIN + /* + * We disable interrupts to make the updating of the state and in particular + * the fExtrn modification atomic wrt to preemption hooks. + */ + RTCCUINTREG const fEFlags = ASMIntDisableFlags(); +#else + RTCCUINTREG const fEFlags = 0; +#endif + + /* + * We combine all three parameters and take the (probably) inlined optimized + * code path for the new things specified in a_fWhat. + * + * As a tweak to deal with exits that have INHIBIT_INT/NMI active, causing + * vmxHCImportGuestIntrState to automatically fetch both RIP & RFLAGS, we + * also take the streamlined path when both of these are cleared in fExtrn + * already. vmxHCImportGuestStateInner checks fExtrn before fetching. This + * helps with MWAIT and HLT exits that always inhibit IRQs on many platforms. + */ + uint64_t const fWhatToDo = pVCpu->cpum.GstCtx.fExtrn + & ((a_fWhat | a_fDoneLocal | a_fDonePostExit) & HMVMX_CPUMCTX_EXTRN_ALL); + if (RT_LIKELY( ( fWhatToDo == (a_fWhat & HMVMX_CPUMCTX_EXTRN_ALL & ~(a_fDoneLocal | a_fDonePostExit)) + || fWhatToDo == ( a_fWhat & HMVMX_CPUMCTX_EXTRN_ALL & ~(a_fDoneLocal | a_fDonePostExit) + & ~(CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS)) /* fetch with INHIBIT_INT/NMI */)) + && (a_fWhat & HMVMX_CPUMCTX_EXTRN_ALL & ~(a_fDoneLocal | a_fDonePostExit)) != 0 /* just in case */) + { + int const rc = vmxHCImportGuestStateInner< a_fWhat + & HMVMX_CPUMCTX_EXTRN_ALL + & ~(a_fDoneLocal | a_fDonePostExit)>(pVCpu, pVmcsInfo, fEFlags); +#ifndef IN_NEM_DARWIN + ASMSetFlags(fEFlags); +#endif + return rc; + } + +#ifndef IN_NEM_DARWIN + ASMSetFlags(fEFlags); +#endif + + /* + * We shouldn't normally get here, but it may happen when executing + * in the debug run-loops. Typically, everything should already have + * been fetched then. Otherwise call the fallback state import function. + */ + if (fWhatToDo == 0) + { /* hope the cause was the debug loop or something similar */ } + else + { + STAM_REL_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatImportGuestStateFallback); + Log11Func(("a_fWhat=%#RX64/%#RX64/%#RX64 fExtrn=%#RX64 => %#RX64 - Taking inefficient code path from %s!\n", + a_fWhat & HMVMX_CPUMCTX_EXTRN_ALL, a_fDoneLocal & HMVMX_CPUMCTX_EXTRN_ALL, + a_fDonePostExit & HMVMX_CPUMCTX_EXTRN_ALL, pVCpu->cpum.GstCtx.fExtrn, fWhatToDo, pszCaller)); + return vmxHCImportGuestStateEx(pVCpu, pVmcsInfo, a_fWhat | a_fDoneLocal | a_fDonePostExit); + } + } + return VINF_SUCCESS; +} + + +/** + * Check per-VM and per-VCPU force flag actions that require us to go back to + * ring-3 for one reason or another. + * + * @returns Strict VBox status code (i.e. informational status codes too) + * @retval VINF_SUCCESS if we don't have any actions that require going back to + * ring-3. + * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync. + * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware + * interrupts) + * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires + * all EMTs to be in ring-3. + * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests. + * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return + * to the EM loop. + * + * @param pVCpu The cross context virtual CPU structure. + * @param fIsNestedGuest Flag whether this is for a for a pending nested guest event. + * @param fStepping Whether we are single-stepping the guest using the + * hypervisor debugger. + * + * @remarks This might cause nested-guest VM-exits, caller must check if the guest + * is no longer in VMX non-root mode. + */ +static VBOXSTRICTRC vmxHCCheckForceFlags(PVMCPUCC pVCpu, bool fIsNestedGuest, bool fStepping) +{ +#ifndef IN_NEM_DARWIN + Assert(VMMRZCallRing3IsEnabled(pVCpu)); +#endif + + /* + * Update pending interrupts into the APIC's IRR. + */ + if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC)) + APICUpdatePendingInterrupts(pVCpu); + + /* + * Anything pending? Should be more likely than not if we're doing a good job. + */ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + if ( !fStepping + ? !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_MASK) + && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK) + : !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK) + && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) ) + return VINF_SUCCESS; + + /* Pending PGM C3 sync. */ + if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)) + { + PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4))); + VBOXSTRICTRC rcStrict = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, + VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)); + if (rcStrict != VINF_SUCCESS) + { + AssertRC(VBOXSTRICTRC_VAL(rcStrict)); + Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } + } + + /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */ + if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK) + || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK)) + { + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchHmToR3FF); + int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY; + Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d (fVM=%#RX64 fCpu=%#RX64)\n", + rc, pVM->fGlobalForcedActions, pVCpu->fLocalForcedActions)); + return rc; + } + + /* Pending VM request packets, such as hardware interrupts. */ + if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST) + || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST)) + { + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchVmReq); + Log4Func(("Pending VM request forcing us back to ring-3\n")); + return VINF_EM_PENDING_REQUEST; + } + + /* Pending PGM pool flushes. */ + if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING)) + { + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchPgmPoolFlush); + Log4Func(("PGM pool flush pending forcing us back to ring-3\n")); + return VINF_PGM_POOL_FLUSH_PENDING; + } + + /* Pending DMA requests. */ + if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA)) + { + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchDma); + Log4Func(("Pending DMA request forcing us back to ring-3\n")); + return VINF_EM_RAW_TO_R3; + } + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + /* + * Pending nested-guest events. + * + * Please note the priority of these events are specified and important. + * See Intel spec. 29.4.3.2 "APIC-Write Emulation". + * See Intel spec. 6.9 "Priority Among Simultaneous Exceptions And Interrupts". + */ + if (fIsNestedGuest) + { + /* Pending nested-guest APIC-write. */ + if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE)) + { + Log4Func(("Pending nested-guest APIC-write\n")); + VBOXSTRICTRC rcStrict = IEMExecVmxVmexitApicWrite(pVCpu); + Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE); + return rcStrict; + } + + /* Pending nested-guest monitor-trap flag (MTF). */ + if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF)) + { + Log4Func(("Pending nested-guest MTF\n")); + VBOXSTRICTRC rcStrict = IEMExecVmxVmexit(pVCpu, VMX_EXIT_MTF, 0 /* uExitQual */); + Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE); + return rcStrict; + } + + /* Pending nested-guest VMX-preemption timer expired. */ + if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER)) + { + Log4Func(("Pending nested-guest preempt timer\n")); + VBOXSTRICTRC rcStrict = IEMExecVmxVmexitPreemptTimer(pVCpu); + Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE); + return rcStrict; + } + } +#else + NOREF(fIsNestedGuest); +#endif + + return VINF_SUCCESS; +} + + +/** + * Converts any TRPM trap into a pending HM event. This is typically used when + * entering from ring-3 (not longjmp returns). + * + * @param pVCpu The cross context virtual CPU structure. + */ +static void vmxHCTrpmTrapToPendingEvent(PVMCPUCC pVCpu) +{ + Assert(TRPMHasTrap(pVCpu)); + Assert(!VCPU_2_VMXSTATE(pVCpu).Event.fPending); + + uint8_t uVector; + TRPMEVENT enmTrpmEvent; + uint32_t uErrCode; + RTGCUINTPTR GCPtrFaultAddress; + uint8_t cbInstr; + bool fIcebp; + + int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr, &fIcebp); + AssertRC(rc); + + uint32_t u32IntInfo; + u32IntInfo = uVector | VMX_IDT_VECTORING_INFO_VALID; + u32IntInfo |= HMTrpmEventTypeToVmxEventType(uVector, enmTrpmEvent, fIcebp); + + rc = TRPMResetTrap(pVCpu); + AssertRC(rc); + Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n", + u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress)); + + vmxHCSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress); +} + + +/** + * Converts the pending HM event into a TRPM trap. + * + * @param pVCpu The cross context virtual CPU structure. + */ +static void vmxHCPendingEventToTrpmTrap(PVMCPUCC pVCpu) +{ + Assert(VCPU_2_VMXSTATE(pVCpu).Event.fPending); + + /* If a trap was already pending, we did something wrong! */ + Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP); + + uint32_t const u32IntInfo = VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo; + uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(u32IntInfo); + TRPMEVENT const enmTrapType = HMVmxEventTypeToTrpmEventType(u32IntInfo); + + Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType)); + + int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType); + AssertRC(rc); + + if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(u32IntInfo)) + TRPMSetErrorCode(pVCpu, VCPU_2_VMXSTATE(pVCpu).Event.u32ErrCode); + + if (VMX_IDT_VECTORING_INFO_IS_XCPT_PF(u32IntInfo)) + TRPMSetFaultAddress(pVCpu, VCPU_2_VMXSTATE(pVCpu).Event.GCPtrFaultAddress); + else + { + uint8_t const uVectorType = VMX_IDT_VECTORING_INFO_TYPE(u32IntInfo); + switch (uVectorType) + { + case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT: + TRPMSetTrapDueToIcebp(pVCpu); + RT_FALL_THRU(); + case VMX_IDT_VECTORING_INFO_TYPE_SW_INT: + case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: + { + AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT + || ( uVector == X86_XCPT_BP /* INT3 */ + || uVector == X86_XCPT_OF /* INTO */ + || uVector == X86_XCPT_DB /* INT1 (ICEBP) */), + ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType)); + TRPMSetInstrLength(pVCpu, VCPU_2_VMXSTATE(pVCpu).Event.cbInstr); + break; + } + } + } + + /* We're now done converting the pending event. */ + VCPU_2_VMXSTATE(pVCpu).Event.fPending = false; +} + + +/** + * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to + * cause a VM-exit as soon as the guest is in a state to receive interrupts. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + */ +static void vmxHCSetIntWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo) +{ + if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT) + { + if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)) + { + pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT; + int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls); + AssertRC(rc); + } + } /* else we will deliver interrupts whenever the guest Vm-exits next and is in a state to receive the interrupt. */ +} + + +/** + * Clears the interrupt-window exiting control in the VMCS. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + */ +DECLINLINE(void) vmxHCClearIntWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo) +{ + if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT) + { + pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT; + int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls); + AssertRC(rc); + } +} + + +/** + * Sets the NMI-window exiting control in the VMCS which instructs VT-x to + * cause a VM-exit as soon as the guest is in a state to receive NMIs. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + */ +static void vmxHCSetNmiWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo) +{ + if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT) + { + if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)) + { + pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT; + int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls); + AssertRC(rc); + Log4Func(("Setup NMI-window exiting\n")); + } + } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */ +} + + +/** + * Clears the NMI-window exiting control in the VMCS. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + */ +DECLINLINE(void) vmxHCClearNmiWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo) +{ + if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT) + { + pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT; + int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls); + AssertRC(rc); + } +} + + +/** + * Injects an event into the guest upon VM-entry by updating the relevant fields + * in the VM-entry area in the VMCS. + * + * @returns Strict VBox status code (i.e. informational status codes too). + * @retval VINF_SUCCESS if the event is successfully injected into the VMCS. + * @retval VINF_EM_RESET if event injection resulted in a triple-fault. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info object. + * @param fIsNestedGuest Flag whether this is for a for a pending nested guest event. + * @param pEvent The event being injected. + * @param pfIntrState Pointer to the VT-x guest-interruptibility-state. This + * will be updated if necessary. This cannot not be NULL. + * @param fStepping Whether we're single-stepping guest execution and should + * return VINF_EM_DBG_STEPPED if the event is injected + * directly (registers modified by us, not by hardware on + * VM-entry). + */ +static VBOXSTRICTRC vmxHCInjectEventVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNestedGuest, PCHMEVENT pEvent, + bool fStepping, uint32_t *pfIntrState) +{ + /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */ + AssertMsg(!RT_HI_U32(pEvent->u64IntInfo), ("%#RX64\n", pEvent->u64IntInfo)); + Assert(pfIntrState); + +#ifdef IN_NEM_DARWIN + RT_NOREF(fIsNestedGuest, fStepping, pfIntrState); +#endif + + PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + uint32_t u32IntInfo = pEvent->u64IntInfo; + uint32_t const u32ErrCode = pEvent->u32ErrCode; + uint32_t const cbInstr = pEvent->cbInstr; + RTGCUINTPTR const GCPtrFault = pEvent->GCPtrFaultAddress; + uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(u32IntInfo); + uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(u32IntInfo); + +#ifdef VBOX_STRICT + /* + * Validate the error-code-valid bit for hardware exceptions. + * No error codes for exceptions in real-mode. + * + * See Intel spec. 20.1.4 "Interrupt and Exception Handling" + */ + if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT + && !CPUMIsGuestInRealModeEx(pCtx)) + { + switch (uVector) + { + case X86_XCPT_PF: + case X86_XCPT_DF: + case X86_XCPT_TS: + case X86_XCPT_NP: + case X86_XCPT_SS: + case X86_XCPT_GP: + case X86_XCPT_AC: + AssertMsg(VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo), + ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector)); + RT_FALL_THRU(); + default: + break; + } + } + + /* Cannot inject an NMI when block-by-MOV SS is in effect. */ + Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI + || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)); +#endif + + RT_NOREF(uVector); + if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT + || uIntType == VMX_EXIT_INT_INFO_TYPE_NMI + || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT + || uIntType == VMX_EXIT_INT_INFO_TYPE_SW_XCPT) + { + Assert(uVector <= X86_XCPT_LAST); + Assert(uIntType != VMX_EXIT_INT_INFO_TYPE_NMI || uVector == X86_XCPT_NMI); + Assert(uIntType != VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT || uVector == X86_XCPT_DB); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).aStatInjectedXcpts[uVector]); + } + else + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).aStatInjectedIrqs[uVector & MASK_INJECT_IRQ_STAT]); + + /* + * Hardware interrupts & exceptions cannot be delivered through the software interrupt + * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the + * interrupt handler in the (real-mode) guest. + * + * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode". + * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling. + */ + if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */ + { +#ifndef IN_NEM_DARWIN + if (pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fUnrestrictedGuest) +#endif + { + /* + * For CPUs with unrestricted guest execution enabled and with the guest + * in real-mode, we must not set the deliver-error-code bit. + * + * See Intel spec. 26.2.1.3 "VM-Entry Control Fields". + */ + u32IntInfo &= ~VMX_ENTRY_INT_INFO_ERROR_CODE_VALID; + } +#ifndef IN_NEM_DARWIN + else + { + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + Assert(PDMVmmDevHeapIsEnabled(pVM)); + Assert(pVM->hm.s.vmx.pRealModeTSS); + Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)); + + /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */ + int rc2 = vmxHCImportGuestStateEx(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK + | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS); + AssertRCReturn(rc2, rc2); + + /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */ + size_t const cbIdtEntry = sizeof(X86IDTR16); + if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt) + { + /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */ + if (uVector == X86_XCPT_DF) + return VINF_EM_RESET; + + /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. + No error codes for exceptions in real-mode. */ + if (uVector == X86_XCPT_GP) + { + static HMEVENT const s_EventXcptDf + = HMEVENT_INIT_ONLY_INT_INFO( RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1)); + return vmxHCInjectEventVmcs(pVCpu, pVmcsInfo, fIsNestedGuest, &s_EventXcptDf, fStepping, pfIntrState); + } + + /* + * If we're injecting an event with no valid IDT entry, inject a #GP. + * No error codes for exceptions in real-mode. + * + * See Intel spec. 20.1.4 "Interrupt and Exception Handling" + */ + static HMEVENT const s_EventXcptGp + = HMEVENT_INIT_ONLY_INT_INFO( RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0) + | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1)); + return vmxHCInjectEventVmcs(pVCpu, pVmcsInfo, fIsNestedGuest, &s_EventXcptGp, fStepping, pfIntrState); + } + + /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */ + uint16_t uGuestIp = pCtx->ip; + if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT) + { + Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF); + /* #BP and #OF are both benign traps, we need to resume the next instruction. */ + uGuestIp = pCtx->ip + (uint16_t)cbInstr; + } + else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_INT) + uGuestIp = pCtx->ip + (uint16_t)cbInstr; + + /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */ + X86IDTR16 IdtEntry; + RTGCPHYS const GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry; + rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry); + AssertRCReturn(rc2, rc2); + + /* Construct the stack frame for the interrupt/exception handler. */ + VBOXSTRICTRC rcStrict; + rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, (uint16_t)pCtx->eflags.u); + if (rcStrict == VINF_SUCCESS) + { + rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel); + if (rcStrict == VINF_SUCCESS) + rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp); + } + + /* Clear the required eflag bits and jump to the interrupt/exception handler. */ + if (rcStrict == VINF_SUCCESS) + { + pCtx->eflags.u &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC); + pCtx->rip = IdtEntry.offSel; + pCtx->cs.Sel = IdtEntry.uSel; + pCtx->cs.ValidSel = IdtEntry.uSel; + pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry; + if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT + && uVector == X86_XCPT_PF) + pCtx->cr2 = GCPtrFault; + + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2 + | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS + | HM_CHANGED_GUEST_RSP); + + /* + * If we delivered a hardware exception (other than an NMI) and if there was + * block-by-STI in effect, we should clear it. + */ + if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI) + { + Assert( uIntType != VMX_ENTRY_INT_INFO_TYPE_NMI + && uIntType != VMX_ENTRY_INT_INFO_TYPE_EXT_INT); + Log4Func(("Clearing inhibition due to STI\n")); + *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI; + } + + Log4(("Injected real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n", + u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip)); + + /* + * The event has been truly dispatched to the guest. Mark it as no longer pending so + * we don't attempt to undo it if we are returning to ring-3 before executing guest code. + */ + VCPU_2_VMXSTATE(pVCpu).Event.fPending = false; + + /* + * If we eventually support nested-guest execution without unrestricted guest execution, + * we should set fInterceptEvents here. + */ + Assert(!fIsNestedGuest); + + /* If we're stepping and we've changed cs:rip above, bail out of the VMX R0 execution loop. */ + if (fStepping) + rcStrict = VINF_EM_DBG_STEPPED; + } + AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping), + ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + } +#else + RT_NOREF(pVmcsInfo); +#endif + } + + /* + * Validate. + */ + Assert(VMX_ENTRY_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */ + Assert(!(u32IntInfo & VMX_BF_ENTRY_INT_INFO_RSVD_12_30_MASK)); /* Bits 30:12 MBZ. */ + + /* + * Inject the event into the VMCS. + */ + int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo); + if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo)) + rc |= VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode); + rc |= VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr); + AssertRC(rc); + + /* + * Update guest CR2 if this is a page-fault. + */ + if (VMX_ENTRY_INT_INFO_IS_XCPT_PF(u32IntInfo)) + pCtx->cr2 = GCPtrFault; + + Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2)); + return VINF_SUCCESS; +} + + +/** + * Evaluates the event to be delivered to the guest and sets it as the pending + * event. + * + * Toggling of interrupt force-flags here is safe since we update TRPM on premature + * exits to ring-3 before executing guest code, see vmxHCExitToRing3(). We must + * NOT restore these force-flags. + * + * @returns Strict VBox status code (i.e. informational status codes too). + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS information structure. + * @param fIsNestedGuest Flag whether the evaluation happens for a nested guest. + * @param pfIntrState Where to store the VT-x guest-interruptibility state. + */ +static VBOXSTRICTRC vmxHCEvaluatePendingEvent(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNestedGuest, uint32_t *pfIntrState) +{ + Assert(pfIntrState); + Assert(!TRPMHasTrap(pVCpu)); + + /* + * Compute/update guest-interruptibility state related FFs. + * The FFs will be used below while evaluating events to be injected. + */ + *pfIntrState = vmxHCGetGuestIntrStateAndUpdateFFs(pVCpu); + + /* + * Evaluate if a new event needs to be injected. + * An event that's already pending has already performed all necessary checks. + */ + if ( !VCPU_2_VMXSTATE(pVCpu).Event.fPending + && !CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx)) + { + /** @todo SMI. SMIs take priority over NMIs. */ + + /* + * NMIs. + * NMIs take priority over external interrupts. + */ +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; +#endif + if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)) + { + /* + * For a guest, the FF always indicates the guest's ability to receive an NMI. + * + * For a nested-guest, the FF always indicates the outer guest's ability to + * receive an NMI while the guest-interruptibility state bit depends on whether + * the nested-hypervisor is using virtual-NMIs. + */ + if (!CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx)) + { +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if ( fIsNestedGuest + && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_NMI_EXIT)) + return IEMExecVmxVmexitXcptNmi(pVCpu); +#endif + vmxHCSetPendingXcptNmi(pVCpu); + VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI); + Log4Func(("NMI pending injection\n")); + + /* We've injected the NMI, bail. */ + return VINF_SUCCESS; + } + if (!fIsNestedGuest) + vmxHCSetNmiWindowExitVmcs(pVCpu, pVmcsInfo); + } + + /* + * External interrupts (PIC/APIC). + * Once PDMGetInterrupt() returns a valid interrupt we -must- deliver it. + * We cannot re-request the interrupt from the controller again. + */ + if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC) + && !VCPU_2_VMXSTATE(pVCpu).fSingleInstruction) + { + Assert(!DBGFIsStepping(pVCpu)); + int rc = vmxHCImportGuestStateEx(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RFLAGS); + AssertRC(rc); + + /* + * We must not check EFLAGS directly when executing a nested-guest, use + * CPUMIsGuestPhysIntrEnabled() instead as EFLAGS.IF does not control the blocking of + * external interrupts when "External interrupt exiting" is set. This fixes a nasty + * SMP hang while executing nested-guest VCPUs on spinlocks which aren't rescued by + * other VM-exits (like a preemption timer), see @bugref{9562#c18}. + * + * See Intel spec. 25.4.1 "Event Blocking". + */ + if (CPUMIsGuestPhysIntrEnabled(pVCpu)) + { +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if ( fIsNestedGuest + && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_EXT_INT_EXIT)) + { + VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, 0 /* uVector */, true /* fIntPending */); + if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE) + return rcStrict; + } +#endif + uint8_t u8Interrupt; + rc = PDMGetInterrupt(pVCpu, &u8Interrupt); + if (RT_SUCCESS(rc)) + { +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + if ( fIsNestedGuest + && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_EXT_INT_EXIT)) + { + VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, u8Interrupt, false /* fIntPending */); + Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE); + return rcStrict; + } +#endif + vmxHCSetPendingExtInt(pVCpu, u8Interrupt); + Log4Func(("External interrupt (%#x) pending injection\n", u8Interrupt)); + } + else if (rc == VERR_APIC_INTR_MASKED_BY_TPR) + { + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchTprMaskedIrq); + + if ( !fIsNestedGuest + && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)) + vmxHCApicSetTprThreshold(pVCpu, pVmcsInfo, u8Interrupt >> 4); + /* else: for nested-guests, TPR threshold is picked up while merging VMCS controls. */ + + /* + * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and + * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no + * need to re-set this force-flag here. + */ + } + else + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchGuestIrq); + + /* We've injected the interrupt or taken necessary action, bail. */ + return VINF_SUCCESS; + } + if (!fIsNestedGuest) + vmxHCSetIntWindowExitVmcs(pVCpu, pVmcsInfo); + } + } + else if (!fIsNestedGuest) + { + /* + * An event is being injected or we are in an interrupt shadow. Check if another event is + * pending. If so, instruct VT-x to cause a VM-exit as soon as the guest is ready to accept + * the pending event. + */ + if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)) + vmxHCSetNmiWindowExitVmcs(pVCpu, pVmcsInfo); + else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC) + && !VCPU_2_VMXSTATE(pVCpu).fSingleInstruction) + vmxHCSetIntWindowExitVmcs(pVCpu, pVmcsInfo); + } + /* else: for nested-guests, NMI/interrupt-window exiting will be picked up when merging VMCS controls. */ + + return VINF_SUCCESS; +} + + +/** + * Injects any pending events into the guest if the guest is in a state to + * receive them. + * + * @returns Strict VBox status code (i.e. informational status codes too). + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS information structure. + * @param fIsNestedGuest Flag whether the event injection happens for a nested guest. + * @param fIntrState The VT-x guest-interruptibility state. + * @param fStepping Whether we are single-stepping the guest using the + * hypervisor debugger and should return + * VINF_EM_DBG_STEPPED if the event was dispatched + * directly. + */ +static VBOXSTRICTRC vmxHCInjectPendingEvent(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNestedGuest, + uint32_t fIntrState, bool fStepping) +{ + HMVMX_ASSERT_PREEMPT_SAFE(pVCpu); +#ifndef IN_NEM_DARWIN + Assert(VMMRZCallRing3IsEnabled(pVCpu)); +#endif + +#ifdef VBOX_STRICT + /* + * Verify guest-interruptibility state. + * + * We put this in a scoped block so we do not accidentally use fBlockSti or fBlockMovSS, + * since injecting an event may modify the interruptibility state and we must thus always + * use fIntrState. + */ + { + bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS); + bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI); + Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS)); + Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */ + Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/ + Assert(!TRPMHasTrap(pVCpu)); + NOREF(fBlockMovSS); NOREF(fBlockSti); + } +#endif + + VBOXSTRICTRC rcStrict = VINF_SUCCESS; + if (VCPU_2_VMXSTATE(pVCpu).Event.fPending) + { + /* + * Do -not- clear any interrupt-window exiting control here. We might have an interrupt + * pending even while injecting an event and in this case, we want a VM-exit as soon as + * the guest is ready for the next interrupt, see @bugref{6208#c45}. + * + * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery". + */ + uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo); +#ifdef VBOX_STRICT + if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT) + { + Assert(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_IF); + Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)); + Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)); + } + else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI) + { + Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)); + Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)); + Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)); + } +#endif + Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo, + uIntType)); + + /* + * Inject the event and get any changes to the guest-interruptibility state. + * + * The guest-interruptibility state may need to be updated if we inject the event + * into the guest IDT ourselves (for real-on-v86 guest injecting software interrupts). + */ + rcStrict = vmxHCInjectEventVmcs(pVCpu, pVmcsInfo, fIsNestedGuest, &VCPU_2_VMXSTATE(pVCpu).Event, fStepping, &fIntrState); + AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict); + + if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT) + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectInterrupt); + else + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectXcpt); + } + + /* + * Deliver any pending debug exceptions if the guest is single-stepping using EFLAGS.TF and + * is an interrupt shadow (block-by-STI or block-by-MOV SS). + */ + if ( (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)) + && !fIsNestedGuest) + { + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS); + + if (!VCPU_2_VMXSTATE(pVCpu).fSingleInstruction) + { + /* + * Set or clear the BS bit depending on whether the trap flag is active or not. We need + * to do both since we clear the BS bit from the VMCS while exiting to ring-3. + */ + Assert(!DBGFIsStepping(pVCpu)); + uint8_t const fTrapFlag = !!