summaryrefslogtreecommitdiffstats
path: root/src/liblzma/check/crc64_fast.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 21:12:04 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 21:12:04 +0000
commiteac54b7c4aec25060d7bd856f7cdc290943d6aae (patch)
tree9a6d81c9f88df4698e746d63d14ddafeddd918b8 /src/liblzma/check/crc64_fast.c
parentInitial commit. (diff)
downloadxz-utils-eac54b7c4aec25060d7bd856f7cdc290943d6aae.tar.xz
xz-utils-eac54b7c4aec25060d7bd856f7cdc290943d6aae.zip
Adding upstream version 5.4.1.upstream/5.4.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/liblzma/check/crc64_fast.c')
-rw-r--r--src/liblzma/check/crc64_fast.c530
1 files changed, 530 insertions, 0 deletions
diff --git a/src/liblzma/check/crc64_fast.c b/src/liblzma/check/crc64_fast.c
new file mode 100644
index 0000000..db44633
--- /dev/null
+++ b/src/liblzma/check/crc64_fast.c
@@ -0,0 +1,530 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file crc64.c
+/// \brief CRC64 calculation
+///
+/// There are two methods in this file. crc64_generic uses the
+/// the slice-by-four algorithm. This is the same idea that is
+/// used in crc32_fast.c, but for CRC64 we use only four tables
+/// instead of eight to avoid increasing CPU cache usage.
+///
+/// crc64_clmul uses 32/64-bit x86 SSSE3, SSE4.1, and CLMUL instructions.
+/// It was derived from
+/// https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
+/// and the public domain code from https://github.com/rawrunprotected/crc
+/// (URLs were checked on 2022-11-07).
+///
+/// FIXME: Builds for 32-bit x86 use crc64_x86.S by default instead
+/// of this file and thus CLMUL version isn't available on 32-bit x86
+/// unless configured with --disable-assembler. Even then the lookup table
+/// isn't omitted in crc64_table.c since it doesn't know that assembly
+/// code has been disabled.
+//
+// Authors: Lasse Collin
+// Ilya Kurdyukov
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#include "check.h"
+
+#undef CRC_GENERIC
+#undef CRC_CLMUL
+#undef CRC_USE_GENERIC_FOR_SMALL_INPUTS
+
+// If CLMUL cannot be used then only the generic slice-by-four is built.
+#if !defined(HAVE_USABLE_CLMUL)
+# define CRC_GENERIC 1
+
+// If CLMUL is allowed unconditionally in the compiler options then the
+// generic version can be omitted. Note that this doesn't work with MSVC
+// as I don't know how to detect the features here.
+//
+// NOTE: Keep this this in sync with crc64_table.c.
+#elif (defined(__SSSE3__) && defined(__SSE4_1__) && defined(__PCLMUL__)) \
+ || (defined(__e2k__) && __iset__ >= 6)
+# define CRC_CLMUL 1
+
+// Otherwise build both and detect at runtime which version to use.
+#else
+# define CRC_GENERIC 1
+# define CRC_CLMUL 1
+
+/*
+ // The generic code is much faster with 1-8-byte inputs and has
+ // similar performance up to 16 bytes at least in microbenchmarks
+ // (it depends on input buffer alignment too). If both versions are
+ // built, this #define will use the generic version for inputs up to
+ // 16 bytes and CLMUL for bigger inputs. It saves a little in code
+ // size since the special cases for 0-16-byte inputs will be omitted
+ // from the CLMUL code.
+# define CRC_USE_GENERIC_FOR_SMALL_INPUTS 1
+*/
+
+# if defined(_MSC_VER)
+# include <intrin.h>
+# elif defined(HAVE_CPUID_H)
+# include <cpuid.h>
+# endif
+#endif
+
+
+/////////////////////////////////
+// Generic slice-by-four CRC64 //
+/////////////////////////////////
+
+#ifdef CRC_GENERIC
+
+#include "crc_macros.h"
+
+
+#ifdef WORDS_BIGENDIAN
+# define A1(x) ((x) >> 56)
+#else
+# define A1 A
+#endif
+
+
+// See the comments in crc32_fast.c. They aren't duplicated here.
