summaryrefslogtreecommitdiffstats
path: root/include/iprt/cpp/hardavlrange.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/iprt/cpp/hardavlrange.h')
-rw-r--r--include/iprt/cpp/hardavlrange.h1284
1 files changed, 1284 insertions, 0 deletions
diff --git a/include/iprt/cpp/hardavlrange.h b/include/iprt/cpp/hardavlrange.h
new file mode 100644
index 00000000..7020968e
--- /dev/null
+++ b/include/iprt/cpp/hardavlrange.h
@@ -0,0 +1,1284 @@
+/** @file
+ * IPRT - Hardened AVL tree, unique key ranges.
+ */
+
+/*
+ * Copyright (C) 2022 Oracle and/or its affiliates.
+ *
+ * This file is part of VirtualBox base platform packages, as
+ * available from https://www.virtualbox.org.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, in version 3 of the
+ * License.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see <https://www.gnu.org/licenses>.
+ *
+ * The contents of this file may alternatively be used under the terms
+ * of the Common Development and Distribution License Version 1.0
+ * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
+ * in the VirtualBox distribution, in which case the provisions of the
+ * CDDL are applicable instead of those of the GPL.
+ *
+ * You may elect to license modified versions of this file under the
+ * terms and conditions of either the GPL or the CDDL or both.
+ *
+ * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
+ */
+
+#ifndef IPRT_INCLUDED_cpp_hardavlrange_h
+#define IPRT_INCLUDED_cpp_hardavlrange_h
+#ifndef RT_WITHOUT_PRAGMA_ONCE
+# pragma once
+#endif
+
+#include <iprt/cpp/hardavlslaballocator.h>
+
+/** @defgroup grp_rt_cpp_hardavl Hardened AVL Trees
+ * @{
+ */
+
+/**
+ * Check that the tree heights make sense for the current node.
+ *
+ * This is a RT_STRICT test as it's expensive and we should have sufficient
+ * other checks to ensure safe AVL tree operation.
+ *
+ * @note the a_cStackEntries parameter is a hack to avoid running into gcc's
+ * "the address of 'AVLStack' will never be NULL" errors.
+ */
+#ifdef RT_STRICT
+# define RTHARDAVL_STRICT_CHECK_HEIGHTS(a_pNode, a_pAvlStack, a_cStackEntries) do { \
+ NodeType * const pLeftNodeX = a_pAllocator->ptrFromInt(readIdx(&(a_pNode)->idxLeft)); \
+ AssertReturnStmt(a_pAllocator->isPtrRetOkay(pLeftNodeX), m_cErrors++, a_pAllocator->ptrErrToStatus((a_pNode))); \
+ NodeType * const pRightNodeX = a_pAllocator->ptrFromInt(readIdx(&(a_pNode)->idxRight)); \
+ AssertReturnStmt(a_pAllocator->isPtrRetOkay(pRightNodeX), m_cErrors++, a_pAllocator->ptrErrToStatus((a_pNode))); \
+ uint8_t const cLeftHeightX = pLeftNodeX ? pLeftNodeX->cHeight : 0; \
+ uint8_t const cRightHeightX = pRightNodeX ? pRightNodeX->cHeight : 0; \
+ if (RT_LIKELY((a_pNode)->cHeight == RT_MAX(cLeftHeightX, cRightHeightX) + 1)) { /*likely*/ } \
+ else \
+ { \
+ RTAssertMsg2("line %u: %u l=%u r=%u\n", __LINE__, (a_pNode)->cHeight, cLeftHeightX, cRightHeightX); \
+ if ((a_cStackEntries)) dumpStack(a_pAllocator, (a_pAvlStack)); \
+ AssertMsgReturnStmt((a_pNode)->cHeight == RT_MAX(cLeftHeightX, cRightHeightX) + 1, \
+ ("%u l=%u r=%u\n", (a_pNode)->cHeight, cLeftHeightX, cRightHeightX), \
+ m_cErrors++, VERR_HARDAVL_BAD_HEIGHT); \
+ } \
+ AssertMsgReturnStmt(RT_ABS(cLeftHeightX - cRightHeightX) <= 1, ("l=%u r=%u\n", cLeftHeightX, cRightHeightX), \
+ m_cErrors++, VERR_HARDAVL_UNBALANCED); \
+ Assert(!pLeftNodeX || pLeftNodeX->Key < (a_pNode)->Key); \
+ Assert(!pRightNodeX || pRightNodeX->Key > (a_pNode)->Key); \
+ } while (0)
+#else
+# define RTHARDAVL_STRICT_CHECK_HEIGHTS(a_pNode, a_pAvlStack, a_cStackEntries) do { } while (0)
+#endif
+
+
+/**
+ * Hardened AVL tree for nodes with key ranges.
+ *
+ * This is very crude and therefore expects the NodeType to feature:
+ * - Key and KeyLast members of KeyType.
+ * - idxLeft and idxRight members with type uint32_t.
+ * - cHeight members of type uint8_t.
+ *
+ * The code is very C-ish because of it's sources and initial use (ring-0
+ * without C++ exceptions enabled).
+ */
+template<typename NodeType, typename KeyType>
+struct RTCHardAvlRangeTree
+{
+ /** The root index. */
+ uint32_t m_idxRoot;
+ /** The error count. */
+ uint32_t m_cErrors;
+ /** @name Statistics
+ * @{ */
+ uint64_t m_cInserts;
+ uint64_t m_cRemovals;
+ uint64_t m_cRebalancingOperations;
+ /** @} */
+
+ /** The max stack depth. */
+ enum { kMaxStack = 28 };
+ /** The max height value we allow. */
+ enum { kMaxHeight = kMaxStack + 1 };
+
+ /** A stack used internally to avoid recursive calls.
+ * This is used with operations invoking i_rebalance(). */
+ typedef struct HardAvlStack
+ {
+ /** Number of entries on the stack. */
+ unsigned cEntries;
+ /** The stack. */
+ uint32_t *apidxEntries[kMaxStack];
+ } HardAvlStack;
+
+ /** @name Key comparisons
+ * @{ */
+ static inline int areKeyRangesIntersecting(KeyType a_Key1First, KeyType a_Key2First,
+ KeyType a_Key1Last, KeyType a_Key2Last) RT_NOEXCEPT
+ {
+ return a_Key1First <= a_Key2Last && a_Key1Last >= a_Key2First;
+ }
+
+ static inline int isKeyInRange(KeyType a_Key, KeyType a_KeyFirst, KeyType a_KeyLast) RT_NOEXCEPT
+ {
+ return a_Key <= a_KeyLast && a_Key >= a_KeyFirst;
+ }
+
+ static inline int isKeyGreater(KeyType a_Key1, KeyType a_Key2) RT_NOEXCEPT
+ {
+ return a_Key1 > a_Key2;
+ }
+ /** @} */
+
+ /**
+ * Read an index value trying to prevent the compiler from re-reading it.
+ */
+ DECL_FORCE_INLINE(uint32_t) readIdx(uint32_t volatile *pidx) RT_NOEXCEPT
+ {
+ uint32_t idx = *pidx;
+ ASMCompilerBarrier();
+ return idx;
+ }
+
+ RTCHardAvlRangeTree() RT_NOEXCEPT
+ : m_idxRoot(0)
+ , m_cErrors(0)
+ { }
+
+ RTCHardAvlRangeTree(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator) RT_NOEXCEPT
+ {
+ initWithAllocator(a_pAllocator);
+ }
+
+ void initWithAllocator(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator) RT_NOEXCEPT
+ {
+ m_idxRoot = a_pAllocator->kNilIndex;
+ m_cErrors = 0;
+ }
+
+ /**
+ * Inserts a node into the AVL-tree.
