/** @file * IPRT - Time. */ /* * Copyright (C) 2006-2022 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ #ifndef IPRT_INCLUDED_time_h #define IPRT_INCLUDED_time_h #ifndef RT_WITHOUT_PRAGMA_ONCE # pragma once #endif #include #include #include RT_C_DECLS_BEGIN /** @defgroup grp_rt_time RTTime - Time * @ingroup grp_rt * @{ */ /** Time Specification. * * Use the inline RTTimeSpecGet/Set to operate on structure this so we * can easily change the representation if required later. * * The current representation is in nanoseconds relative to the unix epoch * (1970-01-01 00:00:00 UTC). This gives us an approximate span from * 1678 to 2262 without sacrificing the resolution offered by the various * host OSes (BSD & LINUX 1ns, NT 100ns). */ typedef struct RTTIMESPEC { /** Nanoseconds since epoch. * The name is intentially too long to be comfortable to use because you should be * using inline helpers! */ int64_t i64NanosecondsRelativeToUnixEpoch; } RTTIMESPEC; /** @name RTTIMESPEC methods * @{ */ /** * Gets the time as nanoseconds relative to the unix epoch. * * @returns Nanoseconds relative to unix epoch. * @param pTime The time spec to interpret. */ DECLINLINE(int64_t) RTTimeSpecGetNano(PCRTTIMESPEC pTime) { return pTime->i64NanosecondsRelativeToUnixEpoch; } /** * Sets the time give by nanoseconds relative to the unix epoch. * * @returns pTime. * @param pTime The time spec to modify. * @param i64Nano The new time in nanoseconds. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecSetNano(PRTTIMESPEC pTime, int64_t i64Nano) { pTime->i64NanosecondsRelativeToUnixEpoch = i64Nano; return pTime; } /** * Gets the time as microseconds relative to the unix epoch. * * @returns microseconds relative to unix epoch. * @param pTime The time spec to interpret. */ DECLINLINE(int64_t) RTTimeSpecGetMicro(PCRTTIMESPEC pTime) { return pTime->i64NanosecondsRelativeToUnixEpoch / RT_NS_1US; } /** * Sets the time given by microseconds relative to the unix epoch. * * @returns pTime. * @param pTime The time spec to modify. * @param i64Micro The new time in microsecond. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecSetMicro(PRTTIMESPEC pTime, int64_t i64Micro) { pTime->i64NanosecondsRelativeToUnixEpoch = i64Micro * RT_NS_1US; return pTime; } /** * Gets the time as milliseconds relative to the unix epoch. * * @returns milliseconds relative to unix epoch. * @param pTime The time spec to interpret. */ DECLINLINE(int64_t) RTTimeSpecGetMilli(PCRTTIMESPEC pTime) { return pTime->i64NanosecondsRelativeToUnixEpoch / RT_NS_1MS; } /** * Sets the time given by milliseconds relative to the unix epoch. * * @returns pTime. * @param pTime The time spec to modify. * @param i64Milli The new time in milliseconds. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecSetMilli(PRTTIMESPEC pTime, int64_t i64Milli) { pTime->i64NanosecondsRelativeToUnixEpoch = i64Milli * RT_NS_1MS; return pTime; } /** * Gets the time as seconds relative to the unix epoch. * * @returns seconds relative to unix epoch. * @param pTime The time spec to interpret. */ DECLINLINE(int64_t) RTTimeSpecGetSeconds(PCRTTIMESPEC pTime) { return pTime->i64NanosecondsRelativeToUnixEpoch / RT_NS_1SEC; } /** * Sets the time given by seconds relative to the unix epoch. * * @returns pTime. * @param pTime The time spec to modify. * @param i64Seconds The new time in seconds. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecSetSeconds(PRTTIMESPEC pTime, int64_t i64Seconds) { pTime->i64NanosecondsRelativeToUnixEpoch = i64Seconds * RT_NS_1SEC; return pTime; } /** * Makes the time spec absolute like abs() does (i.e. a positive value). * * @returns pTime. * @param pTime The time spec to modify. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecAbsolute(PRTTIMESPEC pTime) { if (pTime->i64NanosecondsRelativeToUnixEpoch < 0) pTime->i64NanosecondsRelativeToUnixEpoch = -pTime->i64NanosecondsRelativeToUnixEpoch; return pTime; } /** * Negates the time. * * @returns pTime. * @param pTime The time spec to modify. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecNegate(PRTTIMESPEC pTime) { pTime->i64NanosecondsRelativeToUnixEpoch = -pTime->i64NanosecondsRelativeToUnixEpoch; return pTime; } /** * Adds a time period to the time. * * @returns pTime. * @param pTime The time spec to modify. * @param pTimeAdd The time spec to add to pTime. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecAdd(PRTTIMESPEC pTime, PCRTTIMESPEC pTimeAdd) { pTime->i64NanosecondsRelativeToUnixEpoch += pTimeAdd->i64NanosecondsRelativeToUnixEpoch; return pTime; } /** * Adds a time period give as nanoseconds from the time. * * @returns pTime. * @param pTime The time spec to modify. * @param i64Nano The time period in nanoseconds. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecAddNano(PRTTIMESPEC pTime, int64_t i64Nano) { pTime->i64NanosecondsRelativeToUnixEpoch += i64Nano; return pTime; } /** * Adds a time period give as microseconds from the time. * * @returns pTime. * @param pTime The time spec to modify. * @param i64Micro The time period in microseconds. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecAddMicro(PRTTIMESPEC pTime, int64_t i64Micro) { pTime->i64NanosecondsRelativeToUnixEpoch += i64Micro * RT_NS_1US; return pTime; } /** * Adds a time period give as milliseconds from the time. * * @returns pTime. * @param pTime The time spec to modify. * @param i64Milli The time period in milliseconds. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecAddMilli(PRTTIMESPEC pTime, int64_t i64Milli) { pTime->i64NanosecondsRelativeToUnixEpoch += i64Milli * RT_NS_1MS; return pTime; } /** * Adds a time period give as seconds from the time. * * @returns pTime. * @param pTime The time spec to modify. * @param i64Seconds The time period in seconds. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecAddSeconds(PRTTIMESPEC pTime, int64_t i64Seconds) { pTime->i64NanosecondsRelativeToUnixEpoch += i64Seconds * RT_NS_1SEC; return pTime; } /** * Subtracts a time period from the time. * * @returns pTime. * @param pTime The time spec to modify. * @param pTimeSub The time spec to subtract from pTime. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecSub(PRTTIMESPEC pTime, PCRTTIMESPEC pTimeSub) { pTime->i64NanosecondsRelativeToUnixEpoch -= pTimeSub->i64NanosecondsRelativeToUnixEpoch; return pTime; } /** * Subtracts a time period give as nanoseconds from the time. * * @returns pTime. * @param pTime The time spec to modify. * @param i64Nano The time period in nanoseconds. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecSubNano(PRTTIMESPEC pTime, int64_t i64Nano) { pTime->i64NanosecondsRelativeToUnixEpoch -= i64Nano; return pTime; } /** * Subtracts a time period give as microseconds from the time. * * @returns pTime. * @param pTime The time spec to modify. * @param i64Micro The time period in microseconds. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecSubMicro(PRTTIMESPEC pTime, int64_t i64Micro) { pTime->i64NanosecondsRelativeToUnixEpoch -= i64Micro * RT_NS_1US; return pTime; } /** * Subtracts a time period give as milliseconds from the time. * * @returns pTime. * @param pTime The time spec to modify. * @param i64Milli The time period in milliseconds. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecSubMilli(PRTTIMESPEC pTime, int64_t i64Milli) { pTime->i64NanosecondsRelativeToUnixEpoch -= i64Milli * RT_NS_1MS; return pTime; } /** * Subtracts a time period give as seconds from the time. * * @returns pTime. * @param pTime The time spec to modify. * @param i64Seconds The time period in seconds. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecSubSeconds(PRTTIMESPEC pTime, int64_t i64Seconds) { pTime->i64NanosecondsRelativeToUnixEpoch -= i64Seconds * RT_NS_1SEC; return pTime; } /** * Gives the time in seconds and nanoseconds. * * @returns pTime. * @param pTime The time spec to interpret. * @param *pi32Seconds Where to store the time period in seconds. * @param *pi32Nano Where to store the time period in nanoseconds. */ DECLINLINE(void) RTTimeSpecGetSecondsAndNano(PRTTIMESPEC pTime, int32_t *pi32Seconds, int32_t *pi32Nano) { int64_t i64 = RTTimeSpecGetNano(pTime); int32_t i32Nano = (int32_t)(i64 % RT_NS_1SEC); i64 /= RT_NS_1SEC; if (i32Nano < 0) { i32Nano += RT_NS_1SEC; i64--; } *pi32Seconds = (int32_t)i64; *pi32Nano = i32Nano; } /** @def RTTIME_LINUX_KERNEL_PREREQ * Prerequisite minimum linux kernel version. * @note Cannot really be moved to iprt/cdefs.h, see the-linux-kernel.h */ /** @def RTTIME_LINUX_KERNEL_PREREQ_LT * Prerequisite maxium linux kernel version (LT=less-than). * @note Cannot really be moved to iprt/cdefs.h, see the-linux-kernel.h */ #if defined(RT_OS_LINUX) && defined(LINUX_VERSION_CODE) && defined(KERNEL_VERSION) # define RTTIME_LINUX_KERNEL_PREREQ(a, b, c) (LINUX_VERSION_CODE >= KERNEL_VERSION(a, b, c)) # define RTTIME_LINUX_KERNEL_PREREQ_LT(a, b, c) (!RTTIME_LINUX_KERNEL_PREREQ(a, b, c)) #else # define RTTIME_LINUX_KERNEL_PREREQ(a, b, c) 0 # define RTTIME_LINUX_KERNEL_PREREQ_LT(a, b, c) 0 #endif /* PORTME: Add struct timeval guard macro here. */ #if defined(RTTIME_INCL_TIMEVAL) \ || defined(_SYS__TIMEVAL_H_) \ || defined(_SYS_TIME_H) \ || defined(_TIMEVAL) \ || defined(_STRUCT_TIMEVAL) \ || ( defined(RT_OS_LINUX) \ && defined(_LINUX_TIME_H) \ && ( !defined(__KERNEL__) \ || RTTIME_LINUX_KERNEL_PREREQ_LT(5,6,0) /* @bugref{9757} */ ) ) \ || (defined(RT_OS_NETBSD) && defined(_SYS_TIME_H_)) /** * Gets the time as POSIX timeval. * * @returns pTime. * @param pTime The time spec to interpret. * @param pTimeval Where to store the time as POSIX timeval. */ DECLINLINE(struct timeval *) RTTimeSpecGetTimeval(PCRTTIMESPEC pTime, struct timeval *pTimeval) { int64_t i64 = RTTimeSpecGetMicro(pTime); int32_t i32Micro = (int32_t)(i64 % RT_US_1SEC); i64 /= RT_US_1SEC; if (i32Micro < 0) { i32Micro += RT_US_1SEC; i64--; } pTimeval->tv_sec = (time_t)i64; pTimeval->tv_usec = i32Micro; return pTimeval; } /** * Sets the time as POSIX timeval. * * @returns pTime. * @param pTime The time spec to modify. * @param pTimeval Pointer to the POSIX timeval struct with the new time. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecSetTimeval(PRTTIMESPEC pTime, const struct timeval *pTimeval) { return RTTimeSpecAddMicro(RTTimeSpecSetSeconds(pTime, pTimeval->tv_sec), pTimeval->tv_usec); } #endif /* various ways of detecting struct timeval */ /* PORTME: Add struct timespec guard macro here. */ #if defined(RTTIME_INCL_TIMESPEC) \ || defined(_SYS__TIMESPEC_H_) \ || defined(TIMEVAL_TO_TIMESPEC) \ || defined(_TIMESPEC) \ || ( defined(_STRUCT_TIMESPEC) \ && ( !defined(RT_OS_LINUX) \ || !defined(__KERNEL__) \ || RTTIME_LINUX_KERNEL_PREREQ_LT(5,6,0) /* @bugref{9757} */ ) ) \ || (defined(RT_OS_NETBSD) && defined(_SYS_TIME_H_)) /** * Gets the time as POSIX timespec. * * @returns pTimespec. * @param pTime The time spec to interpret. * @param pTimespec Where to store the time as POSIX timespec. */ DECLINLINE(struct timespec *) RTTimeSpecGetTimespec(PCRTTIMESPEC pTime, struct timespec *pTimespec) { int64_t i64 = RTTimeSpecGetNano(pTime); int32_t i32Nano = (int32_t)(i64 % RT_NS_1SEC); i64 /= RT_NS_1SEC; if (i32Nano < 0) { i32Nano += RT_NS_1SEC; i64--; } pTimespec->tv_sec = (time_t)i64; pTimespec->tv_nsec = i32Nano; return pTimespec; } /** * Sets the time as POSIX timespec. * * @returns pTime. * @param pTime The time spec to modify. * @param pTimespec Pointer to the POSIX timespec struct with the new time. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecSetTimespec(PRTTIMESPEC pTime, const struct timespec *pTimespec) { return RTTimeSpecAddNano(RTTimeSpecSetSeconds(pTime, pTimespec->tv_sec), pTimespec->tv_nsec); } #endif /* various ways of detecting struct timespec */ #if defined(RT_OS_LINUX) && defined(_LINUX_TIME64_H) /* since linux 3.17 */ /** * Gets the time a linux 64-bit timespec structure. * @returns pTimespec. * @param pTime The time spec to modify. * @param pTimespec Where to store the time as linux 64-bit timespec. */ DECLINLINE(struct timespec64 *) RTTimeSpecGetTimespec64(PCRTTIMESPEC pTime, struct timespec64 *pTimespec) { int64_t i64 = RTTimeSpecGetNano(pTime); int32_t i32Nano = (int32_t)(i64 % RT_NS_1SEC); i64 /= RT_NS_1SEC; if (i32Nano < 0) { i32Nano += RT_NS_1SEC; i64--; } pTimespec->tv_sec = i64; pTimespec->tv_nsec = i32Nano; return pTimespec; } /** * Sets the time from a linux 64-bit timespec structure. * @returns pTime. * @param pTime The time spec to modify. * @param pTimespec Pointer to the linux 64-bit timespec struct with the new time. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecSetTimespec64(PRTTIMESPEC pTime, const struct timespec64 *pTimespec) { return RTTimeSpecAddNano(RTTimeSpecSetSeconds(pTime, pTimespec->tv_sec), pTimespec->tv_nsec); } #endif /* RT_OS_LINUX && _LINUX_TIME64_H */ /** The offset of the unix epoch and the base for NT time (in 100ns units). * Nt time starts at 1601-01-01 00:00:00. */ #define RTTIME_NT_TIME_OFFSET_UNIX (116444736000000000LL) /** * Gets the time as NT time. * * @returns NT time. * @param pTime The time spec to interpret. */ DECLINLINE(int64_t) RTTimeSpecGetNtTime(PCRTTIMESPEC pTime) { return pTime->i64NanosecondsRelativeToUnixEpoch / 100 + RTTIME_NT_TIME_OFFSET_UNIX; } /** * Sets the time given by Nt time. * * @returns pTime. * @param pTime The time spec to modify. * @param u64NtTime The new time in Nt time. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecSetNtTime(PRTTIMESPEC pTime, uint64_t u64NtTime) { pTime->i64NanosecondsRelativeToUnixEpoch = ((int64_t)u64NtTime - RTTIME_NT_TIME_OFFSET_UNIX) * 100; return pTime; } #ifdef _FILETIME_ /** * Gets the time as NT file time. * * @returns pFileTime. * @param pTime The time spec to interpret. * @param pFileTime Pointer to NT filetime structure. */ DECLINLINE(PFILETIME) RTTimeSpecGetNtFileTime(PCRTTIMESPEC pTime, PFILETIME pFileTime) { *((uint64_t *)pFileTime) = RTTimeSpecGetNtTime(pTime); return pFileTime; } /** * Sets the time as NT file time. * * @returns pTime. * @param pTime The time spec to modify. * @param pFileTime Where to store the time as Nt file time. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecSetNtFileTime(PRTTIMESPEC pTime, const FILETIME *pFileTime) { return RTTimeSpecSetNtTime(pTime, *(const uint64_t *)pFileTime); } #endif /* _FILETIME_ */ /** The offset to the start of DOS time. * DOS time starts 1980-01-01 00:00:00. */ #define RTTIME_OFFSET_DOS_TIME (315532800000000000LL) /** * Gets the time as seconds relative to the start of dos time. * * @returns seconds relative to the start of dos time. * @param pTime The time spec to interpret. */ DECLINLINE(int64_t) RTTimeSpecGetDosSeconds(PCRTTIMESPEC pTime) { return (pTime->i64NanosecondsRelativeToUnixEpoch - RTTIME_OFFSET_DOS_TIME) / RT_NS_1SEC; } /** * Sets the time given by seconds relative to the start of dos time. * * @returns pTime. * @param pTime The time spec to modify. * @param i64Seconds The new time in seconds relative to the start of dos time. */ DECLINLINE(PRTTIMESPEC) RTTimeSpecSetDosSeconds(PRTTIMESPEC pTime, int64_t i64Seconds) { pTime->i64NanosecondsRelativeToUnixEpoch = i64Seconds * RT_NS_1SEC + RTTIME_OFFSET_DOS_TIME; return pTime; } /** * Compare two time specs. * * @returns true they are equal. * @returns false they are not equal. * @param pTime1 The 1st time spec. * @param pTime2 The 2nd time spec. */ DECLINLINE(bool) RTTimeSpecIsEqual(PCRTTIMESPEC pTime1, PCRTTIMESPEC pTime2) { return pTime1->i64NanosecondsRelativeToUnixEpoch == pTime2->i64NanosecondsRelativeToUnixEpoch; } /** * Compare two time specs. * * @returns 0 if equal, -1 if @a pLeft is smaller, 1 if @a pLeft is larger. * @returns false they are not equal. * @param pLeft The 1st time spec. * @param pRight The 2nd time spec. */ DECLINLINE(int) RTTimeSpecCompare(PCRTTIMESPEC pLeft, PCRTTIMESPEC pRight) { if (pLeft->i64NanosecondsRelativeToUnixEpoch == pRight->i64NanosecondsRelativeToUnixEpoch) return 0; return pLeft->i64NanosecondsRelativeToUnixEpoch < pRight->i64NanosecondsRelativeToUnixEpoch ? -1 : 1; } /** * Converts a time spec to a ISO date string. * * @returns psz on success. * @returns NULL on buffer underflow. * @param pTime The time spec. * @param psz Where to store the string. * @param cb The size of the buffer. */ RTDECL(char *) RTTimeSpecToString(PCRTTIMESPEC pTime, char *psz, size_t cb); /** * Attempts to convert an ISO date string to a time structure. * * We're a little forgiving with zero padding, unspecified parts, and leading * and trailing spaces. * * @retval pTime on success, * @retval NULL on failure. * @param pTime The time spec. * @param pszString The ISO date string to convert. */ RTDECL(PRTTIMESPEC) RTTimeSpecFromString(PRTTIMESPEC pTime, const char *pszString); /** * Formats duration as best we can according to ISO-8601, with no fraction. * * See RTTimeFormatDurationEx for details. * * @returns Number of characters in the output on success. VERR_BUFFER_OVEFLOW * on failure. * @param pszDst Pointer to the output buffer. In case of overflow, * the max number of characters will be written and * zero terminated, provided @a cbDst isn't zero. * @param cbDst The size of the output buffer. * @param pDuration The duration to format. */ RTDECL(int) RTTimeFormatDuration(char *pszDst, size_t cbDst, PCRTTIMESPEC pDuration); /** * Formats duration as best we can according to ISO-8601. * * The returned value is on the form "[-]PnnnnnWnDTnnHnnMnn.fffffffffS", where a * sequence of 'n' can be between 1 and the given lenght, and all but the * "nn.fffffffffS" part is optional and will only be outputted when the duration * is sufficiently large. The code currently does not omit any inbetween * elements other than the day count (D), so an exactly 7 day duration is * formatted as "P1WT0H0M0.000000000S" when @a cFractionDigits is 9. * * @returns Number of characters in the output on success. VERR_BUFFER_OVEFLOW * on failure. * @retval VERR_OUT_OF_RANGE if @a cFractionDigits is too large. * @param pszDst Pointer to the output buffer. In case of overflow, * the max number of characters will be written and * zero terminated, provided @a cbDst isn't zero. * @param cbDst The size of the output buffer. * @param pDuration The duration to format. * @param cFractionDigits Number of digits in the second fraction part. Zero * for whole no fraction. Max is 9 (nano seconds). */ RTDECL(ssize_t) RTTimeFormatDurationEx(char *pszDst, size_t cbDst, PCRTTIMESPEC pDuration, uint32_t cFractionDigits); /** Max length of a RTTimeFormatDurationEx output string. */ #define RTTIME_DURATION_STR_LEN (sizeof("-P99999W7D23H59M59.123456789S") + 2) /** @} */ /** * Exploded time. */ typedef struct RTTIME { /** The year number. */ int32_t i32Year; /** The month of the year (1-12). January is 1. */ uint8_t u8Month; /** The day of the week (0-6). Monday is 0. */ uint8_t u8WeekDay; /** The day of the year (1-366). January the 1st is 1. */ uint16_t u16YearDay; /** The day of the month (1-31). */ uint8_t u8MonthDay; /** Hour of the day (0-23). */ uint8_t u8Hour; /** The minute of the hour (0-59). */ uint8_t u8Minute; /** The second of the minute (0-60). * (u32Nanosecond / 1000000) */ uint8_t u8Second; /** The nanoseconds of the second (0-999999999). */ uint32_t u32Nanosecond; /** Flags, of the RTTIME_FLAGS_* \#defines. */ uint32_t fFlags; /** UTC time offset in minutes (-840-840). Positive for timezones east of * UTC, negative for zones to the west. Same as what RTTimeLocalDeltaNano * & RTTimeLocalDeltaNanoFor returns, just different unit. */ int32_t offUTC; } RTTIME; AssertCompileSize(RTTIME, 24); /** Pointer to a exploded time structure. */ typedef RTTIME *PRTTIME; /** Pointer to a const exploded time structure. */ typedef const RTTIME *PCRTTIME; /** @name RTTIME::fFlags