/* $Id: IEMR3.cpp $ */ /** @file * IEM - Interpreted Execution Manager. */ /* * Copyright (C) 2011-2022 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_EM #include #include #include #include #include "IEMInternal.h" #include #include #include #ifdef VBOX_WITH_DEBUGGER # include #endif #include #include #include /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static FNDBGFINFOARGVINT iemR3InfoITlb; static FNDBGFINFOARGVINT iemR3InfoDTlb; #ifdef VBOX_WITH_DEBUGGER static void iemR3RegisterDebuggerCommands(void); #endif static const char *iemGetTargetCpuName(uint32_t enmTargetCpu) { switch (enmTargetCpu) { #define CASE_RET_STR(enmValue) case enmValue: return #enmValue + (sizeof("IEMTARGETCPU_") - 1) CASE_RET_STR(IEMTARGETCPU_8086); CASE_RET_STR(IEMTARGETCPU_V20); CASE_RET_STR(IEMTARGETCPU_186); CASE_RET_STR(IEMTARGETCPU_286); CASE_RET_STR(IEMTARGETCPU_386); CASE_RET_STR(IEMTARGETCPU_486); CASE_RET_STR(IEMTARGETCPU_PENTIUM); CASE_RET_STR(IEMTARGETCPU_PPRO); CASE_RET_STR(IEMTARGETCPU_CURRENT); #undef CASE_RET_STR default: return "Unknown"; } } /** * Initializes the interpreted execution manager. * * This must be called after CPUM as we're quering information from CPUM about * the guest and host CPUs. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3DECL(int) IEMR3Init(PVM pVM) { int rc; /* * Read configuration. */ PCFGMNODE pIem = CFGMR3GetChild(CFGMR3GetRoot(pVM), "IEM"); #ifndef VBOX_WITHOUT_CPUID_HOST_CALL /** @cfgm{/IEM/CpuIdHostCall, boolean, false} * Controls whether the custom VBox specific CPUID host call interface is * enabled or not. */ # ifdef DEBUG_bird rc = CFGMR3QueryBoolDef(pIem, "CpuIdHostCall", &pVM->iem.s.fCpuIdHostCall, true); # else rc = CFGMR3QueryBoolDef(pIem, "CpuIdHostCall", &pVM->iem.s.fCpuIdHostCall, false); # endif AssertLogRelRCReturn(rc, rc); #endif /* * Initialize per-CPU data and register statistics. */ uint64_t const uInitialTlbRevision = UINT64_C(0) - (IEMTLB_REVISION_INCR * 200U); uint64_t const uInitialTlbPhysRev = UINT64_C(0) - (IEMTLB_PHYS_REV_INCR * 100U); for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; AssertCompile(sizeof(pVCpu->iem.s) <= sizeof(pVCpu->iem.padding)); /* (tstVMStruct can't do it's job w/o instruction stats) */ pVCpu->iem.s.CodeTlb.uTlbRevision = pVCpu->iem.s.DataTlb.uTlbRevision = uInitialTlbRevision; pVCpu->iem.s.CodeTlb.uTlbPhysRev = pVCpu->iem.s.DataTlb.uTlbPhysRev = uInitialTlbPhysRev; STAMR3RegisterF(pVM, &pVCpu->iem.s.cInstructions, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Instructions interpreted", "/IEM/CPU%u/cInstructions", idCpu); STAMR3RegisterF(pVM, &pVCpu->iem.s.cLongJumps, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Number of longjmp calls", "/IEM/CPU%u/cLongJumps", idCpu); STAMR3RegisterF(pVM, &pVCpu->iem.s.cPotentialExits, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Potential