+ *
+ * @returns IPRT status code.
+ * @retval VERR_ALREADY_EXISTS if a node with overlapping key range exists.
+ *
+ * @param a_pAllocator Pointer to the allocator.
+ * @param a_pNode Pointer to the node which is to be added.
+ *
+ * @code
+ * Find the location of the node (using binary tree algorithm.):
+ * LOOP until KAVL_NULL leaf pointer
+ * BEGIN
+ * Add node pointer pointer to the AVL-stack.
+ * IF new-node-key < node key THEN
+ * left
+ * ELSE
+ * right
+ * END
+ * Fill in leaf node and insert it.
+ * Rebalance the tree.
+ * @endcode
+ */
+ int insert(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator, NodeType *a_pNode) RT_NOEXCEPT
+ {
+ KeyType const Key = a_pNode->Key;
+ KeyType const KeyLast = a_pNode->KeyLast;
+ AssertMsgReturn(Key <= KeyLast, ("Key=%#RX64 KeyLast=%#RX64\n", (uint64_t)Key, (uint64_t)KeyLast),
+ VERR_HARDAVL_INSERT_INVALID_KEY_RANGE);
+
+ uint32_t *pidxCurNode = &m_idxRoot;
+ HardAvlStack AVLStack;
+ AVLStack.cEntries = 0;
+ for (;;)
+ {
+ NodeType *pCurNode = a_pAllocator->ptrFromInt(readIdx(pidxCurNode));
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pCurNode), ("*pidxCurNode=%#x pCurNode=%p\n", *pidxCurNode, pCurNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pCurNode));
+ if (!pCurNode)
+ break;
+
+ unsigned const cEntries = AVLStack.cEntries;
+ AssertMsgReturnStmt(cEntries < RT_ELEMENTS(AVLStack.apidxEntries),
+ ("%p[%#x/%p] %p[%#x] %p[%#x] %p[%#x] %p[%#x] %p[%#x]\n", pidxCurNode, *pidxCurNode, pCurNode,
+ AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 1], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 1],
+ AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 2], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 2],
+ AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 3], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 3],
+ AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 4], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 4],
+ AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 5], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 5]),
+ m_cErrors++, VERR_HARDAVL_STACK_OVERFLOW);
+ AVLStack.apidxEntries[cEntries] = pidxCurNode;
+ AVLStack.cEntries = cEntries + 1;
+
+ RTHARDAVL_STRICT_CHECK_HEIGHTS(pCurNode, &AVLStack, AVLStack.cEntries);
+
+ /* Range check: */
+ if (areKeyRangesIntersecting(pCurNode->Key, Key, pCurNode->KeyLast, KeyLast))
+ return VERR_ALREADY_EXISTS;
+
+ /* Descend: */
+ if (isKeyGreater(pCurNode->Key, Key))
+ pidxCurNode = &pCurNode->idxLeft;
+ else
+ pidxCurNode = &pCurNode->idxRight;
+ }
+
+ a_pNode->idxLeft = a_pAllocator->kNilIndex;
+ a_pNode->idxRight = a_pAllocator->kNilIndex;
+ a_pNode->cHeight = 1;
+
+ uint32_t const idxNode = a_pAllocator->ptrToInt(a_pNode);
+ AssertMsgReturn(a_pAllocator->isIdxRetOkay(idxNode), ("pNode=%p idxNode=%#x\n", a_pNode, idxNode),
+ a_pAllocator->idxErrToStatus(idxNode));
+ *pidxCurNode = idxNode;
+
+ m_cInserts++;
+ return i_rebalance(a_pAllocator, &AVLStack);
+ }
+
+ /**
+ * Removes a node from the AVL-tree by a key value.
+ *
+ * @returns IPRT status code.
+ * @retval VERR_NOT_FOUND if not found.
+ * @param a_pAllocator Pointer to the allocator.
+ * @param a_Key A key value in the range of the node to be removed.
+ * @param a_ppRemoved Where to return the pointer to the removed node.
+ *
+ * @code
+ * Find the node which is to be removed:
+ * LOOP until not found
+ * BEGIN
+ * Add node pointer pointer to the AVL-stack.
+ * IF the keys matches THEN break!
+ * IF remove key < node key THEN
+ * left
+ * ELSE
+ * right
+ * END
+ * IF found THEN
+ * BEGIN
+ * IF left node not empty THEN
+ * BEGIN
+ * Find the right most node in the left tree while adding the pointer to the pointer to it's parent to the stack:
+ * Start at left node.
+ * LOOP until right node is empty
+ * BEGIN
+ * Add to stack.
+ * go right.
+ * END
+ * Link out the found node.
+ * Replace the node which is to be removed with the found node.
+ * Correct the stack entry for the pointer to the left tree.
+ * END
+ * ELSE
+ * BEGIN
+ * Move up right node.
+ * Remove last stack entry.
+ * END
+ * Balance tree using stack.
+ * END
+ * return pointer to the removed node (if found).
+ * @endcode
+ */
+ int remove(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator, KeyType a_Key, NodeType **a_ppRemoved) RT_NOEXCEPT
+ {
+ *a_ppRemoved = NULL;
+
+ /*
+ * Walk the tree till we locate the node that is to be deleted.
+ */
+ uint32_t *pidxDeleteNode = &m_idxRoot;
+ NodeType *pDeleteNode;
+ HardAvlStack AVLStack;
+ AVLStack.cEntries = 0;
+ for (;;)
+ {
+ pDeleteNode = a_pAllocator->ptrFromInt(readIdx(pidxDeleteNode));
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pDeleteNode),
+ ("*pidxCurNode=%#x pDeleteNode=%p\n", *pidxDeleteNode, pDeleteNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pDeleteNode));
+ if (pDeleteNode)
+ { /*likely*/ }
+ else
+ return VERR_NOT_FOUND;
+
+ unsigned const cEntries = AVLStack.cEntries;
+ AssertMsgReturnStmt(cEntries < RT_ELEMENTS(AVLStack.apidxEntries),
+ ("%p[%#x/%p] %p[%#x] %p[%#x] %p[%#x] %p[%#x] %p[%#x]\n",
+ pidxDeleteNode, *pidxDeleteNode, pDeleteNode,
+ AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 1], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 1],
+ AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 2], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 2],
+ AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 3], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 3],
+ AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 4], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 4],
+ AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 5], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 5]),
+ m_cErrors++, VERR_HARDAVL_STACK_OVERFLOW);
+ AVLStack.apidxEntries[cEntries] = pidxDeleteNode;
+ AVLStack.cEntries = cEntries + 1;
+
+ RTHARDAVL_STRICT_CHECK_HEIGHTS(pDeleteNode, &AVLStack, AVLStack.cEntries);
+
+ /* Range check: */
+ if (isKeyInRange(a_Key, pDeleteNode->Key, pDeleteNode->KeyLast))
+ break;
+
+ /* Descend: */
+ if (isKeyGreater(pDeleteNode->Key, a_Key))
+ pidxDeleteNode = &pDeleteNode->idxLeft;
+ else
+ pidxDeleteNode = &pDeleteNode->idxRight;
+ }
+
+ /*
+ * Do the deletion.