(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_TF); + int rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, + fTrapFlag << VMX_BF_VMCS_PENDING_DBG_XCPT_BS_SHIFT); + AssertRC(rc); + } + else + { + /* + * We must not deliver a debug exception when single-stepping over STI/Mov-SS in the + * hypervisor debugger using EFLAGS.TF but rather clear interrupt inhibition. However, + * we take care of this case in vmxHCExportSharedDebugState and also the case if + * we use MTF, so just make sure it's called before executing guest-code. + */ + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_DR_MASK); + } + } + /* else: for nested-guest currently handling while merging controls. */ + + /* + * Finally, update the guest-interruptibility state. + * + * This is required for the real-on-v86 software interrupt injection, for + * pending debug exceptions as well as updates to the guest state from ring-3 (IEM). + */ + int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, fIntrState); + AssertRC(rc); + + /* + * There's no need to clear the VM-entry interruption-information field here if we're not + * injecting anything. VT-x clears the valid bit on every VM-exit. + * + * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection". + */ + + Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping)); + return rcStrict; +} + + +/** + * Tries to determine what part of the guest-state VT-x has deemed as invalid + * and update error record fields accordingly. + * + * @returns VMX_IGS_* error codes. + * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything + * wrong with the guest state. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmcsInfo The VMCS info. object. + * + * @remarks This function assumes our cache of the VMCS controls + * are valid, i.e. vmxHCCheckCachedVmcsCtls() succeeded. + */ +static uint32_t vmxHCCheckGuestState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo) +{ +#define HMVMX_ERROR_BREAK(err) { uError = (err); break; } +#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { uError = (err); break; } else do { } while (0) + + PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + uint32_t uError = VMX_IGS_ERROR; + uint32_t u32IntrState = 0; +#ifndef IN_NEM_DARWIN + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + bool const fUnrestrictedGuest = VM_IS_VMX_UNRESTRICTED_GUEST(pVM); +#else + bool const fUnrestrictedGuest = true; +#endif + do + { + int rc; + + /* + * Guest-interruptibility state. + * + * Read this first so that any check that fails prior to those that actually + * require the guest-interruptibility state would still reflect the correct + * VMCS value and avoids causing further confusion. + */ + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &u32IntrState); + AssertRC(rc); + + uint32_t u32Val; + uint64_t u64Val; + + /* + * CR0. + */ + /** @todo Why do we need to OR and AND the fixed-0 and fixed-1 bits below? */ + uint64_t fSetCr0 = (g_HmMsrs.u.vmx.u64Cr0Fixed0 & g_HmMsrs.u.vmx.u64Cr0Fixed1); + uint64_t const fZapCr0 = (g_HmMsrs.u.vmx.u64Cr0Fixed0 | g_HmMsrs.u.vmx.u64Cr0Fixed1); + /* Exceptions for unrestricted guest execution for CR0 fixed bits (PE, PG). + See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */ + if (fUnrestrictedGuest) + fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG); + + uint64_t u64GuestCr0; + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR0, &u64GuestCr0); + AssertRC(rc); + HMVMX_CHECK_BREAK((u64GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1); + HMVMX_CHECK_BREAK(!(u64GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0); + if ( !fUnrestrictedGuest + && (u64GuestCr0 & X86_CR0_PG) + && !(u64GuestCr0 & X86_CR0_PE)) + HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO); + + /* + * CR4. + */ + /** @todo Why do we need to OR and AND the fixed-0 and fixed-1 bits below? */ + uint64_t const fSetCr4 = (g_HmMsrs.u.vmx.u64Cr4Fixed0 & g_HmMsrs.u.vmx.u64Cr4Fixed1); + uint64_t const fZapCr4 = (g_HmMsrs.u.vmx.u64Cr4Fixed0 | g_HmMsrs.u.vmx.u64Cr4Fixed1); + + uint64_t u64GuestCr4; + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR4, &u64GuestCr4); + AssertRC(rc); + HMVMX_CHECK_BREAK((u64GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1); + HMVMX_CHECK_BREAK(!(u64GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0); + + /* + * IA32_DEBUGCTL MSR. + */ + rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val); + AssertRC(rc); + if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG) + && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */ + { + HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED); + } + uint64_t u64DebugCtlMsr = u64Val; + +#ifdef VBOX_STRICT + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY, &u32Val); + AssertRC(rc); + Assert(u32Val == pVmcsInfo->u32EntryCtls); +#endif + bool const fLongModeGuest = RT_BOOL(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST); + + /* + * RIP and RFLAGS. + */ + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_RIP, &u64Val); + AssertRC(rc); + /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */ + if ( !fLongModeGuest + || !pCtx->cs.Attr.n.u1Long) + { + HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID); + } + /** @todo If the processor supports N < 64 linear-address bits, bits 63:N + * must be identical if the "IA-32e mode guest" VM-entry + * control is 1 and CS.L is 1. No check applies if the + * CPU supports 64 linear-address bits. */ + + /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */ + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_RFLAGS, &u64Val); + AssertRC(rc); + HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */ + VMX_IGS_RFLAGS_RESERVED); + HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */ + uint32_t const u32Eflags = u64Val; + + if ( fLongModeGuest + || ( fUnrestrictedGuest + && !(u64GuestCr0 & X86_CR0_PE))) + { + HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID); + } + + uint32_t u32EntryInfo; + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo); + AssertRC(rc); + if (VMX_ENTRY_INT_INFO_IS_EXT_INT(u32EntryInfo)) + { + HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID); + } + + /* + * 64-bit checks. + */ + if (fLongModeGuest) + { + HMVMX_CHECK_BREAK(u64GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE); + HMVMX_CHECK_BREAK(u64GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE); + } + + if ( !fLongModeGuest + && (u64GuestCr4 & X86_CR4_PCIDE)) + HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE); + + /** @todo CR3 field must be such that bits 63:52 and bits in the range + * 51:32 beyond the processor's physical-address width are 0. */ + + if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG) + && (pCtx->dr[7] & X86_DR7_MBZ_MASK)) + HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED); + +#ifndef IN_NEM_DARWIN + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_HOST_SYSENTER_ESP, &u64Val); + AssertRC(rc); + HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL); + + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_HOST_SYSENTER_EIP, &u64Val); + AssertRC(rc); + HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL); +#endif + + /* + * PERF_GLOBAL MSR. + */ + if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR) + { + rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val); + AssertRC(rc); + HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)), + VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */ + } + + /* + * PAT MSR. + */ + if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR) + { + rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PAT_FULL, &u64Val); + AssertRC(rc); + HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED); + for (unsigned i = 0; i < 8; i++) + { + uint8_t u8Val = (u64Val & 0xff); + if ( u8Val != 0 /* UC */ + && u8Val != 1 /* WC */ + && u8Val != 4 /* WT */ + && u8Val != 5 /* WP */ + && u8Val != 6 /* WB */ + && u8Val != 7 /* UC- */) + HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID); + u64Val >>= 8; + } + } + + /* + * EFER MSR. + */ + if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR) + { + Assert(g_fHmVmxSupportsVmcsEfer); + rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_EFER_FULL, &u64Val); + AssertRC(rc); + HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)), + VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */ + HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVmcsInfo->u32EntryCtls + & VMX_ENTRY_CTLS_IA32E_MODE_GUEST), + VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH); + /** @todo r=ramshankar: Unrestricted check here is probably wrong, see + * iemVmxVmentryCheckGuestState(). */ + HMVMX_CHECK_BREAK( fUnrestrictedGuest + || !(u64GuestCr0 & X86_CR0_PG) + || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME), + VMX_IGS_EFER_LMA_LME_MISMATCH); + } + + /* + * Segment registers. + */ + HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE) + || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID); + if (!(u32Eflags & X86_EFL_VM)) + { + /* CS */ + HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID); + HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED); + HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED); + HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff + || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID); + HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000) + || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID); + /* CS cannot be loaded with NULL in protected mode. */ + HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE); + HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID); + if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11) + HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL); + else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15) + HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH); + else if (fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3) + HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID); + else + HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID); + + /* SS */ + HMVMX_CHECK_BREAK( fUnrestrictedGuest + || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL); + HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL); + if ( !(pCtx->cr0 & X86_CR0_PE) + || pCtx->cs.Attr.n.u4Type == 3) + { + HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID); + } + + if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE)) + { + HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID); + HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID); + HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED); + HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED); + HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff + || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID); + HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000) + || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID); + } + + /* DS, ES, FS, GS - only check for usable selectors, see vmxHCExportGuestSReg(). */ + if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE)) + { + HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID); + HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID); + HMVMX_CHECK_BREAK( fUnrestrictedGuest + || pCtx->ds.Attr.n.u4Type > 11 + || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL); + HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED); + HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED); + HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff + || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID); + HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000) + || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID); + HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE) + || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID); + } + if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE)) + { + HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID); + HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID); + HMVMX_CHECK_BREAK( fUnrestrictedGuest + || pCtx->es.Attr.n.u4Type > 11 + || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL); + HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED); + HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED); + HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff + || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID); + HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000) + || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID); + HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE) + || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID); + } + if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE)) + { + HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID); + HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID); + HMVMX_CHECK_BREAK( fUnrestrictedGuest + || pCtx->fs.Attr.n.u4Type > 11 + || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL); + HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED); + HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED); + HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff + || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID); + HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000) + || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID); + HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE) + || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID); + } + if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE)) + { + HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID); + HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID); + HMVMX_CHECK_BREAK( fUnrestrictedGuest + || pCtx->gs.Attr.n.u4Type > 11 + || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL); + HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED); + HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED); + HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff + || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID); + HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000) + || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID); + HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE) + || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID); + } + /* 64-bit capable CPUs. */ + HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL); + HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL); + HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE) + || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL); + HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID); + HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base), + VMX_IGS_LONGMODE_SS_BASE_INVALID); + HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base), + VMX_IGS_LONGMODE_DS_BASE_INVALID); + HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base), + VMX_IGS_LONGMODE_ES_BASE_INVALID); + } + else + { + /* V86 mode checks. */ + uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr; + if (pVmcsInfo->pShared->RealMode.fRealOnV86Active) + { + u32CSAttr = 0xf3; u32SSAttr = 0xf3; + u32DSAttr = 0xf3; u32ESAttr = 0xf3; + u32FSAttr = 0xf3; u32GSAttr = 0xf3; + } + else + { + u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; + u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u; + u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u; + } + + /* CS */ + HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID); + HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID); + HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID); + /* SS */ + HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID); + HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID); + HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID); + /* DS */ + HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID); + HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID); + HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID); + /* ES */ + HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID); + HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID); + HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID); + /* FS */ + HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID); + HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID); + HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID); + /* GS */ + HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID); + HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID); + HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID); + /* 64-bit capable CPUs. */ + HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL); + HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL); + HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE) + || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL); + HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID); + HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base), + VMX_IGS_LONGMODE_SS_BASE_INVALID); + HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base), + VMX_IGS_LONGMODE_DS_BASE_INVALID); + HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base), + VMX_IGS_LONGMODE_ES_BASE_INVALID); + } + + /* + * TR. + */ + HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID); + /* 64-bit capable CPUs. */ + HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL); + if (fLongModeGuest) + HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */ + VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID); + else + HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */ + || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/ + VMX_IGS_TR_ATTR_TYPE_INVALID); + HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID); + HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID); + HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */ + HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff + || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID); + HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000) + || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID); + HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE); + + /* + * GDTR and IDTR (64-bit capable checks). + */ + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_GDTR_BASE, &u64Val); + AssertRC(rc); + HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL); + + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_IDTR_BASE, &u64Val); + AssertRC(rc); + HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL); + + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); + AssertRC(rc); + HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */ + + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); + AssertRC(rc); + HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */ + + /* + * Guest Non-Register State. + */ + /* Activity State. */ + uint32_t u32ActivityState; + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState); + AssertRC(rc); + HMVMX_CHECK_BREAK( !u32ActivityState + || (u32ActivityState & RT_BF_GET(g_HmMsrs.u.vmx.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)), + VMX_IGS_ACTIVITY_STATE_INVALID); + HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl) + || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID); + + if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS + || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI) + { + HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID); + } + + /** @todo Activity state and injecting interrupts. Left as a todo since we + * currently don't use activity states but ACTIVE. */ + + HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM) + || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID); + + /* Guest interruptibility-state. */ + HMVMX_CHECK_BREAK(!(u32IntrState & 0xffffffe0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED); + HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)) + != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS), + VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID); + HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF) + || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI), + VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID); + if (VMX_ENTRY_INT_INFO_IS_EXT_INT(u32EntryInfo)) + { + HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI) + && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS), + VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID); + } + else if (VMX_ENTRY_INT_INFO_IS_XCPT_NMI(u32EntryInfo)) + { + HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS), + VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID); + HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI), + VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID); + } + /** @todo Assumes the processor is not in SMM. */ + HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI), + VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID); + HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM) + || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI), + VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID); + if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI) + && VMX_ENTRY_INT_INFO_IS_XCPT_NMI(u32EntryInfo)) + { + HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI), VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID); + } + + /* Pending debug exceptions. */ + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val); + AssertRC(rc); + /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */ + HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED); + u32Val = u64Val; /* For pending debug exceptions checks below. */ + + if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI) + || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS) + || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT) + { + if ( (u32Eflags & X86_EFL_TF) + && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */ + { + /* Bit 14 is PendingDebug.BS. */ + HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET); + } + if ( !(u32Eflags & X86_EFL_TF) + || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */ + { + /* Bit 14 is PendingDebug.BS. */ + HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR); + } + } + +#ifndef IN_NEM_DARWIN + /* VMCS link pointer. */ + rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val); + AssertRC(rc); + if (u64Val != UINT64_C(0xffffffffffffffff)) + { + HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED); + /** @todo Bits beyond the processor's physical-address width MBZ. */ + /** @todo SMM checks. */ + Assert(pVmcsInfo->HCPhysShadowVmcs == u64Val); + Assert(pVmcsInfo->pvShadowVmcs); + VMXVMCSREVID VmcsRevId; + VmcsRevId.u = *(uint32_t *)pVmcsInfo->pvShadowVmcs; + HMVMX_CHECK_BREAK(VmcsRevId.n.u31RevisionId == RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_ID), + VMX_IGS_VMCS_LINK_PTR_SHADOW_VMCS_ID_INVALID); + HMVMX_CHECK_BREAK(VmcsRevId.n.fIsShadowVmcs == (uint32_t)!!(pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING), + VMX_IGS_VMCS_LINK_PTR_NOT_SHADOW); + } + + /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is + * not using nested paging? */ + if ( VM_IS_VMX_NESTED_PAGING(pVM) + && !fLongModeGuest + && CPUMIsGuestInPAEModeEx(pCtx)) + { + rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val); + AssertRC(rc); + HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED); + + rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val); + AssertRC(rc); + HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED); + + rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val); + AssertRC(rc); + HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED); + + rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val); + AssertRC(rc); + HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED); + } +#endif + + /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */ + if (uError == VMX_IGS_ERROR) + uError = VMX_IGS_REASON_NOT_FOUND; + } while (0); + + VCPU_2_VMXSTATE(pVCpu).u32HMError = uError; + VCPU_2_VMXSTATE(pVCpu).vmx.LastError.u32GuestIntrState = u32IntrState; + return uError; + +#undef HMVMX_ERROR_BREAK +#undef HMVMX_CHECK_BREAK +} + + +#ifndef HMVMX_USE_FUNCTION_TABLE +/** + * Handles a guest VM-exit from hardware-assisted VMX execution. + * + * @returns Strict VBox status code (i.e. informational status codes too). + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + */ +DECLINLINE(VBOXSTRICTRC) vmxHCHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ +#ifdef DEBUG_ramshankar +# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \ + do { \ + if (a_fSave != 0) \ + vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); \ + VBOXSTRICTRC rcStrict = a_CallExpr; \ + if (a_fSave != 0) \ + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST); \ + return rcStrict; \ + } while (0) +#else +# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr +#endif + uint32_t const uExitReason = pVmxTransient->uExitReason; + switch (uExitReason) + { + case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, vmxHCExitEptMisconfig(pVCpu, pVmxTransient)); + case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, vmxHCExitEptViolation(pVCpu, pVmxTransient)); + case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, vmxHCExitIoInstr(pVCpu, pVmxTransient)); + case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, vmxHCExitCpuid(pVCpu, pVmxTransient)); + case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, vmxHCExitRdtsc(pVCpu, pVmxTransient)); + case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, vmxHCExitRdtscp(pVCpu, pVmxTransient)); + case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, vmxHCExitApicAccess(pVCpu, pVmxTransient)); + case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, vmxHCExitXcptOrNmi(pVCpu, pVmxTransient)); + case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, vmxHCExitMovCRx(pVCpu, pVmxTransient)); + case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, vmxHCExitExtInt(pVCpu, pVmxTransient)); + case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, vmxHCExitIntWindow(pVCpu, pVmxTransient)); + case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, vmxHCExitTprBelowThreshold(pVCpu, pVmxTransient)); + case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, vmxHCExitMwait(pVCpu, pVmxTransient)); + case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, vmxHCExitMonitor(pVCpu, pVmxTransient)); + case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, vmxHCExitTaskSwitch(pVCpu, pVmxTransient)); + case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, vmxHCExitPreemptTimer(pVCpu, pVmxTransient)); + case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, vmxHCExitRdmsr(pVCpu, pVmxTransient)); + case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, vmxHCExitWrmsr(pVCpu, pVmxTransient)); + case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, vmxHCExitVmcall(pVCpu, pVmxTransient)); + case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, vmxHCExitMovDRx(pVCpu, pVmxTransient)); + case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, vmxHCExitHlt(pVCpu, pVmxTransient)); + case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, vmxHCExitInvd(pVCpu, pVmxTransient)); + case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, vmxHCExitInvlpg(pVCpu, pVmxTransient)); + case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, vmxHCExitMtf(pVCpu, pVmxTransient)); + case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, vmxHCExitPause(pVCpu, pVmxTransient)); + case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, vmxHCExitWbinvd(pVCpu, pVmxTransient)); + case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, vmxHCExitXsetbv(pVCpu, pVmxTransient)); + case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, vmxHCExitInvpcid(pVCpu, pVmxTransient)); + case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, vmxHCExitGetsec(pVCpu, pVmxTransient)); + case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, vmxHCExitRdpmc(pVCpu, pVmxTransient)); +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + case VMX_EXIT_VMCLEAR: VMEXIT_CALL_RET(0, vmxHCExitVmclear(pVCpu, pVmxTransient)); + case VMX_EXIT_VMLAUNCH: VMEXIT_CALL_RET(0, vmxHCExitVmlaunch(pVCpu, pVmxTransient)); + case VMX_EXIT_VMPTRLD: VMEXIT_CALL_RET(0, vmxHCExitVmptrld(pVCpu, pVmxTransient)); + case VMX_EXIT_VMPTRST: VMEXIT_CALL_RET(0, vmxHCExitVmptrst(pVCpu, pVmxTransient)); + case VMX_EXIT_VMREAD: VMEXIT_CALL_RET(0, vmxHCExitVmread(pVCpu, pVmxTransient)); + case VMX_EXIT_VMRESUME: VMEXIT_CALL_RET(0, vmxHCExitVmwrite(pVCpu, pVmxTransient)); + case VMX_EXIT_VMWRITE: VMEXIT_CALL_RET(0, vmxHCExitVmresume(pVCpu, pVmxTransient)); + case VMX_EXIT_VMXOFF: VMEXIT_CALL_RET(0, vmxHCExitVmxoff(pVCpu, pVmxTransient)); + case VMX_EXIT_VMXON: VMEXIT_CALL_RET(0, vmxHCExitVmxon(pVCpu, pVmxTransient)); + case VMX_EXIT_INVVPID: VMEXIT_CALL_RET(0, vmxHCExitInvvpid(pVCpu, pVmxTransient)); +#else + case VMX_EXIT_VMCLEAR: + case VMX_EXIT_VMLAUNCH: + case VMX_EXIT_VMPTRLD: + case VMX_EXIT_VMPTRST: + case VMX_EXIT_VMREAD: + case VMX_EXIT_VMRESUME: + case VMX_EXIT_VMWRITE: + case VMX_EXIT_VMXOFF: + case VMX_EXIT_VMXON: + case VMX_EXIT_INVVPID: + return vmxHCExitSetPendingXcptUD(pVCpu, pVmxTransient); +#endif +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT + case VMX_EXIT_INVEPT: VMEXIT_CALL_RET(0, vmxHCExitInvept(pVCpu, pVmxTransient)); +#else + case VMX_EXIT_INVEPT: return vmxHCExitSetPendingXcptUD(pVCpu, pVmxTransient); +#endif + + case VMX_EXIT_TRIPLE_FAULT: return vmxHCExitTripleFault(pVCpu, pVmxTransient); + case VMX_EXIT_NMI_WINDOW: return vmxHCExitNmiWindow(pVCpu, pVmxTransient); + case VMX_EXIT_ERR_INVALID_GUEST_STATE: return vmxHCExitErrInvalidGuestState(pVCpu, pVmxTransient); + + case VMX_EXIT_INIT_SIGNAL: + case VMX_EXIT_SIPI: + case VMX_EXIT_IO_SMI: + case VMX_EXIT_SMI: + case VMX_EXIT_ERR_MSR_LOAD: + case VMX_EXIT_ERR_MACHINE_CHECK: + case VMX_EXIT_PML_FULL: + case VMX_EXIT_VIRTUALIZED_EOI: + case VMX_EXIT_GDTR_IDTR_ACCESS: + case VMX_EXIT_LDTR_TR_ACCESS: + case VMX_EXIT_APIC_WRITE: + case VMX_EXIT_RDRAND: + case VMX_EXIT_RSM: + case VMX_EXIT_VMFUNC: + case VMX_EXIT_ENCLS: + case VMX_EXIT_RDSEED: + case VMX_EXIT_XSAVES: + case VMX_EXIT_XRSTORS: + case VMX_EXIT_UMWAIT: + case VMX_EXIT_TPAUSE: + case VMX_EXIT_LOADIWKEY: + default: + return vmxHCExitErrUnexpected(pVCpu, pVmxTransient); + } +#undef VMEXIT_CALL_RET +} +#endif /* !HMVMX_USE_FUNCTION_TABLE */ + + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX +/** + * Handles a nested-guest VM-exit from hardware-assisted VMX execution. + * + * @returns Strict VBox status code (i.e. informational status codes too). + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + */ +DECLINLINE(VBOXSTRICTRC) vmxHCHandleExitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + uint32_t const uExitReason = pVmxTransient->uExitReason; + switch (uExitReason) + { +# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT + case VMX_EXIT_EPT_MISCONFIG: return vmxHCExitEptMisconfigNested(pVCpu, pVmxTransient); + case VMX_EXIT_EPT_VIOLATION: return vmxHCExitEptViolationNested(pVCpu, pVmxTransient); +# else + case VMX_EXIT_EPT_MISCONFIG: return vmxHCExitEptMisconfig(pVCpu, pVmxTransient); + case VMX_EXIT_EPT_VIOLATION: return vmxHCExitEptViolation(pVCpu, pVmxTransient); +# endif + case VMX_EXIT_XCPT_OR_NMI: return vmxHCExitXcptOrNmiNested(pVCpu, pVmxTransient); + case VMX_EXIT_IO_INSTR: return vmxHCExitIoInstrNested(pVCpu, pVmxTransient); + case VMX_EXIT_HLT: return vmxHCExitHltNested(pVCpu, pVmxTransient); + + /* + * We shouldn't direct host physical interrupts to the nested-guest. + */ + case VMX_EXIT_EXT_INT: + return vmxHCExitExtInt(pVCpu, pVmxTransient); + + /* + * Instructions that cause VM-exits unconditionally or the condition is + * always taken solely from the nested hypervisor (meaning if the VM-exit + * happens, it's guaranteed to be a nested-guest VM-exit). + * + * - Provides VM-exit instruction length ONLY. + */ + case VMX_EXIT_CPUID: /* Unconditional. */ + case VMX_EXIT_VMCALL: + case VMX_EXIT_GETSEC: + case VMX_EXIT_INVD: + case VMX_EXIT_XSETBV: + case VMX_EXIT_VMLAUNCH: + case VMX_EXIT_VMRESUME: + case VMX_EXIT_VMXOFF: + case VMX_EXIT_ENCLS: /* Condition specified solely by nested hypervisor. */ + case VMX_EXIT_VMFUNC: + return vmxHCExitInstrNested(pVCpu, pVmxTransient); + + /* + * Instructions that cause VM-exits