values. * @{ */ /** Set if the time is UTC. If clear the time local time. */ #define RTTIME_FLAGS_TYPE_MASK 3 /** the time is UTC time. */ #define RTTIME_FLAGS_TYPE_UTC 2 /** The time is local time. */ #define RTTIME_FLAGS_TYPE_LOCAL 3 /** Set if the time is local and daylight saving time is in effect. * Not bit is not valid if RTTIME_FLAGS_NO_DST_DATA is set. */ #define RTTIME_FLAGS_DST RT_BIT(4) /** Set if the time is local and there is no data available on daylight saving time. */ #define RTTIME_FLAGS_NO_DST_DATA RT_BIT(5) /** Set if the year is a leap year. * This is mutual exclusiv with RTTIME_FLAGS_COMMON_YEAR. */ #define RTTIME_FLAGS_LEAP_YEAR RT_BIT(6) /** Set if the year is a common year. * This is mutual exclusiv with RTTIME_FLAGS_LEAP_YEAR. */ #define RTTIME_FLAGS_COMMON_YEAR RT_BIT(7) /** The mask of valid flags. */ #define RTTIME_FLAGS_MASK UINT32_C(0xff) /** @} */ /** * Gets the current system time (UTC). * * @returns pTime. * @param pTime Where to store the time. */ RTDECL(PRTTIMESPEC) RTTimeNow(PRTTIMESPEC pTime); /** * Sets the system time. * * @returns IPRT status code * @param pTime The new system time (UTC). * * @remarks This will usually fail because changing the wall time is usually * requires extra privileges. */ RTDECL(int) RTTimeSet(PCRTTIMESPEC pTime); /** * Explodes a time spec (UTC). * * @returns pTime. * @param pTime Where to store the exploded time. * @param pTimeSpec The time spec to exploded. */ RTDECL(PRTTIME) RTTimeExplode(PRTTIME pTime, PCRTTIMESPEC pTimeSpec); /** * Implodes exploded time to a time spec (UTC). * * @returns pTime on success. * @returns NULL if the pTime data is invalid. * @param pTimeSpec Where to store the imploded UTC time. * If pTime specifies a time which outside the range, maximum or * minimum values will be returned. * @param pTime Pointer to the exploded time to implode. * The fields u8Month, u8WeekDay and u8MonthDay are not used, * and all the other fields are expected to be within their * bounds. Use RTTimeNormalize() to calculate u16YearDay and * normalize the ranges of the fields. */ RTDECL(PRTTIMESPEC) RTTimeImplode(PRTTIMESPEC pTimeSpec, PCRTTIME pTime); /** * Normalizes the fields of a time structure. * * It is possible to calculate year-day from month/day and vice * versa. If you adjust any of of these, make sure to zero the * other so you make it clear which of the fields to use. If * it's ambiguous, the year-day field is used (and you get * assertions in debug builds). * * All the time fields and the year-day or month/day fields will * be adjusted for overflows. (Since all fields are unsigned, there * is no underflows.) It is possible to exploit this for simple * date math, though the recommended way of doing that to implode * the time into a timespec and do the math on that. * * @returns pTime on success. * @returns NULL if the data is invalid. * * @param pTime The time structure to normalize. * * @remarks This function doesn't work with local time, only with UTC time. */ RTDECL(PRTTIME) RTTimeNormalize(PRTTIME pTime); /** * Gets the current local system time. * * @returns pTime. * @param pTime Where to store the local time. */ RTDECL(PRTTIMESPEC) RTTimeLocalNow(PRTTIMESPEC pTime); /** * Gets the current delta between UTC and local time. * * @code * RTTIMESPEC LocalTime; * RTTimeSpecAddNano(RTTimeNow(&LocalTime), RTTimeLocalDeltaNano()); * @endcode * * @returns Returns the nanosecond delta between UTC and local time. */ RTDECL(int64_t) RTTimeLocalDeltaNano(void); /** * Gets the delta between UTC and local time at the given time. * * @code * RTTIMESPEC LocalTime; * RTTimeNow(&LocalTime); * RTTimeSpecAddNano(&LocalTime, RTTimeLocalDeltaNanoFor(&LocalTime)); * @endcode * * @param pTimeSpec The time spec giving the time to get the delta for. * @returns Returns the nanosecond delta between UTC and local time. */ RTDECL(int64_t) RTTimeLocalDeltaNanoFor(PCRTTIMESPEC pTimeSpec); /** * Explodes a time spec to the localized timezone. * * @returns pTime. * @param pTime Where to store the exploded time. * @param pTimeSpec The time spec to exploded (UTC). */ RTDECL(PRTTIME) RTTimeLocalExplode(PRTTIME pTime, PCRTTIMESPEC pTimeSpec); /** * Normalizes the fields of a time structure containing local time. * * See RTTimeNormalize for details. * * @returns pTime on success. * @returns NULL if the data is invalid. * @param pTime The time structure to normalize. */ RTDECL(PRTTIME) RTTimeLocalNormalize(PRTTIME pTime); /** * Converts a time structure to UTC, relying on UTC offset information * if it contains local time. * * @returns pTime on success. * @returns NULL if the data is invalid. * @param pTime The time structure to convert. */ RTDECL(PRTTIME) RTTimeConvertToZulu(PRTTIME pTime); /** * Converts a time spec to a ISO date string. * * @returns psz on success. * @returns NULL on buffer underflow. * @param pTime The time. Caller should've normalized this. * @param psz Where to store