+ */
+ uint32_t const idxDeleteLeftNode = readIdx(&pDeleteNode->idxLeft);
+ if (idxDeleteLeftNode != a_pAllocator->kNilIndex)
+ {
+ /*
+ * Replace the deleted node with the rightmost node in the left subtree.
+ */
+ NodeType * const pDeleteLeftNode = a_pAllocator->ptrFromInt(idxDeleteLeftNode);
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pDeleteLeftNode),
+ ("idxDeleteLeftNode=%#x pDeleteLeftNode=%p\n", idxDeleteLeftNode, pDeleteLeftNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pDeleteLeftNode));
+
+ uint32_t const idxDeleteRightNode = readIdx(&pDeleteNode->idxRight);
+ AssertReturnStmt(a_pAllocator->isIntValid(idxDeleteRightNode), m_cErrors++, VERR_HARDAVL_INDEX_OUT_OF_BOUNDS);
+
+ const unsigned iStackEntry = AVLStack.cEntries;
+
+ uint32_t *pidxLeftBiggest = &pDeleteNode->idxLeft;
+ uint32_t idxLeftBiggestNode = idxDeleteLeftNode;
+ NodeType *pLeftBiggestNode = pDeleteLeftNode;
+ RTHARDAVL_STRICT_CHECK_HEIGHTS(pLeftBiggestNode, &AVLStack, AVLStack.cEntries);
+
+ uint32_t idxRightTmp;
+ while ((idxRightTmp = readIdx(&pLeftBiggestNode->idxRight)) != a_pAllocator->kNilIndex)
+ {
+ unsigned const cEntries = AVLStack.cEntries;
+ AssertMsgReturnStmt(cEntries < RT_ELEMENTS(AVLStack.apidxEntries),
+ ("%p[%#x/%p] %p[%#x] %p[%#x] %p[%#x] %p[%#x] %p[%#x]\n",
+ pidxLeftBiggest, *pidxLeftBiggest, pLeftBiggestNode,
+ AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 1], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 1],
+ AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 2], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 2],
+ AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 3], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 3],
+ AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 4], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 4],
+ AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 5], *AVLStack.apidxEntries[RT_ELEMENTS(AVLStack.apidxEntries) - 5]),
+ m_cErrors++, VERR_HARDAVL_STACK_OVERFLOW);
+ AVLStack.apidxEntries[cEntries] = pidxLeftBiggest;
+ AVLStack.cEntries = cEntries + 1;
+
+ pidxLeftBiggest = &pLeftBiggestNode->idxRight;
+ idxLeftBiggestNode = idxRightTmp;
+ pLeftBiggestNode = a_pAllocator->ptrFromInt(idxRightTmp);
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pLeftBiggestNode),
+ ("idxLeftBiggestNode=%#x pLeftBiggestNode=%p\n", idxLeftBiggestNode, pLeftBiggestNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pLeftBiggestNode));
+ RTHARDAVL_STRICT_CHECK_HEIGHTS(pLeftBiggestNode, &AVLStack, AVLStack.cEntries);
+ }
+
+ uint32_t const idxLeftBiggestLeftNode = readIdx(&pLeftBiggestNode->idxLeft);
+ AssertReturnStmt(a_pAllocator->isIntValid(idxLeftBiggestLeftNode), m_cErrors++, VERR_HARDAVL_INDEX_OUT_OF_BOUNDS);
+
+ /* link out pLeftBiggestNode */
+ *pidxLeftBiggest = idxLeftBiggestLeftNode;
+
+ /* link it in place of the deleted node. */
+ if (idxDeleteLeftNode != idxLeftBiggestNode)
+ pLeftBiggestNode->idxLeft = idxDeleteLeftNode;
+ pLeftBiggestNode->idxRight = idxDeleteRightNode;
+ pLeftBiggestNode->cHeight = AVLStack.cEntries > iStackEntry ? pDeleteNode->cHeight : 0;
+
+ *pidxDeleteNode = idxLeftBiggestNode;
+
+ if (AVLStack.cEntries > iStackEntry)
+ AVLStack.apidxEntries[iStackEntry] = &pLeftBiggestNode->idxLeft;
+ }
+ else
+ {
+ /* No left node, just pull up the right one. */
+ uint32_t const idxDeleteRightNode = readIdx(&pDeleteNode->idxRight);
+ AssertReturnStmt(a_pAllocator->isIntValid(idxDeleteRightNode), m_cErrors++, VERR_HARDAVL_INDEX_OUT_OF_BOUNDS);
+ *pidxDeleteNode = idxDeleteRightNode;
+ AVLStack.cEntries--;
+ }
+ *a_ppRemoved = pDeleteNode;
+
+ m_cRemovals++;
+ return i_rebalance(a_pAllocator, &AVLStack);
+ }
+
+ /**
+ * Looks up a node from the tree.
+ *
+ * @returns IPRT status code.
+ * @retval VERR_NOT_FOUND if not found.
+ *
+ * @param a_pAllocator Pointer to the allocator.
+ * @param a_Key A key value in the range of the desired node.
+ * @param a_ppFound Where to return the pointer to the node.
+ */
+ int lookup(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator, KeyType a_Key, NodeType **a_ppFound) RT_NOEXCEPT
+ {
+ *a_ppFound = NULL;
+
+ NodeType *pNode = a_pAllocator->ptrFromInt(readIdx(&m_idxRoot));
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pNode), ("m_idxRoot=%#x pNode=%p\n", m_idxRoot, pNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pNode));
+#ifdef RT_STRICT
+ HardAvlStack AVLStack;
+ AVLStack.apidxEntries[0] = &m_idxRoot;
+ AVLStack.cEntries = 1;
+#endif
+ unsigned cDepth = 0;
+ while (pNode)
+ {
+ RTHARDAVL_STRICT_CHECK_HEIGHTS(pNode, &AVLStack, AVLStack.cEntries);
+ AssertReturn(cDepth <= kMaxHeight, VERR_HARDAVL_LOOKUP_TOO_DEEP);
+ cDepth++;
+
+ if (isKeyInRange(a_Key, pNode->Key, pNode->KeyLast))
+ {
+ *a_ppFound = pNode;
+ return VINF_SUCCESS;
+ }
+ if (isKeyGreater(pNode->Key, a_Key))
+ {
+#ifdef RT_STRICT
+ AVLStack.apidxEntries[AVLStack.cEntries++] = &pNode->idxLeft;
+#endif
+ uint32_t const idxLeft = readIdx(&pNode->idxLeft);
+ pNode = a_pAllocator->ptrFromInt(idxLeft);
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pNode), ("idxLeft=%#x pNode=%p\n", idxLeft, pNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pNode));
+ }
+ else
+ {
+#ifdef RT_STRICT
+ AVLStack.apidxEntries[AVLStack.cEntries++] = &pNode->idxRight;
+#endif
+ uint32_t const idxRight = readIdx(&pNode->idxRight);
+ pNode = a_pAllocator->ptrFromInt(idxRight);
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pNode), ("idxRight=%#x pNode=%p\n", idxRight, pNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pNode));
+ }
+ }
+
+ return VERR_NOT_FOUND;
+ }
+
+ /**
+ * Looks up node matching @a a_Key or if no exact match the closest smaller than it.
+ *
+ * @returns IPRT status code.
+ * @retval VERR_NOT_FOUND if not found.
+ *
+ * @param a_pAllocator Pointer to the allocator.
+ * @param a_Key A key value in the range of the desired node.
+ * @param a_ppFound Where to return the pointer to the node.