unconditionally or the condition is + * always taken solely from the nested hypervisor (meaning if the VM-exit + * happens, it's guaranteed to be a nested-guest VM-exit). + * + * - Provides VM-exit instruction length. + * - Provides VM-exit information. + * - Optionally provides Exit qualification. + * + * Since Exit qualification is 0 for all VM-exits where it is not + * applicable, reading and passing it to the guest should produce + * defined behavior. + * + * See Intel spec. 27.2.1 "Basic VM-Exit Information". + */ + case VMX_EXIT_INVEPT: /* Unconditional. */ + case VMX_EXIT_INVVPID: + case VMX_EXIT_VMCLEAR: + case VMX_EXIT_VMPTRLD: + case VMX_EXIT_VMPTRST: + case VMX_EXIT_VMXON: + case VMX_EXIT_GDTR_IDTR_ACCESS: /* Condition specified solely by nested hypervisor. */ + case VMX_EXIT_LDTR_TR_ACCESS: + case VMX_EXIT_RDRAND: + case VMX_EXIT_RDSEED: + case VMX_EXIT_XSAVES: + case VMX_EXIT_XRSTORS: + case VMX_EXIT_UMWAIT: + case VMX_EXIT_TPAUSE: + return vmxHCExitInstrWithInfoNested(pVCpu, pVmxTransient); + + case VMX_EXIT_RDTSC: return vmxHCExitRdtscNested(pVCpu, pVmxTransient); + case VMX_EXIT_RDTSCP: return vmxHCExitRdtscpNested(pVCpu, pVmxTransient); + case VMX_EXIT_RDMSR: return vmxHCExitRdmsrNested(pVCpu, pVmxTransient); + case VMX_EXIT_WRMSR: return vmxHCExitWrmsrNested(pVCpu, pVmxTransient); + case VMX_EXIT_INVLPG: return vmxHCExitInvlpgNested(pVCpu, pVmxTransient); + case VMX_EXIT_INVPCID: return vmxHCExitInvpcidNested(pVCpu, pVmxTransient); + case VMX_EXIT_TASK_SWITCH: return vmxHCExitTaskSwitchNested(pVCpu, pVmxTransient); + case VMX_EXIT_WBINVD: return vmxHCExitWbinvdNested(pVCpu, pVmxTransient); + case VMX_EXIT_MTF: return vmxHCExitMtfNested(pVCpu, pVmxTransient); + case VMX_EXIT_APIC_ACCESS: return vmxHCExitApicAccessNested(pVCpu, pVmxTransient); + case VMX_EXIT_APIC_WRITE: return vmxHCExitApicWriteNested(pVCpu, pVmxTransient); + case VMX_EXIT_VIRTUALIZED_EOI: return vmxHCExitVirtEoiNested(pVCpu, pVmxTransient); + case VMX_EXIT_MOV_CRX: return vmxHCExitMovCRxNested(pVCpu, pVmxTransient); + case VMX_EXIT_INT_WINDOW: return vmxHCExitIntWindowNested(pVCpu, pVmxTransient); + case VMX_EXIT_NMI_WINDOW: return vmxHCExitNmiWindowNested(pVCpu, pVmxTransient); + case VMX_EXIT_TPR_BELOW_THRESHOLD: return vmxHCExitTprBelowThresholdNested(pVCpu, pVmxTransient); + case VMX_EXIT_MWAIT: return vmxHCExitMwaitNested(pVCpu, pVmxTransient); + case VMX_EXIT_MONITOR: return vmxHCExitMonitorNested(pVCpu, pVmxTransient); + case VMX_EXIT_PAUSE: return vmxHCExitPauseNested(pVCpu, pVmxTransient); + + case VMX_EXIT_PREEMPT_TIMER: + { + /** @todo NSTVMX: Preempt timer. */ + return vmxHCExitPreemptTimer(pVCpu, pVmxTransient); + } + + case VMX_EXIT_MOV_DRX: return vmxHCExitMovDRxNested(pVCpu, pVmxTransient); + case VMX_EXIT_RDPMC: return vmxHCExitRdpmcNested(pVCpu, pVmxTransient); + + case VMX_EXIT_VMREAD: + case VMX_EXIT_VMWRITE: return vmxHCExitVmreadVmwriteNested(pVCpu, pVmxTransient); + + case VMX_EXIT_TRIPLE_FAULT: return vmxHCExitTripleFaultNested(pVCpu, pVmxTransient); + case VMX_EXIT_ERR_INVALID_GUEST_STATE: return vmxHCExitErrInvalidGuestStateNested(pVCpu, pVmxTransient); + + case VMX_EXIT_INIT_SIGNAL: + case VMX_EXIT_SIPI: + case VMX_EXIT_IO_SMI: + case VMX_EXIT_SMI: + case VMX_EXIT_ERR_MSR_LOAD: + case VMX_EXIT_ERR_MACHINE_CHECK: + case VMX_EXIT_PML_FULL: + case VMX_EXIT_RSM: + default: + return vmxHCExitErrUnexpected(pVCpu, pVmxTransient); + } +} +#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */ + + +/** @name VM-exit helpers. + * @{ + */ +/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */ +/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit helpers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */ +/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */ + +/** Macro for VM-exits called unexpectedly. */ +#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_HmError) \ + do { \ + VCPU_2_VMXSTATE((a_pVCpu)).u32HMError = (a_HmError); \ + return VERR_VMX_UNEXPECTED_EXIT; \ + } while (0) + +#ifdef VBOX_STRICT +# ifndef IN_NEM_DARWIN +/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */ +# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \ + RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId() + +# define HMVMX_ASSERT_PREEMPT_CPUID() \ + do { \ + RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \ + AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \ + } while (0) + +# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \ + do { \ + AssertPtr((a_pVCpu)); \ + AssertPtr((a_pVmxTransient)); \ + Assert( (a_pVmxTransient)->fVMEntryFailed == false \ + || (a_pVmxTransient)->uExitReason == VMX_EXIT_ERR_INVALID_GUEST_STATE \ + || (a_pVmxTransient)->uExitReason == VMX_EXIT_ERR_MSR_LOAD \ + || (a_pVmxTransient)->uExitReason == VMX_EXIT_ERR_MACHINE_CHECK); \ + Assert((a_pVmxTransient)->pVmcsInfo); \ + Assert(ASMIntAreEnabled()); \ + HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \ + HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \ + Log4Func(("vcpu[%RU32]\n", (a_pVCpu)->idCpu)); \ + HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \ + if (!VMMRZCallRing3IsEnabled((a_pVCpu))) \ + HMVMX_ASSERT_PREEMPT_CPUID(); \ + HMVMX_STOP_EXIT_DISPATCH_PROF(); \ + } while (0) +# else +# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() do { } while(0) +# define HMVMX_ASSERT_PREEMPT_CPUID() do { } while(0) +# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \ + do { \ + AssertPtr((a_pVCpu)); \ + AssertPtr((a_pVmxTransient)); \ + Assert( (a_pVmxTransient)->fVMEntryFailed == false \ + || (a_pVmxTransient)->uExitReason == VMX_EXIT_ERR_INVALID_GUEST_STATE \ + || (a_pVmxTransient)->uExitReason == VMX_EXIT_ERR_MSR_LOAD \ + || (a_pVmxTransient)->uExitReason == VMX_EXIT_ERR_MACHINE_CHECK); \ + Assert((a_pVmxTransient)->pVmcsInfo); \ + Log4Func(("vcpu[%RU32]\n", (a_pVCpu)->idCpu)); \ + HMVMX_STOP_EXIT_DISPATCH_PROF(); \ + } while (0) +# endif + +# define HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \ + do { \ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient); \ + Assert((a_pVmxTransient)->fIsNestedGuest); \ + } while (0) + +# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \ + do { \ + Log4Func(("\n")); \ + } while (0) +#else +# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \ + do { \ + HMVMX_STOP_EXIT_DISPATCH_PROF(); \ + NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \ + } while (0) + +# define HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \ + do { HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient); } while (0) + +# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0) +#endif + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX +/** Macro that does the necessary privilege checks and intercepted VM-exits for + * guests that attempted to execute a VMX instruction. */ +# define HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(a_pVCpu, a_uExitReason) \ + do \ + { \ + VBOXSTRICTRC rcStrictTmp = vmxHCCheckExitDueToVmxInstr((a_pVCpu), (a_uExitReason)); \ + if (rcStrictTmp == VINF_SUCCESS) \ + { /* likely */ } \ + else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \ + { \ + Assert((a_pVCpu)->hm.s.Event.fPending); \ + Log4Func(("Privilege checks failed -> %#x\n", VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo))); \ + return VINF_SUCCESS; \ + } \ + else \ + { \ + int rcTmp = VBOXSTRICTRC_VAL(rcStrictTmp); \ + AssertMsgFailedReturn(("Unexpected failure. rc=%Rrc", rcTmp), rcTmp); \ + } \ + } while (0) + +/** Macro that decodes a memory operand for an VM-exit caused by an instruction. */ +# define HMVMX_DECODE_MEM_OPERAND(a_pVCpu, a_uExitInstrInfo, a_uExitQual, a_enmMemAccess, a_pGCPtrEffAddr) \ + do \ + { \ + VBOXSTRICTRC rcStrictTmp = vmxHCDecodeMemOperand((a_pVCpu), (a_uExitInstrInfo), (a_uExitQual), (a_enmMemAccess), \ + (a_pGCPtrEffAddr)); \ + if (rcStrictTmp == VINF_SUCCESS) \ + { /* likely */ } \ + else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \ + { \ + uint8_t const uXcptTmp = VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo); \ + Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", uXcptTmp)); \ + NOREF(uXcptTmp); \ + return VINF_SUCCESS; \ + } \ + else \ + { \ + Log4Func(("vmxHCDecodeMemOperand failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrictTmp))); \ + return rcStrictTmp; \ + } \ + } while (0) +#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */ + + +/** + * Advances the guest RIP by the specified number of bytes. + * + * @param pVCpu The cross context virtual CPU structure. + * @param cbInstr Number of bytes to advance the RIP by. + * + * @remarks No-long-jump zone!!! + */ +DECLINLINE(void) vmxHCAdvanceGuestRipBy(PVMCPUCC pVCpu, uint32_t cbInstr) +{ + CPUM_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI); + + /* + * Advance RIP. + * + * The upper 32 bits are only set when in 64-bit mode, so we have to detect + * when the addition causes a "carry" into the upper half and check whether + * we're in 64-bit and can go on with it or wether we should zap the top + * half. (Note! The 8086, 80186 and 80286 emulation is done exclusively in + * IEM, so we don't need to bother with pre-386 16-bit wraparound.) + * + * See PC wrap around tests in bs3-cpu-weird-1. + */ + uint64_t const uRipPrev = pVCpu->cpum.GstCtx.rip; + uint64_t const uRipNext = uRipPrev + cbInstr; + if (RT_LIKELY( !((uRipNext ^ uRipPrev) & RT_BIT_64(32)) + || CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx))) + pVCpu->cpum.GstCtx.rip = uRipNext; + else + pVCpu->cpum.GstCtx.rip = (uint32_t)uRipNext; + + /* + * Clear RF and interrupt shadowing. + */ + if (RT_LIKELY(!(pVCpu->cpum.GstCtx.eflags.uBoth & (X86_EFL_RF | X86_EFL_TF)))) + pVCpu->cpum.GstCtx.eflags.uBoth &= ~CPUMCTX_INHIBIT_SHADOW; + else + { + if ((pVCpu->cpum.GstCtx.eflags.uBoth & (X86_EFL_RF | X86_EFL_TF)) == X86_EFL_TF) + { + /** @todo \#DB - single step. */ + } + pVCpu->cpum.GstCtx.eflags.uBoth &= ~(X86_EFL_RF | CPUMCTX_INHIBIT_SHADOW); + } + AssertCompile(CPUMCTX_INHIBIT_SHADOW < UINT32_MAX); + + /* Mark both RIP and RFLAGS as updated. */ + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); +} + + +/** + * Advances the guest RIP after reading it from the VMCS. + * + * @returns VBox status code, no informational status codes. + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + * + * @remarks No-long-jump zone!!! + */ +static int vmxHCAdvanceGuestRip(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + vmxHCReadToTransientSlow<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + /** @todo consider template here after checking callers. */ + int rc = vmxHCImportGuestStateEx(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS); + AssertRCReturn(rc, rc); + + vmxHCAdvanceGuestRipBy(pVCpu, pVmxTransient->cbExitInstr); + return VINF_SUCCESS; +} + + +/** + * Handle a condition that occurred while delivering an event through the guest or + * nested-guest IDT. + * + * @returns Strict VBox status code (i.e. informational status codes too). + * @retval VINF_SUCCESS if we should continue handling the VM-exit. + * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought + * to continue execution of the guest which will delivery the \#DF. + * @retval VINF_EM_RESET if we detected a triple-fault condition. + * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + * + * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS. + * Additionally, HMVMX_READ_EXIT_QUALIFICATION is required if the VM-exit + * is due to an EPT violation, PML full or SPP-related event. + * + * @remarks No-long-jump zone!!! + */ +static VBOXSTRICTRC vmxHCCheckExitDueToEventDelivery(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + Assert(!VCPU_2_VMXSTATE(pVCpu).Event.fPending); + HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_XCPT_INFO); + if ( pVmxTransient->uExitReason == VMX_EXIT_EPT_VIOLATION + || pVmxTransient->uExitReason == VMX_EXIT_PML_FULL + || pVmxTransient->uExitReason == VMX_EXIT_SPP_EVENT) + HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_EXIT_QUALIFICATION); + + VBOXSTRICTRC rcStrict = VINF_SUCCESS; + PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + uint32_t const uIdtVectorInfo = pVmxTransient->uIdtVectoringInfo; + uint32_t const uExitIntInfo = pVmxTransient->uExitIntInfo; + if (VMX_IDT_VECTORING_INFO_IS_VALID(uIdtVectorInfo)) + { + uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(uIdtVectorInfo); + uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(uIdtVectorInfo); + + /* + * If the event was a software interrupt (generated with INT n) or a software exception + * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we + * can handle the VM-exit and continue guest execution which will re-execute the + * instruction rather than re-injecting the exception, as that can cause premature + * trips to ring-3 before injection and involve TRPM which currently has no way of + * storing that these exceptions were caused by these instructions (ICEBP's #DB poses + * the problem). + */ + IEMXCPTRAISE enmRaise; + IEMXCPTRAISEINFO fRaiseInfo; + if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT + || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT + || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT) + { + enmRaise = IEMXCPTRAISE_REEXEC_INSTR; + fRaiseInfo = IEMXCPTRAISEINFO_NONE; + } + else if (VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo)) + { + uint32_t const uExitVectorType = VMX_EXIT_INT_INFO_TYPE(uExitIntInfo); + uint8_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo); + Assert(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT); + + uint32_t const fIdtVectorFlags = vmxHCGetIemXcptFlags(uIdtVector, uIdtVectorType); + uint32_t const fExitVectorFlags = vmxHCGetIemXcptFlags(uExitVector, uExitVectorType); + + enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo); + + /* Determine a vectoring #PF condition, see comment in vmxHCExitXcptPF(). */ + if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF)) + { + pVmxTransient->fVectoringPF = true; + enmRaise = IEMXCPTRAISE_PREV_EVENT; + } + } + else + { + /* + * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access + * VM-exit, then the VM-exit interruption-information will not be valid and we end up here. + * It is sufficient to reflect the original event to the guest after handling the VM-exit. + */ + Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT + || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI + || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT); + enmRaise = IEMXCPTRAISE_PREV_EVENT; + fRaiseInfo = IEMXCPTRAISEINFO_NONE; + } + + /* + * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig + * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest + * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the + * subsequent VM-entry would fail, see @bugref{7445}. + * + * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". + */ + if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI + && enmRaise == IEMXCPTRAISE_PREV_EVENT + && (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI) + && CPUMAreInterruptsInhibitedByNmiEx(&pVCpu->cpum.GstCtx)) + CPUMClearInterruptInhibitingByNmiEx(&pVCpu->cpum.GstCtx); + + switch (enmRaise) + { + case IEMXCPTRAISE_CURRENT_XCPT: + { + Log4Func(("IDT: Pending secondary Xcpt: idtinfo=%#RX64 exitinfo=%#RX64\n", uIdtVectorInfo, uExitIntInfo)); + Assert(rcStrict == VINF_SUCCESS); + break; + } + + case IEMXCPTRAISE_PREV_EVENT: + { + uint32_t u32ErrCode; + if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(uIdtVectorInfo)) + u32ErrCode = pVmxTransient->uIdtVectoringErrorCode; + else + u32ErrCode = 0; + + /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see vmxHCExitXcptPF(). */ + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectReflect); + vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(uIdtVectorInfo), 0 /* cbInstr */, u32ErrCode, + pVCpu->cpum.GstCtx.cr2); + + Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo, + VCPU_2_VMXSTATE(pVCpu).Event.u32ErrCode)); + Assert(rcStrict == VINF_SUCCESS); + break; + } + + case IEMXCPTRAISE_REEXEC_INSTR: + Assert(rcStrict == VINF_SUCCESS); + break; + + case IEMXCPTRAISE_DOUBLE_FAULT: + { + /* + * Determine a vectoring double #PF condition. Used later, when PGM evaluates the + * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF. + */ + if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF) + { + pVmxTransient->fVectoringDoublePF = true; + Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo, + pVCpu->cpum.GstCtx.cr2)); + rcStrict = VINF_SUCCESS; + } + else + { + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectConvertDF); + vmxHCSetPendingXcptDF(pVCpu); + Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo, + uIdtVector, VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo))); + rcStrict = VINF_HM_DOUBLE_FAULT; + } + break; + } + + case IEMXCPTRAISE_TRIPLE_FAULT: + { + Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector, + VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo))); + rcStrict = VINF_EM_RESET; + break; + } + + case IEMXCPTRAISE_CPU_HANG: + { + Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo)); + rcStrict = VERR_EM_GUEST_CPU_HANG; + break; + } + + default: + { + AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise)); + rcStrict = VERR_VMX_IPE_2; + break; + } + } + } + else if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI) + && !CPUMAreInterruptsInhibitedByNmiEx(&pVCpu->cpum.GstCtx)) + { + if ( VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo) + && VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo) != X86_XCPT_DF + && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(uExitIntInfo)) + { + /* + * Execution of IRET caused a fault when NMI blocking was in effect (i.e we're in + * the guest or nested-guest NMI handler). We need to set the block-by-NMI field so + * that virtual NMIs remain blocked until the IRET execution is completed. + * + * See Intel spec. 31.7.1.2 "Resuming Guest Software After Handling An Exception". + */ + CPUMSetInterruptInhibitingByNmiEx(&pVCpu->cpum.GstCtx); + Log4Func(("Set NMI blocking. uExitReason=%u\n", pVmxTransient->uExitReason)); + } + else if ( pVmxTransient->uExitReason == VMX_EXIT_EPT_VIOLATION + || pVmxTransient->uExitReason == VMX_EXIT_PML_FULL + || pVmxTransient->uExitReason == VMX_EXIT_SPP_EVENT) + { + /* + * Execution of IRET caused an EPT violation, page-modification log-full event or + * SPP-related event VM-exit when NMI blocking was in effect (i.e. we're in the + * guest or nested-guest NMI handler). We need to set the block-by-NMI field so + * that virtual NMIs remain blocked until the IRET execution is completed. + * + * See Intel spec. 27.2.3 "Information about NMI unblocking due to IRET" + */ + if (VMX_EXIT_QUAL_EPT_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitQual)) + { + CPUMSetInterruptInhibitingByNmiEx(&pVCpu->cpum.GstCtx); + Log4Func(("Set NMI blocking. uExitReason=%u\n", pVmxTransient->uExitReason)); + } + } + } + + Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT + || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG); + return rcStrict; +} + + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX +/** + * Perform the relevant VMX instruction checks for VM-exits that occurred due to the + * guest attempting to execute a VMX instruction. + * + * @returns Strict VBox status code (i.e. informational status codes too). + * @retval VINF_SUCCESS if we should continue handling the VM-exit. + * @retval VINF_HM_PENDING_XCPT if an exception was raised. + * + * @param pVCpu The cross context virtual CPU structure. + * @param uExitReason The VM-exit reason. + * + * @todo NSTVMX: Document other error codes when VM-exit is implemented. + * @remarks No-long-jump zone!!! + */ +static VBOXSTRICTRC vmxHCCheckExitDueToVmxInstr(PVMCPUCC pVCpu, uint32_t uExitReason) +{ + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS + | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER); + + /* + * The physical CPU would have already checked the CPU mode/code segment. + * We shall just assert here for paranoia. + * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits". + */ + Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx)); + Assert( !CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx) + || CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx)); + + if (uExitReason == VMX_EXIT_VMXON) + { + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4); + + /* + * We check CR4.VMXE because it is required to be always set while in VMX operation + * by physical CPUs and our CR4 read-shadow is only consulted when executing specific + * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation + * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0). + */ + if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx)) + { + Log4Func(("CR4.VMXE is not set -> #UD\n")); + vmxHCSetPendingXcptUD(pVCpu); + return VINF_HM_PENDING_XCPT; + } + } + else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx)) + { + /* + * The guest has not entered VMX operation but attempted to execute a VMX instruction + * (other than VMXON), we need to raise a #UD. + */ + Log4Func(("Not in VMX root mode -> #UD\n")); + vmxHCSetPendingXcptUD(pVCpu); + return VINF_HM_PENDING_XCPT; + } + + /* All other checks (including VM-exit intercepts) are handled by IEM instruction emulation. */ + return VINF_SUCCESS; +} + + +/** + * Decodes the memory operand of an instruction that caused a VM-exit. + * + * The Exit qualification field provides the displacement field for memory + * operand instructions, if any. + * + * @returns Strict VBox status code (i.e. informational status codes too). + * @retval VINF_SUCCESS if the operand was successfully decoded. + * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the + * operand. + * @param pVCpu The cross context virtual CPU structure. + * @param uExitInstrInfo The VM-exit instruction information field. + * @param enmMemAccess The memory operand's access type (read or write). + * @param GCPtrDisp The instruction displacement field, if any. For + * RIP-relative addressing pass RIP + displacement here. + * @param pGCPtrMem Where to store the effective destination memory address. + * + * @remarks Warning! This function ASSUMES the instruction cannot be used in real or + * virtual-8086 mode hence skips those checks while verifying if the + * segment is valid. + */ +static VBOXSTRICTRC vmxHCDecodeMemOperand(PVMCPUCC pVCpu, uint32_t uExitInstrInfo, RTGCPTR GCPtrDisp, VMXMEMACCESS enmMemAccess, + PRTGCPTR pGCPtrMem) +{ + Assert(pGCPtrMem); + Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu)); + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER + | CPUMCTX_EXTRN_CR0); + + static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) }; + static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) }; + AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks)); + + VMXEXITINSTRINFO ExitInstrInfo; + ExitInstrInfo.u = uExitInstrInfo; + uint8_t const uAddrSize = ExitInstrInfo.All.u3AddrSize; + uint8_t const iSegReg = ExitInstrInfo.All.iSegReg; + bool const fIdxRegValid = !ExitInstrInfo.All.fIdxRegInvalid; + uint8_t const iIdxReg = ExitInstrInfo.All.iIdxReg; + uint8_t const uScale = ExitInstrInfo.All.u2Scaling; + bool const fBaseRegValid = !ExitInstrInfo.All.fBaseRegInvalid; + uint8_t const iBaseReg = ExitInstrInfo.All.iBaseReg; + bool const fIsMemOperand = !ExitInstrInfo.All.fIsRegOperand; + bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx); + + /* + * Validate instruction information. + * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code. + */ + AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks), + ("Invalid address size. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_1); + AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT, + ("Invalid segment register. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_2); + AssertLogRelMsgReturn(fIsMemOperand, + ("Expected memory operand. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_3); + + /* + * Compute the complete effective address. + * + * See AMD instruction spec. 1.4.2 "SIB Byte Format" + * See AMD spec. 4.5.2 "Segment Registers". + */ + RTGCPTR GCPtrMem = GCPtrDisp; + if (fBaseRegValid) + GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64; + if (fIdxRegValid) + GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale; + + RTGCPTR const GCPtrOff = GCPtrMem; + if ( !fIsLongMode + || iSegReg >= X86_SREG_FS) + GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base; + GCPtrMem &= s_auAddrSizeMasks[uAddrSize]; + + /* + * Validate effective address. + * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode". + */ + uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize]; + Assert(cbAccess > 0); + if (fIsLongMode) + { + if (X86_IS_CANONICAL(GCPtrMem)) + { + *pGCPtrMem = GCPtrMem; + return VINF_SUCCESS; + } + + /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2 + * "Data Limit Checks in 64-bit Mode". */ + Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem)); + vmxHCSetPendingXcptGP(pVCpu, 0); + return VINF_HM_PENDING_XCPT; + } + + /* + * This is a watered down version of iemMemApplySegment(). + * Parts that are not applicable for VMX instructions like real-or-v8086 mode + * and segment CPL/DPL checks are skipped. + */ + RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff; + RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1; + PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg]; + + /* Check if the segment is present and usable. */ + if ( pSel->Attr.n.u1Present + && !pSel->Attr.n.u1Unusable) + { + Assert(pSel->Attr.n.u1DescType); + if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE)) + { + /* Check permissions for the data segment. */ + if ( enmMemAccess == VMXMEMACCESS_WRITE + && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE)) + { + Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u)); + vmxHCSetPendingXcptGP(pVCpu, iSegReg); + return VINF_HM_PENDING_XCPT; + } + + /* Check limits if it's a normal data segment. */ + if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN)) + { + if ( GCPtrFirst32 > pSel->u32Limit + || GCPtrLast32 > pSel->u32Limit) + { + Log4Func(("Data segment limit exceeded. " + "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32, + GCPtrLast32, pSel->u32Limit)); + if (iSegReg == X86_SREG_SS) + vmxHCSetPendingXcptSS(pVCpu, 0); + else + vmxHCSetPendingXcptGP(pVCpu, 0); + return VINF_HM_PENDING_XCPT; + } + } + else + { + /* Check limits if it's an expand-down data segment. + Note! The upper boundary is defined by the B bit, not the G bit! */ + if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1) + || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff))) + { + Log4Func(("Expand-down data segment limit exceeded. " + "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32, + GCPtrLast32, pSel->u32Limit)); + if (iSegReg == X86_SREG_SS) + vmxHCSetPendingXcptSS(pVCpu, 0); + else + vmxHCSetPendingXcptGP(pVCpu, 0); + return VINF_HM_PENDING_XCPT; + } + } + } + else + { + /* Check permissions for the code segment. */ + if ( enmMemAccess == VMXMEMACCESS_WRITE + || ( enmMemAccess == VMXMEMACCESS_READ + && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ))) + { + Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u)); + Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx)); + vmxHCSetPendingXcptGP(pVCpu, 0); + return VINF_HM_PENDING_XCPT; + } + + /* Check limits for the code segment (normal/expand-down not applicable for code segments). */ + if ( GCPtrFirst32 > pSel->u32Limit + || GCPtrLast32 > pSel->u32Limit) + { + Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", + GCPtrFirst32, GCPtrLast32, pSel->u32Limit)); + if (iSegReg == X86_SREG_SS) + vmxHCSetPendingXcptSS(pVCpu, 0); + else + vmxHCSetPendingXcptGP(pVCpu, 0); + return VINF_HM_PENDING_XCPT; + } + } + } + else + { + Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u)); + vmxHCSetPendingXcptGP(pVCpu, 0); + return VINF_HM_PENDING_XCPT; + } + + *pGCPtrMem = GCPtrMem; + return VINF_SUCCESS; +} +#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */ + + +/** + * VM-exit helper for LMSW. + */ +static VBOXSTRICTRC vmxHCExitLmsw(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint16_t uMsw, RTGCPTR GCPtrEffDst) +{ + int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + VBOXSTRICTRC rcStrict = IEMExecDecodedLmsw(pVCpu, cbInstr, uMsw, GCPtrEffDst); + AssertMsg( rcStrict == VINF_SUCCESS + || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0); + if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitLmsw); + Log4Func(("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; +} + + +/** + * VM-exit helper for CLTS. + */ +static VBOXSTRICTRC vmxHCExitClts(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr) +{ + int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + VBOXSTRICTRC rcStrict = IEMExecDecodedClts(pVCpu, cbInstr); + AssertMsg( rcStrict == VINF_SUCCESS + || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0); + if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitClts); + Log4Func(("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; +} + + +/** + * VM-exit helper for MOV from CRx (CRx read). + */ +static VBOXSTRICTRC vmxHCExitMovFromCrX(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg) +{ + Assert(iCrReg < 16); + Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs)); + + int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg); + AssertMsg( rcStrict == VINF_SUCCESS + || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + + if (iGReg == X86_GREG_xSP) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP); + else + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); +#ifdef VBOX_WITH_STATISTICS + switch (iCrReg) + { + case 0: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR0Read); break; + case 2: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR2Read); break; + case 3: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR3Read); break; + case 4: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR4Read); break; + case 8: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR8Read); break; + } +#endif + Log4Func(("CR%d Read access rcStrict=%Rrc\n", iCrReg, VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; +} + + +/** + * VM-exit helper for MOV to CRx (CRx write). + */ +static VBOXSTRICTRC vmxHCExitMovToCrX(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg) +{ + HMVMX_CPUMCTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); + + VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg); + AssertMsg( rcStrict == VINF_SUCCESS + || rcStrict == VINF_IEM_RAISED_XCPT + || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + + switch (iCrReg) + { + case 0: + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0 + | HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR0Write); + Log4Func(("CR0 write. rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0)); + break; + + case 2: + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR2Write); + /* Nothing to do here, CR2 it's not part of the VMCS. */ + break; + + case 3: + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR3Write); + Log4Func(("CR3 write. rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3)); + break; + + case 4: + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR4Write); +#ifndef IN_NEM_DARWIN + Log4Func(("CR4 write. rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict), + pVCpu->cpum.GstCtx.cr4, pVCpu->hmr0.s.fLoadSaveGuestXcr0)); +#else + Log4Func(("CR4 write. rc=%Rrc CR4=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr4)); +#endif + break; + + case 8: + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, + HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR8Write); + break; + + default: + AssertMsgFailed(("Invalid CRx register %#x\n", iCrReg)); + break; + } + + if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + return rcStrict; +} + + +/** + * VM-exit exception handler for \#PF (Page-fault exception). + * + * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS. + */ +static VBOXSTRICTRC vmxHCExitXcptPF(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient); + vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient); + +#ifndef IN_NEM_DARWIN + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + if (!VM_IS_VMX_NESTED_PAGING(pVM)) + { /* likely */ } + else +#endif + { +#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF) && !defined(IN_NEM_DARWIN) + Assert(pVmxTransient->fIsNestedGuest || pVCpu->hmr0.s.fUsingDebugLoop); +#endif + VCPU_2_VMXSTATE(pVCpu).Event.fPending = false; /* In case it's a contributory or vectoring #PF. */ + if (!pVmxTransient->fVectoringDoublePF) + { + vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */, + pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual); + } + else + { + /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */ + Assert(!pVmxTransient->fIsNestedGuest); + vmxHCSetPendingXcptDF(pVCpu); + Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n")); + } + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestPF); + return VINF_SUCCESS; + } + + Assert(!pVmxTransient->fIsNestedGuest); + + /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable + of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */ + if (pVmxTransient->fVectoringPF) + { + Assert(VCPU_2_VMXSTATE(pVCpu).Event.fPending); + return VINF_EM_RAW_INJECT_TRPM_EVENT; + } + + int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + Log4Func(("#PF: cs:rip=%#04x:%08RX64 err_code=%#RX32 exit_qual=%#RX64 cr3=%#RX64\n", pVCpu->cpum.GstCtx.cs.Sel, + pVCpu->cpum.GstCtx.rip, pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual, pVCpu->cpum.GstCtx.cr3)); + + TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode); + rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, &pVCpu->cpum.GstCtx, (RTGCPTR)pVmxTransient->uExitQual); + + Log4Func(("#PF: rc=%Rrc\n", rc)); + if (rc == VINF_SUCCESS) + { + /* + * This is typically a shadow page table sync or a MMIO instruction. But we may have + * emulated something like LTR or a far jump. Any part of the CPU context may have changed. + */ + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST); + TRPMResetTrap(pVCpu); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitShadowPF); + return rc; + } + + if (rc == VINF_EM_RAW_GUEST_TRAP) + { + if (!pVmxTransient->fVectoringDoublePF) + { + /* It's a guest page fault and needs to be reflected to the guest. */ + uint32_t const uGstErrorCode = TRPMGetErrorCode(pVCpu); + TRPMResetTrap(pVCpu); + VCPU_2_VMXSTATE(pVCpu).Event.fPending = false; /* In case it's a contributory #PF. */ + vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */, + uGstErrorCode, pVmxTransient->uExitQual); + } + else + { + /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */ + TRPMResetTrap(pVCpu); + VCPU_2_VMXSTATE(pVCpu).Event.fPending = false; /* Clear pending #PF to replace it with #DF. */ + vmxHCSetPendingXcptDF(pVCpu); + Log4Func(("#PF: Pending #DF due to vectoring #PF\n")); + } + + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestPF); + return VINF_SUCCESS; + } + + TRPMResetTrap(pVCpu); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitShadowPFEM); + return rc; +} + + +/** + * VM-exit exception handler for \#MF (Math Fault: floating point exception). + * + * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS. + */ +static VBOXSTRICTRC vmxHCExitXcptMF(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestMF); + + int rc = vmxHCImportGuestState<CPUMCTX_EXTRN_CR0>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE)) + { + /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */ + rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */); + + /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit + * provides VM-exit instruction length. If this causes problem later, + * disassemble the instruction like it's done on AMD-V. */ + int rc2 = vmxHCAdvanceGuestRip(pVCpu, pVmxTransient); + AssertRCReturn(rc2, rc2); + return rc; + } + + vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbExitInstr, + pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */); + return VINF_SUCCESS; +} + + +/** + * VM-exit exception handler for \#BP (Breakpoint exception). + * + * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS. + */ +static VBOXSTRICTRC vmxHCExitXcptBP(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestBP); + + int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + VBOXSTRICTRC rcStrict; + if (!pVmxTransient->fIsNestedGuest) + rcStrict = DBGFTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, &pVCpu->cpum.GstCtx); + else + rcStrict = VINF_EM_RAW_GUEST_TRAP; + + if (rcStrict == VINF_EM_RAW_GUEST_TRAP) + { + vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), + pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */); + rcStrict = VINF_SUCCESS; + } + + Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_DBG_BREAKPOINT); + return rcStrict; +} + + +/** + * VM-exit exception handler for \#AC (Alignment-check exception). + * + * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS. + */ +static VBOXSTRICTRC vmxHCExitXcptAC(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + /* + * Detect #ACs caused by host having enabled split-lock detection. + * Emulate such instructions. + */ +#define VMX_HC_EXIT_XCPT_AC_INITIAL_REGS (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS) + int rc = vmxHCImportGuestState<VMX_HC_EXIT_XCPT_AC_INITIAL_REGS>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + /** @todo detect split lock in cpu feature? */ + if ( /* 1. If 486-style alignment checks aren't enabled, then this must be a split-lock exception */ + !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM) + /* 2. #AC cannot happen in rings 0-2 except for split-lock detection. */ + || CPUMGetGuestCPL(pVCpu) != 3 + /* 3. When the EFLAGS.AC != 0 this can only be a split-lock case. */ + || !(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_AC) ) + { + /* + * Check for debug/trace events and import state accordingly. + */ + STAM_REL_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestACSplitLock); + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + if ( !DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_VMX_SPLIT_LOCK) +#ifndef IN_NEM_DARWIN + && !VBOXVMM_VMX_SPLIT_LOCK_ENABLED() +#endif + ) + { + if (pVM->cCpus == 1) + { +#if 0 /** @todo r=bird: This is potentially wrong. Might have to just do a whole state sync above and mark everything changed to be safe... */ + rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK, + VMX_HC_EXIT_XCPT_AC_INITIAL_REGS>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); +#else + rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL, + VMX_HC_EXIT_XCPT_AC_INITIAL_REGS>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); +#endif + AssertRCReturn(rc, rc); + } + } + else + { + rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL, + VMX_HC_EXIT_XCPT_AC_INITIAL_REGS>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + VBOXVMM_XCPT_DF(pVCpu, &pVCpu->cpum.GstCtx); + + if (DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_VMX_SPLIT_LOCK)) + { + VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, DBGFEVENT_VMX_SPLIT_LOCK, DBGFEVENTCTX_HM, 0); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + } + } + + /* + * Emulate the instruction. + * + * We have to ignore the LOCK prefix here as we must not retrigger the + * detection on the host. This isn't all that satisfactory, though... + */ + if (pVM->cCpus == 1) + { + Log8Func(("cs:rip=%#04x:%08RX64 rflags=%#RX64 cr0=%#RX64 split-lock #AC\n", pVCpu->cpum.GstCtx.cs.Sel, + pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags, pVCpu->cpum.GstCtx.cr0)); + + /** @todo For SMP configs we should do a rendezvous here. */ + VBOXSTRICTRC rcStrict = IEMExecOneIgnoreLock(pVCpu); + if (rcStrict == VINF_SUCCESS) +#if 0 /** @todo r=bird: This is potentially wrong. Might have to just do a whole state sync above and mark everything changed to be safe... */ + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, + HM_CHANGED_GUEST_RIP + | HM_CHANGED_GUEST_RFLAGS + | HM_CHANGED_GUEST_GPRS_MASK + | HM_CHANGED_GUEST_CS + | HM_CHANGED_GUEST_SS); +#else + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST); +#endif + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + return rcStrict; + } + Log8Func(("cs:rip=%#04x:%08RX64 rflags=%#RX64 cr0=%#RX64 split-lock #AC -> VINF_EM_EMULATE_SPLIT_LOCK\n", + pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags, pVCpu->cpum.GstCtx.cr0)); + return VINF_EM_EMULATE_SPLIT_LOCK; + } + + STAM_REL_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestAC); + Log8Func(("cs:rip=%#04x:%08RX64 rflags=%#RX64 cr0=%#RX64 cpl=%d -> #AC\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, + pVCpu->cpum.GstCtx.rflags, pVCpu->cpum.GstCtx.cr0, CPUMGetGuestCPL(pVCpu) )); + + /* Re-inject it. We'll detect any nesting before getting here. */ + vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), + pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */); + return VINF_SUCCESS; +} + + +/** + * VM-exit exception handler for \#DB (Debug exception). + * + * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS. + */ +static VBOXSTRICTRC vmxHCExitXcptDB(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestDB); + + /* + * Get the DR6-like values from the Exit qualification and pass it to DBGF for processing. + */ + vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient); + + /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */ + uint64_t const uDR6 = X86_DR6_INIT_VAL + | (pVmxTransient->uExitQual & ( X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 + | X86_DR6_BD | X86_DR6_BS)); + Log6Func(("uDR6=%#RX64 uExitQual=%#RX64\n", uDR6, pVmxTransient->uExitQual)); + + int rc; + if (!pVmxTransient->fIsNestedGuest) + { + rc = DBGFTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, &pVCpu->cpum.GstCtx, uDR6, VCPU_2_VMXSTATE(pVCpu).fSingleInstruction); + + /* + * Prevents stepping twice over the same instruction when the guest is stepping using + * EFLAGS.TF and the hypervisor debugger is stepping using MTF. + * Testcase: DOSQEMM, break (using "ba x 1") at cs:rip 0x70:0x774 and step (using "t"). + */ + if ( rc == VINF_EM_DBG_STEPPED + && (pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)) + { + Assert(VCPU_2_VMXSTATE(pVCpu).fSingleInstruction); + rc = VINF_EM_RAW_GUEST_TRAP; + } + } + else + rc = VINF_EM_RAW_GUEST_TRAP; + Log6Func(("rc=%Rrc\n", rc)); + if (rc == VINF_EM_RAW_GUEST_TRAP) + { + /* + * The exception was for the guest. Update DR6, DR7.GD and + * IA32_DEBUGCTL.LBR before forwarding it. + * See Intel spec. 27.1 "Architectural State before a VM-Exit" + * and @sdmv3{077,622,17.2.3,Debug Status Register (DR6)}. + */ +#ifndef IN_NEM_DARWIN + VMMRZCallRing3Disable(pVCpu); + HM_DISABLE_PREEMPT(pVCpu); + + pVCpu->cpum.GstCtx.dr[6] &= ~X86_DR6_B_MASK; + pVCpu->cpum.GstCtx.dr[6] |= uDR6; + if (CPUMIsGuestDebugStateActive(pVCpu)) + ASMSetDR6(pVCpu->cpum.GstCtx.dr[6]); + + HM_RESTORE_PREEMPT(); + VMMRZCallRing3Enable(pVCpu); +#else + /** @todo */ +#endif + + rc = vmxHCImportGuestState<CPUMCTX_EXTRN_DR7>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */ + pVCpu->cpum.GstCtx.dr[7] &= ~(uint64_t)X86_DR7_GD; + + /* Paranoia. */ + pVCpu->cpum.GstCtx.dr[7] &= ~(uint64_t)X86_DR7_RAZ_MASK; + pVCpu->cpum.GstCtx.dr[7] |= X86_DR7_RA1_MASK; + + rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_DR7, pVCpu->cpum.GstCtx.dr[7]); + AssertRC(rc); + + /* + * Raise #DB in the guest. + * + * It is important to reflect exactly what the VM-exit gave us (preserving the + * interruption-type) rather than use vmxHCSetPendingXcptDB() as the #DB could've + * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may + * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}. + * + * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of + * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection". + */ + vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), + pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */); + return VINF_SUCCESS; + } + + /* + * Not a guest trap, must be a hypervisor related debug event then. + * Update DR6 in case someone is interested in it. + */ + AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc)); + AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5); + CPUMSetHyperDR6(pVCpu, uDR6); + + return rc; +} + + +/** + * Hacks its way around the lovely mesa driver's backdoor accesses. + * + * @sa hmR0SvmHandleMesaDrvGp. + */ +static int vmxHCHandleMesaDrvGp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx) +{ + LogFunc(("cs:rip=%#04x:%08RX64 rcx=%#RX64 rbx=%#RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->rcx, pCtx->rbx)); + RT_NOREF(pCtx); + + /* For now we'll just skip the instruction. */ + return vmxHCAdvanceGuestRip(pVCpu, pVmxTransient); +} + + +/** + * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely + * backdoor logging w/o checking what it is running inside. + * + * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the + * backdoor port and magic numbers loaded in registers. + * + * @returns true if it is, false if it isn't. + * @sa hmR0SvmIsMesaDrvGp. + */ +DECLINLINE(bool) vmxHCIsMesaDrvGp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx) +{ + /* 0xed: IN eAX,dx */ + uint8_t abInstr[1]; + if (pVmxTransient->cbExitInstr != sizeof(abInstr)) + return false; + + /* Check that it is #GP(0). */ + if (pVmxTransient->uExitIntErrorCode != 0) + return false; + + /* Check magic and port. */ + Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX))); + /*Log(("vmxHCIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->rax, pCtx->rdx));*/ + if (pCtx->rax != UINT32_C(0x564d5868)) + return false; + if (pCtx->dx != UINT32_C(0x5658)) + return false; + + /* Flat ring-3 CS. */ + AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_CS); + Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_CS)); + /*Log(("vmxHCIsMesaDrvGp: cs.Attr.n.u2Dpl=%d base=%Rx64\n", pCtx->cs.Attr.n.u2Dpl, pCtx->cs.u64Base));*/ + if (pCtx->cs.Attr.n.u2Dpl != 3) + return false; + if (pCtx->cs.u64Base != 0) + return false; + + /* Check opcode. */ + AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_RIP); + Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_RIP)); + int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr)); + /*Log(("vmxHCIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0]));*/ + if (RT_FAILURE(rc)) + return false; + if (abInstr[0] != 0xed) + return false; + + return true; +} + + +/** + * VM-exit exception handler for \#GP (General-protection exception). + * + * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS. + */ +static VBOXSTRICTRC vmxHCExitXcptGP(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestGP); + + PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; +#ifndef IN_NEM_DARWIN + PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared; + if (pVmcsInfoShared->RealMode.fRealOnV86Active) + { /* likely */ } + else +#endif + { +#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS +# ifndef IN_NEM_DARWIN + Assert(pVCpu->hmr0.s.fUsingDebugLoop || VCPU_2_VMXSTATE(pVCpu).fTrapXcptGpForLovelyMesaDrv || pVmxTransient->fIsNestedGuest); +# else + Assert(/*pVCpu->hmr0.s.fUsingDebugLoop ||*/ VCPU_2_VMXSTATE(pVCpu).fTrapXcptGpForLovelyMesaDrv || pVmxTransient->fIsNestedGuest); +# endif +#endif + /* + * If the guest is not in real-mode or we have unrestricted guest execution support, or if we are + * executing a nested-guest, reflect #GP to the guest or nested-guest. + */ + int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + Log4Func(("Gst: cs:rip=%#04x:%08RX64 ErrorCode=%#x cr0=%#RX64 cpl=%u tr=%#04x\n", pCtx->cs.Sel, pCtx->rip, + pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel)); + + if ( pVmxTransient->fIsNestedGuest + || !VCPU_2_VMXSTATE(pVCpu).fTrapXcptGpForLovelyMesaDrv + || !vmxHCIsMesaDrvGp(pVCpu, pVmxTransient, pCtx)) + vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), + pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */); + else + rc = vmxHCHandleMesaDrvGp(pVCpu, pVmxTransient, pCtx); + return rc; + } + +#ifndef IN_NEM_DARWIN + Assert(CPUMIsGuestInRealModeEx(pCtx)); + Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fUnrestrictedGuest); + Assert(!pVmxTransient->fIsNestedGuest); + + int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu); + if (rcStrict == VINF_SUCCESS) + { + if (!CPUMIsGuestInRealModeEx(pCtx)) + { + /* + * The guest is no longer in real-mode, check if we can continue executing the + * guest using hardware-assisted VMX. Otherwise, fall back to emulation. + */ + pVmcsInfoShared->RealMode.fRealOnV86Active = false; + if (HMCanExecuteVmxGuest(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx)) + { + Log4Func(("Mode changed but guest still suitable for executing using hardware-assisted VMX\n")); + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST); + } + else + { + Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n")); + rcStrict = VINF_EM_RESCHEDULE; + } + } + else + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST); + } + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + rcStrict = VINF_SUCCESS; + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + } + return VBOXSTRICTRC_VAL(rcStrict); +#endif +} + + +/** + * VM-exit exception handler for \#DE (Divide Error). + * + * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS. + */ +static VBOXSTRICTRC vmxHCExitXcptDE(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestDE); + + int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + VBOXSTRICTRC rcStrict = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE; + if (VCPU_2_VMXSTATE(pVCpu).fGCMTrapXcptDE) + { + uint8_t cbInstr = 0; + VBOXSTRICTRC rc2 = GCMXcptDE(pVCpu, &pVCpu->cpum.GstCtx, NULL /* pDis */, &cbInstr); + if (rc2 == VINF_SUCCESS) + rcStrict = VINF_SUCCESS; /* Restart instruction with modified guest register context. */ + else if (rc2 == VERR_NOT_FOUND) + rcStrict = VERR_NOT_FOUND; /* Deliver the exception. */ + else + Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict))); + } + else + rcStrict = VINF_SUCCESS; /* Do nothing. */ + + /* If the GCM #DE exception handler didn't succeed or wasn't needed, raise #DE. */ + if (RT_FAILURE(rcStrict)) + { + vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), + pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */); + rcStrict = VINF_SUCCESS; + } + + Assert(rcStrict == VINF_SUCCESS || rcStrict == VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE); + return VBOXSTRICTRC_VAL(rcStrict); +} + + +/** + * VM-exit exception handler wrapper for all other exceptions that are not handled + * by a specific handler. + * + * This simply re-injects the exception back into the VM without any special + * processing. + * + * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS. + */ +static VBOXSTRICTRC vmxHCExitXcptOthers(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient); + +#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS +# ifndef IN_NEM_DARWIN + PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + AssertMsg(pVCpu->hmr0.s.fUsingDebugLoop || pVmcsInfo->pShared->RealMode.fRealOnV86Active || pVmxTransient->fIsNestedGuest, + ("uVector=%#x u32XcptBitmap=%#X32\n", + VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVmcsInfo->u32XcptBitmap)); + NOREF(pVmcsInfo); +# endif +#endif + + /* + * Re-inject the exception into the guest. This cannot be a double-fault condition which + * would have been handled while checking exits due to event delivery. + */ + uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo); + +#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS + int rc = vmxHCImportGuestState<CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + Log4Func(("Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%08RX64\n", uVector, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip)); +#endif + +#ifdef VBOX_WITH_STATISTICS + switch (uVector) + { + case X86_XCPT_DE: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestDE); break; + case X86_XCPT_DB: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestDB); break; + case X86_XCPT_BP: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestBP); break; + case X86_XCPT_OF: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestOF); break; + case X86_XCPT_BR: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestBR); break; + case X86_XCPT_UD: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestUD); break; + case X86_XCPT_NM: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestOF); break; + case X86_XCPT_DF: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestDF); break; + case X86_XCPT_TS: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestTS); break; + case X86_XCPT_NP: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestNP); break; + case X86_XCPT_SS: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestSS); break; + case X86_XCPT_GP: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestGP); break; + case X86_XCPT_PF: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestPF); break; + case X86_XCPT_MF: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestMF); break; + case X86_XCPT_AC: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestAC); break; + case X86_XCPT_XF: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestXF); break; + default: + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestXcpUnk); + break; + } +#endif + + /* We should never call this function for a page-fault, we'd need to pass on the fault address below otherwise. */ + Assert(!VMX_EXIT_INT_INFO_IS_XCPT_PF(pVmxTransient->uExitIntInfo)); + NOREF(uVector); + + /* Re-inject the original exception into the guest. */ + vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), + pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */); + return VINF_SUCCESS; +} + + +/** + * VM-exit exception handler for all exceptions (except NMIs!). + * + * @remarks This may be called for both guests and nested-guests. Take care to not + * make assumptions and avoid doing anything that is not relevant when + * executing a nested-guest (e.g., Mesa driver hacks). + */ +static VBOXSTRICTRC vmxHCExitXcpt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_XCPT_INFO); + + /* + * If this VM-exit occurred while delivering an event through the guest IDT, take + * action based on the return code and additional hints (e.g. for page-faults) + * that will be updated in the VMX transient structure. + */ + VBOXSTRICTRC rcStrict = vmxHCCheckExitDueToEventDelivery(pVCpu, pVmxTransient); + if (rcStrict == VINF_SUCCESS) + { + /* + * If an exception caused a VM-exit due to delivery of an event, the original + * event may have to be re-injected into the guest. We shall reinject it and + * continue guest execution. However, page-fault is a complicated case and + * needs additional processing done in vmxHCExitXcptPF(). + */ + Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo)); + uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo); + if ( !VCPU_2_VMXSTATE(pVCpu).Event.fPending + || uVector == X86_XCPT_PF) + { + switch (uVector) + { + case X86_XCPT_PF: return vmxHCExitXcptPF(pVCpu, pVmxTransient); + case X86_XCPT_GP: return vmxHCExitXcptGP(pVCpu, pVmxTransient); + case X86_XCPT_MF: return vmxHCExitXcptMF(pVCpu, pVmxTransient); + case X86_XCPT_DB: return vmxHCExitXcptDB(pVCpu, pVmxTransient); + case X86_XCPT_BP: return vmxHCExitXcptBP(pVCpu, pVmxTransient); + case X86_XCPT_AC: return vmxHCExitXcptAC(pVCpu, pVmxTransient); + case X86_XCPT_DE: return vmxHCExitXcptDE(pVCpu, pVmxTransient); + default: + return vmxHCExitXcptOthers(pVCpu, pVmxTransient); + } + } + /* else: inject pending event before resuming guest execution. */ + } + else if (rcStrict == VINF_HM_DOUBLE_FAULT) + { + Assert(VCPU_2_VMXSTATE(pVCpu).Event.fPending); + rcStrict = VINF_SUCCESS; + } + + return rcStrict; +} +/** @} */ + + +/** @name VM-exit handlers. + * @{ + */ +/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */ +/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */ +/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */ + +/** + * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT). + */ +HMVMX_EXIT_DECL vmxHCExitExtInt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitExtInt); + +#ifndef IN_NEM_DARWIN + /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */ + if (VMMR0ThreadCtxHookIsEnabled(pVCpu)) + return VINF_SUCCESS; + return VINF_EM_RAW_INTERRUPT; +#else + return VINF_SUCCESS; +#endif +} + + +/** + * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI). Conditional + * VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitXcptOrNmi(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitXcptNmi, y3); + + vmxHCReadToTransient<HMVMX_READ_EXIT_INTERRUPTION_INFO>(pVCpu, pVmxTransient); + + uint32_t const uExitIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo); + uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo); + Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo)); + + PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + Assert( !(pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT) + && uExitIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT); + NOREF(pVmcsInfo); + + VBOXSTRICTRC rcStrict; + switch (uExitIntType) + { +#ifndef IN_NEM_DARWIN /* NMIs should never reach R3. */ + /* + * Host physical NMIs: + * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we + * injected it ourselves and anything we inject is not going to cause a VM-exit directly + * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2]. + * + * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery". + * See Intel spec. 27.5.5 "Updating Non-Register State". + */ + case VMX_EXIT_INT_INFO_TYPE_NMI: + { + rcStrict = hmR0VmxExitHostNmi(pVCpu, pVmcsInfo); + break; + } +#endif + + /* + * Privileged software exceptions (#DB from ICEBP), + * Software exceptions (#BP and #OF), + * Hardware exceptions: + * Process the required exceptions and resume guest execution if possible. + */ + case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT: + Assert(uVector == X86_XCPT_DB); + RT_FALL_THRU(); + case VMX_EXIT_INT_INFO_TYPE_SW_XCPT: + Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uExitIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT); + RT_FALL_THRU(); + case VMX_EXIT_INT_INFO_TYPE_HW_XCPT: + { + NOREF(uVector); + vmxHCReadToTransient< HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE + | HMVMX_READ_EXIT_INSTR_LEN + | HMVMX_READ_IDT_VECTORING_INFO + | HMVMX_READ_IDT_VECTORING_ERROR_CODE>(pVCpu, pVmxTransient); + rcStrict = vmxHCExitXcpt(pVCpu, pVmxTransient); + break; + } + + default: + { + VCPU_2_VMXSTATE(pVCpu).u32HMError = pVmxTransient->uExitIntInfo; + rcStrict = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE; + AssertMsgFailed(("Invalid/unexpected VM-exit interruption info %#x\n", pVmxTransient->uExitIntInfo)); + break; + } + } + + STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitXcptNmi, y3); + return rcStrict; +} + + +/** + * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW). + */ +HMVMX_EXIT_NSRC_DECL vmxHCExitIntWindow(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */ + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + vmxHCClearIntWindowExitVmcs(pVCpu, pVmcsInfo); + + /* Evaluate and deliver pending events and resume guest execution. */ + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitIntWindow); + return VINF_SUCCESS; +} + + +/** + * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW). + */ +HMVMX_EXIT_NSRC_DECL vmxHCExitNmiWindow(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + if (RT_UNLIKELY(!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))) /** @todo NSTVMX: Turn this into an assertion. */ + { + AssertMsgFailed(("Unexpected NMI-window exit.\n")); + HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason); + } + + Assert(!CPUMAreInterruptsInhibitedByNmiEx(&pVCpu->cpum.GstCtx)); + + /* + * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI. + * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}. + */ + uint32_t fIntrState; + int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &fIntrState); + AssertRC(rc); + Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)); + if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI) + { + CPUMClearInterruptShadow(&pVCpu->cpum.GstCtx); + + fIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI; + rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, fIntrState); + AssertRC(rc); + } + + /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */ + vmxHCClearNmiWindowExitVmcs(pVCpu, pVmcsInfo); + + /* Evaluate and deliver pending events and resume guest execution. */ + return VINF_SUCCESS; +} + + +/** + * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit. + */ +HMVMX_EXIT_NSRC_DECL vmxHCExitWbinvd(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + return vmxHCAdvanceGuestRip(pVCpu, pVmxTransient); +} + + +/** + * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit. + */ +HMVMX_EXIT_NSRC_DECL vmxHCExitInvd(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + return vmxHCAdvanceGuestRip(pVCpu, pVmxTransient); +} + + +/** + * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitCpuid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + /* + * Get the state we need and update the exit history entry. + */ + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + VBOXSTRICTRC rcStrict; + PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu, + EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID), + pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base); + if (!pExitRec) + { + /* + * Regular CPUID instruction execution. + */ + rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbExitInstr); + if (rcStrict == VINF_SUCCESS) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + } + else + { + /* + * Frequent exit or something needing probing. Get state and call EMHistoryExec. + */ + int rc2 = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL, + IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc2, rc2); + + Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n", + pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx)); + + rcStrict = EMHistoryExec(pVCpu, pExitRec, 0); + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST); + + Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n", + pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, + VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip)); + } + return rcStrict; +} + + +/** + * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitGetsec(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + int rc = vmxHCImportGuestState<CPUMCTX_EXTRN_CR4>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE) + return VINF_EM_RAW_EMULATE_INSTR; + + AssertMsgFailed(("vmxHCExitGetsec: Unexpected VM-exit when CR4.SMXE is 0.