the string. * @param cb The size of the buffer. */ RTDECL(char *) RTTimeToString(PCRTTIME pTime, char *psz, size_t cb); /** * Converts a time spec to a ISO date string, extended version. * * @returns Output string length on success (positive), VERR_BUFFER_OVERFLOW * (negative) or VERR_OUT_OF_RANGE (negative) on failure. * @param pTime The time. Caller should've normalized this. * @param psz Where to store the string. * @param cb The size of the buffer. * @param cFractionDigits Number of digits in the fraction. Max is 9. */ RTDECL(ssize_t) RTTimeToStringEx(PCRTTIME pTime, char *psz, size_t cb, unsigned cFractionDigits); /** Suggested buffer length for RTTimeToString and RTTimeToStringEx output, including terminator. */ #define RTTIME_STR_LEN 40 /** * Attempts to convert an ISO date string to a time structure. * * We're a little forgiving with zero padding, unspecified parts, and leading * and trailing spaces. * * @retval pTime on success, * @retval NULL on failure. * @param pTime Where to store the time on success. * @param pszString The ISO date string to convert. */ RTDECL(PRTTIME) RTTimeFromString(PRTTIME pTime, const char *pszString); /** * Formats the given time on a RTC-2822 compliant format. * * @returns Output string length on success (positive), VERR_BUFFER_OVERFLOW * (negative) on failure. * @param pTime The time. Caller should've normalized this. * @param psz Where to store the string. * @param cb The size of the buffer. * @param fFlags RTTIME_RFC2822_F_XXX * @sa RTTIME_RFC2822_LEN */ RTDECL(ssize_t) RTTimeToRfc2822(PRTTIME pTime, char *psz, size_t cb, uint32_t fFlags); /** Suggested buffer length for RTTimeToRfc2822 output, including terminator. */ #define RTTIME_RFC2822_LEN 40 /** @name RTTIME_RFC2822_F_XXX * @{ */ /** Use the deprecated GMT timezone instead of +/-0000. * This is required by the HTTP RFC-7231 7.1.1.1. */ #define RTTIME_RFC2822_F_GMT RT_BIT_32(0) /** @} */ /** * Attempts to convert an RFC-2822 date string to a time structure. * * We're a little forgiving with zero padding, unspecified parts, and leading * and trailing spaces. * * @retval pTime on success, * @retval NULL on failure. * @param pTime Where to store the time on success. * @param pszString The ISO date string to convert. */ RTDECL(PRTTIME) RTTimeFromRfc2822(PRTTIME pTime, const char *pszString); /** * Checks if a year is a leap year or not. * * @returns true if it's a leap year. * @returns false if it's a common year. * @param i32Year The year in question. */ RTDECL(bool) RTTimeIsLeapYear(int32_t i32Year); /** * Compares two normalized time structures. * * @retval 0 if equal. * @retval -1 if @a pLeft is earlier than @a pRight. * @retval 1 if @a pRight is earlier than @a pLeft. * * @param pLeft The left side time. NULL is accepted. * @param pRight The right side time. NULL is accepted. * * @note A NULL time is considered smaller than anything else. If both are * NULL, they are considered equal. */ RTDECL(int) RTTimeCompare(PCRTTIME pLeft, PCRTTIME pRight); /** * Gets the current nanosecond timestamp. * * @returns nanosecond timestamp. */ RTDECL(uint64_t) RTTimeNanoTS(void); /** * Gets the current millisecond timestamp. * * @returns millisecond timestamp. */ RTDECL(uint64_t) RTTimeMilliTS(void); /** * Debugging the time api. * * @returns the number of 1ns steps which has been applied by RTTimeNanoTS(). */ RTDECL(uint32_t) RTTimeDbgSteps(void); /** * Debugging the time api. * * @returns the number of times the TSC interval expired RTTimeNanoTS(). */ RTDECL(uint32_t) RTTimeDbgExpired(void); /** * Debugging the time api. * * @returns the number of bad previous values encountered by RTTimeNanoTS(). */ RTDECL(uint32_t) RTTimeDbgBad(void); /** * Debugging the time api. * * @returns the number of update races in RTTimeNanoTS(). */ RTDECL(uint32_t) RTTimeDbgRaces(void); RTDECL(const char *) RTTimeNanoTSWorkerName(void); /** @name RTTimeNanoTS GIP worker functions, for TM. * @{ */ /** Extra info optionally returned by the RTTimeNanoTS GIP workers. */ typedef struct RTITMENANOTSEXTRA { /** The TSC value used (delta adjusted). */ uint64_t uTSCValue; } RTITMENANOTSEXTRA; /** Pointer to extra info optionally returned by the RTTimeNanoTS GIP workers. */ typedef RTITMENANOTSEXTRA *PRTITMENANOTSEXTRA; /** Pointer to a RTTIMENANOTSDATA structure. */ typedef struct RTTIMENANOTSDATA *PRTTIMENANOTSDATA; /** * Nanosecond timestamp data. * * This is used to keep track of statistics and callback so IPRT * and TM (VirtualBox) can share code. * * @remark Keep this in sync with the assembly version in timesupA.asm. */ typedef struct RTTIMENANOTSDATA { /** Where the previous timestamp is stored. * This is maintained to ensure that time doesn't go backwards or anything. */ uint64_t volatile *pu64Prev; /** * Helper function that's used by the assembly routines when something goes bust. * * @param pData Pointer to this structure. * @param u64NanoTS The calculated nano