exits", "/IEM/CPU%u/cPotentialExits", idCpu); STAMR3RegisterF(pVM, &pVCpu->iem.s.cRetAspectNotImplemented, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "VERR_IEM_ASPECT_NOT_IMPLEMENTED", "/IEM/CPU%u/cRetAspectNotImplemented", idCpu); STAMR3RegisterF(pVM, &pVCpu->iem.s.cRetInstrNotImplemented, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "VERR_IEM_INSTR_NOT_IMPLEMENTED", "/IEM/CPU%u/cRetInstrNotImplemented", idCpu); STAMR3RegisterF(pVM, &pVCpu->iem.s.cRetInfStatuses, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Informational statuses returned", "/IEM/CPU%u/cRetInfStatuses", idCpu); STAMR3RegisterF(pVM, &pVCpu->iem.s.cRetErrStatuses, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Error statuses returned", "/IEM/CPU%u/cRetErrStatuses", idCpu); STAMR3RegisterF(pVM, &pVCpu->iem.s.cbWritten, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Approx bytes written", "/IEM/CPU%u/cbWritten", idCpu); STAMR3RegisterF(pVM, &pVCpu->iem.s.cPendingCommit, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Times RC/R0 had to postpone instruction committing to ring-3", "/IEM/CPU%u/cPendingCommit", idCpu); #ifdef VBOX_WITH_STATISTICS STAMR3RegisterF(pVM, &pVCpu->iem.s.CodeTlb.cTlbHits, STAMTYPE_U64_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Code TLB hits", "/IEM/CPU%u/CodeTlb-Hits", idCpu); STAMR3RegisterF(pVM, &pVCpu->iem.s.DataTlb.cTlbHits, STAMTYPE_U64_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Data TLB hits", "/IEM/CPU%u/DataTlb-Hits", idCpu); #endif STAMR3RegisterF(pVM, &pVCpu->iem.s.CodeTlb.cTlbMisses, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Code TLB misses", "/IEM/CPU%u/CodeTlb-Misses", idCpu); STAMR3RegisterF(pVM, &pVCpu->iem.s.CodeTlb.uTlbRevision, STAMTYPE_X64, STAMVISIBILITY_ALWAYS, STAMUNIT_NONE, "Code TLB revision", "/IEM/CPU%u/CodeTlb-Revision", idCpu); STAMR3RegisterF(pVM, (void *)&pVCpu->iem.s.CodeTlb.uTlbPhysRev, STAMTYPE_X64, STAMVISIBILITY_ALWAYS, STAMUNIT_NONE, "Code TLB physical revision", "/IEM/CPU%u/CodeTlb-PhysRev", idCpu); STAMR3RegisterF(pVM, &pVCpu->iem.s.CodeTlb.cTlbSlowReadPath, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_NONE, "Code TLB slow read path", "/IEM/CPU%u/CodeTlb-SlowReads", idCpu); STAMR3RegisterF(pVM, &pVCpu->iem.s.DataTlb.cTlbMisses, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Data TLB misses", "/IEM/CPU%u/DataTlb-Misses", idCpu); STAMR3RegisterF(pVM, &pVCpu->iem.s.DataTlb.uTlbRevision, STAMTYPE_X64, STAMVISIBILITY_ALWAYS, STAMUNIT_NONE, "Data TLB revision", "/IEM/CPU%u/DataTlb-Revision", idCpu); STAMR3RegisterF(pVM, (void *)&pVCpu->iem.s.DataTlb.uTlbPhysRev, STAMTYPE_X64, STAMVISIBILITY_ALWAYS, STAMUNIT_NONE, "Data TLB physical revision", "/IEM/CPU%u/DataTlb-PhysRev", idCpu); for (uint32_t i = 0; i < RT_ELEMENTS(pVCpu->iem.s.aStatXcpts); i++) STAMR3RegisterF(pVM, &pVCpu->iem.s.aStatXcpts[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/IEM/CPU%u/Exceptions/%02x", idCpu, i); for (uint32_t i = 0; i < RT_ELEMENTS(pVCpu->iem.s.aStatInts); i++) STAMR3RegisterF(pVM, &pVCpu->iem.s.aStatInts[i], STAMTYPE_U32_RESET, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/IEM/CPU%u/Interrupts/%02x", idCpu, i); #if defined(VBOX_WITH_STATISTICS) && !defined(DOXYGEN_RUNNING) /* Instruction statistics: */ # define IEM_DO_INSTR_STAT(a_Name, a_szDesc) \ STAMR3RegisterF(pVM, &pVCpu->iem.s.StatsRZ.a_Name, STAMTYPE_U32_RESET, STAMVISIBILITY_USED, \ STAMUNIT_COUNT, a_szDesc, "/IEM/CPU%u/instr-RZ/" #a_Name, idCpu); \ STAMR3RegisterF(pVM, &pVCpu->iem.s.StatsR3.a_Name, STAMTYPE_U32_RESET, STAMVISIBILITY_USED, \ STAMUNIT_COUNT, a_szDesc, "/IEM/CPU%u/instr-R3/" #a_Name, idCpu); # include "IEMInstructionStatisticsTmpl.h" # undef IEM_DO_INSTR_STAT #endif /* * Host and guest CPU information. */ if (idCpu == 0) { pVCpu->iem.s.enmCpuVendor = CPUMGetGuestCpuVendor(pVM); pVCpu->iem.s.enmHostCpuVendor = CPUMGetHostCpuVendor(pVM); pVCpu->iem.s.aidxTargetCpuEflFlavour[0] = pVCpu->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL || pVCpu->iem.s.enmCpuVendor == CPUMCPUVENDOR_VIA /*??*/ ? IEMTARGETCPU_EFL_BEHAVIOR_INTEL : IEMTARGETCPU_EFL_BEHAVIOR_AMD; #if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64) if (pVCpu->iem.s.enmCpuVendor == pVCpu->iem.s.enmHostCpuVendor) pVCpu->iem.s.aidxTargetCpuEflFlavour[1] = IEMTARGETCPU_EFL_BEHAVIOR_NATIVE; else #endif pVCpu->iem.s.aidxTargetCpuEflFlavour[1] = pVCpu->iem.s.aidxTargetCpuEflFlavour[0]; #if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC switch (pVM->cpum.ro.GuestFeatures.enmMicroarch) { case kCpumMicroarch_Intel_8086: pVCpu->iem.s.uTargetCpu = IEMTARGETCPU_8086; break; case kCpumMicroarch_Intel_80186: pVCpu->iem.s.uTargetCpu = IEMTARGETCPU_186; break; case kCpumMicroarch_Intel_80286: pVCpu->iem.s.uTargetCpu = IEMTARGETCPU_286; break; case kCpumMicroarch_Intel_80386: pVCpu->iem.s.uTargetCpu = IEMTARGETCPU_386; break; case kCpumMicroarch_Intel_80486: pVCpu->iem.s.uTargetCpu = IEMTARGETCPU_486; break; case kCpumMicroarch_Intel_P5: pVCpu->iem.s.uTargetCpu = IEMTARGETCPU_PENTIUM; break; case kCpumMicroarch_Intel_P6: pVCpu->iem.s.uTargetCpu = IEMTARGETCPU_PPRO; break; case kCpumMicroarch_NEC_V20: pVCpu->iem.s.uTargetCpu = IEMTARGETCPU_V20; break; case kCpumMicroarch_NEC_V30: pVCpu->iem.s.uTargetCpu = IEMTARGETCPU_V20; break; default: pVCpu->iem.s.uTargetCpu = IEMTARGETCPU_CURRENT; break; } LogRel(("IEM: TargetCpu=%s, Microarch=%s aidxTargetCpuEflFlavour={%d,%d}\n", iemGetTargetCpuName(pVCpu->iem.s.uTargetCpu), CPUMMicroarchName(pVM->cpum.ro.GuestFeatures.enmMicroarch), pVCpu->iem.s.aidxTargetCpuEflFlavour[0], pVCpu->iem.s.aidxTargetCpuEflFlavour[1])); #else LogRel(("IEM: Microarch=%s aidxTargetCpuEflFlavour={%d,%d}\n", CPUMMicroarchName(pVM->cpum.ro.GuestFeatures.enmMicroarch), pVCpu->iem.s.aidxTargetCpuEflFlavour[0], pVCpu->iem.s.aidxTargetCpuEflFlavour[1])); #endif } else { pVCpu->iem.s.enmCpuVendor = pVM->apCpusR3[0]->iem.s.enmCpuVendor; pVCpu->iem.s.enmHostCpuVendor = pVM->apCpusR3[0]->iem.s.enmHostCpuVendor; pVCpu->iem.s.aidxTargetCpuEflFlavour[0] = pVM->apCpusR3[0]->iem.s.aidxTargetCpuEflFlavour[0]; pVCpu->iem.s.aidxTargetCpuEflFlavour[1] = pVM->apCpusR3[0]->iem.s.aidxTargetCpuEflFlavour[1]; #if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC pVCpu->iem.s.uTargetCpu = pVM->apCpusR3[0]->iem.s.uTargetCpu; #endif } /* * Mark all buffers free. */ uint32_t iMemMap = RT_ELEMENTS(pVCpu->iem.s.aMemMappings); while (iMemMap-- > 0) pVCpu->iem.s.aMemMappings[iMemMap].fAccess = IEM_ACCESS_INVALID; } #ifdef VBOX_WITH_NESTED_HWVIRT_VMX /* * Register the per-VM VMX APIC-access page handler type. */ if (pVM->cpum.ro.GuestFeatures.fVmx) { rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_ALL, PGMPHYSHANDLER_F_NOT_IN_HM, iemVmxApicAccessPageHandler, "VMX APIC-access page", &pVM->iem.s.hVmxApicAccessPage); AssertLogRelRCReturn(rc, rc); } #endif DBGFR3InfoRegisterInternalArgv(pVM, "itlb", "IEM instruction TLB", iemR3InfoITlb, DBGFINFO_FLAGS_RUN_ON_EMT); DBGFR3InfoRegisterInternalArgv(pVM, "dtlb", "IEM instruction TLB", iemR3InfoDTlb, DBGFINFO_FLAGS_RUN_ON_EMT); #ifdef VBOX_WITH_DEBUGGER iemR3RegisterDebuggerCommands(); #endif return VINF_SUCCESS; } VMMR3DECL(int) IEMR3Term(PVM pVM) { NOREF(pVM); return VINF_SUCCESS; } VMMR3DECL(void) IEMR3Relocate(PVM pVM) { RT_NOREF(pVM); } /** Worker for iemR3InfoTlbPrintSlots and iemR3InfoTlbPrintAddress. */ static void iemR3InfoTlbPrintHeader(PVMCPU pVCpu, PCDBGFINFOHLP pHlp, IEMTLB const *pTlb, bool *pfHeader) { if (*pfHeader) return; pHlp->pfnPrintf(pHlp, "%cTLB for CPU %u:\n", &pVCpu->iem.s.CodeTlb == pTlb ? 'I' : 'D', pVCpu->idCpu); *pfHeader = true; } /** Worker for iemR3InfoTlbPrintSlots and iemR3InfoTlbPrintAddress. */ static void iemR3InfoTlbPrintSlot(PCDBGFINFOHLP pHlp, IEMTLB const *pTlb, IEMTLBENTRY const *pTlbe, uint32_t uSlot) { pHlp->pfnPrintf(pHlp, "%02x: %s %#018RX64 -> %RGp / %p / %#05x %s%s%s%s/%s%s%s/%s %s\n", uSlot, (pTlbe->uTag & IEMTLB_REVISION_MASK) == pTlb->uTlbRevision ? "valid " : (pTlbe->uTag & IEMTLB_REVISION_MASK) == 0 ? "empty " : "expired", (pTlbe->uTag & ~IEMTLB_REVISION_MASK) << X86_PAGE_SHIFT, pTlbe->GCPhys, pTlbe->pbMappingR3, (uint32_t)(pTlbe->fFlagsAndPhysRev & ~IEMTLBE_F_PHYS_REV), pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_EXEC ? "NX" : " X", pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_WRITE ? "RO" : "RW", pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_ACCESSED ? "-" : "A", pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PT_NO_DIRTY ? "-" : "D", pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PG_NO_WRITE ? "-" : "w", pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PG_NO_READ ? "-" : "r", pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PG_UNASSIGNED ? "U" : "-", pTlbe->fFlagsAndPhysRev & IEMTLBE_F_NO_MAPPINGR3 ? "S" : "M", (pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PHYS_REV) == pTlb->uTlbPhysRev ? "phys-valid" : (pTlbe->fFlagsAndPhysRev & IEMTLBE_F_PHYS_REV) == 0 ? "phys-empty" : "phys-expired"); } /** Displays one or more TLB slots. */ static void iemR3InfoTlbPrintSlots(PVMCPU pVCpu, PCDBGFINFOHLP pHlp, IEMTLB const *pTlb, uint32_t uSlot, uint32_t cSlots, bool *pfHeader) { if (uSlot < RT_ELEMENTS(pTlb->aEntries)) { if (cSlots > RT_ELEMENTS(pTlb->aEntries)) { pHlp->pfnPrintf(pHlp, "error: Too many slots given: %u, adjusting it down to the max (%u)\n", cSlots, RT_ELEMENTS(pTlb->aEntries)); cSlots = RT_ELEMENTS(pTlb->aEntries); } iemR3InfoTlbPrintHeader(pVCpu, pHlp, pTlb, pfHeader); while (cSlots-- > 0) { IEMTLBENTRY const Tlbe = pTlb->aEntries[uSlot]; iemR3InfoTlbPrintSlot(pHlp, pTlb, &Tlbe, uSlot); uSlot = (uSlot + 1) % RT_ELEMENTS(pTlb->aEntries); } } else pHlp->pfnPrintf(pHlp, "error: TLB slot is out of range: %u (%#x), max %u (%#x)\n", uSlot, uSlot, RT_ELEMENTS(pTlb->aEntries) - 1, RT_ELEMENTS(pTlb->aEntries) - 1); } /** Displays the TLB slot for the given address. */ static void iemR3InfoTlbPrintAddress(PVMCPU pVCpu, PCDBGFINFOHLP pHlp, IEMTLB const *pTlb, uint64_t uAddress, bool *pfHeader) { iemR3InfoTlbPrintHeader(pVCpu, pHlp, pTlb, pfHeader); uint64_t const uTag = (uAddress << 16) >> (X86_PAGE_SHIFT + 16); uint32_t const uSlot = (uint8_t)uTag; IEMTLBENTRY const Tlbe = pTlb->aEntries[uSlot]; pHlp->pfnPrintf(pHlp, "Address %#RX64 -> slot %#x - %s\n", uAddress, uSlot, Tlbe.uTag == (uTag | pTlb->uTlbRevision) ? "match" : (Tlbe.uTag & ~IEMTLB_REVISION_MASK) == uTag ? "expired" : "mismatch"); iemR3InfoTlbPrintSlot(pHlp, pTlb, &Tlbe, uSlot); } /** Common worker for iemR3InfoDTlb and iemR3InfoITlb. */ static void iemR3InfoTlbCommon(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs, bool fITlb) { /* * This is entirely argument driven. */ static RTGETOPTDEF const s_aOptions[] = { { "--cpu", 'c', RTGETOPT_REQ_UINT32 }, { "--vcpu", 'c', RTGETOPT_REQ_UINT32 }, { "all", 'A', RTGETOPT_REQ_NOTHING }, { "--all", 'A', RTGETOPT_REQ_NOTHING }, { "--address", 'a', RTGETOPT_REQ_UINT64 | RTGETOPT_FLAG_HEX }, { "--range", 'r', RTGETOPT_REQ_UINT32_PAIR | RTGETOPT_FLAG_HEX }, { "--slot", 's', RTGETOPT_REQ_UINT32 | RTGETOPT_FLAG_HEX }, }; char szDefault[] = "-A"; char *papszDefaults[2] = { szDefault, NULL }; if (cArgs == 0) { cArgs = 1; papszArgs = papszDefaults; } RTGETOPTSTATE State; int rc = RTGetOptInit(&State, cArgs, papszArgs, s_aOptions, RT_ELEMENTS(s_aOptions), 0 /*iFirst*/, 0 /*fFlags*/); AssertRCReturnVoid(rc); bool fNeedHeader = true; bool fAddressMode = true; PVMCPU pVCpu = VMMGetCpu(pVM); if (!pVCpu) pVCpu = VMMGetCpuById(pVM, 0); RTGETOPTUNION ValueUnion; while ((rc = RTGetOpt(&State, &ValueUnion)) != 0) { switch (rc) { case 'c': if (ValueUnion.u32 >= pVM->cCpus) pHlp->pfnPrintf(pHlp, "error: Invalid CPU ID: %u\n", ValueUnion.u32); else if (!pVCpu || pVCpu->idCpu != ValueUnion.u32) { pVCpu = VMMGetCpuById(pVM, ValueUnion.u32); fNeedHeader = true; } break; case 'a': iemR3InfoTlbPrintAddress(pVCpu, pHlp, fITlb ? &pVCpu->iem.s.CodeTlb : &pVCpu->iem.s.DataTlb, ValueUnion.u64, &fNeedHeader); fAddressMode = true; break; case 'A': iemR3InfoTlbPrintSlots(pVCpu, pHlp, fITlb ? &pVCpu->iem.s.CodeTlb : &pVCpu->iem.s.DataTlb, 0, RT_ELEMENTS(pVCpu->iem.s.CodeTlb.aEntries), &fNeedHeader); break; case 'r': iemR3InfoTlbPrintSlots(pVCpu, pHlp, fITlb ? &pVCpu->iem.s.CodeTlb : &pVCpu->iem.s.DataTlb, ValueUnion.PairU32.uFirst, ValueUnion.PairU32.uSecond, &fNeedHeader); fAddressMode = false; break; case 's': iemR3InfoTlbPrintSlots(pVCpu, pHlp, fITlb ? &pVCpu->iem.s.CodeTlb : &pVCpu->iem.s.DataTlb, ValueUnion.u32, 