+static uint64_t
+crc64_generic(const uint8_t *buf, size_t size, uint64_t crc)
+{
+ crc = ~crc;
+
+#ifdef WORDS_BIGENDIAN
+ crc = bswap64(crc);
+#endif
+
+ if (size > 4) {
+ while ((uintptr_t)(buf) & 3) {
+ crc = lzma_crc64_table[0][*buf++ ^ A1(crc)] ^ S8(crc);
+ --size;
+ }
+
+ const uint8_t *const limit = buf + (size & ~(size_t)(3));
+ size &= (size_t)(3);
+
+ while (buf < limit) {
+#ifdef WORDS_BIGENDIAN
+ const uint32_t tmp = (uint32_t)(crc >> 32)
+ ^ aligned_read32ne(buf);
+#else
+ const uint32_t tmp = (uint32_t)crc
+ ^ aligned_read32ne(buf);
+#endif
+ buf += 4;
+
+ crc = lzma_crc64_table[3][A(tmp)]
+ ^ lzma_crc64_table[2][B(tmp)]
+ ^ S32(crc)
+ ^ lzma_crc64_table[1][C(tmp)]
+ ^ lzma_crc64_table[0][D(tmp)];
+ }
+ }
+
+ while (size-- != 0)
+ crc = lzma_crc64_table[0][*buf++ ^ A1(crc)] ^ S8(crc);
+
+#ifdef WORDS_BIGENDIAN
+ crc = bswap64(crc);
+#endif
+
+ return ~crc;
+}
+#endif
+
+
+/////////////////////
+// x86 CLMUL CRC64 //
+/////////////////////
+
+#ifdef CRC_CLMUL
+
+#include <immintrin.h>
+
+
+/*
+// These functions were used to generate the constants
+// at the top of crc64_clmul().
+static uint64_t
+calc_lo(uint64_t poly)
+{
+ uint64_t a = poly;
+ uint64_t b = 0;
+
+ for (unsigned i = 0; i < 64; ++i) {
+ b = (b >> 1) | (a << 63);
+ a = (a >> 1) ^ (a & 1 ? poly : 0);
+ }
+
+ return b;
+}
+
+static uint64_t
+calc_hi(uint64_t poly, uint64_t a)
+{
+ for (unsigned i = 0; i < 64; ++i)
+ a = (a >> 1) ^ (a & 1 ? poly : 0);
+
+ return a;
+}
+*/
+
+
+#define MASK_L(in, mask, r) \
+ r = _mm_shuffle_epi8(in, mask)
+
+#define MASK_H(in, mask, r) \
+ r = _mm_shuffle_epi8(in, _mm_xor_si128(mask, vsign))
+
+#define MASK_LH(in, mask, low, high) \
+ MASK_L(in, mask, low); \
+ MASK_H(in, mask, high)
+
+
+// MSVC (VS2015 - VS2022) produces bad 32-bit x86 code from the CLMUL CRC
+// code when optimizations are enabled (release build). According to the bug
+// report, the ebx register is corrupted and the calculated result is wrong.
+// Trying to workaround the problem with "__asm mov ebx, ebx" didn't help.
+// The following pragma works and performance is still good. x86-64 builds
+// aren't affected by this problem.
+//
+// NOTE: Another pragma after the function restores the optimizations.
+// If the #if condition here is updated, the other one must be updated too.
+#if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \
+ && defined(_M_IX86)
+# pragma optimize("g", off)
+#endif
+
+// EDG-based compilers (Intel's classic compiler and compiler for E2K) can
+// define __GNUC__ but the attribute must not be used with them.
+// The new Clang-based ICX needs the attribute.
+//
+// NOTE: Build systems check for this too, keep them in sync with this.
+#if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__)
+__attribute__((__target__("ssse3,sse4.1,pclmul")))
+#endif
+static uint64_t
+crc64_clmul(const uint8_t *buf, size_t size, uint64_t crc)
+{
+ // The prototypes of the intrinsics use signed types while most of
+ // the values are treated as unsigned here. These warnings in this
+ // function have been checked and found to be harmless so silence them.
+#if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__)
+# pragma GCC diagnostic push
+# pragma GCC diagnostic ignored "-Wsign-conversion"
+# pragma GCC diagnostic ignored "-Wconversion"
+#endif
+
+#ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
+ // The code assumes that there is at least one byte of input.