ts. * @param u64DeltaPrev The delta relative to the previously returned timestamp. * @param u64PrevNanoTS The previously returned timestamp (as it was read it). */ DECLCALLBACKMEMBER(void, pfnBad,(PRTTIMENANOTSDATA pData, uint64_t u64NanoTS, uint64_t u64DeltaPrev, uint64_t u64PrevNanoTS)); /** * Callback for when rediscovery is required. * * @returns Nanosecond timestamp. * @param pData Pointer to this structure. * @param pExtra Where to return extra time info. Optional. */ DECLCALLBACKMEMBER(uint64_t, pfnRediscover,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra)); /** * Callback for when some CPU index related stuff goes wrong. * * @returns Nanosecond timestamp. * @param pData Pointer to this structure. * @param pExtra Where to return extra time info. Optional. * @param idApic The APIC ID if available, otherwise (UINT16_MAX-1). * @param iCpuSet The CPU set index if available, otherwise * (UINT16_MAX-1). * @param iGipCpu The GIP CPU array index if available, otherwise * (UINT16_MAX-1). */ DECLCALLBACKMEMBER(uint64_t, pfnBadCpuIndex,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra, uint16_t idApic, uint16_t iCpuSet, uint16_t iGipCpu)); /** Number of 1ns steps because of overshooting the period. */ uint32_t c1nsSteps; /** The number of times the interval expired (overflow). */ uint32_t cExpired; /** Number of "bad" previous values. */ uint32_t cBadPrev; /** The number of update races. */ uint32_t cUpdateRaces; } RTTIMENANOTSDATA; #ifndef IN_RING3 /** * The Ring-3 layout of the RTTIMENANOTSDATA structure. */ typedef struct RTTIMENANOTSDATAR3 { R3PTRTYPE(uint64_t volatile *) pu64Prev; DECLR3CALLBACKMEMBER(void, pfnBad,(PRTTIMENANOTSDATA pData, uint64_t u64NanoTS, uint64_t u64DeltaPrev, uint64_t u64PrevNanoTS)); DECLR3CALLBACKMEMBER(uint64_t, pfnRediscover,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra)); DECLR3CALLBACKMEMBER(uint64_t, pfnBadCpuIndex,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra, uint16_t idApic, uint16_t iCpuSet, uint16_t iGipCpu)); uint32_t c1nsSteps; uint32_t cExpired; uint32_t cBadPrev; uint32_t cUpdateRaces; } RTTIMENANOTSDATAR3; #else typedef RTTIMENANOTSDATA RTTIMENANOTSDATAR3; #endif #ifndef IN_RING0 /** * The Ring-3 layout of the RTTIMENANOTSDATA structure. */ typedef struct RTTIMENANOTSDATAR0 { R0PTRTYPE(uint64_t volatile *) pu64Prev; DECLR0CALLBACKMEMBER(void, pfnBad,(PRTTIMENANOTSDATA pData, uint64_t u64NanoTS, uint64_t u64DeltaPrev, uint64_t u64PrevNanoTS)); DECLR0CALLBACKMEMBER(uint64_t, pfnRediscover,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra)); DECLR0CALLBACKMEMBER(uint64_t, pfnBadCpuIndex,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra, uint16_t idApic, uint16_t iCpuSet, uint16_t iGipCpu)); uint32_t c1nsSteps; uint32_t cExpired; uint32_t cBadPrev; uint32_t cUpdateRaces; } RTTIMENANOTSDATAR0; #else typedef RTTIMENANOTSDATA RTTIMENANOTSDATAR0; #endif #ifndef IN_RC /** * The RC layout of the RTTIMENANOTSDATA structure. */ typedef struct RTTIMENANOTSDATARC { RCPTRTYPE(uint64_t volatile *) pu64Prev; DECLRCCALLBACKMEMBER(void, pfnBad,(PRTTIMENANOTSDATA pData, uint64_t u64NanoTS, uint64_t u64DeltaPrev, uint64_t u64PrevNanoTS)); DECLRCCALLBACKMEMBER(uint64_t, pfnRediscover,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra)); DECLRCCALLBACKMEMBER(uint64_t, pfnBadCpuIndex,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra, uint16_t idApic, uint16_t iCpuSet, uint16_t iGipCpu)); uint32_t c1nsSteps; uint32_t cExpired; uint32_t cBadPrev; uint32_t cUpdateRaces; } RTTIMENANOTSDATARC; #else typedef RTTIMENANOTSDATA RTTIMENANOTSDATARC; #endif /** Internal RTTimeNanoTS worker (assembly). */ typedef DECLCALLBACKTYPE(uint64_t, FNTIMENANOTSINTERNAL,(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra)); /** Pointer to an internal RTTimeNanoTS worker (assembly). */ typedef FNTIMENANOTSINTERNAL *PFNTIMENANOTSINTERNAL; RTDECL(uint64_t) RTTimeNanoTSLegacySyncInvarNoDelta(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLFenceSyncInvarNoDelta(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); #ifdef IN_RING3 RTDECL(uint64_t) RTTimeNanoTSLegacyAsyncUseApicId(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLegacyAsyncUseApicIdExt0B(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLegacyAsyncUseApicIdExt8000001E(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLegacyAsyncUseRdtscp(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLegacyAsyncUseRdtscpGroupChNumCl(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLegacyAsyncUseIdtrLim(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLegacySyncInvarWithDeltaUseApicId(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLegacySyncInvarWithDeltaUseApicIdExt0B(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLegacySyncInvarWithDeltaUseApicIdExt8000001E(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLegacySyncInvarWithDeltaUseRdtscp(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLegacySyncInvarWithDeltaUseIdtrLim(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLFenceAsyncUseApicId(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLFenceAsyncUseApicIdExt0B(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLFenceAsyncUseApicIdExt8000001E(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLFenceAsyncUseRdtscp(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLFenceAsyncUseRdtscpGroupChNumCl(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLFenceAsyncUseIdtrLim(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLFenceSyncInvarWithDeltaUseApicId(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLFenceSyncInvarWithDeltaUseApicIdExt0B(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLFenceSyncInvarWithDeltaUseApicIdExt8000001E(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLFenceSyncInvarWithDeltaUseRdtscp(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLFenceSyncInvarWithDeltaUseIdtrLim(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); #else RTDECL(uint64_t) RTTimeNanoTSLegacyAsync(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLegacySyncInvarWithDelta(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLFenceAsync(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); RTDECL(uint64_t) RTTimeNanoTSLFenceSyncInvarWithDelta(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra); #endif /** @} */ /** * Gets the current nanosecond timestamp. * * This differs from RTTimeNanoTS in that it will use system APIs and not do any * resolution or performance optimizations. * * @returns nanosecond timestamp. */ RTDECL(uint64_t) RTTimeSystemNanoTS(void); /** * Gets the current millisecond timestamp. * * This differs from RTTimeNanoTS in that it will use system APIs and not do any * resolution or performance optimizations. * * @returns millisecond timestamp. */ RTDECL(uint64_t) RTTimeSystemMilliTS(void); /** * Get the nanosecond timestamp relative to program startup. * * @returns Timestamp relative to program startup. */ RTDECL(uint64_t) RTTimeProgramNanoTS(void); /** * Get the microsecond timestamp relative to program startup. * * @returns Timestamp relative to program startup. */ RTDECL(uint64_t) RTTimeProgramMicroTS(void); /** * Get the millisecond timestamp relative to program startup. * * @returns Timestamp relative to program startup. */ RTDECL(uint64_t) RTTimeProgramMilliTS(void); /** * Get the second timestamp relative to program startup. * * @returns Timestamp relative to program startup. */ RTDECL(uint32_t) RTTimeProgramSecTS(void); /** * Get the RTTimeNanoTS() of when the program started. * * @returns Program startup timestamp. */ RTDECL(uint64_t) RTTimeProgramStartNanoTS(void); /** * Time zone information. */ typedef struct RTTIMEZONEINFO { /** Unix time zone name (continent/country[/city]|). */ const char *pszUnixName; /** Windows time zone name. */ const char *pszWindowsName; /** The length of the unix time zone name. */ uint8_t cchUnixName; /** The length of the windows time zone name. */ uint8_t cchWindowsName; /** Two letter country/territory code if applicable, otherwise 'ZZ'. */ char szCountry[3]; /** Two letter windows country/territory code if applicable. * Empty string if no windows mapping. */ char szWindowsCountry[3]; #if 0 /* Add when needed and it's been extracted. */ /** The standard delta in minutes (add to UTC). */ int16_t cMinStdDelta; /** The daylight saving time delta in minutes (add to UTC). */ int16_t cMinDstDelta; #endif /** closest matching windows time zone index. */ uint32_t idxWindows; /** Flags, RTTIMEZONEINFO_F_XXX. */ uint32_t fFlags; } RTTIMEZONEINFO; /** Pointer to time zone info. */ typedef RTTIMEZONEINFO const *PCRTTIMEZONEINFO; /** @name RTTIMEZONEINFO_F_XXX - time zone info flags. * @{ */ /** Indicates golden mapping entry for a windows time zone name. */ #define RTTIMEZONEINFO_F_GOLDEN RT_BIT_32(0) /** @} */ /** * Looks up static time zone information by unix name. * * @returns Pointer to info entry if found, NULL if not. * @param pszName The unix zone name (TZ). */ RTDECL(PCRTTIMEZONEINFO) RTTimeZoneGetInfoByUnixName(const char *pszName); /** * Looks up static time zone information by window name. * * @returns Pointer to info entry if found, NULL if not. * @param pszName The windows zone name (reg key). */ RTDECL(PCRTTIMEZONEINFO) RTTimeZoneGetInfoByWindowsName(const char *pszName); /** * Looks up static time zone information by windows index. * * @returns Pointer to info entry if found, NULL if not. * @param idxZone The windows timezone index. */ RTDECL(PCRTTIMEZONEINFO) RTTimeZoneGetInfoByWindowsIndex(uint32_t idxZone); /** * Get the current time zone (TZ). * * @returns IPRT status code. * @param pszName Where to return the time zone name. * @param cbName The size of the name buffer. */ RTDECL(int) RTTimeZoneGetCurrent(char *pszName, size_t cbName); /** @} */ RT_C_DECLS_END #endif /* !IPRT_INCLUDED_time_h */