+ */
+ int lookupMatchingOrBelow(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator, KeyType a_Key,
+ NodeType **a_ppFound) RT_NOEXCEPT
+ {
+ *a_ppFound = NULL;
+
+ NodeType *pNode = a_pAllocator->ptrFromInt(readIdx(&m_idxRoot));
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pNode), ("m_idxRoot=%#x pNode=%p\n", m_idxRoot, pNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pNode));
+#ifdef RT_STRICT
+ HardAvlStack AVLStack;
+ AVLStack.apidxEntries[0] = &m_idxRoot;
+ AVLStack.cEntries = 1;
+#endif
+ unsigned cDepth = 0;
+ NodeType *pNodeLast = NULL;
+ while (pNode)
+ {
+ RTHARDAVL_STRICT_CHECK_HEIGHTS(pNode, &AVLStack, AVLStack.cEntries);
+ AssertReturn(cDepth <= kMaxHeight, VERR_HARDAVL_LOOKUP_TOO_DEEP);
+ cDepth++;
+
+ if (isKeyInRange(a_Key, pNode->Key, pNode->KeyLast))
+ {
+ *a_ppFound = pNode;
+ return VINF_SUCCESS;
+ }
+ if (isKeyGreater(pNode->Key, a_Key))
+ {
+#ifdef RT_STRICT
+ AVLStack.apidxEntries[AVLStack.cEntries++] = &pNode->idxLeft;
+#endif
+ uint32_t const idxLeft = readIdx(&pNode->idxLeft);
+ NodeType *pLeftNode = a_pAllocator->ptrFromInt(idxLeft);
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pLeftNode), ("idxLeft=%#x pLeftNode=%p\n", idxLeft, pLeftNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pLeftNode));
+ if (pLeftNode)
+ pNode = pLeftNode;
+ else if (!pNodeLast)
+ break;
+ else
+ {
+ *a_ppFound = pNodeLast;
+ return VINF_SUCCESS;
+ }
+ }
+ else
+ {
+#ifdef RT_STRICT
+ AVLStack.apidxEntries[AVLStack.cEntries++] = &pNode->idxRight;
+#endif
+ uint32_t const idxRight = readIdx(&pNode->idxRight);
+ NodeType *pRightNode = a_pAllocator->ptrFromInt(idxRight);
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pRightNode), ("idxRight=%#x pRightNode=%p\n", idxRight, pRightNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pRightNode));
+ if (pRightNode)
+ {
+ pNodeLast = pNode;
+ pNode = pRightNode;
+ }
+ else
+ {
+ *a_ppFound = pNode;
+ return VINF_SUCCESS;
+ }
+ }
+ }
+
+ return VERR_NOT_FOUND;
+ }
+
+ /**
+ * Looks up node matching @a a_Key or if no exact match the closest larger than it.
+ *
+ * @returns IPRT status code.
+ * @retval VERR_NOT_FOUND if not found.
+ *
+ * @param a_pAllocator Pointer to the allocator.
+ * @param a_Key A key value in the range of the desired node.
+ * @param a_ppFound Where to return the pointer to the node.
+ */
+ int lookupMatchingOrAbove(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator, KeyType a_Key,
+ NodeType **a_ppFound) RT_NOEXCEPT
+ {
+ *a_ppFound = NULL;
+
+ NodeType *pNode = a_pAllocator->ptrFromInt(readIdx(&m_idxRoot));
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pNode), ("m_idxRoot=%#x pNode=%p\n", m_idxRoot, pNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pNode));
+#ifdef RT_STRICT
+ HardAvlStack AVLStack;
+ AVLStack.apidxEntries[0] = &m_idxRoot;
+ AVLStack.cEntries = 1;
+#endif
+ unsigned cDepth = 0;
+ NodeType *pNodeLast = NULL;
+ while (pNode)
+ {
+ RTHARDAVL_STRICT_CHECK_HEIGHTS(pNode, &AVLStack, AVLStack.cEntries);
+ AssertReturn(cDepth <= kMaxHeight, VERR_HARDAVL_LOOKUP_TOO_DEEP);
+ cDepth++;
+
+ if (isKeyInRange(a_Key, pNode->Key, pNode->KeyLast))
+ {
+ *a_ppFound = pNode;
+ return VINF_SUCCESS;
+ }
+ if (isKeyGreater(pNode->Key, a_Key))
+ {
+#ifdef RT_STRICT
+ AVLStack.apidxEntries[AVLStack.cEntries++] = &pNode->idxLeft;
+#endif
+ uint32_t const idxLeft = readIdx(&pNode->idxLeft);
+ NodeType *pLeftNode = a_pAllocator->ptrFromInt(idxLeft);
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pLeftNode), ("idxLeft=%#x pLeftNode=%p\n", idxLeft, pLeftNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pLeftNode));
+ if (pLeftNode)
+ {
+ pNodeLast = pNode;
+ pNode = pLeftNode;
+ }
+ else
+ {
+ *a_ppFound = pNode;
+ return VINF_SUCCESS;
+ }
+ }
+ else
+ {
+#ifdef RT_STRICT
+ AVLStack.apidxEntries[AVLStack.cEntries++] = &pNode->idxRight;
+#endif
+ uint32_t const idxRight = readIdx(&pNode->idxRight);
+ NodeType *pRightNode = a_pAllocator->ptrFromInt(idxRight);
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pRightNode), ("idxRight=%#x pRightNode=%p\n", idxRight, pRightNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pRightNode));
+ if (pRightNode)
+ pNode = pRightNode;
+ else if (!pNodeLast)
+ break;
+ else
+ {
+ *a_ppFound = pNodeLast;
+ return VINF_SUCCESS;
+ }
+ }
+ }
+
+ return VERR_NOT_FOUND;
+ }
+
+ /**
+ * A callback for doWithAllFromLeft and doWithAllFromRight.
+ *
+ * @returns IPRT status code. Any non-zero status causes immediate return from
+ * the enumeration function.
+ * @param pNode The current node.
+ * @param pvUser The user argument.
+ */
+ typedef DECLCALLBACKTYPE(int, FNCALLBACK,(NodeType *pNode, void *pvUser));
+ /** Pointer to a callback for doWithAllFromLeft and doWithAllFromRight. */
+ typedef FNCALLBACK *PFNCALLBACK;
+
+ /**
+ * Iterates thru all nodes in the tree from left (smaller) to right.
+ *
+ * @returns IPRT status code.
+ *
+ * @param a_pAllocator Pointer to the allocator.
+ * @param a_pfnCallBack Pointer to callback function.
+ * @param a_pvUser Callback user argument.
+ *
+ * @note This is very similar code to doWithAllFromRight() and destroy().
+ */
+ int doWithAllFromLeft(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator,
+ PFNCALLBACK a_pfnCallBack, void *a_pvUser) RT_NOEXCEPT
+ {
+ NodeType *pNode = a_pAllocator->ptrFromInt(readIdx(&m_idxRoot));
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pNode), ("m_idxRoot=%#x pNode=%p\n", m_idxRoot, pNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pNode));
+ if (!pNode)
+ return VINF_SUCCESS;
+
+ /*
+ * We simulate recursive calling here. For safety reasons, we do not
+ * pop before going down the right tree like the original code did.
