summaryrefslogtreecommitdiffstats
path: root/src/liblzma/lzma
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 21:12:04 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 21:12:04 +0000
commiteac54b7c4aec25060d7bd856f7cdc290943d6aae (patch)
tree9a6d81c9f88df4698e746d63d14ddafeddd918b8 /src/liblzma/lzma
parentInitial commit. (diff)
downloadxz-utils-eac54b7c4aec25060d7bd856f7cdc290943d6aae.tar.xz
xz-utils-eac54b7c4aec25060d7bd856f7cdc290943d6aae.zip
Adding upstream version 5.4.1.upstream/5.4.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/liblzma/lzma')
-rw-r--r--src/liblzma/lzma/Makefile.inc47
-rw-r--r--src/liblzma/lzma/fastpos.h141
-rw-r--r--src/liblzma/lzma/fastpos_table.c519
-rw-r--r--src/liblzma/lzma/fastpos_tablegen.c55
-rw-r--r--src/liblzma/lzma/lzma2_decoder.c311
-rw-r--r--src/liblzma/lzma/lzma2_decoder.h29
-rw-r--r--src/liblzma/lzma/lzma2_encoder.c414
-rw-r--r--src/liblzma/lzma/lzma2_encoder.h43
-rw-r--r--src/liblzma/lzma/lzma_common.h225
-rw-r--r--src/liblzma/lzma/lzma_decoder.c1133
-rw-r--r--src/liblzma/lzma/lzma_decoder.h53
-rw-r--r--src/liblzma/lzma/lzma_encoder.c784
-rw-r--r--src/liblzma/lzma/lzma_encoder.h59
-rw-r--r--src/liblzma/lzma/lzma_encoder_optimum_fast.c170
-rw-r--r--src/liblzma/lzma/lzma_encoder_optimum_normal.c859
-rw-r--r--src/liblzma/lzma/lzma_encoder_presets.c64
-rw-r--r--src/liblzma/lzma/lzma_encoder_private.h162
17 files changed, 5068 insertions, 0 deletions
diff --git a/src/liblzma/lzma/Makefile.inc b/src/liblzma/lzma/Makefile.inc
new file mode 100644
index 0000000..506b328
--- /dev/null
+++ b/src/liblzma/lzma/Makefile.inc
@@ -0,0 +1,47 @@
+##
+## Author: Lasse Collin
+##
+## This file has been put into the public domain.
+## You can do whatever you want with this file.
+##
+
+EXTRA_DIST += lzma/fastpos_tablegen.c
+
+liblzma_la_SOURCES += lzma/lzma_common.h
+
+if COND_FILTER_LZMA1
+liblzma_la_SOURCES += \
+ lzma/lzma_encoder_presets.c
+endif
+
+if COND_ENCODER_LZMA1
+liblzma_la_SOURCES += \
+ lzma/fastpos.h \
+ lzma/lzma_encoder.h \
+ lzma/lzma_encoder.c \
+ lzma/lzma_encoder_private.h \
+ lzma/lzma_encoder_optimum_fast.c \
+ lzma/lzma_encoder_optimum_normal.c
+
+if !COND_SMALL
+liblzma_la_SOURCES += lzma/fastpos_table.c
+endif
+endif
+
+if COND_DECODER_LZMA1
+liblzma_la_SOURCES += \
+ lzma/lzma_decoder.c \
+ lzma/lzma_decoder.h
+endif
+
+if COND_ENCODER_LZMA2
+liblzma_la_SOURCES += \
+ lzma/lzma2_encoder.c \
+ lzma/lzma2_encoder.h
+endif
+
+if COND_DECODER_LZMA2
+liblzma_la_SOURCES += \
+ lzma/lzma2_decoder.c \
+ lzma/lzma2_decoder.h
+endif
diff --git a/src/liblzma/lzma/fastpos.h b/src/liblzma/lzma/fastpos.h
new file mode 100644
index 0000000..cba442c
--- /dev/null
+++ b/src/liblzma/lzma/fastpos.h
@@ -0,0 +1,141 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file fastpos.h
+/// \brief Kind of two-bit version of bit scan reverse
+///
+// Authors: Igor Pavlov
+// Lasse Collin
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#ifndef LZMA_FASTPOS_H
+#define LZMA_FASTPOS_H
+
+// LZMA encodes match distances by storing the highest two bits using
+// a six-bit value [0, 63], and then the missing lower bits.
+// Dictionary size is also stored using this encoding in the .xz
+// file format header.
+//
+// fastpos.h provides a way to quickly find out the correct six-bit
+// values. The following table gives some examples of this encoding:
+//
+// dist return
+// 0 0
+// 1 1
+// 2 2
+// 3 3
+// 4 4
+// 5 4
+// 6 5
+// 7 5
+// 8 6
+// 11 6
+// 12 7
+// ... ...
+// 15 7
+// 16 8
+// 17 8
+// ... ...
+// 23 8
+// 24 9
+// 25 9
+// ... ...
+//
+//
+// Provided functions or macros
+// ----------------------------
+//
+// get_dist_slot(dist) is the basic version. get_dist_slot_2(dist)
+// assumes that dist >= FULL_DISTANCES, thus the result is at least
+// FULL_DISTANCES_BITS * 2. Using get_dist_slot(dist) instead of
+// get_dist_slot_2(dist) would give the same result, but get_dist_slot_2(dist)
+// should be tiny bit faster due to the assumption being made.
+//
+//
+// Size vs. speed
+// --------------
+//
+// With some CPUs that have fast BSR (bit scan reverse) instruction, the
+// size optimized version is slightly faster than the bigger table based
+// approach. Such CPUs include Intel Pentium Pro, Pentium II, Pentium III
+// and Core 2 (possibly others). AMD K7 seems to have slower BSR, but that
+// would still have speed roughly comparable to the table version. Older
+// x86 CPUs like the original Pentium have very slow BSR; on those systems
+// the table version is a lot faster.
+//
+// On some CPUs, the table version is a lot faster when using position
+// dependent code, but with position independent code the size optimized
+// version is slightly faster. This occurs at least on 32-bit SPARC (no
+// ASM optimizations).
+//
+// I'm making the table version the default, because that has good speed
+// on all systems I have tried. The size optimized version is sometimes
+// slightly faster, but sometimes it is a lot slower.
+
+#ifdef HAVE_SMALL
+# define get_dist_slot(dist) \
+ ((dist) <= 4 ? (dist) : get_dist_slot_2(dist))
+
+static inline uint32_t
+get_dist_slot_2(uint32_t dist)
+{
+ const uint32_t i = bsr32(dist);
+ return (i + i) + ((dist >> (i - 1)) & 1);
+}
+
+
+#else
+
+#define FASTPOS_BITS 13
+
+extern const uint8_t lzma_fastpos[1 << FASTPOS_BITS];
+
+
+#define fastpos_shift(extra, n) \
+ ((extra) + (n) * (FASTPOS_BITS - 1))
+
+#define fastpos_limit(extra, n) \
+ (UINT32_C(1) << (FASTPOS_BITS + fastpos_shift(extra, n)))
+
+#define fastpos_result(dist, extra, n) \
+ (uint32_t)(lzma_fastpos[(dist) >> fastpos_shift(extra, n)]) \
+ + 2 * fastpos_shift(extra, n)
+
+
+static inline uint32_t
+get_dist_slot(uint32_t dist)
+{
+ // If it is small enough, we can pick the result directly from
+ // the precalculated table.
+ if (dist < fastpos_limit(0, 0))
+ return lzma_fastpos[dist];
+
+ if (dist < fastpos_limit(0, 1))
+ return fastpos_result(dist, 0, 1);
+
+ return fastpos_result(dist, 0, 2);
+}
+
+
+#ifdef FULL_DISTANCES_BITS
+static inline uint32_t
+get_dist_slot_2(uint32_t dist)
+{
+ assert(dist >= FULL_DISTANCES);
+
+ if (dist < fastpos_limit(FULL_DISTANCES_BITS - 1, 0))
+ return fastpos_result(dist, FULL_DISTANCES_BITS - 1, 0);
+
+ if (dist < fastpos_limit(FULL_DISTANCES_BITS - 1, 1))
+ return fastpos_result(dist, FULL_DISTANCES_BITS - 1, 1);
+
+ return fastpos_result(dist, FULL_DISTANCES_BITS - 1, 2);
+}
+#endif
+
+#endif
+
+#endif
diff --git a/src/liblzma/lzma/fastpos_table.c b/src/liblzma/lzma/fastpos_table.c
new file mode 100644
index 0000000..6a3ceac
--- /dev/null
+++ b/src/liblzma/lzma/fastpos_table.c
@@ -0,0 +1,519 @@
+/* This file has been automatically generated by fastpos_tablegen.c. */
+
+#include "common.h"
+#include "fastpos.h"
+
+const uint8_t lzma_fastpos[1 << FASTPOS_BITS] = {
+ 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,
+ 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+ 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
+ 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
+ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
+ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
+ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
+ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
+ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
+ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
+ 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
+ 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
+ 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
+ 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
+ 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
+ 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
+ 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
+ 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
+ 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
+ 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
+ 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
+ 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
+ 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
+ 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
+ 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
+ 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
+ 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
+ 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
+ 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
+ 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
+ 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
+ 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
+ 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
+ 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
+ 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
+ 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
+ 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
+ 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
+ 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
+ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25
+};
diff --git a/src/liblzma/lzma/fastpos_tablegen.c b/src/liblzma/lzma/fastpos_tablegen.c
new file mode 100644
index 0000000..d4484c8
--- /dev/null
+++ b/src/liblzma/lzma/fastpos_tablegen.c
@@ -0,0 +1,55 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file fastpos_tablegen.c
+/// \brief Generates the lzma_fastpos[] lookup table
+///
+// Authors: Igor Pavlov
+// Lasse Collin
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#include <inttypes.h>
+#include <stdio.h>
+#include "fastpos.h"
+
+
+int
+main(void)
+{
+ uint8_t fastpos[1 << FASTPOS_BITS];
+
+ const uint8_t fast_slots = 2 * FASTPOS_BITS;
+ uint32_t c = 2;
+
+ fastpos[0] = 0;
+ fastpos[1] = 1;
+
+ for (uint8_t slot_fast = 2; slot_fast < fast_slots; ++slot_fast) {
+ const uint32_t k = 1 << ((slot_fast >> 1) - 1);
+ for (uint32_t j = 0; j < k; ++j, ++c)
+ fastpos[c] = slot_fast;
+ }
+
+ printf("/* This file has been automatically generated "
+ "by fastpos_tablegen.c. */\n\n"
+ "#include \"common.h\"\n"
+ "#include \"fastpos.h\"\n\n"
+ "const uint8_t lzma_fastpos[1 << FASTPOS_BITS] = {");
+
+ for (size_t i = 0; i < (1 << FASTPOS_BITS); ++i) {
+ if (i % 16 == 0)
+ printf("\n\t");
+
+ printf("%3u", (unsigned int)(fastpos[i]));
+
+ if (i != (1 << FASTPOS_BITS) - 1)
+ printf(",");
+ }
+
+ printf("\n};\n");
+
+ return 0;
+}
diff --git a/src/liblzma/lzma/lzma2_decoder.c b/src/liblzma/lzma/lzma2_decoder.c
new file mode 100644
index 0000000..567df49
--- /dev/null
+++ b/src/liblzma/lzma/lzma2_decoder.c
@@ -0,0 +1,311 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file lzma2_decoder.c
+/// \brief LZMA2 decoder
+///
+// Authors: Igor Pavlov
+// Lasse Collin
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#include "lzma2_decoder.h"
+#include "lz_decoder.h"
+#include "lzma_decoder.h"
+
+
+typedef struct {
+ enum sequence {
+ SEQ_CONTROL,
+ SEQ_UNCOMPRESSED_1,
+ SEQ_UNCOMPRESSED_2,
+ SEQ_COMPRESSED_0,
+ SEQ_COMPRESSED_1,
+ SEQ_PROPERTIES,
+ SEQ_LZMA,
+ SEQ_COPY,
+ } sequence;
+
+ /// Sequence after the size fields have been decoded.
+ enum sequence next_sequence;
+
+ /// LZMA decoder
+ lzma_lz_decoder lzma;
+
+ /// Uncompressed size of LZMA chunk
+ size_t uncompressed_size;
+
+ /// Compressed size of the chunk (naturally equals to uncompressed
+ /// size of uncompressed chunk)
+ size_t compressed_size;
+
+ /// True if properties are needed. This is false before the
+ /// first LZMA chunk.
+ bool need_properties;
+
+ /// True if dictionary reset is needed. This is false before the
+ /// first chunk (LZMA or uncompressed).