+ if (size == 0)
+ return crc;
+#endif
+
+ // const uint64_t poly = 0xc96c5795d7870f42; // CRC polynomial
+ const uint64_t p = 0x92d8af2baf0e1e85; // (poly << 1) | 1
+ const uint64_t mu = 0x9c3e466c172963d5; // (calc_lo(poly) << 1) | 1
+ const uint64_t k2 = 0xdabe95afc7875f40; // calc_hi(poly, 1)
+ const uint64_t k1 = 0xe05dd497ca393ae4; // calc_hi(poly, k2)
+ const __m128i vfold0 = _mm_set_epi64x(p, mu);
+ const __m128i vfold1 = _mm_set_epi64x(k2, k1);
+
+ // Create a vector with 8-bit values 0 to 15. This is used to
+ // construct control masks for _mm_blendv_epi8 and _mm_shuffle_epi8.
+ const __m128i vramp = _mm_setr_epi32(
+ 0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c);
+
+ // This is used to inverse the control mask of _mm_shuffle_epi8
+ // so that bytes that wouldn't be picked with the original mask
+ // will be picked and vice versa.
+ const __m128i vsign = _mm_set1_epi8(0x80);
+
+ // Memory addresses A to D and the distances between them:
+ //
+ // A B C D
+ // [skip_start][size][skip_end]
+ // [ size2 ]
+ //
+ // A and D are 16-byte aligned. B and C are 1-byte aligned.
+ // skip_start and skip_end are 0-15 bytes. size is at least 1 byte.
+ //
+ // A = aligned_buf will initially point to this address.
+ // B = The address pointed by the caller-supplied buf.
+ // C = buf + size == aligned_buf + size2
+ // D = buf + size + skip_end == aligned_buf + size2 + skip_end
+ const size_t skip_start = (size_t)((uintptr_t)buf & 15);
+ const size_t skip_end = (size_t)(-(uintptr_t)(buf + size) & 15);
+ const __m128i *aligned_buf = (const __m128i *)(
+ (uintptr_t)buf & ~(uintptr_t)15);
+
+ // If size2 <= 16 then the whole input fits into a single 16-byte
+ // vector. If size2 > 16 then at least two 16-byte vectors must
+ // be processed. If size2 > 16 && size <= 16 then there is only
+ // one 16-byte vector's worth of input but it is unaligned in memory.
+ //
+ // NOTE: There is no integer overflow here if the arguments are valid.
+ // If this overflowed, buf + size would too.
+ size_t size2 = skip_start + size;
+
+ // Masks to be used with _mm_blendv_epi8 and _mm_shuffle_epi8:
+ // The first skip_start or skip_end bytes in the vectors will have
+ // the high bit (0x80) set. _mm_blendv_epi8 and _mm_shuffle_epi8
+ // will produce zeros for these positions. (Bitwise-xor of these
+ // masks with vsign will produce the opposite behavior.)
+ const __m128i mask_start
+ = _mm_sub_epi8(vramp, _mm_set1_epi8(skip_start));
+ const __m128i mask_end = _mm_sub_epi8(vramp, _mm_set1_epi8(skip_end));
+
+ // Get the first 1-16 bytes into data0. If loading less than 16 bytes,
+ // the bytes are loaded to the high bits of the vector and the least
+ // significant positions are filled with zeros.
+ const __m128i data0 = _mm_blendv_epi8(_mm_load_si128(aligned_buf),
+ _mm_setzero_si128(), mask_start);
+ ++aligned_buf;
+
+#if defined(__i386__) || defined(_M_IX86)
+ const __m128i initial_crc = _mm_set_epi64x(0, ~crc);
+#else
+ // GCC and Clang would produce good code with _mm_set_epi64x
+ // but MSVC needs _mm_cvtsi64_si128 on x86-64.
+ const __m128i initial_crc = _mm_cvtsi64_si128(~crc);
+#endif
+
+ __m128i v0, v1, v2, v3;
+
+#ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
+ if (size <= 16) {
+ // Right-shift initial_crc by 1-16 bytes based on "size"
+ // and store the result in v1 (high bytes) and v0 (low bytes).
+ //
+ // NOTE: The highest 8 bytes of initial_crc are zeros so
+ // v1 will be filled with zeros if size >= 8. The highest 8
+ // bytes of v1 will always become zeros.