+ */
+ uint32_t cNodesLeft = a_pAllocator->m_cNodes;
+ NodeType *apEntries[kMaxStack];
+ uint8_t abState[kMaxStack];
+ unsigned cEntries = 1;
+ abState[0] = 0;
+ apEntries[0] = pNode;
+ while (cEntries > 0)
+ {
+ pNode = apEntries[cEntries - 1];
+ switch (abState[cEntries - 1])
+ {
+ /* Go left. */
+ case 0:
+ {
+ abState[cEntries - 1] = 1;
+
+ NodeType * const pLeftNode = a_pAllocator->ptrFromInt(readIdx(&pNode->idxLeft));
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pLeftNode),
+ ("idxLeft=%#x pLeftNode=%p\n", pNode->idxLeft, pLeftNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pLeftNode));
+ if (pLeftNode)
+ {
+#if RT_GNUC_PREREQ_EX(4,7,1) && defined(RTASSERT_HAVE_STATIC_ASSERT) /* 32-bit 4.4.7 has trouble, dunno when it started working */
+ AssertCompile(kMaxStack > 6); /* exactly. Seems having static_assert is required. */
+#endif
+ AssertMsgReturnStmt(cEntries < RT_ELEMENTS(apEntries),
+ ("%p[%#x] %p %p %p %p %p %p\n", pLeftNode, pNode->idxLeft, apEntries[kMaxStack - 1],
+ apEntries[kMaxStack - 2], apEntries[kMaxStack - 3], apEntries[kMaxStack - 4],
+ apEntries[kMaxStack - 5], apEntries[kMaxStack - 6]),
+ m_cErrors++, VERR_HARDAVL_STACK_OVERFLOW);
+ apEntries[cEntries] = pLeftNode;
+ abState[cEntries] = 0;
+ cEntries++;
+
+ AssertReturn(cNodesLeft > 0, VERR_HARDAVL_TRAVERSED_TOO_MANY_NODES);
+ cNodesLeft--;
+ break;
+ }
+ RT_FALL_THROUGH();
+ }
+
+ /* center then right. */
+ case 1:
+ {
+ abState[cEntries - 1] = 2;
+
+ RTHARDAVL_STRICT_CHECK_HEIGHTS(pNode, NULL, 0);
+
+ int rc = a_pfnCallBack(pNode, a_pvUser);
+ if (rc != VINF_SUCCESS)
+ return rc;
+
+ NodeType * const pRightNode = a_pAllocator->ptrFromInt(readIdx(&pNode->idxRight));
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pRightNode),
+ ("idxRight=%#x pRightNode=%p\n", pNode->idxRight, pRightNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pRightNode));
+ if (pRightNode)
+ {
+#if RT_GNUC_PREREQ_EX(4,7,1) && defined(RTASSERT_HAVE_STATIC_ASSERT) /* 32-bit 4.4.7 has trouble, dunno when it started working */
+ AssertCompile(kMaxStack > 6); /* exactly. Seems having static_assert is required. */
+#endif
+ AssertMsgReturnStmt(cEntries < RT_ELEMENTS(apEntries),
+ ("%p[%#x] %p %p %p %p %p %p\n", pRightNode, pNode->idxRight, apEntries[kMaxStack - 1],
+ apEntries[kMaxStack - 2], apEntries[kMaxStack - 3], apEntries[kMaxStack - 4],
+ apEntries[kMaxStack - 5], apEntries[kMaxStack - 6]),
+ m_cErrors++, VERR_HARDAVL_STACK_OVERFLOW);
+ apEntries[cEntries] = pRightNode;
+ abState[cEntries] = 0;
+ cEntries++;
+
+ AssertReturn(cNodesLeft > 0, VERR_HARDAVL_TRAVERSED_TOO_MANY_NODES);
+ cNodesLeft--;
+ break;
+ }
+ RT_FALL_THROUGH();
+ }
+
+ default:
+ /* pop it. */
+ cEntries -= 1;
+ break;
+ }
+ }
+ return VINF_SUCCESS;
+ }
+
+ /**
+ * Iterates thru all nodes in the tree from right (larger) to left (smaller).
+ *
+ * @returns IPRT status code.
+ *
+ * @param a_pAllocator Pointer to the allocator.
+ * @param a_pfnCallBack Pointer to callback function.
+ * @param a_pvUser Callback user argument.
+ *
+ * @note This is very similar code to doWithAllFromLeft() and destroy().
+ */
+ int doWithAllFromRight(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator,
+ PFNCALLBACK a_pfnCallBack, void *a_pvUser) RT_NOEXCEPT
+ {
+ NodeType *pNode = a_pAllocator->ptrFromInt(readIdx(&m_idxRoot));
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pNode), ("m_idxRoot=%#x pNode=%p\n", m_idxRoot, pNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pNode));
+ if (!pNode)
+ return VINF_SUCCESS;
+
+ /*
+ * We simulate recursive calling here. For safety reasons, we do not
+ * pop before going down the right tree like the original code did.
+ */
+ uint32_t cNodesLeft = a_pAllocator->m_cNodes;
+ NodeType *apEntries[kMaxStack];
+ uint8_t abState[kMaxStack];
+ unsigned cEntries = 1;
+ abState[0] = 0;
+ apEntries[0] = pNode;
+ while (cEntries > 0)
+ {
+ pNode = apEntries[cEntries - 1];
+ switch (abState[cEntries - 1])
+ {
+ /* Go right. */
+ case 0:
+ {
+ abState[cEntries - 1] = 1;
+
+ NodeType * const pRightNode = a_pAllocator->ptrFromInt(readIdx(&pNode->idxRight));
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pRightNode),
+ ("idxRight=%#x pRightNode=%p\n", pNode->idxRight, pRightNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pRightNode));
+ if (pRightNode)
+ {
+#if RT_GNUC_PREREQ_EX(4,7,1) && defined(RTASSERT_HAVE_STATIC_ASSERT) /* 32-bit 4.4.7 has trouble, dunno when it started working */
+ AssertCompile(kMaxStack > 6); /* exactly. Seems having static_assert is required. */
+#endif
+ AssertMsgReturnStmt(cEntries < RT_ELEMENTS(apEntries),
+ ("%p[%#x] %p %p %p %p %p %p\n", pRightNode, pNode->idxRight, apEntries[kMaxStack - 1],
+ apEntries[kMaxStack - 2], apEntries[kMaxStack - 3], apEntries[kMaxStack - 4],
+ apEntries[kMaxStack - 5], apEntries[kMaxStack - 6]),
+ m_cErrors++, VERR_HARDAVL_STACK_OVERFLOW);
+ apEntries[cEntries] = pRightNode;
+ abState[cEntries] = 0;
+ cEntries++;
+
+ AssertReturn(cNodesLeft > 0, VERR_HARDAVL_TRAVERSED_TOO_MANY_NODES);
+ cNodesLeft--;
+ break;
+ }
+ RT_FALL_THROUGH();
+ }
+
+ /* center then left. */
+ case 1:
+ {
+ abState[cEntries - 1] = 2;
+
+ RTHARDAVL_STRICT_CHECK_HEIGHTS(pNode, NULL, 0);
+
+ int rc = a_pfnCallBack(pNode, a_pvUser);
+ if (rc != VINF_SUCCESS)
+ return rc;
+
+ NodeType * const pLeftNode = a_pAllocator->ptrFromInt(readIdx(&pNode->idxLeft));
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pLeftNode),
+ ("idxLeft=%#x pLeftNode=%p\n", pNode->idxLeft, pLeftNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pLeftNode));
+ if (pLeftNode)
+ {
+#if RT_GNUC_PREREQ_EX(4,7,1) && defined(RTASSERT_HAVE_STATIC_ASSERT) /* 32-bit 4.4.7 has trouble, dunno when it started working */
+ AssertCompile(kMaxStack > 6); /* exactly. Seems having static_assert is required. */
+#endif
+ AssertMsgReturnStmt(cEntries < RT_ELEMENTS(apEntries),
+ ("%p[%#x] %p %p %p %p %p %p\n", pLeftNode, pNode->idxLeft, apEntries[kMaxStack - 1],
+ apEntries[kMaxStack - 2], apEntries[kMaxStack - 3], apEntries[kMaxStack - 4],
+ apEntries[kMaxStack - 5], apEntries[kMaxStack - 6]),
+ m_cErrors++, VERR_HARDAVL_STACK_OVERFLOW);
+ apEntries[cEntries] = pLeftNode;
+ abState[cEntries] = 0;
+ cEntries++;
+
+ AssertReturn(cNodesLeft > 0, VERR_HARDAVL_TRAVERSED_TOO_MANY_NODES);
+ cNodesLeft--;
+ break;
+ }
+ RT_FALL_THROUGH();
+ }
+
+ default:
+ /* pop it. */
+ cEntries -= 1;
+ break;
+ }
+ }
+ return VINF_SUCCESS;
+ }
+
+ /**
+ * A callback for destroy to do additional cleanups before the node is freed.