+ bool need_dictionary_reset;
+
+ lzma_options_lzma options;
+} lzma_lzma2_coder;
+
+
+static lzma_ret
+lzma2_decode(void *coder_ptr, lzma_dict *restrict dict,
+ const uint8_t *restrict in, size_t *restrict in_pos,
+ size_t in_size)
+{
+ lzma_lzma2_coder *restrict coder = coder_ptr;
+
+ // With SEQ_LZMA it is possible that no new input is needed to do
+ // some progress. The rest of the sequences assume that there is
+ // at least one byte of input.
+ while (*in_pos < in_size || coder->sequence == SEQ_LZMA)
+ switch (coder->sequence) {
+ case SEQ_CONTROL: {
+ const uint32_t control = in[*in_pos];
+ ++*in_pos;
+
+ // End marker
+ if (control == 0x00)
+ return LZMA_STREAM_END;
+
+ if (control >= 0xE0 || control == 1) {
+ // Dictionary reset implies that next LZMA chunk has
+ // to set new properties.
+ coder->need_properties = true;
+ coder->need_dictionary_reset = true;
+ } else if (coder->need_dictionary_reset) {
+ return LZMA_DATA_ERROR;
+ }
+
+ if (control >= 0x80) {
+ // LZMA chunk. The highest five bits of the
+ // uncompressed size are taken from the control byte.
+ coder->uncompressed_size = (control & 0x1F) << 16;
+ coder->sequence = SEQ_UNCOMPRESSED_1;
+
+ // See if there are new properties or if we need to
+ // reset the state.
+ if (control >= 0xC0) {
+ // When there are new properties, state reset
+ // is done at SEQ_PROPERTIES.
+ coder->need_properties = false;
+ coder->next_sequence = SEQ_PROPERTIES;
+
+ } else if (coder->need_properties) {
+ return LZMA_DATA_ERROR;
+
+ } else {
+ coder->next_sequence = SEQ_LZMA;
+
+ // If only state reset is wanted with old
+ // properties, do the resetting here for
+ // simplicity.
+ if (control >= 0xA0)
+ coder->lzma.reset(coder->lzma.coder,
+ &coder->options);
+ }
+ } else {
+ // Invalid control values
+ if (control > 2)
+ return LZMA_DATA_ERROR;
+
+ // It's uncompressed chunk
+ coder->sequence = SEQ_COMPRESSED_0;
+ coder->next_sequence = SEQ_COPY;
+ }
+
+ if (coder->need_dictionary_reset) {
+ // Finish the dictionary reset and let the caller
+ // flush the dictionary to the actual output buffer.
+ coder->need_dictionary_reset = false;
+ dict_reset(dict);
+ return LZMA_OK;
+ }
+
+ break;
+ }
+
+ case SEQ_UNCOMPRESSED_1:
+ coder->uncompressed_size += (uint32_t)(in[(*in_pos)++]) << 8;
+ coder->sequence = SEQ_UNCOMPRESSED_2;
+ break;
+
+ case SEQ_UNCOMPRESSED_2:
+ coder->uncompressed_size += in[(*in_pos)++] + 1U;
+ coder->sequence = SEQ_COMPRESSED_0;
+ coder->lzma.set_uncompressed(coder->lzma.coder,
+ coder->uncompressed_size, false);
+ break;
+
+ case SEQ_COMPRESSED_0:
+ coder->compressed_size = (uint32_t)(in[(*in_pos)++]) << 8;
+ coder->sequence = SEQ_COMPRESSED_1;
+ break;
+
+ case SEQ_COMPRESSED_1:
+ coder->compressed_size += in[(*in_pos)++] + 1U;
+ coder->sequence = coder->next_sequence;
+ break;
+
+ case SEQ_PROPERTIES:
+ if (lzma_lzma_lclppb_decode(&coder->options, in[(*in_pos)++]))
+ return LZMA_DATA_ERROR;
+
+ coder->lzma.reset(coder->lzma.coder, &coder->options);
+
+ coder->sequence = SEQ_LZMA;
+ break;
+
+ case SEQ_LZMA: {
+ // Store the start offset so that we can update
+ // coder->compressed_size later.
+ const size_t in_start = *in_pos;
+
+ // Decode from in[] to *dict.
+ const lzma_ret ret = coder->lzma.code(coder->lzma.coder,
+ dict, in, in_pos, in_size);
+
+ // Validate and update coder->compressed_size.
+ const size_t in_used = *in_pos - in_start;
+ if (in_used > coder->compressed_size)
+ return LZMA_DATA_ERROR;
+
+ coder->compressed_size -= in_used;
+
+ // Return if we didn't finish the chunk, or an error occurred.
+ if (ret != LZMA_STREAM_END)
+ return ret;
+
+ // The LZMA decoder must have consumed the whole chunk now.
+ // We don't need to worry about uncompressed size since it
+ // is checked by the LZMA decoder.
+ if (coder->compressed_size != 0)
+ return LZMA_DATA_ERROR;
+
+ coder->sequence = SEQ_CONTROL;
+ break;
+ }
+
+ case SEQ_COPY: {
+ // Copy from input to the dictionary as is.
+ dict_write(dict, in, in_pos, in_size, &coder->compressed_size);
+ if (coder->compressed_size != 0)
+ return LZMA_OK;
+
+ coder->sequence = SEQ_CONTROL;
+ break;
+ }
+
+ default:
+ assert(0);
+ return LZMA_PROG_ERROR;
+ }
+
+ return LZMA_OK;
+}
+
+
+static void
+lzma2_decoder_end(void *coder_ptr, const lzma_allocator *allocator)
+{
+ lzma_lzma2_coder *coder = coder_ptr;
+
+ assert(coder->lzma.end == NULL);
+ lzma_free(coder->lzma.coder, allocator);
+
+ lzma_free(coder, allocator);
+
+ return;
+}
+
+
+static lzma_ret
+lzma2_decoder_init(lzma_lz_decoder *lz, const lzma_allocator *allocator,
+ lzma_vli id lzma_attribute((__unused__)), const void *opt,
+ lzma_lz_options *lz_options)
+{
+ lzma_lzma2_coder *coder = lz->coder;
+ if (coder == NULL) {
+ coder = lzma_alloc(sizeof(lzma_lzma2_coder), allocator);
+ if (coder == NULL)
+ return LZMA_MEM_ERROR;
+
+ lz->coder = coder;
+ lz->code = &lzma2_decode;
+ lz->end = &lzma2_decoder_end;
+
+ coder->lzma = LZMA_LZ_DECODER_INIT;
+ }
+
+ const lzma_options_lzma *options = opt;
+
+ coder->sequence = SEQ_CONTROL;
+ coder->need_properties = true;
+ coder->need_dictionary_reset = options->preset_dict == NULL
+ || options->preset_dict_size == 0;
+
+ return lzma_lzma_decoder_create(&coder->lzma,
+ allocator, options, lz_options);
+}
+
+
+extern lzma_ret
+lzma_lzma2_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
+ const lzma_filter_info *filters)
+{
+ // LZMA2 can only be the last filter in the chain. This is enforced
+ // by the raw_decoder initialization.
+ assert(filters[1].init == NULL);
+
+ return lzma_lz_decoder_init(next, allocator, filters,
+ &lzma2_decoder_init);
+}
+
+
+extern uint64_t
+lzma_lzma2_decoder_memusage(const void *options)
+{
+ return sizeof(lzma_lzma2_coder)
+ + lzma_lzma_decoder_memusage_nocheck(options);
+}
+
+
+extern lzma_ret
+lzma_lzma2_props_decode(void **options, const lzma_allocator *allocator,
+ const uint8_t *props, size_t props_size)
+{
+ if (props_size != 1)
+ return LZMA_OPTIONS_ERROR;
+
+ // Check that reserved bits are unset.
+ if (props[0] & 0xC0)
+ return LZMA_OPTIONS_ERROR;
+
+ // Decode the dictionary size.
+ if (props[0] > 40)
+ return LZMA_OPTIONS_ERROR;
+
+ lzma_options_lzma *opt = lzma_alloc(
+ sizeof(lzma_options_lzma), allocator);
+ if (opt == NULL)
+ return LZMA_MEM_ERROR;
+
+ if (props[0] == 40) {
+ opt->dict_size = UINT32_MAX;
+ } else {
+ opt->dict_size = 2 | (props[0] & 1U);
+ opt->dict_size <<= props[0] / 2U + 11;
+ }
+
+ opt->preset_dict = NULL;
+ opt->preset_dict_size = 0;
+
+ *options = opt;
+
+ return LZMA_OK;
+}
diff --git a/src/liblzma/lzma/lzma2_decoder.h b/src/liblzma/lzma/lzma2_decoder.h
new file mode 100644
index 0000000..ef2dcbf
--- /dev/null
+++ b/src/liblzma/lzma/lzma2_decoder.h
@@ -0,0 +1,29 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file lzma2_decoder.h
+/// \brief LZMA2 decoder
+///
+// Authors: Igor Pavlov
+// Lasse Collin
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#ifndef LZMA_LZMA2_DECODER_H
+#define LZMA_LZMA2_DECODER_H
+
+#include "common.h"
+
+extern lzma_ret lzma_lzma2_decoder_init(lzma_next_coder *next,
+ const lzma_allocator *allocator,
+ const lzma_filter_info *filters);
+
+extern uint64_t lzma_lzma2_decoder_memusage(const void *options);
+
+extern lzma_ret lzma_lzma2_props_decode(
+ void **options, const lzma_allocator *allocator,
+ const uint8_t *props, size_t props_size);
+
+#endif
diff --git a/src/liblzma/lzma/lzma2_encoder.c b/src/liblzma/lzma/lzma2_encoder.c
new file mode 100644
index 0000000..4b6b231
--- /dev/null
+++ b/src/liblzma/lzma/lzma2_encoder.c
@@ -0,0 +1,414 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file lzma2_encoder.c
+/// \brief LZMA2 encoder
+///
+// Authors: Igor Pavlov
+// Lasse Collin
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#include "lz_encoder.h"
+#include "lzma_encoder.h"
+#include "fastpos.h"
+#include "lzma2_encoder.h"
+
+
+typedef struct {
+ enum {
+ SEQ_INIT,
+ SEQ_LZMA_ENCODE,
+ SEQ_LZMA_COPY,
+ SEQ_UNCOMPRESSED_HEADER,
+ SEQ_UNCOMPRESSED_COPY,
+ } sequence;
+
+ /// LZMA encoder
+ void *lzma;
+
+ /// LZMA options currently in use.
+ lzma_options_lzma opt_cur;
+
+ bool need_properties;
+ bool need_state_reset;
+ bool need_dictionary_reset;
+
+ /// Uncompressed size of a chunk
+ size_t uncompressed_size;
+
+ /// Compressed size of a chunk (excluding headers); this is also used
+ /// to indicate the end of buf[] in SEQ_LZMA_COPY.
+ size_t compressed_size;
+
+ /// Read position in buf[]
+ size_t buf_pos;
+
+ /// Buffer to hold the chunk header and LZMA compressed data
+ uint8_t buf[LZMA2_HEADER_MAX + LZMA2_CHUNK_MAX];
+} lzma_lzma2_coder;
+
+
+static void
+lzma2_header_lzma(lzma_lzma2_coder *coder)
+{
+ assert(coder->uncompressed_size > 0);
+ assert(coder->uncompressed_size <= LZMA2_UNCOMPRESSED_MAX);
+ assert(coder->compressed_size > 0);
+ assert(coder->compressed_size <= LZMA2_CHUNK_MAX);
+
+ size_t pos;
+
+ if (coder->need_properties) {
+ pos = 0;
+
+ if (coder->need_dictionary_reset)
+ coder->buf[pos] = 0x80 + (3 << 5);
+ else
+ coder->buf[pos] = 0x80 + (2 << 5);
+ } else {
+ pos = 1;
+
+ if (coder->need_state_reset)
+ coder->buf[pos] = 0x80 + (1 << 5);
+ else
+ coder->buf[pos] = 0x80;
+ }
+
+ // Set the start position for copying.
+ coder->buf_pos = pos;
+
+ // Uncompressed size
+ size_t size = coder->uncompressed_size - 1;
+ coder->buf[pos++] += size >> 16;
+ coder->buf[pos++] = (size >> 8) & 0xFF;
+ coder->buf[pos++] = size & 0xFF;
+
+ // Compressed size
+ size = coder->compressed_size - 1;
+ coder->buf[pos++] = size >> 8;
+ coder->buf[pos++] = size & 0xFF;
+
+ // Properties, if needed
+ if (coder->need_properties)
+ lzma_lzma_lclppb_encode(&coder->opt_cur, coder->buf + pos);
+
+ coder->need_properties = false;
+ coder->need_state_reset = false;
+ coder->need_dictionary_reset = false;
+
+ // The copying code uses coder->compressed_size to indicate the end
+ // of coder->buf[], so we need add the maximum size of the header here.