1, &fNeedHeader); fAddressMode = false; break; case VINF_GETOPT_NOT_OPTION: if (fAddressMode) { uint64_t uAddr; rc = RTStrToUInt64Full(ValueUnion.psz, 16, &uAddr); if (RT_SUCCESS(rc) && rc != VWRN_NUMBER_TOO_BIG) iemR3InfoTlbPrintAddress(pVCpu, pHlp, fITlb ? &pVCpu->iem.s.CodeTlb : &pVCpu->iem.s.DataTlb, uAddr, &fNeedHeader); else pHlp->pfnPrintf(pHlp, "error: Invalid or malformed guest address '%s': %Rrc\n", ValueUnion.psz, rc); } else { uint32_t uSlot; rc = RTStrToUInt32Full(ValueUnion.psz, 16, &uSlot); if (RT_SUCCESS(rc) && rc != VWRN_NUMBER_TOO_BIG) iemR3InfoTlbPrintSlots(pVCpu, pHlp, fITlb ? &pVCpu->iem.s.CodeTlb : &pVCpu->iem.s.DataTlb, uSlot, 1, &fNeedHeader); else pHlp->pfnPrintf(pHlp, "error: Invalid or malformed TLB slot number '%s': %Rrc\n", ValueUnion.psz, rc); } break; case 'h': pHlp->pfnPrintf(pHlp, "Usage: info %ctlb [options]\n" "\n" "Options:\n" " -c, --cpu=, --vcpu=\n" " Selects the CPU which TLBs we're looking at. Default: Caller / 0\n" " -A, --all, all\n" " Display all the TLB entries (default if no other args).\n" " -a, --address=\n" " Shows the TLB entry for the specified guest virtual address.\n" " -r, --range=\n" " Shows the TLB entries for the specified slot range.\n" " -s,--slot=\n" " Shows the given TLB slot.\n" "\n" "Non-options are interpreted according to the last -a, -r or -s option,\n" "defaulting to addresses if not preceeded by any of those options.\n" , fITlb ? 'i' : 'd'); return; default: pHlp->pfnGetOptError(pHlp, rc, &ValueUnion, &State); return; } } } /** * @callback_method_impl{FNDBGFINFOARGVINT, itlb} */ static DECLCALLBACK(void) iemR3InfoITlb(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs) { return iemR3InfoTlbCommon(pVM, pHlp, cArgs, papszArgs, true /*fITlb*/); } /** * @callback_method_impl{FNDBGFINFOARGVINT, dtlb} */ static DECLCALLBACK(void) iemR3InfoDTlb(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs) { return iemR3InfoTlbCommon(pVM, pHlp, cArgs, papszArgs, false /*fITlb*/); } #ifdef VBOX_WITH_DEBUGGER /** @callback_method_impl{FNDBGCCMD, * Implements the '.alliem' command. } */ static DECLCALLBACK(int) iemR3DbgFlushTlbs(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { VMCPUID idCpu = DBGCCmdHlpGetCurrentCpu(pCmdHlp); PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, idCpu); if (pVCpu) { VMR3ReqPriorityCallVoidWaitU(pUVM, idCpu, (PFNRT)IEMTlbInvalidateAll, 1, pVCpu); return VINF_SUCCESS; } RT_NOREF(paArgs, cArgs); return DBGCCmdHlpFail(pCmdHlp, pCmd, "failed to get the PVMCPU for the current CPU"); } /** * Called by IEMR3Init to register debugger commands. */ static void iemR3RegisterDebuggerCommands(void) { /* * Register debugger commands. */ static DBGCCMD const s_aCmds[] = { { /* .pszCmd = */ "iemflushtlb", /* .cArgsMin = */ 0, /* .cArgsMax = */ 0, /* .paArgDescs = */ NULL, /* .cArgDescs = */ 0, /* .fFlags = */ 0, /* .pfnHandler = */ iemR3DbgFlushTlbs, /* .pszSyntax = */ "", /* .pszDescription = */ "Flushed the code and data TLBs" }, }; int rc = DBGCRegisterCommands(&s_aCmds[0], RT_ELEMENTS(s_aCmds)); AssertLogRelRC(rc); } #endif