\n")); + HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason); +} + + +/** + * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitRdtsc(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbExitInstr); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + { + /* If we get a spurious VM-exit when TSC offsetting is enabled, + we must reset offsetting on VM-entry. See @bugref{6634}. */ + if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING) + pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false; + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); + } + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + return rcStrict; +} + + +/** + * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitRdtscp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbExitInstr); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + { + /* If we get a spurious VM-exit when TSC offsetting is enabled, + we must reset offsetting on VM-reentry. See @bugref{6634}. */ + if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING) + pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false; + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); + } + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + return rcStrict; +} + + +/** + * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitRdpmc(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + VBOXSTRICTRC rcStrict = IEMExecDecodedRdpmc(pVCpu, pVmxTransient->cbExitInstr); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + return rcStrict; +} + + +/** + * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitVmcall(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3; + if (EMAreHypercallInstructionsEnabled(pVCpu)) + { + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + int rc = vmxHCImportGuestState< CPUMCTX_EXTRN_RIP + | CPUMCTX_EXTRN_RFLAGS + | CPUMCTX_EXTRN_CR0 + | CPUMCTX_EXTRN_SS + | CPUMCTX_EXTRN_CS + | CPUMCTX_EXTRN_EFER>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + /* Perform the hypercall. */ + rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx); + if (rcStrict == VINF_SUCCESS) + { + rc = vmxHCAdvanceGuestRip(pVCpu, pVmxTransient); + AssertRCReturn(rc, rc); + } + else + Assert( rcStrict == VINF_GIM_R3_HYPERCALL + || rcStrict == VINF_GIM_HYPERCALL_CONTINUING + || RT_FAILURE(rcStrict)); + + /* If the hypercall changes anything other than guest's general-purpose registers, + we would need to reload the guest changed bits here before VM-entry. */ + } + else + Log4Func(("Hypercalls not enabled\n")); + + /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */ + if (RT_FAILURE(rcStrict)) + { + vmxHCSetPendingXcptUD(pVCpu); + rcStrict = VINF_SUCCESS; + } + + return rcStrict; +} + + +/** + * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitInvlpg(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); +#ifndef IN_NEM_DARWIN + Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging || pVCpu->hmr0.s.fUsingDebugLoop); +#endif + + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbExitInstr, pVmxTransient->uExitQual); + + if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + else + AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) status: %Rrc\n", pVmxTransient->uExitQual, + VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; +} + + +/** + * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitMonitor(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + VBOXSTRICTRC rcStrict = IEMExecDecodedMonitor(pVCpu, pVmxTransient->cbExitInstr); + if (rcStrict == VINF_SUCCESS) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + + return rcStrict; +} + + +/** + * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitMwait(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + VBOXSTRICTRC rcStrict = IEMExecDecodedMwait(pVCpu, pVmxTransient->cbExitInstr); + if (RT_SUCCESS(rcStrict)) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); + if (EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx)) + rcStrict = VINF_SUCCESS; + } + + return rcStrict; +} + + +/** + * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional + * VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitTripleFault(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + return VINF_EM_RESET; +} + + +/** + * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitHlt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + int rc = vmxHCAdvanceGuestRip(pVCpu, pVmxTransient); + AssertRCReturn(rc, rc); + + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS); /* Advancing the RIP above should've imported eflags. */ + if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */ + rc = VINF_SUCCESS; + else + rc = VINF_EM_HALT; + + if (rc != VINF_SUCCESS) + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchHltToR3); + return rc; +} + + +#ifndef VBOX_WITH_NESTED_HWVIRT_VMX_EPT +/** + * VM-exit handler for instructions that result in a \#UD exception delivered to + * the guest. + */ +HMVMX_EXIT_NSRC_DECL vmxHCExitSetPendingXcptUD(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + vmxHCSetPendingXcptUD(pVCpu); + return VINF_SUCCESS; +} +#endif + + +/** + * VM-exit handler for expiry of the VMX-preemption timer. + */ +HMVMX_EXIT_DECL vmxHCExitPreemptTimer(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + /* If the VMX-preemption timer has expired, reinitialize the preemption timer on next VM-entry. */ + pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false; +Log12(("vmxHCExitPreemptTimer:\n")); + + /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + bool fTimersPending = TMTimerPollBool(pVM, pVCpu); + STAM_REL_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitPreemptTimer); + return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS; +} + + +/** + * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitXsetbv(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbExitInstr); + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS + : HM_CHANGED_RAISED_XCPT_MASK); + +#ifndef IN_NEM_DARWIN + PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0(); + if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0) + { + pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0; + hmR0VmxUpdateStartVmFunction(pVCpu); + } +#endif + + return rcStrict; +} + + +/** + * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitInvpcid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + /** @todo Enable the new code after finding a reliably guest test-case. */ +#if 1 + return VERR_EM_INTERPRETER; +#else + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_INFO + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK + | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK); + AssertRCReturn(rc, rc); + + /* Paranoia. Ensure this has a memory operand. */ + Assert(!pVmxTransient->ExitInstrInfo.Inv.u1Cleared0); + + uint8_t const iGReg = pVmxTransient->ExitInstrInfo.VmreadVmwrite.iReg2; + Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs)); + uint64_t const uType = CPUMIsGuestIn64BitCode(pVCpu) ? pVCpu->cpum.GstCtx.aGRegs[iGReg].u64 + : pVCpu->cpum.GstCtx.aGRegs[iGReg].u32; + + RTGCPTR GCPtrDesc; + HMVMX_DECODE_MEM_OPERAND(pVCpu, pVmxTransient->ExitInstrInfo.u, pVmxTransient->uExitQual, VMXMEMACCESS_READ, &GCPtrDesc); + + VBOXSTRICTRC rcStrict = IEMExecDecodedInvpcid(pVCpu, pVmxTransient->cbExitInstr, pVmxTransient->ExitInstrInfo.Inv.iSegReg, + GCPtrDesc, uType); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + return rcStrict; +#endif +} + + +/** + * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE). Error + * VM-exit. + */ +HMVMX_EXIT_NSRC_DECL vmxHCExitErrInvalidGuestState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + int rc = vmxHCImportGuestStateEx(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL); + AssertRCReturn(rc, rc); + + rc = vmxHCCheckCachedVmcsCtls(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest); + if (RT_FAILURE(rc)) + return rc; + + uint32_t const uInvalidReason = vmxHCCheckGuestState(pVCpu, pVmcsInfo); + NOREF(uInvalidReason); + +#ifdef VBOX_STRICT + uint32_t fIntrState; + uint64_t u64Val; + vmxHCReadToTransient< HMVMX_READ_EXIT_INSTR_INFO + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + vmxHCReadEntryXcptErrorCodeVmcs(pVCpu, pVmxTransient); + + Log4(("uInvalidReason %u\n", uInvalidReason)); + Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo)); + Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode)); + Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr)); + + rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &fIntrState); AssertRC(rc); + Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState)); + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR0, &u64Val); AssertRC(rc); + Log4(("VMX_VMCS_GUEST_CR0 %#RX64\n", u64Val)); + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR0_MASK, &u64Val); AssertRC(rc); + Log4(("VMX_VMCS_CTRL_CR0_MASK %#RX64\n", u64Val)); + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Val); AssertRC(rc); + Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RX64\n", u64Val)); + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR4_MASK, &u64Val); AssertRC(rc); + Log4(("VMX_VMCS_CTRL_CR4_MASK %#RX64\n", u64Val)); + rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Val); AssertRC(rc); + Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RX64\n", u64Val)); +# ifndef IN_NEM_DARWIN + if (pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging) + { + rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc); + Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val)); + } + + hmR0DumpRegs(pVCpu, HM_DUMP_REG_FLAGS_ALL); +# endif +#endif + + return VERR_VMX_INVALID_GUEST_STATE; +} + +/** + * VM-exit handler for all undefined/unexpected reasons. Should never happen. + */ +HMVMX_EXIT_NSRC_DECL vmxHCExitErrUnexpected(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + /* + * Cumulative notes of all recognized but unexpected VM-exits. + * + * 1. This does -not- cover scenarios like a page-fault VM-exit occurring when + * nested-paging is used. + * + * 2. Any instruction that causes a VM-exit unconditionally (for e.g. VMXON) must be + * emulated or a #UD must be raised in the guest. Therefore, we should -not- be using + * this function (and thereby stop VM execution) for handling such instructions. + * + * + * VMX_EXIT_INIT_SIGNAL: + * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM. + * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these + * VM-exits. However, we should not receive INIT signals VM-exit while executing a VM. + * + * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" + * See Intel spec. 29.3 "VMX Instructions" for "VMXON". + * See Intel spec. "23.8 Restrictions on VMX operation". + * + * VMX_EXIT_SIPI: + * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest + * activity state is used. We don't make use of it as our guests don't have direct + * access to the host local APIC. + * + * See Intel spec. 25.3 "Other Causes of VM-exits". + * + * VMX_EXIT_IO_SMI: + * VMX_EXIT_SMI: + * This can only happen if we support dual-monitor treatment of SMI, which can be + * activated by executing VMCALL in VMX root operation. Only an STM (SMM transfer + * monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL in + * VMX root mode or receive an SMI. If we get here, something funny is going on. + * + * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment" + * See Intel spec. 25.3 "Other Causes of VM-Exits" + * + * VMX_EXIT_ERR_MSR_LOAD: + * Failures while loading MSRs are part of the VM-entry MSR-load area are unexpected + * and typically indicates a bug in the hypervisor code. We thus cannot not resume + * execution. + * + * See Intel spec. 26.7 "VM-Entry Failures During Or After Loading Guest State". + * + * VMX_EXIT_ERR_MACHINE_CHECK: + * Machine check exceptions indicates a fatal/unrecoverable hardware condition + * including but not limited to system bus, ECC, parity, cache and TLB errors. A + * #MC exception abort class exception is raised. We thus cannot assume a + * reasonable chance of continuing any sort of execution and we bail. + * + * See Intel spec. 15.1 "Machine-check Architecture". + * See Intel spec. 27.1 "Architectural State Before A VM Exit". + * + * VMX_EXIT_PML_FULL: + * VMX_EXIT_VIRTUALIZED_EOI: + * VMX_EXIT_APIC_WRITE: + * We do not currently support any of these features and thus they are all unexpected + * VM-exits. + * + * VMX_EXIT_GDTR_IDTR_ACCESS: + * VMX_EXIT_LDTR_TR_ACCESS: + * VMX_EXIT_RDRAND: + * VMX_EXIT_RSM: + * VMX_EXIT_VMFUNC: + * VMX_EXIT_ENCLS: + * VMX_EXIT_RDSEED: + * VMX_EXIT_XSAVES: + * VMX_EXIT_XRSTORS: + * VMX_EXIT_UMWAIT: + * VMX_EXIT_TPAUSE: + * VMX_EXIT_LOADIWKEY: + * These VM-exits are -not- caused unconditionally by execution of the corresponding + * instruction. Any VM-exit for these instructions indicate a hardware problem, + * unsupported CPU modes (like SMM) or potentially corrupt VMCS controls. + * + * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally". + */ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + AssertMsgFailed(("Unexpected VM-exit %u\n", pVmxTransient->uExitReason)); + HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason); +} + + +/** + * VM-exit handler for RDMSR (VMX_EXIT_RDMSR). + */ +HMVMX_EXIT_DECL vmxHCExitRdmsr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + + /** @todo Optimize this: We currently drag in the whole MSR state + * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get + * MSRs required. That would require changes to IEM and possibly CPUM too. + * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */ + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx; + int rc; + switch (idMsr) + { + default: + rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS>(pVCpu, pVmcsInfo, + __FUNCTION__); + AssertRCReturn(rc, rc); + break; + case MSR_K8_FS_BASE: + rc = vmxHCImportGuestState< IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS + | CPUMCTX_EXTRN_FS>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + break; + case MSR_K8_GS_BASE: + rc = vmxHCImportGuestState< IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS + | CPUMCTX_EXTRN_GS>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + break; + } + + Log4Func(("ecx=%#RX32\n", idMsr)); + +#if defined(VBOX_STRICT) && !defined(IN_NEM_DARWIN) + Assert(!pVmxTransient->fIsNestedGuest); + if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS) + { + if ( hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr) + && idMsr != MSR_K6_EFER) + { + AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr)); + HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr); + } + if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr)) + { + Assert(pVmcsInfo->pvMsrBitmap); + uint32_t fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr); + if (fMsrpm & VMXMSRPM_ALLOW_RD) + { + AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr)); + HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr); + } + } + } +#endif + + VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbExitInstr); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitRdmsr); + if (rcStrict == VINF_SUCCESS) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + else + AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ || rcStrict == VINF_EM_TRIPLE_FAULT, + ("Unexpected IEMExecDecodedRdmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); + + return rcStrict; +} + + +/** + * VM-exit handler for WRMSR (VMX_EXIT_WRMSR). + */ +HMVMX_EXIT_DECL vmxHCExitWrmsr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + + /* + * The FS and GS base MSRs are not part of the above all-MSRs mask. + * Although we don't need to fetch the base as it will be overwritten shortly, while + * loading guest-state we would also load the entire segment register including limit + * and attributes and thus we need to load them here. + */ + /** @todo Optimize this: We currently drag in the whole MSR state + * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get + * MSRs required. That would require changes to IEM and possibly CPUM too. + * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */ + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx; + int rc; + switch (idMsr) + { + default: + rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS>(pVCpu, pVmcsInfo, + __FUNCTION__); + AssertRCReturn(rc, rc); + break; + + case MSR_K8_FS_BASE: + rc = vmxHCImportGuestState< IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS + | CPUMCTX_EXTRN_FS>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + break; + case MSR_K8_GS_BASE: + rc = vmxHCImportGuestState< IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS + | CPUMCTX_EXTRN_GS>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + break; + } + Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax)); + + VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbExitInstr); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitWrmsr); + + if (rcStrict == VINF_SUCCESS) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); + + /* If this is an X2APIC WRMSR access, update the APIC state as well. */ + if ( idMsr == MSR_IA32_APICBASE + || ( idMsr >= MSR_IA32_X2APIC_START + && idMsr <= MSR_IA32_X2APIC_END)) + { + /* + * We've already saved the APIC related guest-state (TPR) in post-run phase. + * When full APIC register virtualization is implemented we'll have to make + * sure APIC state is saved from the VMCS before IEM changes it. + */ + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_APIC_TPR); + } + else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */ + pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false; + else if (idMsr == MSR_K6_EFER) + { + /* + * If the guest touches the EFER MSR we need to update the VM-Entry and VM-Exit controls + * as well, even if it is -not- touching bits that cause paging mode changes (LMA/LME). + * We care about the other bits as well, SCE and NXE. See @bugref{7368}. + */ + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS); + } + + /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not used. */ + if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)) + { + switch (idMsr) + { + case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break; + case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break; + case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break; + case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_FS); break; + case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_GS); break; + case MSR_K6_EFER: /* Nothing to do, already handled above. */ break; + default: + { +#ifndef IN_NEM_DARWIN + if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr)) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS); + else if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr)) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS); +#else + AssertMsgFailed(("TODO\n")); +#endif + break; + } + } + } +#if defined(VBOX_STRICT) && !defined(IN_NEM_DARWIN) + else + { + /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */ + switch (idMsr) + { + case MSR_IA32_SYSENTER_CS: + case MSR_IA32_SYSENTER_EIP: + case MSR_IA32_SYSENTER_ESP: + case MSR_K8_FS_BASE: + case MSR_K8_GS_BASE: + { + AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr)); + HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr); + } + + /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */ + default: + { + if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr)) + { + /* EFER MSR writes are always intercepted. */ + if (idMsr != MSR_K6_EFER) + { + AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", + idMsr)); + HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr); + } + } + + if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr)) + { + Assert(pVmcsInfo->pvMsrBitmap); + uint32_t fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr); + if (fMsrpm & VMXMSRPM_ALLOW_WR) + { + AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr)); + HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr); + } + } + break; + } + } + } +#endif /* VBOX_STRICT */ + } + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + else + AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE || rcStrict == VINF_EM_TRIPLE_FAULT, + ("Unexpected IEMExecDecodedWrmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict))); + + return rcStrict; +} + + +/** + * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitPause(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + /** @todo The guest has likely hit a contended spinlock. We might want to + * poke a schedule different guest VCPU. */ + int rc = vmxHCAdvanceGuestRip(pVCpu, pVmxTransient); + if (RT_SUCCESS(rc)) + return VINF_EM_RAW_INTERRUPT; + + AssertMsgFailed(("vmxHCExitPause: Failed to increment RIP. rc=%Rrc\n", rc)); + return rc; +} + + +/** + * VM-exit handler for when the TPR value is lowered below the specified + * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit. + */ +HMVMX_EXIT_NSRC_DECL vmxHCExitTprBelowThreshold(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + Assert(pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW); + + /* + * The TPR shadow would've been synced with the APIC TPR in the post-run phase. + * We'll re-evaluate pending interrupts and inject them before the next VM + * entry so we can just continue execution here. + */ + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitTprBelowThreshold); + return VINF_SUCCESS; +} + + +/** + * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional + * VM-exit. + * + * @retval VINF_SUCCESS when guest execution can continue. + * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3. + * @retval VERR_EM_RESCHEDULE_REM when we need to return to ring-3 due to + * incompatible guest state for VMX execution (real-on-v86 case). + */ +HMVMX_EXIT_DECL vmxHCExitMovCRx(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitMovCRx, y2); + + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + + VBOXSTRICTRC rcStrict; + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + uint64_t const uExitQual = pVmxTransient->uExitQual; + uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual); + switch (uAccessType) + { + /* + * MOV to CRx. + */ + case VMX_EXIT_QUAL_CRX_ACCESS_WRITE: + { + /* + * When PAE paging is used, the CPU will reload PAE PDPTEs from CR3 when the guest + * changes certain bits even in CR0, CR4 (and not just CR3). We are currently fine + * since IEM_CPUMCTX_EXTRN_MUST_MASK (used below) includes CR3 which will import + * PAE PDPTEs as well. + */ + int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0); +#ifndef IN_NEM_DARWIN + uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0; +#endif + uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(uExitQual); + uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(uExitQual); + + /* + * MOV to CR3 only cause a VM-exit when one or more of the following are true: + * - When nested paging isn't used. + * - If the guest doesn't have paging enabled (intercept CR3 to update shadow page tables). + * - We are executing in the VM debug loop. + */ +#ifndef HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS +# ifndef IN_NEM_DARWIN + Assert( iCrReg != 3 + || !VM_IS_VMX_NESTED_PAGING(pVM) + || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx) + || pVCpu->hmr0.s.fUsingDebugLoop); +# else + Assert( iCrReg != 3 + || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)); +# endif +#endif + + /* MOV to CR8 writes only cause VM-exits when TPR shadow is not used. */ + Assert( iCrReg != 8 + || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)); + + rcStrict = vmxHCExitMovToCrX(pVCpu, pVmxTransient->cbExitInstr, iGReg, iCrReg); + AssertMsg( rcStrict == VINF_SUCCESS + || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + +#ifndef IN_NEM_DARWIN + /* + * This is a kludge for handling switches back to real mode when we try to use + * V86 mode to run real mode code directly. Problem is that V86 mode cannot + * deal with special selector values, so we have to return to ring-3 and run + * there till the selector values are V86 mode compatible. + * + * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the + * latter is an alias for VINF_IEM_RAISED_XCPT which is asserted at the end of + * this function. + */ + if ( iCrReg == 0 + && rcStrict == VINF_SUCCESS + && !VM_IS_VMX_UNRESTRICTED_GUEST(pVM) + && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx) + && (uOldCr0 & X86_CR0_PE) + && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE)) + { + /** @todo Check selectors rather than returning all the time. */ + Assert(!pVmxTransient->fIsNestedGuest); + Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n")); + rcStrict = VINF_EM_RESCHEDULE_REM; + } +#endif + + break; + } + + /* + * MOV from CRx. + */ + case VMX_EXIT_QUAL_CRX_ACCESS_READ: + { + uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(uExitQual); + uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(uExitQual); + + /* + * MOV from CR3 only cause a VM-exit when one or more of the following are true: + * - When nested paging isn't used. + * - If the guest doesn't have paging enabled (pass guest's CR3 rather than our identity mapped CR3). + * - We are executing in the VM debug loop. + */ +#ifndef HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS +# ifndef IN_NEM_DARWIN + Assert( iCrReg != 3 + || !VM_IS_VMX_NESTED_PAGING(pVM) + || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx) + || pVCpu->hmr0.s.fLeaveDone); +# else + Assert( iCrReg != 3 + || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)); +# endif +#endif + + /* MOV from CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */ + Assert( iCrReg != 8 + || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)); + + rcStrict = vmxHCExitMovFromCrX(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg); + break; + } + + /* + * CLTS (Clear Task-Switch Flag in CR0). + */ + case VMX_EXIT_QUAL_CRX_ACCESS_CLTS: + { + rcStrict = vmxHCExitClts(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr); + break; + } + + /* + * LMSW (Load Machine-Status Word into CR0). + * LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here. + */ + case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: + { + RTGCPTR GCPtrEffDst; + uint8_t const cbInstr = pVmxTransient->cbExitInstr; + uint16_t const uMsw = VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual); + bool const fMemOperand = VMX_EXIT_QUAL_CRX_LMSW_OP_MEM(uExitQual); + if (fMemOperand) + { + vmxHCReadToTransient<HMVMX_READ_GUEST_LINEAR_ADDR>(pVCpu, pVmxTransient); + GCPtrEffDst = pVmxTransient->uGuestLinearAddr; + } + else + GCPtrEffDst = NIL_RTGCPTR; + rcStrict = vmxHCExitLmsw(pVCpu, pVmcsInfo, cbInstr, uMsw, GCPtrEffDst); + break; + } + + default: + { + AssertMsgFailed(("Unrecognized Mov CRX access type %#x\n", uAccessType)); + HMVMX_UNEXPECTED_EXIT_RET(pVCpu, uAccessType); + } + } + + Assert((VCPU_2_VMXSTATE(pVCpu).fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS)) + == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS)); + Assert(rcStrict != VINF_IEM_RAISED_XCPT); + + STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitMovCRx, y2); + NOREF(pVM); + return rcStrict; +} + + +/** + * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional + * VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitIoInstr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitIO, y1); + + PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); +#define VMX_HC_EXIT_IO_INSTR_INITIAL_REGS (IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER) + /* EFER MSR also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */ + int rc = vmxHCImportGuestState<VMX_HC_EXIT_IO_INSTR_INITIAL_REGS>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */ + uint32_t const uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual); + uint8_t const uIOSize = VMX_EXIT_QUAL_IO_SIZE(pVmxTransient->uExitQual); + bool const fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT); + bool const fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual); + bool const fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF); + bool const fDbgStepping = VCPU_2_VMXSTATE(pVCpu).fSingleInstruction; + AssertReturn(uIOSize <= 3 && uIOSize != 2, VERR_VMX_IPE_1); + + /* + * Update exit history to see if this exit can be optimized. + */ + VBOXSTRICTRC rcStrict; + PCEMEXITREC pExitRec = NULL; + if ( !fGstStepping + && !fDbgStepping) + pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu, + !fIOString + ? !fIOWrite + ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ) + : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE) + : !fIOWrite + ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ) + : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE), + pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base); + if (!pExitRec) + { + static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses in bytes. */ + static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */ + + uint32_t const cbValue = s_aIOSizes[uIOSize]; + uint32_t const cbInstr = pVmxTransient->cbExitInstr; + bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + if (fIOString) + { + /* + * INS/OUTS - I/O String instruction. + * + * Use instruction-information if available, otherwise fall back on + * interpreting the instruction. + */ + Log4Func(("cs:rip=%#04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r')); + AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2); + bool const fInsOutsInfo = RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS); + if (fInsOutsInfo) + { + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_INFO>(pVCpu, pVmxTransient); + AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3); + AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2); + IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize; + bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual); + if (fIOWrite) + rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, + pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/); + else + { + /* + * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES. + * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS. + * See Intel Instruction spec. for "INS". + * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS". + */ + rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/); + } + } + else + rcStrict = IEMExecOne(pVCpu); + + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP); + fUpdateRipAlready = true; + } + else + { + /* + * IN/OUT - I/O instruction. + */ + Log4Func(("cs:rip=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r')); + uint32_t const uAndVal = s_aIOOpAnd[uIOSize]; + Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual)); + if (fIOWrite) + { + rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitIOWrite); +#ifndef IN_NEM_DARWIN + if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE + && !pCtx->eflags.Bits.u1TF) + rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal); +#endif + } + else + { + uint32_t u32Result = 0; + rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue); + if (IOM_SUCCESS(rcStrict)) + { + /* Save result of I/O IN instr. in AL/AX/EAX. */ + pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal); + } +#ifndef IN_NEM_DARWIN + if ( rcStrict == VINF_IOM_R3_IOPORT_READ + && !pCtx->eflags.Bits.u1TF) + rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue); +#endif + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitIORead); + } + } + + if (IOM_SUCCESS(rcStrict)) + { + if (!fUpdateRipAlready) + { + vmxHCAdvanceGuestRipBy(pVCpu, cbInstr); + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP); + } + + /* + * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru + * while booting Fedora 17 64-bit guest. + * + * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ. + */ + if (fIOString) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RFLAGS); + + /* + * If any I/O breakpoints are armed, we need to check if one triggered + * and take appropriate action. + * Note that the I/O breakpoint type is undefined if CR4.DE is 0. + */ +#if 1 + AssertCompile(VMX_HC_EXIT_IO_INSTR_INITIAL_REGS & CPUMCTX_EXTRN_DR7); +#else + AssertCompile(!