+ coder->compressed_size += LZMA2_HEADER_MAX;
+
+ return;
+}
+
+
+static void
+lzma2_header_uncompressed(lzma_lzma2_coder *coder)
+{
+ assert(coder->uncompressed_size > 0);
+ assert(coder->uncompressed_size <= LZMA2_CHUNK_MAX);
+
+ // If this is the first chunk, we need to include dictionary
+ // reset indicator.
+ if (coder->need_dictionary_reset)
+ coder->buf[0] = 1;
+ else
+ coder->buf[0] = 2;
+
+ coder->need_dictionary_reset = false;
+
+ // "Compressed" size
+ coder->buf[1] = (coder->uncompressed_size - 1) >> 8;
+ coder->buf[2] = (coder->uncompressed_size - 1) & 0xFF;
+
+ // Set the start position for copying.
+ coder->buf_pos = 0;
+ return;
+}
+
+
+static lzma_ret
+lzma2_encode(void *coder_ptr, lzma_mf *restrict mf,
+ uint8_t *restrict out, size_t *restrict out_pos,
+ size_t out_size)
+{
+ lzma_lzma2_coder *restrict coder = coder_ptr;
+
+ while (*out_pos < out_size)
+ switch (coder->sequence) {
+ case SEQ_INIT:
+ // If there's no input left and we are flushing or finishing,
+ // don't start a new chunk.
+ if (mf_unencoded(mf) == 0) {
+ // Write end of payload marker if finishing.
+ if (mf->action == LZMA_FINISH)
+ out[(*out_pos)++] = 0;
+
+ return mf->action == LZMA_RUN
+ ? LZMA_OK : LZMA_STREAM_END;
+ }
+
+ if (coder->need_state_reset)
+ return_if_error(lzma_lzma_encoder_reset(
+ coder->lzma, &coder->opt_cur));
+
+ coder->uncompressed_size = 0;
+ coder->compressed_size = 0;
+ coder->sequence = SEQ_LZMA_ENCODE;
+
+ // Fall through
+
+ case SEQ_LZMA_ENCODE: {
+ // Calculate how much more uncompressed data this chunk
+ // could accept.
+ const uint32_t left = LZMA2_UNCOMPRESSED_MAX
+ - coder->uncompressed_size;
+ uint32_t limit;
+
+ if (left < mf->match_len_max) {
+ // Must flush immediately since the next LZMA symbol
+ // could make the uncompressed size of the chunk too
+ // big.
+ limit = 0;
+ } else {
+ // Calculate maximum read_limit that is OK from point
+ // of view of LZMA2 chunk size.
+ limit = mf->read_pos - mf->read_ahead
+ + left - mf->match_len_max;
+ }
+
+ // Save the start position so that we can update
+ // coder->uncompressed_size.
+ const uint32_t read_start = mf->read_pos - mf->read_ahead;
+
+ // Call the LZMA encoder until the chunk is finished.
+ const lzma_ret ret = lzma_lzma_encode(coder->lzma, mf,
+ coder->buf + LZMA2_HEADER_MAX,
+ &coder->compressed_size,
+ LZMA2_CHUNK_MAX, limit);
+
+ coder->uncompressed_size += mf->read_pos - mf->read_ahead
+ - read_start;
+
+ assert(coder->compressed_size <= LZMA2_CHUNK_MAX);
+ assert(coder->uncompressed_size <= LZMA2_UNCOMPRESSED_MAX);
+
+ if (ret != LZMA_STREAM_END)
+ return LZMA_OK;
+
+ // See if the chunk compressed. If it didn't, we encode it
+ // as uncompressed chunk. This saves a few bytes of space
+ // and makes decoding faster.
+ if (coder->compressed_size >= coder->uncompressed_size) {
+ coder->uncompressed_size += mf->read_ahead;
+ assert(coder->uncompressed_size
+ <= LZMA2_UNCOMPRESSED_MAX);
+ mf->read_ahead = 0;
+ lzma2_header_uncompressed(coder);
+ coder->need_state_reset = true;
+ coder->sequence = SEQ_UNCOMPRESSED_HEADER;
+ break;
+ }
+
+ // The chunk did compress at least by one byte, so we store
+ // the chunk as LZMA.
+ lzma2_header_lzma(coder);
+
+ coder->sequence = SEQ_LZMA_COPY;
+ }
+
+ // Fall through
+
+ case SEQ_LZMA_COPY:
+ // Copy the compressed chunk along its headers to the
+ // output buffer.
+ lzma_bufcpy(coder->buf, &coder->buf_pos,
+ coder->compressed_size,
+ out, out_pos, out_size);
+ if (coder->buf_pos != coder->compressed_size)
+ return LZMA_OK;
+
+ coder->sequence = SEQ_INIT;
+ break;
+
+ case SEQ_UNCOMPRESSED_HEADER:
+ // Copy the three-byte header to indicate uncompressed chunk.
+ lzma_bufcpy(coder->buf, &coder->buf_pos,
+ LZMA2_HEADER_UNCOMPRESSED,
+ out, out_pos, out_size);
+ if (coder->buf_pos != LZMA2_HEADER_UNCOMPRESSED)
+ return LZMA_OK;
+
+ coder->sequence = SEQ_UNCOMPRESSED_COPY;
+
+ // Fall through
+
+ case SEQ_UNCOMPRESSED_COPY:
+ // Copy the uncompressed data as is from the dictionary
+ // to the output buffer.
+ mf_read(mf, out, out_pos, out_size, &coder->uncompressed_size);
+ if (coder->uncompressed_size != 0)
+ return LZMA_OK;
+
+ coder->sequence = SEQ_INIT;
+ break;
+ }
+
+ return LZMA_OK;
+}
+
+
+static void
+lzma2_encoder_end(void *coder_ptr, const lzma_allocator *allocator)
+{
+ lzma_lzma2_coder *coder = coder_ptr;
+ lzma_free(coder->lzma, allocator);
+ lzma_free(coder, allocator);
+ return;
+}
+
+
+static lzma_ret
+lzma2_encoder_options_update(void *coder_ptr, const lzma_filter *filter)
+{
+ lzma_lzma2_coder *coder = coder_ptr;
+
+ // New options can be set only when there is no incomplete chunk.
+ // This is the case at the beginning of the raw stream and right
+ // after LZMA_SYNC_FLUSH.
+ if (filter->options == NULL || coder->sequence != SEQ_INIT)
+ return LZMA_PROG_ERROR;
+
+ // Look if there are new options. At least for now,
+ // only lc/lp/pb can be changed.
+ const lzma_options_lzma *opt = filter->options;
+ if (coder->opt_cur.lc != opt->lc || coder->opt_cur.lp != opt->lp
+ || coder->opt_cur.pb != opt->pb) {
+ // Validate the options.
+ if (opt->lc > LZMA_LCLP_MAX || opt->lp > LZMA_LCLP_MAX
+ || opt->lc + opt->lp > LZMA_LCLP_MAX
+ || opt->pb > LZMA_PB_MAX)
+ return LZMA_OPTIONS_ERROR;
+
+ // The new options will be used when the encoder starts
+ // a new LZMA2 chunk.
+ coder->opt_cur.lc = opt->lc;
+ coder->opt_cur.lp = opt->lp;
+ coder->opt_cur.pb = opt->pb;
+ coder->need_properties = true;
+ coder->need_state_reset = true;
+ }
+
+ return LZMA_OK;
+}
+
+
+static lzma_ret
+lzma2_encoder_init(lzma_lz_encoder *lz, const lzma_allocator *allocator,
+ lzma_vli id lzma_attribute((__unused__)), const void *options,
+ lzma_lz_options *lz_options)
+{
+ if (options == NULL)
+ return LZMA_PROG_ERROR;
+
+ lzma_lzma2_coder *coder = lz->coder;
+ if (coder == NULL) {
+ coder = lzma_alloc(sizeof(lzma_lzma2_coder), allocator);
+ if (coder == NULL)
+ return LZMA_MEM_ERROR;
+
+ lz->coder = coder;
+ lz->code = &lzma2_encode;
+ lz->end = &lzma2_encoder_end;
+ lz->options_update = &lzma2_encoder_options_update;
+
+ coder->lzma = NULL;
+ }
+
+ coder->opt_cur = *(const lzma_options_lzma *)(options);
+
+ coder->sequence = SEQ_INIT;
+ coder->need_properties = true;
+ coder->need_state_reset = false;
+ coder->need_dictionary_reset
+ = coder->opt_cur.preset_dict == NULL
+ || coder->opt_cur.preset_dict_size == 0;
+
+ // Initialize LZMA encoder
+ return_if_error(lzma_lzma_encoder_create(&coder->lzma, allocator,
+ LZMA_FILTER_LZMA2, &coder->opt_cur, lz_options));
+
+ // Make sure that we will always have enough history available in
+ // case we need to use uncompressed chunks. They are used when the
+ // compressed size of a chunk is not smaller than the uncompressed
+ // size, so we need to have at least LZMA2_COMPRESSED_MAX bytes
+ // history available.
+ if (lz_options->before_size + lz_options->dict_size < LZMA2_CHUNK_MAX)
+ lz_options->before_size
+ = LZMA2_CHUNK_MAX - lz_options->dict_size;
+
+ return LZMA_OK;
+}
+
+
+extern lzma_ret
+lzma_lzma2_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
+ const lzma_filter_info *filters)
+{
+ return lzma_lz_encoder_init(
+ next, allocator, filters, &lzma2_encoder_init);
+}
+
+
+extern uint64_t
+lzma_lzma2_encoder_memusage(const void *options)
+{
+ const uint64_t lzma_mem = lzma_lzma_encoder_memusage(options);
+ if (lzma_mem == UINT64_MAX)
+ return UINT64_MAX;
+
+ return sizeof(lzma_lzma2_coder) + lzma_mem;
+}
+
+
+extern lzma_ret
+lzma_lzma2_props_encode(const void *options, uint8_t *out)
+{
+ if (options == NULL)
+ return LZMA_PROG_ERROR;
+
+ const lzma_options_lzma *const opt = options;
+ uint32_t d = my_max(opt->dict_size, LZMA_DICT_SIZE_MIN);
+
+ // Round up to the next 2^n - 1 or 2^n + 2^(n - 1) - 1 depending
+ // on which one is the next:
+ --d;
+ d |= d >> 2;
+ d |= d >> 3;
+ d |= d >> 4;
+ d |= d >> 8;
+ d |= d >> 16;
+
+ // Get the highest two bits using the proper encoding:
+ if (d == UINT32_MAX)
+ out[0] = 40;
+ else
+ out[0] = get_dist_slot(d + 1) - 24;
+
+ return LZMA_OK;
+}
+
+
+extern uint64_t
+lzma_lzma2_block_size(const void *options)
+{
+ const lzma_options_lzma *const opt = options;
+
+ // Use at least 1 MiB to keep compression ratio better.
+ return my_max((uint64_t)(opt->dict_size) * 3, UINT64_C(1) << 20);
+}
diff --git a/src/liblzma/lzma/lzma2_encoder.h b/src/liblzma/lzma/lzma2_encoder.h
new file mode 100644
index 0000000..515f183
--- /dev/null
+++ b/src/liblzma/lzma/lzma2_encoder.h
@@ -0,0 +1,43 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file lzma2_encoder.h
+/// \brief LZMA2 encoder
+///
+// Authors: Igor Pavlov
+// Lasse Collin
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#ifndef LZMA_LZMA2_ENCODER_H
+#define LZMA_LZMA2_ENCODER_H
+
+#include "common.h"
+
+
+/// Maximum number of bytes of actual data per chunk (no headers)
+#define LZMA2_CHUNK_MAX (UINT32_C(1) << 16)
+
+/// Maximum uncompressed size of LZMA chunk (no headers)
+#define LZMA2_UNCOMPRESSED_MAX (UINT32_C(1) << 21)
+
+/// Maximum size of LZMA2 headers
+#define LZMA2_HEADER_MAX 6
+
+/// Size of a header for uncompressed chunk
+#define LZMA2_HEADER_UNCOMPRESSED 3
+
+
+extern lzma_ret lzma_lzma2_encoder_init(
+ lzma_next_coder *next, const lzma_allocator *allocator,
+ const lzma_filter_info *filters);
+
+extern uint64_t lzma_lzma2_encoder_memusage(const void *options);
+
+extern lzma_ret lzma_lzma2_props_encode(const void *options, uint8_t *out);
+
+extern uint64_t lzma_lzma2_block_size(const void *options);
+
+#endif
diff --git a/src/liblzma/lzma/lzma_common.h b/src/liblzma/lzma/lzma_common.h
new file mode 100644
index 0000000..9d040d9
--- /dev/null
+++ b/src/liblzma/lzma/lzma_common.h
@@ -0,0 +1,225 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file lzma_common.h
+/// \brief Private definitions common to LZMA encoder and decoder
+///
+// Authors: Igor Pavlov
+// Lasse Collin
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#ifndef LZMA_LZMA_COMMON_H
+#define LZMA_LZMA_COMMON_H
+
+#include "common.h"
+#include "range_common.h"
+
+
+///////////////////
+// Miscellaneous //
+///////////////////
+
+/// Maximum number of position states. A position state is the lowest pos bits
+/// number of bits of the current uncompressed offset. In some places there
+/// are different sets of probabilities for different pos states.