+ *
+ * @param pNode The current node.
+ * @param pvUser The user argument.
+ */
+ typedef DECLCALLBACKTYPE(void, FNDESTROYCALLBACK,(NodeType *pNode, void *pvUser));
+ /** Pointer to a callback for destroy. */
+ typedef FNDESTROYCALLBACK *PFNDESTROYCALLBACK;
+
+ /**
+ * Destroys the tree, starting with the root node.
+ *
+ * This will invoke the freeNode() method on the allocate for every node after
+ * first doing the callback to let the caller free additional resources
+ * referenced by the node.
+ *
+ * @returns IPRT status code.
+ *
+ * @param a_pAllocator Pointer to the allocator.
+ * @param a_pfnCallBack Pointer to callback function. Optional.
+ * @param a_pvUser Callback user argument.
+ *
+ * @note This is mostly the same code as the doWithAllFromLeft().
+ */
+ int destroy(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator,
+ PFNDESTROYCALLBACK a_pfnCallBack = NULL, void *a_pvUser = NULL) RT_NOEXCEPT
+ {
+ NodeType *pNode = a_pAllocator->ptrFromInt(readIdx(&m_idxRoot));
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pNode), ("m_idxRoot=%#x pNode=%p\n", m_idxRoot, pNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pNode));
+ if (!pNode)
+ return VINF_SUCCESS;
+
+ /*
+ * We simulate recursive calling here. For safety reasons, we do not
+ * pop before going down the right tree like the original code did.
+ */
+ uint32_t cNodesLeft = a_pAllocator->m_cNodes;
+ NodeType *apEntries[kMaxStack];
+ uint8_t abState[kMaxStack];
+ unsigned cEntries = 1;
+ abState[0] = 0;
+ apEntries[0] = pNode;
+ while (cEntries > 0)
+ {
+ pNode = apEntries[cEntries - 1];
+ switch (abState[cEntries - 1])
+ {
+ /* Go left. */
+ case 0:
+ {
+ abState[cEntries - 1] = 1;
+
+ NodeType * const pLeftNode = a_pAllocator->ptrFromInt(readIdx(&pNode->idxLeft));
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pLeftNode),
+ ("idxLeft=%#x pLeftNode=%p\n", pNode->idxLeft, pLeftNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pLeftNode));
+ if (pLeftNode)
+ {
+#if RT_GNUC_PREREQ_EX(4,7,1) && defined(RTASSERT_HAVE_STATIC_ASSERT) /* 32-bit 4.4.7 has trouble, dunno when it started working */
+ AssertCompile(kMaxStack > 6); /* exactly. Seems having static_assert is required. */
+#endif
+ AssertMsgReturnStmt(cEntries < RT_ELEMENTS(apEntries),
+ ("%p[%#x] %p %p %p %p %p %p\n", pLeftNode, pNode->idxLeft, apEntries[kMaxStack - 1],
+ apEntries[kMaxStack - 2], apEntries[kMaxStack - 3], apEntries[kMaxStack - 4],
+ apEntries[kMaxStack - 5], apEntries[kMaxStack - 6]),
+ m_cErrors++, VERR_HARDAVL_STACK_OVERFLOW);
+ apEntries[cEntries] = pLeftNode;
+ abState[cEntries] = 0;
+ cEntries++;
+
+ AssertReturn(cNodesLeft > 0, VERR_HARDAVL_TRAVERSED_TOO_MANY_NODES);
+ cNodesLeft--;
+ break;
+ }
+ RT_FALL_THROUGH();
+ }
+
+ /* right. */
+ case 1:
+ {
+ abState[cEntries - 1] = 2;
+
+ NodeType * const pRightNode = a_pAllocator->ptrFromInt(readIdx(&pNode->idxRight));
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pRightNode),
+ ("idxRight=%#x pRightNode=%p\n", pNode->idxRight, pRightNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pRightNode));
+ if (pRightNode)
+ {
+#if RT_GNUC_PREREQ_EX(4,7,1) && defined(RTASSERT_HAVE_STATIC_ASSERT) /* 32-bit 4.4.7 has trouble, dunno when it started working */
+ AssertCompile(kMaxStack > 6); /* exactly. Seems having static_assert is required. */
+#endif
+ AssertMsgReturnStmt(cEntries < RT_ELEMENTS(apEntries),
+ ("%p[%#x] %p %p %p %p %p %p\n", pRightNode, pNode->idxRight, apEntries[kMaxStack - 1],
+ apEntries[kMaxStack - 2], apEntries[kMaxStack - 3], apEntries[kMaxStack - 4],
+ apEntries[kMaxStack - 5], apEntries[kMaxStack - 6]),
+ m_cErrors++, VERR_HARDAVL_STACK_OVERFLOW);
+ apEntries[cEntries] = pRightNode;
+ abState[cEntries] = 0;
+ cEntries++;
+
+ AssertReturn(cNodesLeft > 0, VERR_HARDAVL_TRAVERSED_TOO_MANY_NODES);
+ cNodesLeft--;
+ break;
+ }
+ RT_FALL_THROUGH();
+ }
+
+ default:
+ {
+ /* pop it and destroy it. */
+ if (a_pfnCallBack)
+ a_pfnCallBack(pNode, a_pvUser);
+
+ int rc = a_pAllocator->freeNode(pNode);
+ AssertRCReturnStmt(rc, m_cErrors++, rc);
+
+ cEntries -= 1;
+ break;
+ }
+ }
+ }
+
+ Assert(m_idxRoot == a_pAllocator->kNilIndex);
+ return VINF_SUCCESS;
+ }
+
+
+ /**
+ * Gets the tree height value (reads cHeigh from the root node).
+ *
+ * @retval UINT8_MAX if bogus tree.