+ //
+ // [ v1 ][ v0 ]
+ // [ initial_crc ] size == 1
+ // [ initial_crc ] size == 2
+ // [ initial_crc ] size == 15
+ // [ initial_crc ] size == 16 (all in v0)
+ const __m128i mask_low = _mm_add_epi8(
+ vramp, _mm_set1_epi8(size - 16));
+ MASK_LH(initial_crc, mask_low, v0, v1);
+
+ if (size2 <= 16) {
+ // There are 1-16 bytes of input and it is all
+ // in data0. Copy the input bytes to v3. If there
+ // are fewer than 16 bytes, the low bytes in v3
+ // will be filled with zeros. That is, the input
+ // bytes are stored to the same position as
+ // (part of) initial_crc is in v0.
+ MASK_L(data0, mask_end, v3);
+ } else {
+ // There are 2-16 bytes of input but not all bytes
+ // are in data0.
+ const __m128i data1 = _mm_load_si128(aligned_buf);
+
+ // Collect the 2-16 input bytes from data0 and data1
+ // to v2 and v3, and bitwise-xor them with the
+ // low bits of initial_crc in v0. Note that the
+ // the second xor is below this else-block as it
+ // is shared with the other branch.
+ MASK_H(data0, mask_end, v2);
+ MASK_L(data1, mask_end, v3);
+ v0 = _mm_xor_si128(v0, v2);
+ }
+
+ v0 = _mm_xor_si128(v0, v3);
+ v1 = _mm_alignr_epi8(v1, v0, 8);
+ } else
+#endif
+ {
+ const __m128i data1 = _mm_load_si128(aligned_buf);
+ MASK_LH(initial_crc, mask_start, v0, v1);
+ v0 = _mm_xor_si128(v0, data0);
+ v1 = _mm_xor_si128(v1, data1);
+
+#define FOLD \
+ v1 = _mm_xor_si128(v1, _mm_clmulepi64_si128(v0, vfold1, 0x00)); \
+ v0 = _mm_xor_si128(v1, _mm_clmulepi64_si128(v0, vfold1, 0x11));
+
+ while (size2 > 32) {
+ ++aligned_buf;
+ size2 -= 16;
+ FOLD
+ v1 = _mm_load_si128(aligned_buf);
+ }
+
+ if (size2 < 32) {
+ MASK_H(v0, mask_end, v2);
+ MASK_L(v0, mask_end, v0);
+ MASK_L(v1, mask_end, v3);
+ v1 = _mm_or_si128(v2, v3);
+ }
+
+ FOLD
+ v1 = _mm_srli_si128(v0, 8);
+#undef FOLD
+ }
+
+ v1 = _mm_xor_si128(_mm_clmulepi64_si128(v0, vfold1, 0x10), v1);
+ v0 = _mm_clmulepi64_si128(v1, vfold0, 0x00);
+ v2 = _mm_clmulepi64_si128(v0, vfold0, 0x10);
+ v0 = _mm_xor_si128(_mm_xor_si128(v2, _mm_slli_si128(v0, 8)), v1);
+
+#if defined(__i386__) || defined(_M_IX86)
+ return ~(((uint64_t)(uint32_t)_mm_extract_epi32(v0, 3) << 32) |
+ (uint64_t)(uint32_t)_mm_extract_epi32(v0, 2));
+#else
+ return ~(uint64_t)_mm_extract_epi64(v0, 1);
+#endif
+
+#if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__)
+# pragma GCC diagnostic pop
+#endif
+}
+#if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \
+ && defined(_M_IX86)
+# pragma optimize("", on)
+#endif
+#endif
+
+
+////////////////////////
+// Detect CPU support //
+////////////////////////
+
+#if defined(CRC_GENERIC) && defined(CRC_CLMUL)
+static inline bool
+is_clmul_supported(void)
+{
+ int success = 1;
+ uint32_t r[4]; // eax, ebx, ecx, edx
+
+#if defined(_MSC_VER)
+ // This needs <intrin.h> with MSVC. ICC has it as a built-in
+ // on all platforms.
+ __cpuid(r, 1);
+#elif defined(HAVE_CPUID_H)
+ // Compared to just using __asm__ to run CPUID, this also checks
+ // that CPUID is supported and saves and restores ebx as that is
+ // needed with GCC < 5 with position-independent code (PIC).
+ success = __get_cpuid(1, &r[0], &r[1], &r[2], &r[3]);
+#else
+ // Just a fallback that shouldn't be needed.