+#define POS_STATES_MAX (1 << LZMA_PB_MAX)
+
+
+/// Validates lc, lp, and pb.
+static inline bool
+is_lclppb_valid(const lzma_options_lzma *options)
+{
+ return options->lc <= LZMA_LCLP_MAX && options->lp <= LZMA_LCLP_MAX
+ && options->lc + options->lp <= LZMA_LCLP_MAX
+ && options->pb <= LZMA_PB_MAX;
+}
+
+
+///////////
+// State //
+///////////
+
+/// This enum is used to track which events have occurred most recently and
+/// in which order. This information is used to predict the next event.
+///
+/// Events:
+/// - Literal: One 8-bit byte
+/// - Match: Repeat a chunk of data at some distance
+/// - Long repeat: Multi-byte match at a recently seen distance
+/// - Short repeat: One-byte repeat at a recently seen distance
+///
+/// The event names are in from STATE_oldest_older_previous. REP means
+/// either short or long repeated match, and NONLIT means any non-literal.
+typedef enum {
+ STATE_LIT_LIT,
+ STATE_MATCH_LIT_LIT,
+ STATE_REP_LIT_LIT,
+ STATE_SHORTREP_LIT_LIT,
+ STATE_MATCH_LIT,
+ STATE_REP_LIT,
+ STATE_SHORTREP_LIT,
+ STATE_LIT_MATCH,
+ STATE_LIT_LONGREP,
+ STATE_LIT_SHORTREP,
+ STATE_NONLIT_MATCH,
+ STATE_NONLIT_REP,
+} lzma_lzma_state;
+
+
+/// Total number of states
+#define STATES 12
+
+/// The lowest 7 states indicate that the previous state was a literal.
+#define LIT_STATES 7
+
+
+/// Indicate that the latest state was a literal.
+#define update_literal(state) \
+ state = ((state) <= STATE_SHORTREP_LIT_LIT \
+ ? STATE_LIT_LIT \
+ : ((state) <= STATE_LIT_SHORTREP \
+ ? (state) - 3 \
+ : (state) - 6))
+
+/// Indicate that the latest state was a match.
+#define update_match(state) \
+ state = ((state) < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH)
+
+/// Indicate that the latest state was a long repeated match.
+#define update_long_rep(state) \
+ state = ((state) < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP)
+
+/// Indicate that the latest state was a short match.
+#define update_short_rep(state) \
+ state = ((state) < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP)
+
+/// Test if the previous state was a literal.
+#define is_literal_state(state) \
+ ((state) < LIT_STATES)
+
+
+/////////////
+// Literal //
+/////////////
+
+/// Each literal coder is divided in three sections:
+/// - 0x001-0x0FF: Without match byte
+/// - 0x101-0x1FF: With match byte; match bit is 0
+/// - 0x201-0x2FF: With match byte; match bit is 1
+///
+/// Match byte is used when the previous LZMA symbol was something else than
+/// a literal (that is, it was some kind of match).
+#define LITERAL_CODER_SIZE 0x300
+
+/// Maximum number of literal coders
+#define LITERAL_CODERS_MAX (1 << LZMA_LCLP_MAX)
+
+/// Locate the literal coder for the next literal byte. The choice depends on
+/// - the lowest literal_pos_bits bits of the position of the current
+/// byte; and
+/// - the highest literal_context_bits bits of the previous byte.
+#define literal_subcoder(probs, lc, lp_mask, pos, prev_byte) \
+ ((probs)[(((pos) & (lp_mask)) << (lc)) \
+ + ((uint32_t)(prev_byte) >> (8U - (lc)))])
+
+
+static inline void
+literal_init(probability (*probs)[LITERAL_CODER_SIZE],
+ uint32_t lc, uint32_t lp)
+{
+ assert(lc + lp <= LZMA_LCLP_MAX);
+
+ const uint32_t coders = 1U << (lc + lp);
+
+ for (uint32_t i = 0; i < coders; ++i)
+ for (uint32_t j = 0; j < LITERAL_CODER_SIZE; ++j)
+ bit_reset(probs[i][j]);
+
+ return;
+}
+
+
+//////////////////
+// Match length //
+//////////////////
+
+// Minimum length of a match is two bytes.
+#define MATCH_LEN_MIN 2
+
+// Match length is encoded with 4, 5, or 10 bits.
+//
+// Length Bits
+// 2-9 4 = Choice=0 + 3 bits
+// 10-17 5 = Choice=1 + Choice2=0 + 3 bits
+// 18-273 10 = Choice=1 + Choice2=1 + 8 bits
+#define LEN_LOW_BITS 3
+#define LEN_LOW_SYMBOLS (1 << LEN_LOW_BITS)
+#define LEN_MID_BITS 3
+#define LEN_MID_SYMBOLS (1 << LEN_MID_BITS)
+#define LEN_HIGH_BITS 8
+#define LEN_HIGH_SYMBOLS (1 << LEN_HIGH_BITS)
+#define LEN_SYMBOLS (LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS + LEN_HIGH_SYMBOLS)
+
+// Maximum length of a match is 273 which is a result of the encoding
+// described above.
+#define MATCH_LEN_MAX (MATCH_LEN_MIN + LEN_SYMBOLS - 1)
+
+
+////////////////////
+// Match distance //
+////////////////////
+
+// Different sets of probabilities are used for match distances that have very
+// short match length: Lengths of 2, 3, and 4 bytes have a separate set of
+// probabilities for each length. The matches with longer length use a shared
+// set of probabilities.
+#define DIST_STATES 4
+
+// Macro to get the index of the appropriate probability array.
+#define get_dist_state(len) \
+ ((len) < DIST_STATES + MATCH_LEN_MIN \
+ ? (len) - MATCH_LEN_MIN \
+ : DIST_STATES - 1)
+
+// The highest two bits of a match distance (distance slot) are encoded
+// using six bits. See fastpos.h for more explanation.
+#define DIST_SLOT_BITS 6
+#define DIST_SLOTS (1 << DIST_SLOT_BITS)
+
+// Match distances up to 127 are fully encoded using probabilities. Since
+// the highest two bits (distance slot) are always encoded using six bits,
+// the distances 0-3 don't need any additional bits to encode, since the
+// distance slot itself is the same as the actual distance. DIST_MODEL_START
+// indicates the first distance slot where at least one additional bit is
+// needed.
+#define DIST_MODEL_START 4
+
+// Match distances greater than 127 are encoded in three pieces:
+// - distance slot: the highest two bits
+// - direct bits: 2-26 bits below the highest two bits
+// - alignment bits: four lowest bits
+//
+// Direct bits don't use any probabilities.
+//
+// The distance slot value of 14 is for distances 128-191 (see the table in
+// fastpos.h to understand why).
+#define DIST_MODEL_END 14
+
+// Distance slots that indicate a distance <= 127.
+#define FULL_DISTANCES_BITS (DIST_MODEL_END / 2)
+#define FULL_DISTANCES (1 << FULL_DISTANCES_BITS)
+
+// For match distances greater than 127, only the highest two bits and the
+// lowest four bits (alignment) is encoded using probabilities.
+#define ALIGN_BITS 4
+#define ALIGN_SIZE (1 << ALIGN_BITS)
+#define ALIGN_MASK (ALIGN_SIZE - 1)
+
+// LZMA remembers the four most recent match distances. Reusing these distances
+// tends to take less space than re-encoding the actual distance value.
+#define REPS 4
+
+#endif
diff --git a/src/liblzma/lzma/lzma_decoder.c b/src/liblzma/lzma/lzma_decoder.c
new file mode 100644
index 0000000..26c148a
--- /dev/null
+++ b/src/liblzma/lzma/lzma_decoder.c
@@ -0,0 +1,1133 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file lzma_decoder.c
+/// \brief LZMA decoder
+///
+// Authors: Igor Pavlov
+// Lasse Collin
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#include "lz_decoder.h"
+#include "lzma_common.h"
+#include "lzma_decoder.h"
+#include "range_decoder.h"
+
+// The macros unroll loops with switch statements.
+// Silence warnings about missing fall-through comments.
+#if TUKLIB_GNUC_REQ(7, 0)
+# pragma GCC diagnostic ignored "-Wimplicit-fallthrough"
+#endif
+
+
+#ifdef HAVE_SMALL
+
+// Macros for (somewhat) size-optimized code.
+#define seq_4(seq) seq
+
+#define seq_6(seq) seq
+
+#define seq_8(seq) seq
+
+#define seq_len(seq) \
+ seq ## _CHOICE, \
+ seq ## _CHOICE2, \
+ seq ## _BITTREE
+
+#define len_decode(target, ld, pos_state, seq) \
+do { \
+case seq ## _CHOICE: \
+ rc_if_0(ld.choice, seq ## _CHOICE) { \
+ rc_update_0(ld.choice); \
+ probs = ld.low[pos_state];\
+ limit = LEN_LOW_SYMBOLS; \
+ target = MATCH_LEN_MIN; \
+ } else { \
+ rc_update_1(ld.choice); \
+case seq ## _CHOICE2: \
+ rc_if_0(ld.choice2, seq ## _CHOICE2) { \
+ rc_update_0(ld.choice2); \
+ probs = ld.mid[pos_state]; \
+ limit = LEN_MID_SYMBOLS; \
+ target = MATCH_LEN_MIN + LEN_LOW_SYMBOLS; \
+ } else { \
+ rc_update_1(ld.choice2); \
+ probs = ld.high; \
+ limit = LEN_HIGH_SYMBOLS; \
+ target = MATCH_LEN_MIN + LEN_LOW_SYMBOLS \
+ + LEN_MID_SYMBOLS; \
+ } \
+ } \
+ symbol = 1; \
+case seq ## _BITTREE: \
+ do { \
+ rc_bit(probs[symbol], , , seq ## _BITTREE); \
+ } while (symbol < limit); \
+ target += symbol - limit; \
+} while (0)
+
+#else // HAVE_SMALL
+
+// Unrolled versions
+#define seq_4(seq) \
+ seq ## 0, \
+ seq ## 1, \
+ seq ## 2, \
+ seq ## 3
+
+#define seq_6(seq) \
+ seq ## 0, \
+ seq ## 1, \
+ seq ## 2, \
+ seq ## 3, \
+ seq ## 4, \
+ seq ## 5
+
+#define seq_8(seq) \
+ seq ## 0, \
+ seq ## 1, \
+ seq ## 2, \
+ seq ## 3, \
+ seq ## 4, \
+ seq ## 5, \
+ seq ## 6, \
+ seq ## 7
+
+#define seq_len(seq) \
+ seq ## _CHOICE, \
+ seq ## _LOW0, \
+ seq ## _LOW1, \
+ seq ## _LOW2, \
+ seq ## _CHOICE2, \
+ seq ## _MID0, \
+ seq ## _MID1, \
+ seq ## _MID2, \
+ seq ## _HIGH0, \
+ seq ## _HIGH1, \
+ seq ## _HIGH2, \
+ seq ## _HIGH3, \
+ seq ## _HIGH4, \
+ seq ## _HIGH5, \
+ seq ## _HIGH6, \
+ seq ## _HIGH7
+
+#define len_decode(target, ld, pos_state, seq) \
+do { \
+ symbol = 1; \
+case seq ## _CHOICE: \
+ rc_if_0(ld.choice, seq ## _CHOICE) { \
+ rc_update_0(ld.choice); \
+ rc_bit_case(ld.low[pos_state][symbol], , , seq ## _LOW0); \
+ rc_bit_case(ld.low[pos_state][symbol], , , seq ## _LOW1); \
+ rc_bit_case(ld.low[pos_state][symbol], , , seq ## _LOW2); \
+ target = symbol - LEN_LOW_SYMBOLS + MATCH_LEN_MIN; \
+ } else { \
+ rc_update_1(ld.choice); \
+case seq ## _CHOICE2: \
+ rc_if_0(ld.choice2, seq ## _CHOICE2) { \
+ rc_update_0(ld.choice2); \
+ rc_bit_case(ld.mid[pos_state][symbol], , , \
+ seq ## _MID0); \
+ rc_bit_case(ld.mid[pos_state][symbol], , , \
+ seq ## _MID1); \
+ rc_bit_case(ld.mid[pos_state][symbol], , , \
+ seq ## _MID2); \
+ target = symbol - LEN_MID_SYMBOLS \
+ + MATCH_LEN_MIN + LEN_LOW_SYMBOLS; \
+ } else { \
+ rc_update_1(ld.choice2); \
+ rc_bit_case(ld.high[symbol], , , seq ## _HIGH0); \
+ rc_bit_case(ld.high[symbol], , , seq ## _HIGH1); \
+ rc_bit_case(ld.high[symbol], , , seq ## _HIGH2); \
+ rc_bit_case(ld.high[symbol], , , seq ## _HIGH3); \
+ rc_bit_case(ld.high[symbol], , , seq ## _HIGH4); \
+ rc_bit_case(ld.high[symbol], , , seq ## _HIGH5); \
+ rc_bit_case(ld.high[symbol], , , seq ## _HIGH6); \
+ rc_bit_case(ld.high[symbol], , , seq ## _HIGH7); \
+ target = symbol - LEN_HIGH_SYMBOLS \
+ + MATCH_LEN_MIN \
+ + LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; \
+ } \
+ } \
+} while (0)
+
+#endif // HAVE_SMALL
+
+
+/// Length decoder probabilities; see comments in lzma_common.h.