+ */
+ uint8_t getHeight(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator) RT_NOEXCEPT
+ {
+ NodeType *pNode = a_pAllocator->ptrFromInt(readIdx(&m_idxRoot));
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pNode), ("m_idxRoot=%#x pNode=%p\n", m_idxRoot, pNode),
+ m_cErrors++, UINT8_MAX);
+ if (pNode)
+ return pNode->cHeight;
+ return 0;
+ }
+
+#ifdef RT_STRICT
+
+ static void dumpStack(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator, HardAvlStack const *pStack) RT_NOEXCEPT
+ {
+ uint32_t const * const *paidx = pStack->apidxEntries;
+ RTAssertMsg2("stack: %u:\n", pStack->cEntries);
+ for (unsigned i = 0; i < pStack->cEntries; i++)
+ {
+ uint32_t idx = *paidx[i];
+ uint32_t idxNext = i + 1 < pStack->cEntries ? *paidx[i + 1] : UINT32_MAX;
+ NodeType const *pNode = a_pAllocator->ptrFromInt(idx);
+ RTAssertMsg2(" #%02u: %p[%#06x] pNode=%p h=%02d l=%#06x%c r=%#06x%c\n", i, paidx[i], idx, pNode, pNode->cHeight,
+ pNode->idxLeft, pNode->idxLeft == idxNext ? '*' : ' ',
+ pNode->idxRight, pNode->idxRight == idxNext ? '*' : ' ');
+ }
+ }
+
+ static void printTree(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator, uint32_t a_idxRoot,
+ unsigned a_uLevel = 0, unsigned a_uMaxLevel = 8, const char *a_pszDir = "") RT_NOEXCEPT
+ {
+ if (a_idxRoot == a_pAllocator->kNilIndex)
+ RTAssertMsg2("%*snil\n", a_uLevel * 6, a_pszDir);
+ else if (a_uLevel < a_uMaxLevel)
+ {
+ NodeType *pNode = a_pAllocator->ptrFromInt(a_idxRoot);
+ printTree(a_pAllocator, readIdx(&pNode->idxRight), a_uLevel + 1, a_uMaxLevel, "/ ");
+ RTAssertMsg2("%*s%#x/%u\n", a_uLevel * 6, a_pszDir, a_idxRoot, pNode->cHeight);
+ printTree(a_pAllocator, readIdx(&pNode->idxLeft), a_uLevel + 1, a_uMaxLevel, "\\ ");
+ }
+ else
+ RTAssertMsg2("%*stoo deep\n", a_uLevel * 6, a_pszDir);
+ }
+
+#endif
+
+private:
+ /**
+ * Rewinds a stack of pointers to pointers to nodes, rebalancing the tree.
+ *
+ * @returns IPRT status code.
+ *
+ * @param a_pAllocator Pointer to the allocator.
+ * @param a_pStack Pointer to stack to rewind.
+ * @param a_fLog Log is done (DEBUG builds only).
+ *
+ * @code
+ * LOOP thru all stack entries
+ * BEGIN
+ * Get pointer to pointer to node (and pointer to node) from the stack.
+ * IF 2 higher left subtree than in right subtree THEN
+ * BEGIN
+ * IF higher (or equal) left-sub-subtree than right-sub-subtree THEN
+ * * n+2|n+3
+ * / \ / \
+ * n+2 n ==> n+1 n+1|n+2
+ * / \ / \
+ * n+1 n|n+1 n|n+1 n
+ *
+ * Or with keys:
+ *
+ * 4 2
+ * / \ / \
+ * 2 5 ==> 1 4
+ * / \ / \
+ * 1 3 3 5
+ *
+ * ELSE
+ * * n+2
+ * / \ / \
+ * n+2 n n+1 n+1
+ * / \ ==> / \ / \
+ * n n+1 n L R n
+ * / \
+ * L R
+ *
+ * Or with keys:
+ * 6 4
+ * / \ / \
+ * 2 7 ==> 2 6
+ * / \ / \ / \
+ * 1 4 1 3 5 7
+ * / \
+ * 3 5
+ * END
+ * ELSE IF 2 higher in right subtree than in left subtree THEN
+ * BEGIN
+ * Same as above but left <==> right. (invert the picture)
+ * ELSE
+ * IF correct height THEN break
+ * ELSE correct height.
+ * END
+ * @endcode
+ * @internal
+ */
+ int i_rebalance(RTCHardAvlTreeSlabAllocator<NodeType> *a_pAllocator, HardAvlStack *a_pStack, bool a_fLog = false) RT_NOEXCEPT
+ {
+ RT_NOREF(a_fLog);
+
+ while (a_pStack->cEntries > 0)
+ {
+ /* pop */
+ uint32_t * const pidxNode = a_pStack->apidxEntries[--a_pStack->cEntries];
+ uint32_t const idxNode = readIdx(pidxNode);
+ NodeType * const pNode = a_pAllocator->ptrFromInt(idxNode);
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pNode),
+ ("pidxNode=%p[%#x] pNode=%p\n", pidxNode, *pidxNode, pNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pNode));
+
+ /* Read node properties: */
+ uint32_t const idxLeftNode = readIdx(&pNode->idxLeft);
+ NodeType * const pLeftNode = a_pAllocator->ptrFromInt(idxLeftNode);
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pLeftNode),
+ ("idxLeftNode=%#x pLeftNode=%p\n", idxLeftNode, pLeftNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pLeftNode));
+
+ uint32_t const idxRightNode = readIdx(&pNode->idxRight);
+ NodeType * const pRightNode = a_pAllocator->ptrFromInt(idxRightNode);
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pRightNode),
+ ("idxRight=%#x pRightNode=%p\n", idxRightNode, pRightNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pRightNode));
+
+ uint8_t const cLeftHeight = pLeftNode ? pLeftNode->cHeight : 0;
+ AssertReturnStmt(cLeftHeight <= kMaxHeight, m_cErrors++, VERR_HARDAVL_BAD_LEFT_HEIGHT);
+
+ uint8_t const cRightHeight = pRightNode ? pRightNode->cHeight : 0;
+ AssertReturnStmt(cRightHeight <= kMaxHeight, m_cErrors++, VERR_HARDAVL_BAD_RIGHT_HEIGHT);
+
+ /* Decide what needs doing: */
+ if (cRightHeight + 1 < cLeftHeight)
+ {
+ Assert(cRightHeight + 2 == cLeftHeight);
+ AssertReturnStmt(pLeftNode, m_cErrors++, VERR_HARDAVL_UNEXPECTED_NULL_LEFT);
+
+ uint32_t const idxLeftLeftNode = readIdx(&pLeftNode->idxLeft);
+ NodeType * const pLeftLeftNode = a_pAllocator->ptrFromInt(idxLeftLeftNode);
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pLeftLeftNode),
+ ("idxLeftLeftNode=%#x pLeftLeftNode=%p\n", idxLeftLeftNode, pLeftLeftNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pLeftLeftNode));
+
+ uint32_t const idxLeftRightNode = readIdx(&pLeftNode->idxRight);
+ NodeType * const pLeftRightNode = a_pAllocator->ptrFromInt(idxLeftRightNode);
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pLeftRightNode),