+ __asm__("cpuid\n\t"
+ : "=a"(r[0]), "=b"(r[1]), "=c"(r[2]), "=d"(r[3])
+ : "a"(1), "c"(0));
+#endif
+
+ // Returns true if these are supported:
+ // CLMUL (bit 1 in ecx)
+ // SSSE3 (bit 9 in ecx)
+ // SSE4.1 (bit 19 in ecx)
+ const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19);
+ return success && (r[2] & ecx_mask) == ecx_mask;
+
+ // Alternative methods that weren't used:
+ // - ICC's _may_i_use_cpu_feature: the other methods should work too.
+ // - GCC >= 6 / Clang / ICX __builtin_cpu_supports("pclmul")
+ //
+ // CPUID decding is needed with MSVC anyway and older GCC. This keeps
+ // the feature checks in the build system simpler too. The nice thing
+ // about __builtin_cpu_supports would be that it generates very short
+ // code as is it only reads a variable set at startup but a few bytes
+ // doesn't matter here.
+}
+
+
+#ifdef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR
+# define CRC64_FUNC_INIT
+# define CRC64_SET_FUNC_ATTR __attribute__((__constructor__))
+#else
+# define CRC64_FUNC_INIT = &crc64_dispatch
+# define CRC64_SET_FUNC_ATTR
+static uint64_t crc64_dispatch(const uint8_t *buf, size_t size, uint64_t crc);
+#endif
+
+
+// Pointer to the the selected CRC64 method.
+static uint64_t (*crc64_func)(const uint8_t *buf, size_t size, uint64_t crc)
+ CRC64_FUNC_INIT;
+
+
+CRC64_SET_FUNC_ATTR
+static void
+crc64_set_func(void)
+{
+ crc64_func = is_clmul_supported() ? &crc64_clmul : &crc64_generic;
+ return;
+}
+
+
+#ifndef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR
+static uint64_t
+crc64_dispatch(const uint8_t *buf, size_t size, uint64_t crc)
+{
+ // When __attribute__((__constructor__)) isn't supported, set the
+ // function pointer without any locking. If multiple threads run
+ // the detection code in parallel, they will all end up setting
+ // the pointer to the same value. This avoids the use of
+ // mythread_once() on every call to lzma_crc64() but this likely
+ // isn't strictly standards compliant. Let's change it if it breaks.
+ crc64_set_func();
+ return crc64_func(buf, size, crc);
+}
+#endif
+#endif
+
+
+extern LZMA_API(uint64_t)
+lzma_crc64(const uint8_t *buf, size_t size, uint64_t crc)
+{
+#if defined(CRC_GENERIC) && defined(CRC_CLMUL)
+ // If CLMUL is available, it is the best for non-tiny inputs,
+ // being over twice as fast as the generic slice-by-four version.
+ // However, for size <= 16 it's different. In the extreme case
+ // of size == 1 the generic version can be five times faster.
+ // At size >= 8 the CLMUL starts to become reasonable. It
+ // varies depending on the alignment of buf too.
+ //
+ // The above doesn't include the overhead of mythread_once().
+ // At least on x86-64 GNU/Linux, pthread_once() is very fast but
+ // it still makes lzma_crc64(buf, 1, crc) 50-100 % slower. When
+ // size reaches 12-16 bytes the overhead becomes negligible.
+ //
+ // So using the generic version for size <= 16 may give better
+ // performance with tiny inputs but if such inputs happen rarely
+ // it's not so obvious because then the lookup table of the
+ // generic version may not be in the processor cache.
+#ifdef CRC_USE_GENERIC_FOR_SMALL_INPUTS
+ if (size <= 16)
+ return crc64_generic(buf, size, crc);
+#endif
+
+/*
+#ifndef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR
+ // See crc64_dispatch(). This would be the alternative which uses
+ // locking and doesn't use crc64_dispatch(). Note that on Windows
+ // this method needs Vista threads.
+ mythread_once(crc64_set_func);
+#endif
+*/
+
+ return crc64_func(buf, size, crc);
+
+#elif defined(CRC_CLMUL)
+ // If CLMUL is used unconditionally without runtime CPU detection
+ // then omitting the generic version and its 8 KiB lookup table
+ // makes the library smaller.
+ //
+ // FIXME: Lookup table isn't currently omitted on 32-bit x86,
+ // see crc64_table.c.
+ return crc64_clmul(buf, size, crc);
+
+#else
+ return crc64_generic(buf, size, crc);
+#endif
+}