+typedef struct {
+ probability choice;
+ probability choice2;
+ probability low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
+ probability mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
+ probability high[LEN_HIGH_SYMBOLS];
+} lzma_length_decoder;
+
+
+typedef struct {
+ ///////////////////
+ // Probabilities //
+ ///////////////////
+
+ /// Literals; see comments in lzma_common.h.
+ probability literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
+
+ /// If 1, it's a match. Otherwise it's a single 8-bit literal.
+ probability is_match[STATES][POS_STATES_MAX];
+
+ /// If 1, it's a repeated match. The distance is one of rep0 .. rep3.
+ probability is_rep[STATES];
+
+ /// If 0, distance of a repeated match is rep0.
+ /// Otherwise check is_rep1.
+ probability is_rep0[STATES];
+
+ /// If 0, distance of a repeated match is rep1.
+ /// Otherwise check is_rep2.
+ probability is_rep1[STATES];
+
+ /// If 0, distance of a repeated match is rep2. Otherwise it is rep3.
+ probability is_rep2[STATES];
+
+ /// If 1, the repeated match has length of one byte. Otherwise
+ /// the length is decoded from rep_len_decoder.
+ probability is_rep0_long[STATES][POS_STATES_MAX];
+
+ /// Probability tree for the highest two bits of the match distance.
+ /// There is a separate probability tree for match lengths of
+ /// 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
+ probability dist_slot[DIST_STATES][DIST_SLOTS];
+
+ /// Probability trees for additional bits for match distance when the
+ /// distance is in the range [4, 127].
+ probability pos_special[FULL_DISTANCES - DIST_MODEL_END];
+
+ /// Probability tree for the lowest four bits of a match distance
+ /// that is equal to or greater than 128.
+ probability pos_align[ALIGN_SIZE];
+
+ /// Length of a normal match
+ lzma_length_decoder match_len_decoder;
+
+ /// Length of a repeated match
+ lzma_length_decoder rep_len_decoder;
+
+ ///////////////////
+ // Decoder state //
+ ///////////////////
+
+ // Range coder
+ lzma_range_decoder rc;
+
+ // Types of the most recently seen LZMA symbols
+ lzma_lzma_state state;
+
+ uint32_t rep0; ///< Distance of the latest match
+ uint32_t rep1; ///< Distance of second latest match
+ uint32_t rep2; ///< Distance of third latest match
+ uint32_t rep3; ///< Distance of fourth latest match
+
+ uint32_t pos_mask; // (1U << pb) - 1
+ uint32_t literal_context_bits;
+ uint32_t literal_pos_mask;
+
+ /// Uncompressed size as bytes, or LZMA_VLI_UNKNOWN if end of
+ /// payload marker is expected.
+ lzma_vli uncompressed_size;
+
+ /// True if end of payload marker (EOPM) is allowed even when
+ /// uncompressed_size is known; false if EOPM must not be present.
+ /// This is ignored if uncompressed_size == LZMA_VLI_UNKNOWN.
+ bool allow_eopm;
+
+ ////////////////////////////////
+ // State of incomplete symbol //
+ ////////////////////////////////
+
+ /// Position where to continue the decoder loop
+ enum {
+ SEQ_NORMALIZE,
+ SEQ_IS_MATCH,
+ seq_8(SEQ_LITERAL),
+ seq_8(SEQ_LITERAL_MATCHED),
+ SEQ_LITERAL_WRITE,
+ SEQ_IS_REP,
+ seq_len(SEQ_MATCH_LEN),
+ seq_6(SEQ_DIST_SLOT),
+ SEQ_DIST_MODEL,
+ SEQ_DIRECT,
+ seq_4(SEQ_ALIGN),
+ SEQ_EOPM,
+ SEQ_IS_REP0,
+ SEQ_SHORTREP,
+ SEQ_IS_REP0_LONG,
+ SEQ_IS_REP1,
+ SEQ_IS_REP2,
+ seq_len(SEQ_REP_LEN),
+ SEQ_COPY,
+ } sequence;
+
+ /// Base of the current probability tree
+ probability *probs;
+
+ /// Symbol being decoded. This is also used as an index variable in
+ /// bittree decoders: probs[symbol]
+ uint32_t symbol;
+
+ /// Used as a loop termination condition on bittree decoders and
+ /// direct bits decoder.
+ uint32_t limit;
+
+ /// Matched literal decoder: 0x100 or 0 to help avoiding branches.
+ /// Bittree reverse decoders: Offset of the next bit: 1 << offset
+ uint32_t offset;
+
+ /// If decoding a literal: match byte.
+ /// If decoding a match: length of the match.
+ uint32_t len;
+} lzma_lzma1_decoder;
+
+
+static lzma_ret
+lzma_decode(void *coder_ptr, lzma_dict *restrict dictptr,
+ const uint8_t *restrict in,
+ size_t *restrict in_pos, size_t in_size)
+{
+ lzma_lzma1_decoder *restrict coder = coder_ptr;
+
+ ////////////////////
+ // Initialization //
+ ////////////////////
+
+ {
+ const lzma_ret ret = rc_read_init(
+ &coder->rc, in, in_pos, in_size);
+ if (ret != LZMA_STREAM_END)
+ return ret;
+ }
+
+ ///////////////
+ // Variables //
+ ///////////////
+
+ // Making local copies of often-used variables improves both
+ // speed and readability.
+
+ lzma_dict dict = *dictptr;
+
+ const size_t dict_start = dict.pos;
+
+ // Range decoder
+ rc_to_local(coder->rc, *in_pos);
+
+ // State
+ uint32_t state = coder->state;
+ uint32_t rep0 = coder->rep0;
+ uint32_t rep1 = coder->rep1;
+ uint32_t rep2 = coder->rep2;
+ uint32_t rep3 = coder->rep3;
+
+ const uint32_t pos_mask = coder->pos_mask;
+
+ // These variables are actually needed only if we last time ran
+ // out of input in the middle of the decoder loop.
+ probability *probs = coder->probs;
+ uint32_t symbol = coder->symbol;
+ uint32_t limit = coder->limit;
+ uint32_t offset = coder->offset;
+ uint32_t len = coder->len;
+
+ const uint32_t literal_pos_mask = coder->literal_pos_mask;
+ const uint32_t literal_context_bits = coder->literal_context_bits;
+
+ // Temporary variables
+ uint32_t pos_state = dict.pos & pos_mask;
+
+ lzma_ret ret = LZMA_OK;
+
+ // This is true when the next LZMA symbol is allowed to be EOPM.
+ // That is, if this is false, then EOPM is considered
+ // an invalid symbol and we will return LZMA_DATA_ERROR.
+ //
+ // EOPM is always required (not just allowed) when
+ // the uncompressed size isn't known. When uncompressed size
+ // is known, eopm_is_valid may be set to true later.
+ bool eopm_is_valid = coder->uncompressed_size == LZMA_VLI_UNKNOWN;
+
+ // If uncompressed size is known and there is enough output space
+ // to decode all the data, limit the available buffer space so that
+ // the main loop won't try to decode past the end of the stream.
+ bool might_finish_without_eopm = false;
+ if (coder->uncompressed_size != LZMA_VLI_UNKNOWN
+ && coder->uncompressed_size <= dict.limit - dict.pos) {
+ dict.limit = dict.pos + (size_t)(coder->uncompressed_size);
+ might_finish_without_eopm = true;
+ }
+
+ // The main decoder loop. The "switch" is used to restart the decoder at
+ // correct location. Once restarted, the "switch" is no longer used.
+ switch (coder->sequence)
+ while (true) {
+ // Calculate new pos_state. This is skipped on the first loop
+ // since we already calculated it when setting up the local
+ // variables.
+ pos_state = dict.pos & pos_mask;
+
+ case SEQ_NORMALIZE:
+ case SEQ_IS_MATCH:
+ if (unlikely(might_finish_without_eopm
+ && dict.pos == dict.limit)) {
+ // In rare cases there is a useless byte that needs
+ // to be read anyway.
+ rc_normalize(SEQ_NORMALIZE);
+
+ // If the range decoder state is such that we can
+ // be at the end of the LZMA stream, then the
+ // decoding is finished.
+ if (rc_is_finished(rc)) {
+ ret = LZMA_STREAM_END;
+ goto out;
+ }
+
+ // If the caller hasn't allowed EOPM to be present
+ // together with known uncompressed size, then the
+ // LZMA stream is corrupt.
+ if (!coder->allow_eopm) {
+ ret = LZMA_DATA_ERROR;
+ goto out;
+ }
+
+ // Otherwise continue decoding with the expectation
+ // that the next LZMA symbol is EOPM.
+ eopm_is_valid = true;
+ }
+
+ rc_if_0(coder->is_match[state][pos_state], SEQ_IS_MATCH) {
+ rc_update_0(coder->is_match[state][pos_state]);
+
+ // It's a literal i.e. a single 8-bit byte.
+
+ probs = literal_subcoder(coder->literal,
+ literal_context_bits, literal_pos_mask,
+ dict.pos, dict_get(&dict, 0));
+ symbol = 1;
+
+ if (is_literal_state(state)) {
+ // Decode literal without match byte.
+#ifdef HAVE_SMALL
+ case SEQ_LITERAL:
+ do {
+ rc_bit(probs[symbol], , , SEQ_LITERAL);
+ } while (symbol < (1 << 8));
+#else
+ rc_bit_case(probs[symbol], , , SEQ_LITERAL0);
+ rc_bit_case(probs[symbol], , , SEQ_LITERAL1);
+ rc_bit_case(probs[symbol], , , SEQ_LITERAL2);
+ rc_bit_case(probs[symbol], , , SEQ_LITERAL3);
+ rc_bit_case(probs[symbol], , , SEQ_LITERAL4);
+ rc_bit_case(probs[symbol], , , SEQ_LITERAL5);
+ rc_bit_case(probs[symbol], , , SEQ_LITERAL6);
+ rc_bit_case(probs[symbol], , , SEQ_LITERAL7);
+#endif
+ } else {
+ // Decode literal with match byte.
+ //
+ // We store the byte we compare against
+ // ("match byte") to "len" to minimize the
+ // number of variables we need to store
+ // between decoder calls.
+ len = (uint32_t)(dict_get(&dict, rep0)) << 1;
+
+ // The usage of "offset" allows omitting some
+ // branches, which should give tiny speed
+ // improvement on some CPUs. "offset" gets
+ // set to zero if match_bit didn't match.
+ offset = 0x100;
+
+#ifdef HAVE_SMALL
+ case SEQ_LITERAL_MATCHED:
+ do {
+ const uint32_t match_bit
+ = len & offset;
+ const uint32_t subcoder_index
+ = offset + match_bit
+ + symbol;
+
+ rc_bit(probs[subcoder_index],
+ offset &= ~match_bit,
+ offset &= match_bit,
+ SEQ_LITERAL_MATCHED);
+
+ // It seems to be faster to do this
+ // here instead of putting it to the
+ // beginning of the loop and then
+ // putting the "case" in the middle
+ // of the loop.
+ len <<= 1;
+
+ } while (symbol < (1 << 8));
+#else
+ // Unroll the loop.