(VMX_HC_EXIT_IO_INSTR_INITIAL_REGS & CPUMCTX_EXTRN_DR7)); + rc = vmxHCImportGuestState<CPUMCTX_EXTRN_DR7>(pVCpu, pVmcsInfo); + AssertRCReturn(rc, rc); +#endif + + /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the + * execution engines about whether hyper BPs and such are pending. */ + uint32_t const uDr7 = pCtx->dr[7]; + if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK) + && X86_DR7_ANY_RW_IO(uDr7) + && (pCtx->cr4 & X86_CR4_DE)) + || DBGFBpIsHwIoArmed(pVM))) + { + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatDRxIoCheck); + +#ifndef IN_NEM_DARWIN + /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */ + VMMRZCallRing3Disable(pVCpu); + HM_DISABLE_PREEMPT(pVCpu); + + bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */); + + VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue); + if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP) + { + /* Raise #DB. */ + if (fIsGuestDbgActive) + ASMSetDR6(pCtx->dr[6]); + if (pCtx->dr[7] != uDr7) + VCPU_2_VMXSTATE(pVCpu).fCtxChanged |= HM_CHANGED_GUEST_DR7; + + vmxHCSetPendingXcptDB(pVCpu); + } + /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST], + however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */ + else if ( rcStrict2 != VINF_SUCCESS + && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict)) + rcStrict = rcStrict2; + AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE); + + HM_RESTORE_PREEMPT(); + VMMRZCallRing3Enable(pVCpu); +#else + /** @todo */ +#endif + } + } + +#ifdef VBOX_STRICT + if ( rcStrict == VINF_IOM_R3_IOPORT_READ + || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ) + Assert(!fIOWrite); + else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE + || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE + || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE) + Assert(fIOWrite); + else + { +# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST + * statuses, that the VMM device and some others may return. See + * IOM_SUCCESS() for guidance. */ + AssertMsg( RT_FAILURE(rcStrict) + || rcStrict == VINF_SUCCESS + || rcStrict == VINF_EM_RAW_EMULATE_INSTR + || rcStrict == VINF_EM_DBG_BREAKPOINT + || rcStrict == VINF_EM_RAW_GUEST_TRAP + || rcStrict == VINF_EM_RAW_TO_R3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); +# endif + } +#endif + STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitIO, y1); + } + else + { + /* + * Frequent exit or something needing probing. Get state and call EMHistoryExec. + */ + int rc2 = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL, + VMX_HC_EXIT_IO_INSTR_INITIAL_REGS>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc2, rc2); + STAM_COUNTER_INC(!fIOString ? fIOWrite ? &VCPU_2_VMXSTATS(pVCpu).StatExitIOWrite : &VCPU_2_VMXSTATS(pVCpu).StatExitIORead + : fIOWrite ? &VCPU_2_VMXSTATS(pVCpu).StatExitIOStringWrite : &VCPU_2_VMXSTATS(pVCpu).StatExitIOStringRead); + Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n", + pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, + VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "", + fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOSize)); + + rcStrict = EMHistoryExec(pVCpu, pExitRec, 0); + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST); + + Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n", + pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, + VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip)); + } + return rcStrict; +} + + +/** + * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional + * VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitTaskSwitch(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + /* Check if this task-switch occurred while delivery an event through the guest IDT. */ + vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient); + if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT) + { + vmxHCReadToTransient<HMVMX_READ_IDT_VECTORING_INFO>(pVCpu, pVmxTransient); + if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo)) + { + uint32_t uErrCode; + if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo)) + { + vmxHCReadToTransient<HMVMX_READ_IDT_VECTORING_ERROR_CODE>(pVCpu, pVmxTransient); + uErrCode = pVmxTransient->uIdtVectoringErrorCode; + } + else + uErrCode = 0; + + RTGCUINTPTR GCPtrFaultAddress; + if (VMX_IDT_VECTORING_INFO_IS_XCPT_PF(pVmxTransient->uIdtVectoringInfo)) + GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2; + else + GCPtrFaultAddress = 0; + + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + + vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo), + pVmxTransient->cbExitInstr, uErrCode, GCPtrFaultAddress); + + Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo), + VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo))); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitTaskSwitch); + return VINF_EM_RAW_INJECT_TRPM_EVENT; + } + } + + /* Fall back to the interpreter to emulate the task-switch. */ + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitTaskSwitch); + return VERR_EM_INTERPRETER; +} + + +/** + * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitMtf(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG; + int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls); + AssertRC(rc); + return VINF_EM_DBG_STEPPED; +} + + +/** + * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitApicAccess(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitApicAccess); + + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_LEN + | HMVMX_READ_EXIT_INTERRUPTION_INFO + | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE + | HMVMX_READ_IDT_VECTORING_INFO + | HMVMX_READ_IDT_VECTORING_ERROR_CODE>(pVCpu, pVmxTransient); + + /* + * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. + */ + VBOXSTRICTRC rcStrict = vmxHCCheckExitDueToEventDelivery(pVCpu, pVmxTransient); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + { + /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */ + if (RT_UNLIKELY(VCPU_2_VMXSTATE(pVCpu).Event.fPending)) + { + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectInterpret); + return VINF_EM_RAW_INJECT_TRPM_EVENT; + } + } + else + { + Assert(rcStrict != VINF_HM_DOUBLE_FAULT); + return rcStrict; + } + + /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */ + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */ + uint32_t const uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual); + switch (uAccessType) + { +#ifndef IN_NEM_DARWIN + case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE: + case VMX_APIC_ACCESS_TYPE_LINEAR_READ: + { + AssertMsg( !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW) + || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR, + ("vmxHCExitApicAccess: can't access TPR offset while using TPR shadowing.\n")); + + RTGCPHYS GCPhys = VCPU_2_VMXSTATE(pVCpu).vmx.u64GstMsrApicBase; /* Always up-to-date, as it is not part of the VMCS. */ + GCPhys &= ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK; + GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual); + Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys, + VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual))); + + rcStrict = IOMR0MmioPhysHandler(pVCpu->CTX_SUFF(pVM), pVCpu, + uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW, GCPhys); + Log4Func(("IOMR0MmioPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + if ( rcStrict == VINF_SUCCESS + || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT + || rcStrict == VERR_PAGE_NOT_PRESENT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS + | HM_CHANGED_GUEST_APIC_TPR); + rcStrict = VINF_SUCCESS; + } + break; + } +#else + /** @todo */ +#endif + + default: + { + Log4Func(("uAccessType=%#x\n", uAccessType)); + rcStrict = VINF_EM_RAW_EMULATE_INSTR; + break; + } + } + + if (rcStrict != VINF_SUCCESS) + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchApicAccessToR3); + return rcStrict; +} + + +/** + * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional + * VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitMovDRx(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + + /* + * We might also get this VM-exit if the nested-guest isn't intercepting MOV DRx accesses. + * In such a case, rather than disabling MOV DRx intercepts and resuming execution, we + * must emulate the MOV DRx access. + */ + if (!pVmxTransient->fIsNestedGuest) + { + /* We should -not- get this VM-exit if the guest's debug registers were active. */ + if ( pVmxTransient->fWasGuestDebugStateActive +#ifdef VMX_WITH_MAYBE_ALWAYS_INTERCEPT_MOV_DRX + && !pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fAlwaysInterceptMovDRx +#endif + ) + { + AssertMsgFailed(("Unexpected MOV DRx exit\n")); + HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason); + } + + if ( !VCPU_2_VMXSTATE(pVCpu).fSingleInstruction + && !pVmxTransient->fWasHyperDebugStateActive) + { + Assert(!DBGFIsStepping(pVCpu)); + Assert(pVmcsInfo->u32XcptBitmap & RT_BIT(X86_XCPT_DB)); + + /* Whether we disable intercepting MOV DRx instructions and resume + the current one, or emulate it and keep intercepting them is + configurable. Though it usually comes down to whether there are + any new DR6 & DR7 bits (RTM) we want to hide from the guest. */ +#ifdef VMX_WITH_MAYBE_ALWAYS_INTERCEPT_MOV_DRX + bool const fResumeInstruction = !pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fAlwaysInterceptMovDRx; +#else + bool const fResumeInstruction = true; +#endif + if (fResumeInstruction) + { + pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT; + int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls); + AssertRC(rc); + } + +#ifndef IN_NEM_DARWIN + /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */ + VMMRZCallRing3Disable(pVCpu); + HM_DISABLE_PREEMPT(pVCpu); + + /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */ + CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */); + Assert(CPUMIsGuestDebugStateActive(pVCpu)); + + HM_RESTORE_PREEMPT(); + VMMRZCallRing3Enable(pVCpu); +#else + CPUMR3NemActivateGuestDebugState(pVCpu); + Assert(CPUMIsGuestDebugStateActive(pVCpu)); + Assert(!CPUMIsHyperDebugStateActive(pVCpu)); +#endif + + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatDRxContextSwitch); + if (fResumeInstruction) + { +#ifdef VBOX_WITH_STATISTICS + vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient); + if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE) + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitDRxWrite); + else + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitDRxRead); +#endif + return VINF_SUCCESS; + } + } + } + + /* + * Import state. We must have DR7 loaded here as it's always consulted, + * both for reading and writing. The other debug registers are never + * exported as such. + */ + vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState< IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK + | CPUMCTX_EXTRN_GPRS_MASK + | CPUMCTX_EXTRN_DR7>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + uint8_t const iGReg = VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual); + uint8_t const iDrReg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual); + Log4Func(("cs:rip=%#04x:%08RX64 r%d %s dr%d\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, iGReg, + VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE ? "->" : "<-", iDrReg)); + + VBOXSTRICTRC rcStrict; + if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE) + { + /* + * Write DRx register. + */ + rcStrict = IEMExecDecodedMovDRxWrite(pVCpu, pVmxTransient->cbExitInstr, iDrReg, iGReg); + AssertMsg( rcStrict == VINF_SUCCESS + || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + + if (rcStrict == VINF_SUCCESS) + { + /** @todo r=bird: Not sure why we always flag DR7 as modified here, but I've + * kept it for now to avoid breaking something non-obvious. */ + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS + | HM_CHANGED_GUEST_DR7); + /* Update the DR6 register if guest debug state is active, otherwise we'll + trash it when calling CPUMR0DebugStateMaybeSaveGuestAndRestoreHost. */ + if (iDrReg == 6 && CPUMIsGuestDebugStateActive(pVCpu)) + ASMSetDR6(pVCpu->cpum.GstCtx.dr[6]); + Log4Func(("r%d=%#RX64 => dr%d=%#RX64\n", iGReg, pVCpu->cpum.GstCtx.aGRegs[iGReg].u, + iDrReg, pVCpu->cpum.GstCtx.dr[iDrReg])); + } + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitDRxWrite); + } + else + { + /* + * Read DRx register into a general purpose register. + */ + rcStrict = IEMExecDecodedMovDRxRead(pVCpu, pVmxTransient->cbExitInstr, iGReg, iDrReg); + AssertMsg( rcStrict == VINF_SUCCESS + || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + + if (rcStrict == VINF_SUCCESS) + { + if (iGReg == X86_GREG_xSP) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS + | HM_CHANGED_GUEST_RSP); + else + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); + } + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitDRxRead); + } + + return rcStrict; +} + + +/** + * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG). + * Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitEptMisconfig(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + +#ifndef IN_NEM_DARWIN + Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging); + + vmxHCReadToTransient< HMVMX_READ_EXIT_INSTR_LEN + | HMVMX_READ_EXIT_INTERRUPTION_INFO + | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE + | HMVMX_READ_IDT_VECTORING_INFO + | HMVMX_READ_IDT_VECTORING_ERROR_CODE + | HMVMX_READ_GUEST_PHYSICAL_ADDR>(pVCpu, pVmxTransient); + + /* + * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. + */ + VBOXSTRICTRC rcStrict = vmxHCCheckExitDueToEventDelivery(pVCpu, pVmxTransient); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + { + /* + * In the unlikely case where delivering an event causes an EPT misconfig (MMIO), go back to + * instruction emulation to inject the original event. Otherwise, injecting the original event + * using hardware-assisted VMX would trigger the same EPT misconfig VM-exit again. + */ + if (!VCPU_2_VMXSTATE(pVCpu).Event.fPending) + { /* likely */ } + else + { + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectInterpret); +# ifdef VBOX_WITH_NESTED_HWVIRT_VMX + /** @todo NSTVMX: Think about how this should be handled. */ + if (pVmxTransient->fIsNestedGuest) + return VERR_VMX_IPE_3; +# endif + return VINF_EM_RAW_INJECT_TRPM_EVENT; + } + } + else + { + Assert(rcStrict != VINF_HM_DOUBLE_FAULT); + return rcStrict; + } + + /* + * Get sufficient state and update the exit history entry. + */ + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + RTGCPHYS const GCPhys = pVmxTransient->uGuestPhysicalAddr; + PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu, + EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO), + pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base); + if (!pExitRec) + { + /* + * If we succeed, resume guest execution. + * If we fail in interpreting the instruction because we couldn't get the guest physical address + * of the page containing the instruction via the guest's page tables (we would invalidate the guest page + * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this + * weird case. See @bugref{6043}. + */ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); +/** @todo bird: We can probably just go straight to IOM here and assume that + * it's MMIO, then fall back on PGM if that hunch didn't work out so + * well. However, we need to address that aliasing workarounds that + * PGMR0Trap0eHandlerNPMisconfig implements. So, some care is needed. + * + * Might also be interesting to see if we can get this done more or + * less locklessly inside IOM. Need to consider the lookup table + * updating and use a bit more carefully first (or do all updates via + * rendezvous) */ + rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, &pVCpu->cpum.GstCtx, GCPhys, UINT32_MAX); + Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pVCpu->cpum.GstCtx.rip, VBOXSTRICTRC_VAL(rcStrict))); + if ( rcStrict == VINF_SUCCESS + || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT + || rcStrict == VERR_PAGE_NOT_PRESENT) + { + /* Successfully handled MMIO operation. */ + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS + | HM_CHANGED_GUEST_APIC_TPR); + rcStrict = VINF_SUCCESS; + } + } + else + { + /* + * Frequent exit or something needing probing. Call EMHistoryExec. + */ + Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n", + pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys)); + + rcStrict = EMHistoryExec(pVCpu, pExitRec, 0); + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST); + + Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n", + pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, + VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip)); + } + return rcStrict; +#else + AssertFailed(); + return VERR_VMX_IPE_3; /* Should never happen with Apple HV in R3. */ +#endif +} + + +/** + * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional + * VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitEptViolation(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); +#ifndef IN_NEM_DARWIN + Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging); + + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_LEN + | HMVMX_READ_EXIT_INTERRUPTION_INFO + | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE + | HMVMX_READ_IDT_VECTORING_INFO + | HMVMX_READ_IDT_VECTORING_ERROR_CODE + | HMVMX_READ_GUEST_PHYSICAL_ADDR>(pVCpu, pVmxTransient); + + /* + * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. + */ + VBOXSTRICTRC rcStrict = vmxHCCheckExitDueToEventDelivery(pVCpu, pVmxTransient); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + { + /* + * If delivery of an event causes an EPT violation (true nested #PF and not MMIO), + * we shall resolve the nested #PF and re-inject the original event. + */ + if (VCPU_2_VMXSTATE(pVCpu).Event.fPending) + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectReflectNPF); + } + else + { + Assert(rcStrict != VINF_HM_DOUBLE_FAULT); + return rcStrict; + } + + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + int rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + RTGCPHYS const GCPhys = pVmxTransient->uGuestPhysicalAddr; + uint64_t const uExitQual = pVmxTransient->uExitQual; + AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", uExitQual)); + + RTGCUINT uErrorCode = 0; + if (uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_INSTR_FETCH) + uErrorCode |= X86_TRAP_PF_ID; + if (uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_WRITE) + uErrorCode |= X86_TRAP_PF_RW; + if (uExitQual & (VMX_EXIT_QUAL_EPT_ENTRY_READ | VMX_EXIT_QUAL_EPT_ENTRY_WRITE | VMX_EXIT_QUAL_EPT_ENTRY_EXECUTE)) + uErrorCode |= X86_TRAP_PF_P; + + PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + Log4Func(("at %#RX64 (%#RX64 errcode=%#x) cs:rip=%#04x:%08RX64\n", GCPhys, uExitQual, uErrorCode, pCtx->cs.Sel, pCtx->rip)); + + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + + /* + * Handle the pagefault trap for the nested shadow table. + */ + TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode); + rcStrict = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, pCtx, GCPhys); + TRPMResetTrap(pVCpu); + + /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */ + if ( rcStrict == VINF_SUCCESS + || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT + || rcStrict == VERR_PAGE_NOT_PRESENT) + { + /* Successfully synced our nested page tables. */ + STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitReasonNpf); + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS); + return VINF_SUCCESS; + } + Log4Func(("EPT return to ring-3 rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; + +#else /* IN_NEM_DARWIN */ + PVM pVM = pVCpu->CTX_SUFF(pVM); + uint64_t const uHostTsc = ASMReadTSC(); RT_NOREF(uHostTsc); + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_GUEST_PHYSICAL_ADDR>(pVCpu, pVmxTransient); + vmxHCImportGuestRip(pVCpu); + vmxHCImportGuestSegReg<X86_SREG_CS>(pVCpu); + + /* + * Ask PGM for information about the given GCPhys. We need to check if we're + * out of sync first. + */ + NEMHCDARWINHMACPCCSTATE State = { RT_BOOL(pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_WRITE), + false, + false }; + PGMPHYSNEMPAGEINFO Info; + int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pVmxTransient->uGuestPhysicalAddr, State.fWriteAccess, &Info, + nemR3DarwinHandleMemoryAccessPageCheckerCallback, &State); + if (RT_SUCCESS(rc)) + { + if (Info.fNemProt & ( RT_BOOL(pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_WRITE) + ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ)) + { + if (State.fCanResume) + { + Log4(("MemExit/%u: %04x:%08RX64: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting\n", + pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, + pVmxTransient->uGuestPhysicalAddr, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt, + Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "", + State.fDidSomething ? "" : " no-change")); + EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_MEMORY_ACCESS), + pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, uHostTsc); + return VINF_SUCCESS; + } + } + + Log4(("MemExit/%u: %04x:%08RX64: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating\n", + pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, + pVmxTransient->uGuestPhysicalAddr, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt, + Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "", + State.fDidSomething ? "" : " no-change")); + } + else + Log4(("MemExit/%u: %04x:%08RX64: %RGp rc=%Rrc%s; emulating\n", + pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, + pVmxTransient->uGuestPhysicalAddr, rc, State.fDidSomething ? " modified-backing" : "")); + + /* + * Emulate the memory access, either access handler or special memory. + */ + PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu, + RT_BOOL(pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_WRITE) + ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE) + : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ), + pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, uHostTsc); + + rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + VBOXSTRICTRC rcStrict; + if (!pExitRec) + rcStrict = IEMExecOne(pVCpu); + else + { + /* Frequent access or probing. */ + rcStrict = EMHistoryExec(pVCpu, pExitRec, 0); + Log4(("MemExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n", + pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, + VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip)); + } + + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST); + + Log4Func(("EPT return rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + return rcStrict; +#endif /* IN_NEM_DARWIN */ +} + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX + +/** + * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitVmclear(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_INFO + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState< CPUMCTX_EXTRN_RSP + | CPUMCTX_EXTRN_SREG_MASK + | CPUMCTX_EXTRN_HWVIRT + | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason); + + VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient); + HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr); + + VBOXSTRICTRC rcStrict = IEMExecDecodedVmclear(pVCpu, &ExitInfo); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT); + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + return rcStrict; +} + + +/** + * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitVmlaunch(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + /* Import the entire VMCS state for now as we would be switching VMCS on successful VMLAUNCH, + otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */ + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason); + + STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitVmentry, z); + VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbExitInstr, VMXINSTRID_VMLAUNCH); + STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitVmentry, z); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST); + if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)) + rcStrict = VINF_VMX_VMLAUNCH_VMRESUME; + } + Assert(rcStrict != VINF_IEM_RAISED_XCPT); + return rcStrict; +} + + +/** + * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitVmptrld(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_INFO + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState< CPUMCTX_EXTRN_RSP + | CPUMCTX_EXTRN_SREG_MASK + | CPUMCTX_EXTRN_HWVIRT + | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason); + + VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient); + HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr); + + VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrld(pVCpu, &ExitInfo); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT); + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + return rcStrict; +} + + +/** + * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitVmptrst(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_INFO + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState< CPUMCTX_EXTRN_RSP + | CPUMCTX_EXTRN_SREG_MASK + | CPUMCTX_EXTRN_HWVIRT + | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason); + + VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient); + HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr); + + VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrst(pVCpu, &ExitInfo); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + return rcStrict; +} + + +/** + * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitVmread(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + /* + * Strictly speaking we should not get VMREAD VM-exits for shadow VMCS fields and + * thus might not need to import the shadow VMCS state, it's safer just in case + * code elsewhere dares look at unsynced VMCS fields. + */ + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_INFO + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState< CPUMCTX_EXTRN_RSP + | CPUMCTX_EXTRN_SREG_MASK + | CPUMCTX_EXTRN_HWVIRT + | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason); + + VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient); + if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand) + HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr); + + VBOXSTRICTRC rcStrict = IEMExecDecodedVmread(pVCpu, &ExitInfo); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); + +# if 0 //ndef IN_NEM_DARWIN /** @todo this needs serious tuning still, slows down things enormously. */ + /* Try for exit optimization. This is on the following instruction + because it would be a waste of time to have to reinterpret the + already decoded vmwrite instruction. */ + PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndType(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_VMREAD)); + if (pExitRec) + { + /* Frequent access or probing. */ + rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL); + AssertRCReturn(rc, rc); + + rcStrict = EMHistoryExec(pVCpu, pExitRec, 0); + Log4(("vmread/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n", + pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, + VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip)); + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST); + } +# endif + } + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + return rcStrict; +} + + +/** + * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitVmresume(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + /* Import the entire VMCS state for now as we would be switching VMCS on successful VMRESUME, + otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */ + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason); + + STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitVmentry, z); + VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbExitInstr, VMXINSTRID_VMRESUME); + STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitVmentry, z); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST); + if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)) + rcStrict = VINF_VMX_VMLAUNCH_VMRESUME; + } + Assert(rcStrict != VINF_IEM_RAISED_XCPT); + return rcStrict; +} + + +/** + * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitVmwrite(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + /* + * Although we should not get VMWRITE VM-exits for shadow VMCS fields, since our HM hook + * gets invoked when IEM's VMWRITE instruction emulation modifies the current VMCS and it + * flags re-loading the entire shadow VMCS, we should save the entire shadow VMCS here. + */ + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_INFO + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState< CPUMCTX_EXTRN_RSP + | CPUMCTX_EXTRN_SREG_MASK + | CPUMCTX_EXTRN_HWVIRT + | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason); + + VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient); + if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand) + HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr); + + VBOXSTRICTRC rcStrict = IEMExecDecodedVmwrite(pVCpu, &ExitInfo); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT); + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + return rcStrict; +} + + +/** + * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitVmxoff(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState< CPUMCTX_EXTRN_CR4 + | CPUMCTX_EXTRN_HWVIRT + | IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason); + + VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbExitInstr); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_HWVIRT); + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + return rcStrict; +} + + +/** + * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitVmxon(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_INFO + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState< CPUMCTX_EXTRN_RSP + | CPUMCTX_EXTRN_SREG_MASK + | CPUMCTX_EXTRN_HWVIRT + | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason); + + VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient); + HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr); + + VBOXSTRICTRC rcStrict = IEMExecDecodedVmxon(pVCpu, &ExitInfo); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT); + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + return rcStrict; +} + + +/** + * VM-exit handler for INVVPID (VMX_EXIT_INVVPID). Unconditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitInvvpid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_INFO + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState< CPUMCTX_EXTRN_RSP + | CPUMCTX_EXTRN_SREG_MASK + | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason); + + VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient); + HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr); + + VBOXSTRICTRC rcStrict = IEMExecDecodedInvvpid(pVCpu, &ExitInfo); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + return rcStrict; +} + + +# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT +/** + * VM-exit handler for INVEPT (VMX_EXIT_INVEPT). Unconditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitInvept(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_INFO + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState< CPUMCTX_EXTRN_RSP + | CPUMCTX_EXTRN_SREG_MASK + | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason); + + VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient); + HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr); + + VBOXSTRICTRC rcStrict = IEMExecDecodedInvept(pVCpu, &ExitInfo); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS); + else if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + return rcStrict; +} +# endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */ +#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */ +/** @} */ + + +#ifdef VBOX_WITH_NESTED_HWVIRT_VMX +/** @name Nested-guest VM-exit handlers. + * @{ + */ +/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */ +/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- Nested-guest VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */ +/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */ + +/** + * Nested-guest VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI). + * Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitXcptOrNmiNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + vmxHCReadToTransient<HMVMX_READ_EXIT_INTERRUPTION_INFO>(pVCpu, pVmxTransient); + + uint64_t const uExitIntInfo = pVmxTransient->uExitIntInfo; + uint32_t const uExitIntType = VMX_EXIT_INT_INFO_TYPE(uExitIntInfo); + Assert(VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo)); + + switch (uExitIntType) + { +# ifndef IN_NEM_DARWIN + /* + * Physical NMIs: + * We shouldn't direct host physical NMIs to the nested-guest. Dispatch it to the host. + */ + case VMX_EXIT_INT_INFO_TYPE_NMI: + return hmR0VmxExitHostNmi(pVCpu, pVmxTransient->pVmcsInfo); +# endif + + /* + * Hardware exceptions, + * Software exceptions, + * Privileged software exceptions: + * Figure out if the exception must be delivered to the guest or the nested-guest. + */ + case VMX_EXIT_INT_INFO_TYPE_SW_XCPT: + case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT: + case VMX_EXIT_INT_INFO_TYPE_HW_XCPT: + { + vmxHCReadToTransient< HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE + | HMVMX_READ_EXIT_INSTR_LEN + | HMVMX_READ_IDT_VECTORING_INFO + | HMVMX_READ_IDT_VECTORING_ERROR_CODE>(pVCpu, pVmxTransient); + + PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + if (CPUMIsGuestVmxXcptInterceptSet(pCtx, VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo), pVmxTransient->uExitIntErrorCode)) + { + /* Exit qualification is required for debug and page-fault exceptions. */ + vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient); + + /* + * For VM-exits due to software exceptions (those generated by INT3 or INTO) and privileged + * software exceptions (those generated by INT1/ICEBP) we need to supply the VM-exit instruction + * length. However, if delivery of a software interrupt, software exception or privileged + * software exception causes a VM-exit, that too provides the VM-exit instruction length. + */ + VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient); + VMXVEXITEVENTINFO const ExitEventInfo = VMXVEXITEVENTINFO_INIT(pVmxTransient->uExitIntInfo, + pVmxTransient->uExitIntErrorCode, + pVmxTransient->uIdtVectoringInfo, + pVmxTransient->uIdtVectoringErrorCode); +#ifdef DEBUG_ramshankar + vmxHCImportGuestStateEx(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL); + Log4Func(("exit_int_info=%#RX32 err_code=%#RX32 exit_qual=%#RX64\n", + pVmxTransient->uExitIntInfo, pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual)); + if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo)) + Log4Func(("idt_info=%#RX32 idt_errcode=%#RX32 cr2=%#RX64\n", + pVmxTransient->uIdtVectoringInfo, pVmxTransient->uIdtVectoringErrorCode, pCtx->cr2)); +#endif + return IEMExecVmxVmexitXcpt(pVCpu, &ExitInfo, &ExitEventInfo); + } + + /* Nested paging is currently a requirement, otherwise we would need to handle shadow #PFs in vmxHCExitXcptPF. */ + Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging); + return vmxHCExitXcpt(pVCpu, pVmxTransient); + } + + /* + * Software interrupts: + * VM-exits cannot be caused by software interrupts. + * + * External interrupts: + * This should only happen when "acknowledge external interrupts on VM-exit" + * control is set. However, we never set this when executing a guest or + * nested-guest. For nested-guests it is emulated while injecting interrupts into + * the guest. + */ + case VMX_EXIT_INT_INFO_TYPE_SW_INT: + case VMX_EXIT_INT_INFO_TYPE_EXT_INT: + default: + { + VCPU_2_VMXSTATE(pVCpu).u32HMError = pVmxTransient->uExitIntInfo; + return VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE; + } + } +} + + +/** + * Nested-guest VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). + * Unconditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitTripleFaultNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + return IEMExecVmxVmexitTripleFault(pVCpu); +} + + +/** + * Nested-guest VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW). + */ +HMVMX_EXIT_NSRC_DECL vmxHCExitIntWindowNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INT_WINDOW_EXIT)) + return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, 0 /* uExitQual */); + return vmxHCExitIntWindow(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW). + */ +HMVMX_EXIT_NSRC_DECL vmxHCExitNmiWindowNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_NMI_WINDOW_EXIT)) + return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, 0 /* uExitQual */); + return vmxHCExitIntWindow(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). + * Unconditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitTaskSwitchNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_LEN + | HMVMX_READ_IDT_VECTORING_INFO + | HMVMX_READ_IDT_VECTORING_ERROR_CODE>(pVCpu, pVmxTransient); + + VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient); + VMXVEXITEVENTINFO const ExitEventInfo = VMXVEXITEVENTINFO_INIT_ONLY_IDT(pVmxTransient->uIdtVectoringInfo, + pVmxTransient->uIdtVectoringErrorCode); + return IEMExecVmxVmexitTaskSwitch(pVCpu, &ExitInfo, &ExitEventInfo); +} + + +/** + * Nested-guest VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitHltNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_HLT_EXIT)) + { + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr); + } + return vmxHCExitHlt(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitInvlpgNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INVLPG_EXIT)) + { + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient); + return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + return vmxHCExitInvlpg(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitRdpmcNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDPMC_EXIT)) + { + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr); + } + return vmxHCExitRdpmc(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for VMREAD (VMX_EXIT_VMREAD) and VMWRITE + * (VMX_EXIT_VMWRITE). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitVmreadVmwriteNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + Assert( pVmxTransient->uExitReason == VMX_EXIT_VMREAD + || pVmxTransient->uExitReason == VMX_EXIT_VMWRITE); + + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_INFO>(pVCpu, pVmxTransient); + + uint8_t const iGReg = pVmxTransient->ExitInstrInfo.VmreadVmwrite.iReg2; + Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs)); + uint64_t u64VmcsField = pVCpu->cpum.GstCtx.aGRegs[iGReg].u64; + + HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER); + if (!CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)) + u64VmcsField &= UINT64_C(0xffffffff); + + if (CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, pVmxTransient->uExitReason, u64VmcsField)) + { + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient); + return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + + if (pVmxTransient->uExitReason == VMX_EXIT_VMREAD) + return vmxHCExitVmread(pVCpu, pVmxTransient); + return vmxHCExitVmwrite(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitRdtscNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDTSC_EXIT)) + { + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr); + } + + return vmxHCExitRdtsc(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). + * Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitMovCRxNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + + VBOXSTRICTRC rcStrict; + uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual); + switch (uAccessType) + { + case VMX_EXIT_QUAL_CRX_ACCESS_WRITE: + { + uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual); + uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(pVmxTransient->uExitQual); + Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs)); + uint64_t const uNewCrX = pVCpu->cpum.GstCtx.aGRegs[iGReg].u64; + + bool fIntercept; + switch (iCrReg) + { + case 0: + case 4: + fIntercept = CPUMIsGuestVmxMovToCr0Cr4InterceptSet(&pVCpu->cpum.GstCtx, iCrReg, uNewCrX); + break; + + case 3: + fIntercept = CPUMIsGuestVmxMovToCr3InterceptSet(pVCpu, uNewCrX); + break; + + case 8: + fIntercept = CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_CR8_LOAD_EXIT); + break; + + default: + fIntercept = false; + break; + } + if (fIntercept) + { + VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient); + rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + else + { + int const rc = vmxHCImportGuestState<IEM_CPUMCTX_EXTRN_MUST_MASK>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + rcStrict = vmxHCExitMovToCrX(pVCpu, pVmxTransient->cbExitInstr, iGReg, iCrReg); + } + break; + } + + case VMX_EXIT_QUAL_CRX_ACCESS_READ: + { + /* + * CR0/CR4 reads do not cause VM-exits, the read-shadow is used (subject to masking). + * CR2 reads do not cause a VM-exit. + * CR3 reads cause a VM-exit depending on the "CR3 store exiting" control. + * CR8 reads cause a VM-exit depending on the "CR8 store exiting" control. + */ + uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual); + if ( iCrReg == 3 + || iCrReg == 8) + { + static const uint32_t s_auCrXReadIntercepts[] = { 0, 0, 0, VMX_PROC_CTLS_CR3_STORE_EXIT, 0, + 0, 0, 0, VMX_PROC_CTLS_CR8_STORE_EXIT }; + uint32_t const uIntercept = s_auCrXReadIntercepts[iCrReg]; + if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, uIntercept)) + { + VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient); + rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + else + { + uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(pVmxTransient->uExitQual); + rcStrict = vmxHCExitMovFromCrX(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg); + } + } + else + { + AssertMsgFailed(("MOV from CR%d VM-exit must not happen\n", iCrReg)); + HMVMX_UNEXPECTED_EXIT_RET(pVCpu, iCrReg); + } + break; + } + + case VMX_EXIT_QUAL_CRX_ACCESS_CLTS: + { + PCVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs; + uint64_t const uGstHostMask = pVmcsNstGst->u64Cr0Mask.u; + uint64_t const uReadShadow = pVmcsNstGst->u64Cr0ReadShadow.u; + if ( (uGstHostMask & X86_CR0_TS) + && (uReadShadow & X86_CR0_TS)) + { + VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient); + rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + else + rcStrict = vmxHCExitClts(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr); + break; + } + + case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */ + { + RTGCPTR GCPtrEffDst; + uint16_t const uNewMsw = VMX_EXIT_QUAL_CRX_LMSW_DATA(pVmxTransient->uExitQual); + bool const fMemOperand = VMX_EXIT_QUAL_CRX_LMSW_OP_MEM(pVmxTransient->uExitQual); + if (fMemOperand) + { + vmxHCReadToTransient<HMVMX_READ_GUEST_LINEAR_ADDR>(pVCpu, pVmxTransient); + GCPtrEffDst = pVmxTransient->uGuestLinearAddr; + } + else + GCPtrEffDst = NIL_RTGCPTR; + + if (CPUMIsGuestVmxLmswInterceptSet(&pVCpu->cpum.GstCtx, uNewMsw)) + { + VMXVEXITINFO ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient); + ExitInfo.u64GuestLinearAddr = GCPtrEffDst; + rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + else + rcStrict = vmxHCExitLmsw(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, uNewMsw, GCPtrEffDst); + break; + } + + default: + { + AssertMsgFailed(("Unrecognized Mov CRX access type %#x\n", uAccessType)); + HMVMX_UNEXPECTED_EXIT_RET(pVCpu, uAccessType); + } + } + + if (rcStrict == VINF_IEM_RAISED_XCPT) + { + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); + rcStrict = VINF_SUCCESS; + } + return rcStrict; +} + + +/** + * Nested-guest VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). + * Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitMovDRxNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MOV_DR_EXIT)) + { + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient); + return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + return vmxHCExitMovDRx(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). + * Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitIoInstrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient); + + uint32_t const uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual); + uint8_t const uIOSize = VMX_EXIT_QUAL_IO_SIZE(pVmxTransient->uExitQual); + AssertReturn(uIOSize <= 3 && uIOSize != 2, VERR_VMX_IPE_1); + + static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses in bytes. */ + uint8_t const cbAccess = s_aIOSizes[uIOSize]; + if (CPUMIsGuestVmxIoInterceptSet(pVCpu, uIOPort, cbAccess)) + { + /* + * IN/OUT instruction: + * - Provides VM-exit instruction length. + * + * INS/OUTS instruction: + * - Provides VM-exit instruction length. + * - Provides Guest-linear address. + * - Optionally provides VM-exit instruction info (depends on CPU feature). + */ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + + /* Make sure we don't use stale/uninitialized VMX-transient info. below. */ + pVmxTransient->ExitInstrInfo.u = 0; + pVmxTransient->uGuestLinearAddr = 0; + + bool const fVmxInsOutsInfo = pVM->cpum.ro.GuestFeatures.fVmxInsOutInfo; + bool const fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual); + if (fIOString) + { + vmxHCReadToTransient<HMVMX_READ_GUEST_LINEAR_ADDR>(pVCpu, pVmxTransient); + if (fVmxInsOutsInfo) + { + Assert(RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS)); /* Paranoia. */ + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_INFO>(pVCpu, pVmxTransient); + } + } + + VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_AND_LIN_ADDR_FROM_TRANSIENT(pVmxTransient); + return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + return vmxHCExitIoInstr(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for RDMSR (VMX_EXIT_RDMSR). + */ +HMVMX_EXIT_DECL vmxHCExitRdmsrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + uint32_t fMsrpm; + if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_MSR_BITMAPS)) + fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap, pVCpu->cpum.GstCtx.ecx); + else + fMsrpm = VMXMSRPM_EXIT_RD; + + if (fMsrpm & VMXMSRPM_EXIT_RD) + { + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr); + } + return vmxHCExitRdmsr(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for WRMSR (VMX_EXIT_WRMSR). + */ +HMVMX_EXIT_DECL vmxHCExitWrmsrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + uint32_t fMsrpm; + if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_MSR_BITMAPS)) + fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap, pVCpu->cpum.GstCtx.ecx); + else + fMsrpm = VMXMSRPM_EXIT_WR; + + if (fMsrpm & VMXMSRPM_EXIT_WR) + { + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr); + } + return vmxHCExitWrmsr(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitMwaitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MWAIT_EXIT)) + { + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr); + } + return vmxHCExitMwait(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional + * VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitMtfNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + /** @todo NSTVMX: Should consider debugging nested-guests using VM debugger. */ + vmxHCReadToTransient<HMVMX_READ_GUEST_PENDING_DBG_XCPTS>(pVCpu, pVmxTransient); + VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_DBG_XCPTS_FROM_TRANSIENT(pVmxTransient); + return IEMExecVmxVmexitTrapLike(pVCpu, &ExitInfo); +} + + +/** + * Nested-guest VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitMonitorNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MONITOR_EXIT)) + { + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr); + } + return vmxHCExitMonitor(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitPauseNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + /** @todo NSTVMX: Think about this more. Does the outer guest need to intercept + * PAUSE when executing a nested-guest? If it does not, we would not need + * to check for the intercepts here. Just call VM-exit... */ + + /* The CPU would have already performed the necessary CPL checks for PAUSE-loop exiting. */ + if ( CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_PAUSE_EXIT) + || CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)) + { + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr); + } + return vmxHCExitPause(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for when the TPR value is lowered below the + * specified threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit. + */ +HMVMX_EXIT_NSRC_DECL vmxHCExitTprBelowThresholdNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_TPR_SHADOW)) + { + vmxHCReadToTransient<HMVMX_READ_GUEST_PENDING_DBG_XCPTS>(pVCpu, pVmxTransient); + VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_DBG_XCPTS_FROM_TRANSIENT(pVmxTransient); + return IEMExecVmxVmexitTrapLike(pVCpu, &ExitInfo); + } + return vmxHCExitTprBelowThreshold(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional + * VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitApicAccessNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_LEN + | HMVMX_READ_IDT_VECTORING_INFO + | HMVMX_READ_IDT_VECTORING_ERROR_CODE>(pVCpu, pVmxTransient); + + Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_VIRT_APIC_ACCESS)); + + Log4Func(("at offset %#x type=%u\n", VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual), + VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual))); + + VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_FROM_TRANSIENT(pVmxTransient); + VMXVEXITEVENTINFO const ExitEventInfo = VMXVEXITEVENTINFO_INIT_ONLY_IDT(pVmxTransient->uIdtVectoringInfo, + pVmxTransient->uIdtVectoringErrorCode); + return IEMExecVmxVmexitApicAccess(pVCpu, &ExitInfo, &ExitEventInfo); +} + + +/** + * Nested-guest VM-exit handler for APIC write emulation (VMX_EXIT_APIC_WRITE). + * Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitApicWriteNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_APIC_REG_VIRT)); + vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient); + return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, pVmxTransient->uExitQual); +} + + +/** + * Nested-guest VM-exit handler for virtualized EOI (VMX_EXIT_VIRTUALIZED_EOI). + * Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitVirtEoiNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_VIRT_INT_DELIVERY)); + vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient); + return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, pVmxTransient->uExitQual); +} + + +/** + * Nested-guest VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitRdtscpNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDTSC_EXIT)) + { + Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_RDTSCP)); + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr); + } + return vmxHCExitRdtscp(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit. + */ +HMVMX_EXIT_NSRC_DECL vmxHCExitWbinvdNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + if (CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_WBINVD_EXIT)) + { + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr); + } + return vmxHCExitWbinvd(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitInvpcidNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INVLPG_EXIT)) + { + Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_INVPCID)); + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_INFO + | HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient); + return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); + } + return vmxHCExitInvpcid(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for invalid-guest state + * (VMX_EXIT_ERR_INVALID_GUEST_STATE). Error VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitErrInvalidGuestStateNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + + /* + * Currently this should never happen because we fully emulate VMLAUNCH/VMRESUME in IEM. + * So if it does happen, it indicates a bug possibly in the hardware-assisted VMX code. + * Handle it like it's in an invalid guest state of the outer guest. + * + * When the fast path is implemented, this should be changed to cause the corresponding + * nested-guest VM-exit. + */ + return vmxHCExitErrInvalidGuestState(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for instructions that cause VM-exits unconditionally + * and only provide the instruction length. + * + * Unconditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitInstrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + +#ifdef VBOX_STRICT + PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + switch (pVmxTransient->uExitReason) + { + case VMX_EXIT_ENCLS: + Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_ENCLS_EXIT)); + break; + + case VMX_EXIT_VMFUNC: + Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_VMFUNC)); + break; + } +#endif + + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_LEN>(pVCpu, pVmxTransient); + return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr); +} + + +/** + * Nested-guest VM-exit handler for instructions that provide instruction length as + * well as more information. + * + * Unconditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitInstrWithInfoNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + +# ifdef VBOX_STRICT + PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + switch (pVmxTransient->uExitReason) + { + case VMX_EXIT_GDTR_IDTR_ACCESS: + case VMX_EXIT_LDTR_TR_ACCESS: + Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_DESC_TABLE_EXIT)); + break; + + case VMX_EXIT_RDRAND: + Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_RDRAND_EXIT)); + break; + + case VMX_EXIT_RDSEED: + Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_RDSEED_EXIT)); + break; + + case VMX_EXIT_XSAVES: + case VMX_EXIT_XRSTORS: + /** @todo NSTVMX: Verify XSS-bitmap. */ + Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_XSAVES_XRSTORS)); + break; + + case VMX_EXIT_UMWAIT: + case VMX_EXIT_TPAUSE: + Assert(CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_RDTSC_EXIT)); + Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_USER_WAIT_PAUSE)); + break; + + case VMX_EXIT_LOADIWKEY: + Assert(CPUMIsGuestVmxProcCtls3Set(pCtx, VMX_PROC_CTLS3_LOADIWKEY_EXIT)); + break; + } +# endif + + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_LEN + | HMVMX_READ_EXIT_INSTR_INFO>(pVCpu, pVmxTransient); + VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_FROM_TRANSIENT(pVmxTransient); + return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo); +} + +# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT + +/** + * Nested-guest VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). + * Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitEptViolationNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging); + + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + if (CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_EPT)) + { + vmxHCReadToTransient< HMVMX_READ_EXIT_QUALIFICATION + | HMVMX_READ_EXIT_INSTR_LEN + | HMVMX_READ_EXIT_INTERRUPTION_INFO + | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE + | HMVMX_READ_IDT_VECTORING_INFO + | HMVMX_READ_IDT_VECTORING_ERROR_CODE + | HMVMX_READ_GUEST_PHYSICAL_ADDR>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + /* + * If it's our VMEXIT, we're responsible for re-injecting any event which delivery + * might have triggered this VMEXIT. If we forward the problem to the inner VMM, + * it's its problem to deal with that issue and we'll clear the recovered event. + */ + VBOXSTRICTRC rcStrict = vmxHCCheckExitDueToEventDelivery(pVCpu, pVmxTransient); + if (RT_LIKELY(rcStrict == VINF_SUCCESS)) + { /*likely*/ } + else + { + Assert(rcStrict != VINF_HM_DOUBLE_FAULT); + return rcStrict; + } + uint32_t const fClearEventOnForward = VCPU_2_VMXSTATE(pVCpu).Event.fPending; /* paranoia. should not inject events below. */ + + RTGCPHYS const GCPhysNestedFault = pVmxTransient->uGuestPhysicalAddr; + uint64_t const uExitQual = pVmxTransient->uExitQual; + + RTGCPTR GCPtrNestedFault; + bool const fIsLinearAddrValid = RT_BOOL(uExitQual & VMX_EXIT_QUAL_EPT_LINEAR_ADDR_VALID); + if (fIsLinearAddrValid) + { + vmxHCReadToTransient<HMVMX_READ_GUEST_LINEAR_ADDR>(pVCpu, pVmxTransient); + GCPtrNestedFault = pVmxTransient->uGuestLinearAddr; + } + else + GCPtrNestedFault = 0; + + RTGCUINT const uErr = ((uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_INSTR_FETCH) ? X86_TRAP_PF_ID : 0) + | ((uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_WRITE) ? X86_TRAP_PF_RW : 0) + | ((uExitQual & ( VMX_EXIT_QUAL_EPT_ENTRY_READ + | VMX_EXIT_QUAL_EPT_ENTRY_WRITE + | VMX_EXIT_QUAL_EPT_ENTRY_EXECUTE)) ? X86_TRAP_PF_P : 0); + + PGMPTWALK Walk; + PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + rcStrict = PGMR0NestedTrap0eHandlerNestedPaging(pVCpu, PGMMODE_EPT, uErr, pCtx, GCPhysNestedFault, + fIsLinearAddrValid, GCPtrNestedFault, &Walk); + Log7Func(("PGM (uExitQual=%#RX64, %RGp, %RGv) -> %Rrc (fFailed=%d)\n", + uExitQual, GCPhysNestedFault, GCPtrNestedFault, VBOXSTRICTRC_VAL(rcStrict), Walk.fFailed)); + if (RT_SUCCESS(rcStrict)) + return rcStrict; + + if (fClearEventOnForward) + VCPU_2_VMXSTATE(pVCpu).Event.fPending = false; + + VMXVEXITEVENTINFO const ExitEventInfo = VMXVEXITEVENTINFO_INIT_ONLY_IDT(pVmxTransient->uIdtVectoringInfo, + pVmxTransient->uIdtVectoringErrorCode); + if (Walk.fFailed & PGM_WALKFAIL_EPT_VIOLATION) + { + VMXVEXITINFO const ExitInfo + = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN_AND_GST_ADDRESSES(VMX_EXIT_EPT_VIOLATION, + pVmxTransient->uExitQual, + pVmxTransient->cbExitInstr, + pVmxTransient->uGuestLinearAddr, + pVmxTransient->uGuestPhysicalAddr); + return IEMExecVmxVmexitEptViolation(pVCpu, &ExitInfo, &ExitEventInfo); + } + + Assert(Walk.fFailed & PGM_WALKFAIL_EPT_MISCONFIG); + return IEMExecVmxVmexitEptMisconfig(pVCpu, pVmxTransient->uGuestPhysicalAddr, &ExitEventInfo); + } + + return vmxHCExitEptViolation(pVCpu, pVmxTransient); +} + + +/** + * Nested-guest VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG). + * Conditional VM-exit. + */ +HMVMX_EXIT_DECL vmxHCExitEptMisconfigNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient) +{ + HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient); + Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging); + + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + if (CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_EPT)) + { + vmxHCReadToTransient<HMVMX_READ_GUEST_PHYSICAL_ADDR>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState<CPUMCTX_EXTRN_ALL>(pVCpu, pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + + PGMPTWALK Walk; + PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + RTGCPHYS const GCPhysNestedFault = pVmxTransient->uGuestPhysicalAddr; + VBOXSTRICTRC rcStrict = PGMR0NestedTrap0eHandlerNestedPaging(pVCpu, PGMMODE_EPT, X86_TRAP_PF_RSVD, pCtx, + GCPhysNestedFault, false /* fIsLinearAddrValid */, + 0 /* GCPtrNestedFault */, &Walk); + if (RT_SUCCESS(rcStrict)) + { + AssertMsgFailed(("Shouldn't happen with the way we have programmed the EPT shadow tables\n")); + return rcStrict; + } + + AssertMsg(Walk.fFailed & PGM_WALKFAIL_EPT_MISCONFIG, ("GCPhysNestedFault=%#RGp\n", GCPhysNestedFault)); + vmxHCReadToTransient< HMVMX_READ_IDT_VECTORING_INFO + | HMVMX_READ_IDT_VECTORING_ERROR_CODE>(pVCpu, pVmxTransient); + + VMXVEXITEVENTINFO const ExitEventInfo = VMXVEXITEVENTINFO_INIT_ONLY_IDT(pVmxTransient->uIdtVectoringInfo, + pVmxTransient->uIdtVectoringErrorCode); + return IEMExecVmxVmexitEptMisconfig(pVCpu, pVmxTransient->uGuestPhysicalAddr, &ExitEventInfo); + } + + return vmxHCExitEptMisconfig(pVCpu, pVmxTransient); +} + +# endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */ + +/** @} */ +#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */ + + +/** @name Execution loop for single stepping, DBGF events and expensive Dtrace + * probes. + * + * The following few functions and associated structure contains the bloat + * necessary for providing detailed debug events and dtrace probes as well as + * reliable host side single stepping. This works on the principle of + * "subclassing" the normal execution loop and workers. We replace the loop + * method completely and override selected helpers to add necessary adjustments + * to their core operation. + * + * The goal is to keep the "parent" code lean and mean, so as not to sacrifice + * any performance for debug and analysis features. + * + * @{ + */ + +/** + * Transient per-VCPU debug state of VMCS and related info. we save/restore in + * the debug run loop. + */ +typedef struct VMXRUNDBGSTATE +{ + /** The RIP we started executing at. This is for detecting that we stepped. */ + uint64_t uRipStart; + /** The CS we started executing with. */ + uint16_t uCsStart; + + /** Whether we've actually modified the 1st execution control field. */ + bool fModifiedProcCtls : 1; + /** Whether we've actually modified the 2nd execution control field. */ + bool fModifiedProcCtls2 : 1; + /** Whether we've actually modified the exception bitmap. */ + bool fModifiedXcptBitmap : 1; + + /** We desire the modified the CR0 mask to be cleared. */ + bool fClearCr0Mask : 1; + /** We desire the modified the CR4 mask to be cleared. */ + bool fClearCr4Mask : 1; + /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */ + uint32_t fCpe1Extra; + /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */ + uint32_t fCpe1Unwanted; + /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */ + uint32_t fCpe2Extra; + /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */ + uint32_t bmXcptExtra; + /** The sequence number of the Dtrace provider settings the state was + * configured against. */ + uint32_t uDtraceSettingsSeqNo; + /** VM-exits to check (one bit per VM-exit). */ + uint32_t bmExitsToCheck[3]; + + /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */ + uint32_t fProcCtlsInitial; + /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */ + uint32_t fProcCtls2Initial; + /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */ + uint32_t bmXcptInitial; +} VMXRUNDBGSTATE; +AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4); +typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE; + + +/** + * Initializes the VMXRUNDBGSTATE structure. + * + * @param pVCpu The cross context virtual CPU structure of the + * calling EMT. + * @param pVmxTransient The VMX-transient structure. + * @param pDbgState The debug state to initialize. + */ +static void vmxHCRunDebugStateInit(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState) +{ + pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip; + pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel; + + pDbgState->fModifiedProcCtls = false; + pDbgState->fModifiedProcCtls2 = false; + pDbgState->fModifiedXcptBitmap = false; + pDbgState->fClearCr0Mask = false; + pDbgState->fClearCr4Mask = false; + pDbgState->fCpe1Extra = 0; + pDbgState->fCpe1Unwanted = 0; + pDbgState->fCpe2Extra = 0; + pDbgState->bmXcptExtra = 0; + pDbgState->fProcCtlsInitial = pVmxTransient->pVmcsInfo->u32ProcCtls; + pDbgState->fProcCtls2Initial = pVmxTransient->pVmcsInfo->u32ProcCtls2; + pDbgState->bmXcptInitial = pVmxTransient->pVmcsInfo->u32XcptBitmap; +} + + +/** + * Updates the VMSC fields with changes requested by @a pDbgState. + * + * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well + * immediately before executing guest code, i.e. when interrupts are disabled. + * We don't check status codes here as we cannot easily assert or return in the + * latter case. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + * @param pDbgState The debug state. + */ +static void vmxHCPreRunGuestDebugStateApply(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState) +{ + /* + * Ensure desired flags in VMCS control fields are set. + * (Ignoring write failure here, as we're committed and it's just debug extras.) + * + * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so + * there should be no stale data in pCtx at this point. + */ + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + if ( (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra + || (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Unwanted)) + { + pVmcsInfo->u32ProcCtls |= pDbgState->fCpe1Extra; + pVmcsInfo->u32ProcCtls &= ~pDbgState->fCpe1Unwanted; + VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls); + Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVmcsInfo->u32ProcCtls)); + pDbgState->fModifiedProcCtls = true; + } + + if ((pVmcsInfo->u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra) + { + pVmcsInfo->u32ProcCtls2 |= pDbgState->fCpe2Extra; + VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, pVmcsInfo->u32ProcCtls2); + Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVmcsInfo->u32ProcCtls2)); + pDbgState->fModifiedProcCtls2 = true; + } + + if ((pVmcsInfo->u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra) + { + pVmcsInfo->u32XcptBitmap |= pDbgState->bmXcptExtra; + VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVmcsInfo->u32XcptBitmap); + Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVmcsInfo->u32XcptBitmap)); + pDbgState->fModifiedXcptBitmap = true; + } + + if (pDbgState->fClearCr0Mask && pVmcsInfo->u64Cr0Mask != 0) + { + pVmcsInfo->u64Cr0Mask = 0; + VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_CTRL_CR0_MASK, 0); + Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n")); + } + + if (pDbgState->fClearCr4Mask && pVmcsInfo->u64Cr4Mask != 0) + { + pVmcsInfo->u64Cr4Mask = 0; + VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_CTRL_CR4_MASK, 0); + Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n")); + } + + NOREF(pVCpu); +} + + +/** + * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for + * re-entry next time around. + * + * @returns Strict VBox status code (i.e. informational status codes too). + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + * @param pDbgState The debug state. + * @param rcStrict The return code from executing the guest using single + * stepping. + */ +static VBOXSTRICTRC vmxHCRunDebugStateRevert(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState, + VBOXSTRICTRC rcStrict) +{ + /* + * Restore VM-exit control settings as we may not reenter this function the + * next time around. + */ + PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo; + + /* We reload the initial value, trigger what we can of recalculations the + next time around. From the looks of things, that's all that's required atm. */ + if (pDbgState->fModifiedProcCtls) + { + if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu)) + pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */ + int rc2 = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial); + AssertRC(rc2); + pVmcsInfo->u32ProcCtls = pDbgState->fProcCtlsInitial; + } + + /* We're currently the only ones messing with this one, so just restore the + cached value and reload the field. */ + if ( pDbgState->fModifiedProcCtls2 + && pVmcsInfo->u32ProcCtls2 != pDbgState->fProcCtls2Initial) + { + int rc2 = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial); + AssertRC(rc2); + pVmcsInfo->u32ProcCtls2 = pDbgState->fProcCtls2Initial; + } + + /* If we've modified the exception bitmap, we restore it and trigger + reloading and partial recalculation the next time around. */ + if (pDbgState->fModifiedXcptBitmap) + { + int rc2 = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pDbgState->bmXcptInitial); + AssertRC(rc2); + pVmcsInfo->u32XcptBitmap = pDbgState->bmXcptInitial; + } + + return rcStrict; +} + + +/** + * Configures VM-exit controls for current DBGF and DTrace settings. + * + * This updates @a pDbgState and the VMCS execution control fields to reflect + * the necessary VM-exits demanded by DBGF and DTrace. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. May update + * fUpdatedTscOffsettingAndPreemptTimer. + * @param pDbgState The debug state. + */ +static void vmxHCPreRunGuestDebugStateUpdate(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState) +{ +#ifndef IN_NEM_DARWIN + /* + * Take down the dtrace serial number so we can spot changes. + */ + pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO(); + ASMCompilerBarrier(); +#endif + + /* + * We'll rebuild most of the middle block of data members (holding the + * current settings) as we go along here, so start by clearing it all. + */ + pDbgState->bmXcptExtra = 0; + pDbgState->fCpe1Extra = 0; + pDbgState->fCpe1Unwanted = 0; + pDbgState->fCpe2Extra = 0; + for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++) + pDbgState->bmExitsToCheck[i] = 0; + + /* + * Software interrupts (INT XXh) - no idea how to trigger these... + */ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE) + || VBOXVMM_INT_SOFTWARE_ENABLED()) + { + ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI); + } + + /* + * INT3 breakpoints - triggered by #BP exceptions. + */ + if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0) + pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP); + + /* + * Exception bitmap and XCPT events+probes. + */ + for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++) + if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt))) + pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt); + + if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE); + if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB); + if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP); + if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF); + if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR); + if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD); + if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM); + if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF); + if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS); + if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP); + if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS); + if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP); + if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF); + if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF); + if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC); + if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF); + if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE); + if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX); + + if (pDbgState->bmXcptExtra) + ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI); + + /* + * Process events and probes for VM-exits, making sure we get the wanted VM-exits. + * + * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does. + * So, when adding/changing/removing please don't forget to update it. + * + * Some of the macros are picking up local variables to save horizontal space, + * (being able to see it in a table is the lesser evil here). + */ +#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \ + ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \ + || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() ) +#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \ + if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \ + { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \ + ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \ + } else do { } while (0) +#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \ + if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \ + { \ + (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \ + AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \ + ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \ + } else do { } while (0) +#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \ + if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \ + { \ + (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \ + AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \ + ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \ + } else do { } while (0) +#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \ + if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \ + { \ + (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \ + AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \ + ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \ + } else do { } while (0) + + SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */ + SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */ + SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */ + + SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC); + SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD); + SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT); + SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG); + SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT); + SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC); + SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT); + SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON); + + if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ) + || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE)) + { + int rc = vmxHCImportGuestStateEx(pVCpu, pVmxTransient->pVmcsInfo, + CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_APIC_TPR); + AssertRC(rc); + +#if 0 /** @todo fix me */ + pDbgState->fClearCr0Mask = true; + pDbgState->fClearCr4Mask = true; +#endif + if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)) + pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT; + if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE)) + pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT; + pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */ + /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would + require clearing here and in the loop if we start using it. */ + ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX); + } + else + { + if (pDbgState->fClearCr0Mask) + { + pDbgState->fClearCr0Mask = false; + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_CR0); + } + if (pDbgState->fClearCr4Mask) + { + pDbgState->fClearCr4Mask = false; + ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_CR4); + } + } + SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX); + SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX); + + if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ) + || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE)) + { + /** @todo later, need to fix handler as it assumes this won't usually happen. */ + ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX); + } + SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX); + SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX); + + SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR); + SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); + SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR); + SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT); + SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR); +#if 0 /** @todo too slow, fix handler. */ + SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT); +#endif + SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE); + + if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT) + || IS_EITHER_ENABLED(pVM, INSTR_SIDT) + || IS_EITHER_ENABLED(pVM, INSTR_LGDT) + || IS_EITHER_ENABLED(pVM, INSTR_LIDT)) + { + pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT; + ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_GDTR_IDTR_ACCESS); + } + SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_GDTR_IDTR_ACCESS); + SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_GDTR_IDTR_ACCESS); + SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_GDTR_IDTR_ACCESS); + SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_GDTR_IDTR_ACCESS); + + if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT) + || IS_EITHER_ENABLED(pVM, INSTR_STR) + || IS_EITHER_ENABLED(pVM, INSTR_LLDT) + || IS_EITHER_ENABLED(pVM, INSTR_LTR)) + { + pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT; + ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_LDTR_TR_ACCESS); + } + SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_LDTR_TR_ACCESS); + SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_LDTR_TR_ACCESS); + SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_LDTR_TR_ACCESS); + SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_LDTR_TR_ACCESS); + + SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT); + SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT); + SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID); + SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT); + SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV); + SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT); + SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND); + SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT); + SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC); + SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT); + SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */ + SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES); + SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */ + SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS); + +#undef IS_EITHER_ENABLED +#undef SET_ONLY_XBM_IF_EITHER_EN +#undef SET_CPE1_XBM_IF_EITHER_EN +#undef SET_CPEU_XBM_IF_EITHER_EN +#undef SET_CPE2_XBM_IF_EITHER_EN + + /* + * Sanitize the control stuff. + */ + pDbgState->fCpe2Extra &= g_HmMsrs.u.vmx.ProcCtls2.n.allowed1; + if (pDbgState->fCpe2Extra) + pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS; + pDbgState->fCpe1Extra &= g_HmMsrs.u.vmx.ProcCtls.n.allowed1; + pDbgState->fCpe1Unwanted &= ~g_HmMsrs.u.vmx.ProcCtls.n.allowed0; +#ifndef IN_NEM_DARWIN + if (pVCpu->hmr0.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT)) + { + pVCpu->hmr0.s.fDebugWantRdTscExit ^= true; + pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false; + } +#else + if (pVCpu->nem.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT)) + { + pVCpu->nem.s.fDebugWantRdTscExit ^= true; + pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false; + } +#endif + + Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n", + pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra, + pDbgState->fClearCr0Mask ? " clr-cr0" : "", + pDbgState->fClearCr4Mask ? " clr-cr4" : "")); +} + + +/** + * Fires off DBGF events and dtrace probes for a VM-exit, when it's + * appropriate. + * + * The caller has checked the VM-exit against the + * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs + * already, so we don't have to do that either. + * + * @returns Strict VBox status code (i.e. informational status codes too). + * @param pVCpu The cross context virtual CPU structure. + * @param pVmxTransient The VMX-transient structure. + * @param uExitReason The VM-exit reason. + * + * @remarks The name of this function is displayed by dtrace, so keep it short + * and to the point. No longer than 33 chars long, please. + */ +static VBOXSTRICTRC vmxHCHandleExitDtraceEvents(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason) +{ + /* + * Translate the event into a DBGF event (enmEvent + uEventArg) and at the + * same time check whether any corresponding Dtrace event is enabled (fDtrace). + * + * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate + * does. Must add/change/remove both places. Same ordering, please. + * + * Added/removed events must also be reflected in the next section + * where we dispatch dtrace events. + */ + bool fDtrace1 = false; + bool fDtrace2 = false; + DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END; + DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END; + uint32_t uEventArg = 0; +#define SET_EXIT(a_EventSubName) \ + do { \ + enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \ + fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \ + } while (0) +#define SET_BOTH(a_EventSubName) \ + do { \ + enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \ + enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \ + fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \ + fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \ + } while (0) + switch (uExitReason) + { + case VMX_EXIT_MTF: + return vmxHCExitMtf(pVCpu, pVmxTransient); + + case VMX_EXIT_XCPT_OR_NMI: + { + uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo); + switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo)) + { + case VMX_EXIT_INT_INFO_TYPE_HW_XCPT: + case VMX_EXIT_INT_INFO_TYPE_SW_XCPT: + case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT: + if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST)) + { + if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo)) + { + vmxHCReadToTransient<HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE>(pVCpu, pVmxTransient); + uEventArg = pVmxTransient->uExitIntErrorCode; + } + enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector); + switch (enmEvent1) + { + case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break; + case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break; + case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break; + case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break; + case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break; + case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break; + case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break; + case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break; + case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break; + case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break; + case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break; + case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break; + case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break; + case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break; + case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break; + case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break; + case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break; + case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break; + default: break; + } + } + else + AssertFailed(); + break; + + case VMX_EXIT_INT_INFO_TYPE_SW_INT: + uEventArg = idxVector; + enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE; + fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED(); + break; + } + break; + } + + case VMX_EXIT_TRIPLE_FAULT: + enmEvent1 = DBGFEVENT_TRIPLE_FAULT; + //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED(); + break; + case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break; + case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break; + case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break; + case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break; + case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break; + + /* Instruction specific VM-exits: */ + case VMX_EXIT_CPUID: SET_BOTH(CPUID); break; + case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break; + case VMX_EXIT_HLT: SET_BOTH(HALT); break; + case VMX_EXIT_INVD: SET_BOTH(INVD); break; + case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break; + case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break; + case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break; + case VMX_EXIT_RSM: SET_BOTH(RSM); break; + case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break; + case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break; + case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break; + case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break; + case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break; + case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break; + case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break; + case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break; + case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break; + case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break; + case VMX_EXIT_MOV_CRX: + vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient); + if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ) + SET_BOTH(CRX_READ); + else + SET_BOTH(CRX_WRITE); + uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual); + break; + case VMX_EXIT_MOV_DRX: + vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient); + if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) + == VMX_EXIT_QUAL_DRX_DIRECTION_READ) + SET_BOTH(DRX_READ); + else + SET_BOTH(DRX_WRITE); + uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual); + break; + case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break; + case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break; + case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break; + case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break; + case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break; + case VMX_EXIT_GDTR_IDTR_ACCESS: + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_INFO>(pVCpu, pVmxTransient); + switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID)) + { + case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break; + case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break; + case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break; + case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break; + } + break; + + case VMX_EXIT_LDTR_TR_ACCESS: + vmxHCReadToTransient<HMVMX_READ_EXIT_INSTR_INFO>(pVCpu, pVmxTransient); + switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID)) + { + case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break; + case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break; + case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break; + case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break; + } + break; + + case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break; + case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break; + case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break; + case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break; + case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break; + case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break; + case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break; + case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break; + case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break; + case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break; + case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break; + + /* Events that aren't relevant at this point. */ + case VMX_EXIT_EXT_INT: + case VMX_EXIT_INT_WINDOW: + case VMX_EXIT_NMI_WINDOW: + case VMX_EXIT_TPR_BELOW_THRESHOLD: + case VMX_EXIT_PREEMPT_TIMER: + case VMX_EXIT_IO_INSTR: + break; + + /* Errors and unexpected events. */ + case VMX_EXIT_INIT_SIGNAL: + case VMX_EXIT_SIPI: + case VMX_EXIT_IO_SMI: + case VMX_EXIT_SMI: + case VMX_EXIT_ERR_INVALID_GUEST_STATE: + case VMX_EXIT_ERR_MSR_LOAD: + case VMX_EXIT_ERR_MACHINE_CHECK: + case VMX_EXIT_PML_FULL: + case VMX_EXIT_VIRTUALIZED_EOI: + break; + + default: + AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason)); + break; + } +#undef SET_BOTH +#undef SET_EXIT + + /* + * Dtrace tracepoints go first. We do them here at once so we don't + * have to copy the guest state saving and stuff a few dozen times. + * Down side is that we've got to repeat the switch, though this time + * we use enmEvent since the probes are a subset of what DBGF does. + */ + if (fDtrace1 || fDtrace2) + { + vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient); + vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + PCPUMCTX pCtx = &pVCpu->cpum.GstCtx; + switch (enmEvent1) + { + /** @todo consider which extra parameters would be helpful for each probe. */ + case DBGFEVENT_END: break; + case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break; + case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break; + case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break; + case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break; + case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break; + case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break; + case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break; + case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break; + case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break; + case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break; + case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break; + case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break; + case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break; + case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break; + case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break; + case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break; + case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break; + case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break; + case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break; + case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break; + case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break; + case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break; + case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break; + case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break; + case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break; + case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx, + RT_MAKE_U64(pCtx->eax, pCtx->edx)); break; + case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break; + case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break; + default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break; + } + switch (enmEvent2) + { + /** @todo consider which extra parameters would be helpful for each probe. */ + case DBGFEVENT_END: break; + case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break; + case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break; + case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break; + case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break; + case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break; + case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break; + case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx, + RT_MAKE_U64(pCtx->eax, pCtx->edx)); break; + case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break; + case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break; + default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break; + } + } + + /* + * Fire of the DBGF event, if enabled (our check here is just a quick one, + * the DBGF call will do a full check). + * + * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap. + * Note! If we have to events, we prioritize the first, i.e. the instruction + * one, in order to avoid event nesting. + */ + PVMCC pVM = pVCpu->CTX_SUFF(pVM); + if ( enmEvent1 != DBGFEVENT_END + && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1)) + { + vmxHCImportGuestState<CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + } + else if ( enmEvent2 != DBGFEVENT_END + && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2)) + { + vmxHCImportGuestState<CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + } + + return VINF_SUCCESS; +} + + +/** + * Single-stepping VM-exit filtering. + * + * This is preprocessing the VM-exits and deciding whether we've gotten far + * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit + * handling is performed. + * + * @returns Strict VBox status code (i.e. informational status codes too). + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param pVmxTransient The VMX-transient structure. + * @param pDbgState The debug state. + */ +DECLINLINE(VBOXSTRICTRC) vmxHCRunDebugHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState) +{ + /* + * Expensive (saves context) generic dtrace VM-exit probe. + */ + uint32_t const uExitReason = pVmxTransient->uExitReason; + if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED()) + { /* more likely */ } + else + { + vmxHCReadToTransient<HMVMX_READ_EXIT_QUALIFICATION>(pVCpu, pVmxTransient); + int rc = vmxHCImportGuestState<HMVMX_CPUMCTX_EXTRN_ALL>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRC(rc); + VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual); + } + +#ifndef IN_NEM_DARWIN + /* + * Check for host NMI, just to get that out of the way. + */ + if (uExitReason != VMX_EXIT_XCPT_OR_NMI) + { /* normally likely */ } + else + { + vmxHCReadToTransient<HMVMX_READ_EXIT_INTERRUPTION_INFO>(pVCpu, pVmxTransient); + uint32_t const uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo); + if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI) + return hmR0VmxExitHostNmi(pVCpu, pVmxTransient->pVmcsInfo); + } +#endif + + /* + * Check for single stepping event if we're stepping. + */ + if (VCPU_2_VMXSTATE(pVCpu).fSingleInstruction) + { + switch (uExitReason) + { + case VMX_EXIT_MTF: + return vmxHCExitMtf(pVCpu, pVmxTransient); + + /* Various events: */ + case VMX_EXIT_XCPT_OR_NMI: + case VMX_EXIT_EXT_INT: + case VMX_EXIT_TRIPLE_FAULT: + case VMX_EXIT_INT_WINDOW: + case VMX_EXIT_NMI_WINDOW: + case VMX_EXIT_TASK_SWITCH: + case VMX_EXIT_TPR_BELOW_THRESHOLD: + case VMX_EXIT_APIC_ACCESS: + case VMX_EXIT_EPT_VIOLATION: + case VMX_EXIT_EPT_MISCONFIG: + case VMX_EXIT_PREEMPT_TIMER: + + /* Instruction specific VM-exits: */ + case VMX_EXIT_CPUID: + case VMX_EXIT_GETSEC: + case VMX_EXIT_HLT: + case VMX_EXIT_INVD: + case VMX_EXIT_INVLPG: + case VMX_EXIT_RDPMC: + case VMX_EXIT_RDTSC: + case VMX_EXIT_RSM: + case VMX_EXIT_VMCALL: + case VMX_EXIT_VMCLEAR: + case VMX_EXIT_VMLAUNCH: + case VMX_EXIT_VMPTRLD: + case VMX_EXIT_VMPTRST: + case VMX_EXIT_VMREAD: + case VMX_EXIT_VMRESUME: + case VMX_EXIT_VMWRITE: + case VMX_EXIT_VMXOFF: + case VMX_EXIT_VMXON: + case VMX_EXIT_MOV_CRX: + case VMX_EXIT_MOV_DRX: + case VMX_EXIT_IO_INSTR: + case VMX_EXIT_RDMSR: + case VMX_EXIT_WRMSR: + case VMX_EXIT_MWAIT: + case VMX_EXIT_MONITOR: + case VMX_EXIT_PAUSE: + case VMX_EXIT_GDTR_IDTR_ACCESS: + case VMX_EXIT_LDTR_TR_ACCESS: + case VMX_EXIT_INVEPT: + case VMX_EXIT_RDTSCP: + case VMX_EXIT_INVVPID: + case VMX_EXIT_WBINVD: + case VMX_EXIT_XSETBV: + case VMX_EXIT_RDRAND: + case VMX_EXIT_INVPCID: + case VMX_EXIT_VMFUNC: + case VMX_EXIT_RDSEED: + case VMX_EXIT_XSAVES: + case VMX_EXIT_XRSTORS: + { + int rc = vmxHCImportGuestState<CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP>(pVCpu, pVmxTransient->pVmcsInfo, __FUNCTION__); + AssertRCReturn(rc, rc); + if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart + || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart) + return VINF_EM_DBG_STEPPED; + break; + } + + /* Errors and unexpected events: */ + case VMX_EXIT_INIT_SIGNAL: + case VMX_EXIT_SIPI: + case VMX_EXIT_IO_SMI: + case VMX_EXIT_SMI: + case VMX_EXIT_ERR_INVALID_GUEST_STATE: + case VMX_EXIT_ERR_MSR_LOAD: + case VMX_EXIT_ERR_MACHINE_CHECK: + case VMX_EXIT_PML_FULL: + case VMX_EXIT_VIRTUALIZED_EOI: + case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */ + break; + + default: + AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason)); + break; + } + } + + /* + * Check for debugger event breakpoints and dtrace probes. + */ + if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U + && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) ) + { + VBOXSTRICTRC rcStrict = vmxHCHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason); + if (rcStrict != VINF_SUCCESS) + return rcStrict; + } + + /* + * Normal processing. + */ +#ifdef HMVMX_USE_FUNCTION_TABLE + return g_aVMExitHandlers[uExitReason].pfn(pVCpu, pVmxTransient); +#else + return vmxHCHandleExit(pVCpu, pVmxTransient, uExitReason); +#endif +} + +/** @} */ |