+ ("idxLeftRightNode=%#x pLeftRightNode=%p\n", idxLeftRightNode, pLeftRightNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pLeftRightNode));
+
+ uint8_t const cLeftRightHeight = pLeftRightNode ? pLeftRightNode->cHeight : 0;
+ if ((pLeftLeftNode ? pLeftLeftNode->cHeight : 0) >= cLeftRightHeight)
+ {
+ AssertReturnStmt(cLeftRightHeight + 2 <= kMaxHeight, m_cErrors++, VERR_HARDAVL_BAD_NEW_HEIGHT);
+ pNode->idxLeft = idxLeftRightNode;
+ pNode->cHeight = (uint8_t)(cLeftRightHeight + 1);
+ pLeftNode->cHeight = (uint8_t)(cLeftRightHeight + 2);
+ pLeftNode->idxRight = idxNode;
+ *pidxNode = idxLeftNode;
+#ifdef DEBUG
+ if (a_fLog) RTAssertMsg2("rebalance: %#2u: op #1\n", a_pStack->cEntries);
+#endif
+ }
+ else
+ {
+ AssertReturnStmt(cLeftRightHeight <= kMaxHeight, m_cErrors++, VERR_HARDAVL_BAD_RIGHT_HEIGHT);
+ AssertReturnStmt(pLeftRightNode, m_cErrors++, VERR_HARDAVL_UNEXPECTED_NULL_RIGHT);
+
+ uint32_t const idxLeftRightLeftNode = readIdx(&pLeftRightNode->idxLeft);
+ AssertReturnStmt(a_pAllocator->isIntValid(idxLeftRightLeftNode), m_cErrors++, VERR_HARDAVL_INDEX_OUT_OF_BOUNDS);
+ uint32_t const idxLeftRightRightNode = readIdx(&pLeftRightNode->idxRight);
+ AssertReturnStmt(a_pAllocator->isIntValid(idxLeftRightRightNode), m_cErrors++, VERR_HARDAVL_INDEX_OUT_OF_BOUNDS);
+ pLeftNode->idxRight = idxLeftRightLeftNode;
+ pNode->idxLeft = idxLeftRightRightNode;
+
+ pLeftRightNode->idxLeft = idxLeftNode;
+ pLeftRightNode->idxRight = idxNode;
+ pLeftNode->cHeight = cLeftRightHeight;
+ pNode->cHeight = cLeftRightHeight;
+ pLeftRightNode->cHeight = cLeftHeight;
+ *pidxNode = idxLeftRightNode;
+#ifdef DEBUG
+ if (a_fLog) RTAssertMsg2("rebalance: %#2u: op #2\n", a_pStack->cEntries);
+#endif
+ }
+ m_cRebalancingOperations++;
+ }
+ else if (cLeftHeight + 1 < cRightHeight)
+ {
+ Assert(cLeftHeight + 2 == cRightHeight);
+ AssertReturnStmt(pRightNode, m_cErrors++, VERR_HARDAVL_UNEXPECTED_NULL_RIGHT);
+
+ uint32_t const idxRightLeftNode = readIdx(&pRightNode->idxLeft);
+ NodeType * const pRightLeftNode = a_pAllocator->ptrFromInt(idxRightLeftNode);
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pRightLeftNode),
+ ("idxRightLeftNode=%#x pRightLeftNode=%p\n", idxRightLeftNode, pRightLeftNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pRightLeftNode));
+
+ uint32_t const idxRightRightNode = readIdx(&pRightNode->idxRight);
+ NodeType * const pRightRightNode = a_pAllocator->ptrFromInt(idxRightRightNode);
+ AssertMsgReturnStmt(a_pAllocator->isPtrRetOkay(pRightRightNode),
+ ("idxRightRightNode=%#x pRightRightNode=%p\n", idxRightRightNode, pRightRightNode),
+ m_cErrors++, a_pAllocator->ptrErrToStatus(pRightRightNode));
+
+ uint8_t const cRightLeftHeight = pRightLeftNode ? pRightLeftNode->cHeight : 0;
+ if ((pRightRightNode ? pRightRightNode->cHeight : 0) >= cRightLeftHeight)
+ {
+ AssertReturnStmt(cRightLeftHeight + 2 <= kMaxHeight, m_cErrors++, VERR_HARDAVL_BAD_NEW_HEIGHT);
+
+ pNode->idxRight = idxRightLeftNode;
+ pRightNode->idxLeft = idxNode;
+ pNode->cHeight = (uint8_t)(cRightLeftHeight + 1);
+ pRightNode->cHeight = (uint8_t)(cRightLeftHeight + 2);
+ *pidxNode = idxRightNode;
+#ifdef DEBUG
+ if (a_fLog) RTAssertMsg2("rebalance: %#2u: op #3 h=%d, *pidxNode=%#x\n", a_pStack->cEntries, pRightNode->cHeight, *pidxNode);
+#endif
+ RTHARDAVL_STRICT_CHECK_HEIGHTS(pRightNode, NULL, 0);
+ RTHARDAVL_STRICT_CHECK_HEIGHTS(pNode, NULL, 0);
+ }
+ else
+ {
+ AssertReturnStmt(cRightLeftHeight <= kMaxHeight, m_cErrors++, VERR_HARDAVL_BAD_LEFT_HEIGHT);
+ AssertReturnStmt(pRightLeftNode, m_cErrors++, VERR_HARDAVL_UNEXPECTED_NULL_LEFT);
+
+ uint32_t const idxRightLeftRightNode = readIdx(&pRightLeftNode->idxRight);
+ AssertReturnStmt(a_pAllocator->isIntValid(idxRightLeftRightNode), m_cErrors++, VERR_HARDAVL_INDEX_OUT_OF_BOUNDS);
+ uint32_t const idxRightLeftLeftNode = readIdx(&pRightLeftNode->idxLeft);
+ AssertReturnStmt(a_pAllocator->isIntValid(idxRightLeftLeftNode), m_cErrors++, VERR_HARDAVL_INDEX_OUT_OF_BOUNDS);
+ pRightNode->idxLeft = idxRightLeftRightNode;
+ pNode->idxRight = idxRightLeftLeftNode;
+
+ pRightLeftNode->idxRight = idxRightNode;
+ pRightLeftNode->idxLeft = idxNode;
+ pRightNode->cHeight = cRightLeftHeight;
+ pNode->cHeight = cRightLeftHeight;
+ pRightLeftNode->cHeight = cRightHeight;
+ *pidxNode = idxRightLeftNode;
+#ifdef DEBUG
+ if (a_fLog) RTAssertMsg2("rebalance: %#2u: op #4 h=%d, *pidxNode=%#x\n", a_pStack->cEntries, pRightLeftNode->cHeight, *pidxNode);
+#endif
+ }
+ m_cRebalancingOperations++;
+ }
+ else
+ {
+ uint8_t const cHeight = (uint8_t)(RT_MAX(cLeftHeight, cRightHeight) + 1);
+ AssertReturnStmt(cHeight <= kMaxHeight, m_cErrors++, VERR_HARDAVL_BAD_NEW_HEIGHT);
+ if (cHeight == pNode->cHeight)
+ {
+#ifdef DEBUG
+ if (a_fLog) RTAssertMsg2("rebalance: %#2u: op #5, h=%d - done\n", a_pStack->cEntries, cHeight);
+#endif
+ RTHARDAVL_STRICT_CHECK_HEIGHTS(pNode, NULL, 0);
+ if (pLeftNode)
+ RTHARDAVL_STRICT_CHECK_HEIGHTS(pLeftNode, NULL, 0);
+ if (pRightNode)
+ RTHARDAVL_STRICT_CHECK_HEIGHTS(pRightNode, NULL, 0);
+ break;
+ }
+#ifdef DEBUG
+ if (a_fLog) RTAssertMsg2("rebalance: %#2u: op #5, h=%d - \n", a_pStack->cEntries, cHeight);
+#endif
+ pNode->cHeight = cHeight;
+ }
+ }
+ return VINF_SUCCESS;
+ }
+};
+
+/** @} */
+
+#endif /* !IPRT_INCLUDED_cpp_hardavlrange_h */
+