+ uint32_t match_bit;
+ uint32_t subcoder_index;
+
+# define d(seq) \
+ case seq: \
+ match_bit = len & offset; \
+ subcoder_index = offset + match_bit + symbol; \
+ rc_bit(probs[subcoder_index], \
+ offset &= ~match_bit, \
+ offset &= match_bit, \
+ seq)
+
+ d(SEQ_LITERAL_MATCHED0);
+ len <<= 1;
+ d(SEQ_LITERAL_MATCHED1);
+ len <<= 1;
+ d(SEQ_LITERAL_MATCHED2);
+ len <<= 1;
+ d(SEQ_LITERAL_MATCHED3);
+ len <<= 1;
+ d(SEQ_LITERAL_MATCHED4);
+ len <<= 1;
+ d(SEQ_LITERAL_MATCHED5);
+ len <<= 1;
+ d(SEQ_LITERAL_MATCHED6);
+ len <<= 1;
+ d(SEQ_LITERAL_MATCHED7);
+# undef d
+#endif
+ }
+
+ //update_literal(state);
+ // Use a lookup table to update to literal state,
+ // since compared to other state updates, this would
+ // need two branches.
+ static const lzma_lzma_state next_state[] = {
+ STATE_LIT_LIT,
+ STATE_LIT_LIT,
+ STATE_LIT_LIT,
+ STATE_LIT_LIT,
+ STATE_MATCH_LIT_LIT,
+ STATE_REP_LIT_LIT,
+ STATE_SHORTREP_LIT_LIT,
+ STATE_MATCH_LIT,
+ STATE_REP_LIT,
+ STATE_SHORTREP_LIT,
+ STATE_MATCH_LIT,
+ STATE_REP_LIT
+ };
+ state = next_state[state];
+
+ case SEQ_LITERAL_WRITE:
+ if (unlikely(dict_put(&dict, symbol))) {
+ coder->sequence = SEQ_LITERAL_WRITE;
+ goto out;
+ }
+
+ continue;
+ }
+
+ // Instead of a new byte we are going to get a byte range
+ // (distance and length) which will be repeated from our
+ // output history.
+
+ rc_update_1(coder->is_match[state][pos_state]);
+
+ case SEQ_IS_REP:
+ rc_if_0(coder->is_rep[state], SEQ_IS_REP) {
+ // Not a repeated match
+ rc_update_0(coder->is_rep[state]);
+ update_match(state);
+
+ // The latest three match distances are kept in
+ // memory in case there are repeated matches.
+ rep3 = rep2;
+ rep2 = rep1;
+ rep1 = rep0;
+
+ // Decode the length of the match.
+ len_decode(len, coder->match_len_decoder,
+ pos_state, SEQ_MATCH_LEN);
+
+ // Prepare to decode the highest two bits of the
+ // match distance.
+ probs = coder->dist_slot[get_dist_state(len)];
+ symbol = 1;
+
+#ifdef HAVE_SMALL
+ case SEQ_DIST_SLOT:
+ do {
+ rc_bit(probs[symbol], , , SEQ_DIST_SLOT);
+ } while (symbol < DIST_SLOTS);
+#else
+ rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT0);
+ rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT1);
+ rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT2);
+ rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT3);
+ rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT4);
+ rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT5);
+#endif
+ // Get rid of the highest bit that was needed for
+ // indexing of the probability array.
+ symbol -= DIST_SLOTS;
+ assert(symbol <= 63);
+
+ if (symbol < DIST_MODEL_START) {
+ // Match distances [0, 3] have only two bits.
+ rep0 = symbol;
+ } else {
+ // Decode the lowest [1, 29] bits of
+ // the match distance.
+ limit = (symbol >> 1) - 1;
+ assert(limit >= 1 && limit <= 30);
+ rep0 = 2 + (symbol & 1);
+
+ if (symbol < DIST_MODEL_END) {
+ // Prepare to decode the low bits for
+ // a distance of [4, 127].
+ assert(limit <= 5);
+ rep0 <<= limit;
+ assert(rep0 <= 96);
+ // -1 is fine, because we start
+ // decoding at probs[1], not probs[0].
+ // NOTE: This violates the C standard,
+ // since we are doing pointer
+ // arithmetic past the beginning of
+ // the array.
+ assert((int32_t)(rep0 - symbol - 1)
+ >= -1);
+ assert((int32_t)(rep0 - symbol - 1)
+ <= 82);
+ probs = coder->pos_special + rep0
+ - symbol - 1;
+ symbol = 1;
+ offset = 0;
+ case SEQ_DIST_MODEL:
+#ifdef HAVE_SMALL
+ do {
+ rc_bit(probs[symbol], ,
+ rep0 += 1U << offset,
+ SEQ_DIST_MODEL);
+ } while (++offset < limit);
+#else
+ switch (limit) {
+ case 5:
+ assert(offset == 0);
+ rc_bit(probs[symbol], ,
+ rep0 += 1U,
+ SEQ_DIST_MODEL);
+ ++offset;
+ --limit;
+ case 4:
+ rc_bit(probs[symbol], ,
+ rep0 += 1U << offset,
+ SEQ_DIST_MODEL);
+ ++offset;
+ --limit;
+ case 3:
+ rc_bit(probs[symbol], ,
+ rep0 += 1U << offset,
+ SEQ_DIST_MODEL);
+ ++offset;
+ --limit;
+ case 2:
+ rc_bit(probs[symbol], ,
+ rep0 += 1U << offset,
+ SEQ_DIST_MODEL);
+ ++offset;
+ --limit;
+ case 1:
+ // We need "symbol" only for
+ // indexing the probability
+ // array, thus we can use
+ // rc_bit_last() here to omit
+ // the unneeded updating of
+ // "symbol".
+ rc_bit_last(probs[symbol], ,
+ rep0 += 1U << offset,
+ SEQ_DIST_MODEL);
+ }
+#endif
+ } else {
+ // The distance is >= 128. Decode the
+ // lower bits without probabilities
+ // except the lowest four bits.
+ assert(symbol >= 14);
+ assert(limit >= 6);
+ limit -= ALIGN_BITS;
+ assert(limit >= 2);
+ case SEQ_DIRECT:
+ // Not worth manual unrolling
+ do {
+ rc_direct(rep0, SEQ_DIRECT);
+ } while (--limit > 0);
+
+ // Decode the lowest four bits using
+ // probabilities.
+ rep0 <<= ALIGN_BITS;
+ symbol = 1;
+#ifdef HAVE_SMALL
+ offset = 0;
+ case SEQ_ALIGN:
+ do {
+ rc_bit(coder->pos_align[
+ symbol], ,
+ rep0 += 1U << offset,
+ SEQ_ALIGN);
+ } while (++offset < ALIGN_BITS);
+#else
+ case SEQ_ALIGN0:
+ rc_bit(coder->pos_align[symbol], ,
+ rep0 += 1, SEQ_ALIGN0);
+ case SEQ_ALIGN1:
+ rc_bit(coder->pos_align[symbol], ,
+ rep0 += 2, SEQ_ALIGN1);
+ case SEQ_ALIGN2:
+ rc_bit(coder->pos_align[symbol], ,
+ rep0 += 4, SEQ_ALIGN2);
+ case SEQ_ALIGN3:
+ // Like in SEQ_DIST_MODEL, we don't
+ // need "symbol" for anything else
+ // than indexing the probability array.
+ rc_bit_last(coder->pos_align[symbol], ,
+ rep0 += 8, SEQ_ALIGN3);
+#endif
+
+ if (rep0 == UINT32_MAX) {
+ // End of payload marker was
+ // found. It may only be
+ // present if
+ // - uncompressed size is
+ // unknown or
+ // - after known uncompressed
+ // size amount of bytes has
+ // been decompressed and
+ // caller has indicated
+ // that EOPM might be used
+ // (it's not allowed in
+ // LZMA2).
+ if (!eopm_is_valid) {
+ ret = LZMA_DATA_ERROR;
+ goto out;
+ }
+
+ case SEQ_EOPM:
+ // LZMA1 stream with
+ // end-of-payload marker.
+ rc_normalize(SEQ_EOPM);
+ ret = rc_is_finished(rc)
+ ? LZMA_STREAM_END
+ : LZMA_DATA_ERROR;
+ goto out;
+ }
+ }
+ }
+
+ // Validate the distance we just decoded.
+ if (unlikely(!dict_is_distance_valid(&dict, rep0))) {
+ ret = LZMA_DATA_ERROR;
+ goto out;
+ }
+
+ } else {
+ rc_update_1(coder->is_rep[state]);
+
+ // Repeated match
+ //
+ // The match distance is a value that we have had
+ // earlier. The latest four match distances are
+ // available as rep0, rep1, rep2 and rep3. We will
+ // now decode which of them is the new distance.
+ //
+ // There cannot be a match if we haven't produced
+ // any output, so check that first.
+ if (unlikely(!dict_is_distance_valid(&dict, 0))) {
+ ret = LZMA_DATA_ERROR;
+ goto out;
+ }
+
+ case SEQ_IS_REP0:
+ rc_if_0(coder->is_rep0[state], SEQ_IS_REP0) {
+ rc_update_0(coder->is_rep0[state]);
+ // The distance is rep0.
+
+ case SEQ_IS_REP0_LONG:
+ rc_if_0(coder->is_rep0_long[state][pos_state],
+ SEQ_IS_REP0_LONG) {
+ rc_update_0(coder->is_rep0_long[
+ state][pos_state]);
+
+ update_short_rep(state);
+
+ case SEQ_SHORTREP:
+ if (unlikely(dict_put(&dict, dict_get(
+ &dict, rep0)))) {
+ coder->sequence = SEQ_SHORTREP;
+ goto out;
+ }
+
+ continue;
+ }
+
+ // Repeating more than one byte at
+ // distance of rep0.
+ rc_update_1(coder->is_rep0_long[
+ state][pos_state]);
+
+ } else {
+ rc_update_1(coder->is_rep0[state]);
+
+ case SEQ_IS_REP1:
+ // The distance is rep1, rep2 or rep3. Once
+ // we find out which one of these three, it
+ // is stored to rep0 and rep1, rep2 and rep3
+ // are updated accordingly.
+ rc_if_0(coder->is_rep1[state], SEQ_IS_REP1) {
+ rc_update_0(coder->is_rep1[state]);
+
+ const uint32_t distance = rep1;
+ rep1 = rep0;
+ rep0 = distance;
+
+ } else {
+ rc_update_1(coder->is_rep1[state]);
+ case SEQ_IS_REP2:
+ rc_if_0(coder->is_rep2[state],
+ SEQ_IS_REP2) {
+ rc_update_0(coder->is_rep2[
+ state]);
+
+ const uint32_t distance = rep2;
+ rep2 = rep1;
+ rep1 = rep0;
+ rep0 = distance;
+
+ } else {
+ rc_update_1(coder->is_rep2[
+ state]);
+
+ const uint32_t distance = rep3;
+ rep3 = rep2;
+ rep2 = rep1;
+ rep1 = rep0;
+ rep0 = distance;
+ }
+ }
+ }
+
+ update_long_rep(state);
+
+ // Decode the length of the repeated match.
+ len_decode(len, coder->rep_len_decoder,
+ pos_state, SEQ_REP_LEN);
+ }
+
+ /////////////////////////////////
+ // Repeat from history buffer. //
+ /////////////////////////////////
+
+ // The length is always between these limits. There is no way
+ // to trigger the algorithm to set len outside this range.
+ assert(len >= MATCH_LEN_MIN);
+ assert(len <= MATCH_LEN_MAX);
+
+ case SEQ_COPY:
+ // Repeat len bytes from distance of rep0.
+ if (unlikely(dict_repeat(&dict, rep0, &len))) {
+ coder->sequence = SEQ_COPY;
+ goto out;
+ }
+ }
+
+out:
+ // Save state
+
+ // NOTE: Must not copy dict.limit.
+ dictptr->pos = dict.pos;
+ dictptr->full = dict.full;
+
+ rc_from_local(coder->rc, *in_pos);
+
+ coder->state = state;
+ coder->rep0 = rep0;
+ coder->rep1 = rep1;
+ coder->rep2 = rep2;
+ coder->rep3 = rep3;
+
+ coder->probs = probs;
+ coder->symbol = symbol;
+ coder->limit = limit;
+ coder->offset = offset;
+ coder->len = len;
+
+ // Update the remaining amount of uncompressed data if uncompressed
+ // size was known.
+ if (coder->uncompressed_size != LZMA_VLI_UNKNOWN) {
+ coder->uncompressed_size -= dict.pos - dict_start;
+
+ // If we have gotten all the output but the decoder wants
+ // to write more output, the file is corrupt. There are
+ // three SEQ values where output is produced.
+ if (coder->uncompressed_size == 0 && ret == LZMA_OK
+ && (coder->sequence == SEQ_LITERAL_WRITE
+ || coder->sequence == SEQ_SHORTREP
+ || coder->sequence == SEQ_COPY))
+ ret = LZMA_DATA_ERROR;
+ }
+
+ if (ret == LZMA_STREAM_END) {
+ // Reset the range decoder so that it is ready to reinitialize
+ // for a new LZMA2 chunk.
+ rc_reset(coder->rc);
+ coder->sequence = SEQ_IS_MATCH;
+ }
+
+ return ret;
+}
+
+
+
+static void
+lzma_decoder_uncompressed(void *coder_ptr, lzma_vli uncompressed_size,
+ bool allow_eopm)
+{
+ lzma_lzma1_decoder *coder = coder_ptr;
+ coder->uncompressed_size = uncompressed_size;
+ coder->allow_eopm = allow_eopm;
+}
+
+
+static void
+lzma_decoder_reset(void *coder_ptr, const void *opt)
+{
+ lzma_lzma1_decoder *coder = coder_ptr;
+ const lzma_options_lzma *options = opt;
+
+ // NOTE: We assume that lc/lp/pb are valid since they were
+ // successfully decoded with lzma_lzma_decode_properties().
+
+ // Calculate pos_mask. We don't need pos_bits as is for anything.
+ coder->pos_mask = (1U << options->pb) - 1;
+
+ // Initialize the literal decoder.
+ literal_init(coder->literal, options->lc, options->lp);
+
+ coder->literal_context_bits = options->lc;
+ coder->literal_pos_mask = (1U << options->lp) - 1;
+
+ // State
+ coder->state = STATE_LIT_LIT;
+ coder->rep0 = 0;
+ coder->rep1 = 0;
+ coder->rep2 = 0;
+ coder->rep3 = 0;
+ coder->pos_mask = (1U << options->pb) - 1;
+
+ // Range decoder
+ rc_reset(coder->rc);
+
+ // Bit and bittree decoders
+ for (uint32_t i = 0; i < STATES; ++i) {
+ for (uint32_t j = 0; j <= coder->pos_mask; ++j) {
+ bit_reset(coder->is_match[i][j]);
+ bit_reset(coder->is_rep0_long[i][j]);
+ }
+
+ bit_reset(coder->is_rep[i]);
+ bit_reset(coder->is_rep0[i]);
+ bit_reset(coder->is_rep1[i]);
+ bit_reset(coder->is_rep2[i]);
+ }
+
+ for (uint32_t i = 0; i < DIST_STATES; ++i)
+ bittree_reset(coder->dist_slot[i], DIST_SLOT_BITS);
+
+ for (uint32_t i = 0; i < FULL_DISTANCES - DIST_MODEL_END; ++i)
+ bit_reset(coder->pos_special[i]);
+
+ bittree_reset(coder->pos_align, ALIGN_BITS);
+
+ // Len decoders (also bit/bittree)
+ const uint32_t num_pos_states = 1U << options->pb;
+ bit_reset(coder->match_len_decoder.choice);
+ bit_reset(coder->match_len_decoder.choice2);
+ bit_reset(coder->rep_len_decoder.choice);
+ bit_reset(coder->rep_len_decoder.choice2);
+
+ for (uint32_t pos_state = 0; pos_state < num_pos_states; ++pos_state) {
+ bittree_reset(coder->match_len_decoder.low[pos_state],
+ LEN_LOW_BITS);
+ bittree_reset(coder->match_len_decoder.mid[pos_state],
+ LEN_MID_BITS);
+
+ bittree_reset(coder->rep_len_decoder.low[pos_state],
+ LEN_LOW_BITS);
+ bittree_reset(coder->rep_len_decoder.mid[pos_state],
+ LEN_MID_BITS);
+ }
+
+ bittree_reset(coder->match_len_decoder.high, LEN_HIGH_BITS);
+ bittree_reset(coder->rep_len_decoder.high, LEN_HIGH_BITS);
+
+ coder->sequence = SEQ_IS_MATCH;
+ coder->probs = NULL;
+ coder->symbol = 0;
+ coder->limit = 0;
+ coder->offset = 0;
+ coder->len = 0;
+
+ return;
+}
+
+
+extern lzma_ret
+lzma_lzma_decoder_create(lzma_lz_decoder *lz, const lzma_allocator *allocator,
+ const lzma_options_lzma *options, lzma_lz_options *lz_options)
+{
+ if (lz->coder == NULL) {
+ lz->coder = lzma_alloc(sizeof(lzma_lzma1_decoder), allocator);
+ if (lz->coder == NULL)
+ return LZMA_MEM_ERROR;
+
+ lz->code = &lzma_decode;
+ lz->reset = &lzma_decoder_reset;
+ lz->set_uncompressed = &lzma_decoder_uncompressed;
+ }
+
+ // All dictionary sizes are OK here. LZ decoder will take care of
+ // the special cases.
+ lz_options->dict_size = options->dict_size;
+ lz_options->preset_dict = options->preset_dict;
+ lz_options->preset_dict_size = options->preset_dict_size;
+
+ return LZMA_OK;
+}
+
+
+/// Allocate and initialize LZMA decoder. This is used only via LZ
+/// initialization (lzma_lzma_decoder_init() passes function pointer to
+/// the LZ initialization).
+static lzma_ret
+lzma_decoder_init(lzma_lz_decoder *lz, const lzma_allocator *allocator,
+ lzma_vli id, const void *options, lzma_lz_options *lz_options)
+{
+ if (!is_lclppb_valid(options))
+ return LZMA_PROG_ERROR;
+
+ lzma_vli uncomp_size = LZMA_VLI_UNKNOWN;
+ bool allow_eopm = true;
+
+ if (id == LZMA_FILTER_LZMA1EXT) {
+ const lzma_options_lzma *opt = options;
+
+ // Only one flag is supported.
+ if (opt->ext_flags & ~LZMA_LZMA1EXT_ALLOW_EOPM)
+ return LZMA_OPTIONS_ERROR;
+
+ // FIXME? Using lzma_vli instead of uint64_t is weird because
+ // this has nothing to do with .xz headers and variable-length
+ // integer encoding. On the other hand, using LZMA_VLI_UNKNOWN
+ // instead of UINT64_MAX is clearer when unknown size is
+ // meant. A problem with using lzma_vli is that now we
+ // allow > LZMA_VLI_MAX which is fine in this file but
+ // it's still confusing. Note that alone_decoder.c also
+ // allows > LZMA_VLI_MAX when setting uncompressed size.
+ uncomp_size = opt->ext_size_low
+ + ((uint64_t)(opt->ext_size_high) << 32);
+ allow_eopm = (opt->ext_flags & LZMA_LZMA1EXT_ALLOW_EOPM) != 0
+ || uncomp_size == LZMA_VLI_UNKNOWN;
+ }
+
+ return_if_error(lzma_lzma_decoder_create(
+ lz, allocator, options, lz_options));
+
+ lzma_decoder_reset(lz->coder, options);
+ lzma_decoder_uncompressed(lz->coder, uncomp_size, allow_eopm);
+
+ return LZMA_OK;
+}
+
+
+extern lzma_ret
+lzma_lzma_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
+ const lzma_filter_info *filters)
+{
+ // LZMA can only be the last filter in the chain. This is enforced
+ // by the raw_decoder initialization.
+ assert(filters[1].init == NULL);
+
+ return lzma_lz_decoder_init(next, allocator, filters,
+ &lzma_decoder_init);
+}
+
+
+extern bool
+lzma_lzma_lclppb_decode(lzma_options_lzma *options, uint8_t byte)
+{
+ if (byte > (4 * 5 + 4) * 9 + 8)
+ return true;
+
+ // See the file format specification to understand this.
+ options->pb = byte / (9 * 5);
+ byte -= options->pb * 9 * 5;
+ options->lp = byte / 9;
+ options->lc = byte - options->lp * 9;
+
+ return options->lc + options->lp > LZMA_LCLP_MAX;
+}
+
+
+extern uint64_t
+lzma_lzma_decoder_memusage_nocheck(const void *options)
+{
+ const lzma_options_lzma *const opt = options;
+ return sizeof(lzma_lzma1_decoder)
+ + lzma_lz_decoder_memusage(opt->dict_size);
+}
+
+
+extern uint64_t
+lzma_lzma_decoder_memusage(const void *options)
+{
+ if (!is_lclppb_valid(options))
+ return UINT64_MAX;
+
+ return lzma_lzma_decoder_memusage_nocheck(options);
+}
+
+
+extern lzma_ret
+lzma_lzma_props_decode(void **options, const lzma_allocator *allocator,
+ const uint8_t *props, size_t props_size)
+{
+ if (props_size != 5)
+ return LZMA_OPTIONS_ERROR;
+
+ lzma_options_lzma *opt
+ = lzma_alloc(sizeof(lzma_options_lzma), allocator);
+ if (opt == NULL)
+ return LZMA_MEM_ERROR;
+
+ if (lzma_lzma_lclppb_decode(opt, props[0]))
+ goto error;
+
+ // All dictionary sizes are accepted, including zero. LZ decoder
+ // will automatically use a dictionary at least a few KiB even if
+ // a smaller dictionary is requested.
+ opt->dict_size = read32le(props + 1);
+
+ opt->preset_dict = NULL;
+ opt->preset_dict_size = 0;
+
+ *options = opt;
+
+ return LZMA_OK;
+
+error:
+ lzma_free(opt, allocator);
+ return LZMA_OPTIONS_ERROR;
+}
diff --git a/src/liblzma/lzma/lzma_decoder.h b/src/liblzma/lzma/lzma_decoder.h
new file mode 100644
index 0000000..1427bc2
--- /dev/null
+++ b/src/liblzma/lzma/lzma_decoder.h
@@ -0,0 +1,53 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file lzma_decoder.h
+/// \brief LZMA decoder API
+///
+// Authors: Igor Pavlov
+// Lasse Collin
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#ifndef LZMA_LZMA_DECODER_H
+#define LZMA_LZMA_DECODER_H
+
+#include "common.h"
+
+
+/// Allocates and initializes LZMA decoder
+extern lzma_ret lzma_lzma_decoder_init(lzma_next_coder *next,
+ const lzma_allocator *allocator,
+ const lzma_filter_info *filters);
+
+extern uint64_t lzma_lzma_decoder_memusage(const void *options);
+
+extern lzma_ret lzma_lzma_props_decode(
+ void **options, const lzma_allocator *allocator,
+ const uint8_t *props, size_t props_size);
+
+
+/// \brief Decodes the LZMA Properties byte (lc/lp/pb)
+///
+/// \return true if error occurred, false on success
+///
+extern bool lzma_lzma_lclppb_decode(
+ lzma_options_lzma *options, uint8_t byte);
+
+
+#ifdef LZMA_LZ_DECODER_H
+/// Allocate and setup function pointers only. This is used by LZMA1 and
+/// LZMA2 decoders.
+extern lzma_ret lzma_lzma_decoder_create(
+ lzma_lz_decoder *lz, const lzma_allocator *allocator,
+ const lzma_options_lzma *opt, lzma_lz_options *lz_options);
+
+/// Gets memory usage without validating lc/lp/pb. This is used by LZMA2
+/// decoder, because raw LZMA2 decoding doesn't need lc/lp/pb.
+extern uint64_t lzma_lzma_decoder_memusage_nocheck(const void *options);
+
+#endif
+
+#endif
diff --git a/src/liblzma/lzma/lzma_encoder.c b/src/liblzma/lzma/lzma_encoder.c
new file mode 100644
index 0000000..dc62f44
--- /dev/null
+++ b/src/liblzma/lzma/lzma_encoder.c
@@ -0,0 +1,784 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file lzma_encoder.c
+/// \brief LZMA encoder
+///
+// Authors: Igor Pavlov
+// Lasse Collin
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#include "lzma2_encoder.h"
+#include "lzma_encoder_private.h"
+#include "fastpos.h"
+
+
+/////////////
+// Literal //
+/////////////
+
+static inline void
+literal_matched(lzma_range_encoder *rc, probability *subcoder,
+ uint32_t match_byte, uint32_t symbol)
+{
+ uint32_t offset = 0x100;
+ symbol += UINT32_C(1) << 8;
+
+ do {
+ match_byte <<= 1;
+ const uint32_t match_bit = match_byte & offset;
+ const uint32_t subcoder_index
+ = offset + match_bit + (symbol >> 8);
+ const uint32_t bit = (symbol >> 7) & 1;
+ rc_bit(rc, &subcoder[subcoder_index], bit);
+
+ symbol <<= 1;
+ offset &= ~(match_byte ^ symbol);
+
+ } while (symbol < (UINT32_C(1) << 16));
+}
+
+
+static inline void
+literal(lzma_lzma1_encoder *coder, lzma_mf *mf, uint32_t position)
+{
+ // Locate the literal byte to be encoded and the subcoder.
+ const uint8_t cur_byte = mf->buffer[
+ mf->read_pos - mf->read_ahead];
+ probability *subcoder = literal_subcoder(coder->literal,
+ coder->literal_context_bits, coder->literal_pos_mask,
+ position, mf->buffer[mf->read_pos - mf->read_ahead - 1]);
+
+ if (is_literal_state(coder->state)) {
+ // Previous LZMA-symbol was a literal. Encode a normal
+ // literal without a match byte.
+ rc_bittree(&coder->rc, subcoder, 8, cur_byte);
+ } else {
+ // Previous LZMA-symbol was a match. Use the last byte of
+ // the match as a "match byte". That is, compare the bits
+ // of the current literal and the match byte.
+ const uint8_t match_byte = mf->buffer[
+ mf->read_pos - coder->reps[0] - 1
+ - mf->read_ahead];
+ literal_matched(&coder->rc, subcoder, match_byte, cur_byte);
+ }
+
+ update_literal(coder->state);
+}
+
+
+//////////////////
+// Match length //
+//////////////////
+
+static void
+length_update_prices(lzma_length_encoder *lc, const uint32_t pos_state)
+{
+ const uint32_t table_size = lc->table_size;
+ lc->counters[pos_state] = table_size;
+
+ const uint32_t a0 = rc_bit_0_price(lc->choice);
+ const uint32_t a1 = rc_bit_1_price(lc->choice);
+ const uint32_t b0 = a1 + rc_bit_0_price(lc->choice2);
+ const uint32_t b1 = a1 + rc_bit_1_price(lc->choice2);
+ uint32_t *const prices = lc->prices[pos_state];
+
+ uint32_t i;
+ for (i = 0; i < table_size && i < LEN_LOW_SYMBOLS; ++i)
+ prices[i] = a0 + rc_bittree_price(lc->low[pos_state],
+ LEN_LOW_BITS, i);
+
+ for (; i < table_size && i < LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; ++i)
+ prices[i] = b0 + rc_bittree_price(lc->mid[pos_state],
+ LEN_MID_BITS, i - LEN_LOW_SYMBOLS);
+
+ for (; i < table_size; ++i)
+ prices[i] = b1 + rc_bittree_price(lc->high, LEN_HIGH_BITS,
+ i - LEN_LOW_SYMBOLS - LEN_MID_SYMBOLS);
+
+ return;
+}
+
+
+static inline void
+length(lzma_range_encoder *rc, lzma_length_encoder *lc,
+ const uint32_t pos_state, uint32_t len, const bool fast_mode)
+{
+ assert(len <= MATCH_LEN_MAX);
+ len -= MATCH_LEN_MIN;
+
+ if (len < LEN_LOW_SYMBOLS) {
+ rc_bit(rc, &lc->choice, 0);
+ rc_bittree(rc, lc->low[pos_state], LEN_LOW_BITS, len);
+ } else {
+ rc_bit(rc, &lc->choice, 1);
+ len -= LEN_LOW_SYMBOLS;
+
+ if (len < LEN_MID_SYMBOLS) {
+ rc_bit(rc, &lc->choice2, 0);
+ rc_bittree(rc, lc->mid[pos_state], LEN_MID_BITS, len);
+ } else {
+ rc_bit(rc, &lc->choice2, 1);
+ len -= LEN_MID_SYMBOLS;
+ rc_bittree(rc, lc->high, LEN_HIGH_BITS, len);
+ }
+ }
+
+ // Only getoptimum uses the prices so don't update the table when
+ // in fast mode.
+ if (!fast_mode)
+ if (--lc->counters[pos_state] == 0)
+ length_update_prices(lc, pos_state);
+}
+
+
+///////////
+// Match //
+///////////
+
+static inline void
+match(lzma_lzma1_encoder *coder, const uint32_t pos_state,
+ const uint32_t distance, const uint32_t len)
+{
+ update_match(coder->state);
+
+ length(&coder->rc, &coder->match_len_encoder, pos_state, len,
+ coder->fast_mode);
+
+ const uint32_t dist_slot = get_dist_slot(distance);
+ const uint32_t dist_state = get_dist_state(len);
+ rc_bittree(&coder->rc, coder->dist_slot[dist_state],
+ DIST_SLOT_BITS, dist_slot);
+
+ if (dist_slot >= DIST_MODEL_START) {
+ const uint32_t footer_bits = (dist_slot >> 1) - 1;
+ const uint32_t base = (2 | (dist_slot & 1)) << footer_bits;
+ const uint32_t dist_reduced = distance - base;
+
+ if (dist_slot < DIST_MODEL_END) {
+ // Careful here: base - dist_slot - 1 can be -1, but
+ // rc_bittree_reverse starts at probs[1], not probs[0].
+ rc_bittree_reverse(&coder->rc,
+ coder->dist_special + base - dist_slot - 1,
+ footer_bits, dist_reduced);
+ } else {
+ rc_direct(&coder->rc, dist_reduced >> ALIGN_BITS,
+ footer_bits - ALIGN_BITS);
+ rc_bittree_reverse(
+ &coder->rc, coder->dist_align,
+ ALIGN_BITS, dist_reduced & ALIGN_MASK);
+ ++coder->align_price_count;
+ }
+ }
+
+ coder->reps[3] = coder->reps[2];
+ coder->reps[2] = coder->reps[1];
+ coder->reps[1] = coder->reps[0];
+ coder->reps[0] = distance;
+ ++coder->match_price_count;
+}
+
+
+////////////////////
+// Repeated match //
+////////////////////
+
+static inline void
+rep_match(lzma_lzma1_encoder *coder, const uint32_t pos_state,
+ const uint32_t rep, const uint32_t len)
+{
+ if (rep == 0) {
+ rc_bit(&coder->rc, &coder->is_rep0[coder->state], 0);
+ rc_bit(&coder->rc,
+ &coder->is_rep0_long[coder->state][pos_state],
+ len != 1);
+ } else {
+ const uint32_t distance = coder->reps[rep];
+ rc_bit(&coder->rc, &coder->is_rep0[coder->state], 1);
+
+ if (rep == 1) {
+ rc_bit(&coder->rc, &coder->is_rep1[coder->state], 0);
+ } else {
+ rc_bit(&coder->rc, &coder->is_rep1[coder->state], 1);
+ rc_bit(&coder->rc, &coder->is_rep2[coder->state],
+ rep - 2);
+
+ if (rep == 3)
+ coder->reps[3] = coder->reps[2];
+
+ coder->reps[2] = coder->reps[1];
+ }
+
+ coder->reps[1] = coder->reps[0];
+ coder->reps[0] = distance;
+ }
+
+ if (len == 1) {
+ update_short_rep(coder->state);
+ } else {
+ length(&coder->rc, &coder->rep_len_encoder, pos_state, len,
+ coder->fast_mode);
+ update_long_rep(coder->state);
+ }
+}
+
+
+//////////
+// Main //
+//////////
+
+static void
+encode_symbol(lzma_lzma1_encoder *coder, lzma_mf *mf,
+ uint32_t back, uint32_t len, uint32_t position)
+{
+ const uint32_t pos_state = position & coder->pos_mask;
+
+ if (back == UINT32_MAX) {
+ // Literal i.e. eight-bit byte
+ assert(len == 1);
+ rc_bit(&coder->rc,
+ &coder->is_match[coder->state][pos_state], 0);
+ literal(coder, mf, position);
+ } else {
+ // Some type of match
+ rc_bit(&coder->rc,
+ &coder->is_match[coder->state][pos_state], 1);
+
+ if (back < REPS) {
+ // It's a repeated match i.e. the same distance
+ // has been used earlier.
+ rc_bit(&coder->rc, &coder->is_rep[coder->state], 1);
+ rep_match(coder, pos_state, back, len);
+ } else {
+ // Normal match
+ rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
+ match(coder, pos_state, back - REPS, len);
+ }
+ }
+
+ assert(mf->read_ahead >= len);
+ mf->read_ahead -= len;
+}
+
+
+static bool
+encode_init(lzma_lzma1_encoder *coder, lzma_mf *mf)
+{
+ assert(mf_position(mf) == 0);
+ assert(coder->uncomp_size == 0);
+
+ if (mf->read_pos == mf->read_limit) {
+ if (mf->action == LZMA_RUN)
+ return false; // We cannot do anything.
+
+ // We are finishing (we cannot get here when flushing).
+ assert(mf->write_pos == mf->read_pos);
+ assert(mf->action == LZMA_FINISH);
+ } else {
+ // Do the actual initialization. The first LZMA symbol must
+ // always be a literal.
+ mf_skip(mf, 1);
+ mf->read_ahead = 0;
+ rc_bit(&coder->rc, &coder->is_match[0][0], 0);
+ rc_bittree(&coder->rc, coder->literal[0], 8, mf->buffer[0]);
+ ++coder->uncomp_size;
+ }
+
+ // Initialization is done (except if empty file).
+ coder->is_initialized = true;
+
+ return true;
+}
+
+
+static void
+encode_eopm(lzma_lzma1_encoder *coder, uint32_t position)
+{
+ const uint32_t pos_state = position & coder->pos_mask;
+ rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1);
+ rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
+ match(coder, pos_state, UINT32_MAX, MATCH_LEN_MIN);
+}
+
+
+/// Number of bytes that a single encoding loop in lzma_lzma_encode() can
+/// consume from the dictionary. This limit comes from lzma_lzma_optimum()
+/// and may need to be updated if that function is significantly modified.
+#define LOOP_INPUT_MAX (OPTS + 1)
+
+
+extern lzma_ret
+lzma_lzma_encode(lzma_lzma1_encoder *restrict coder, lzma_mf *restrict mf,
+ uint8_t *restrict out, size_t *restrict out_pos,
+ size_t out_size, uint32_t limit)
+{
+ // Initialize the stream if no data has been encoded yet.
+ if (!coder->is_initialized && !encode_init(coder, mf))
+ return LZMA_OK;
+
+ // Encode pending output bytes from the range encoder.
+ // At the start of the stream, encode_init() encodes one literal.
+ // Later there can be pending output only with LZMA1 because LZMA2
+ // ensures that there is always enough output space. Thus when using
+ // LZMA2, rc_encode() calls in this function will always return false.
+ if (rc_encode(&coder->rc, out, out_pos, out_size)) {
+ // We don't get here with LZMA2.
+ assert(limit == UINT32_MAX);
+ return LZMA_OK;
+ }
+
+ // If the range encoder was flushed in an earlier call to this
+ // function but there wasn't enough output buffer space, those
+ // bytes would have now been encoded by the above rc_encode() call
+ // and the stream has now been finished. This can only happen with
+ // LZMA1 as LZMA2 always provides enough output buffer space.
+ if (coder->is_flushed) {
+ assert(limit == UINT32_MAX);
+ return LZMA_STREAM_END;
+ }
+
+ while (true) {
+ // With LZMA2 we need to take care that compressed size of
+ // a chunk doesn't get too big.
+ // FIXME? Check if this could be improved.
+ if (limit != UINT32_MAX
+ && (mf->read_pos - mf->read_ahead >= limit
+ || *out_pos + rc_pending(&coder->rc)
+ >= LZMA2_CHUNK_MAX
+ - LOOP_INPUT_MAX))
+ break;
+
+ // Check that there is some input to process.
+ if (mf->read_pos >= mf->read_limit) {
+ if (mf->action == LZMA_RUN)
+ return LZMA_OK;
+
+ if (mf->read_ahead == 0)
+ break;
+ }
+
+ // Get optimal match (repeat position and length).
+ // Value ranges for pos:
+ // - [0, REPS): repeated match
+ // - [REPS, UINT32_MAX):
+ // match at (pos - REPS)
+ // - UINT32_MAX: not a match but a literal
+ // Value ranges for len:
+ // - [MATCH_LEN_MIN, MATCH_LEN_MAX]
+ uint32_t len;
+ uint32_t back;
+
+ if (coder->fast_mode)
+ lzma_lzma_optimum_fast(coder, mf, &back, &len);
+ else
+ lzma_lzma_optimum_normal(coder, mf, &back, &len,
+ (uint32_t)(coder->uncomp_size));
+
+ encode_symbol(coder, mf, back, len,
+ (uint32_t)(coder->uncomp_size));
+
+ // If output size limiting is active (out_limit != 0), check
+ // if encoding this LZMA symbol would make the output size
+ // exceed the specified limit.
+ if (coder->out_limit != 0 && rc_encode_dummy(
+ &coder->rc, coder->out_limit)) {
+ // The most recent LZMA symbol would make the output
+ // too big. Throw it away.
+ rc_forget(&coder->rc);
+
+ // FIXME: Tell the LZ layer to not read more input as
+ // it would be waste of time. This doesn't matter if
+ // output-size-limited encoding is done with a single
+ // call though.
+
+ break;
+ }
+
+ // This symbol will be encoded so update the uncompressed size.
+ coder->uncomp_size += len;
+
+ // Encode the LZMA symbol.
+ if (rc_encode(&coder->rc, out, out_pos, out_size)) {
+ // Once again, this can only happen with LZMA1.
+ assert(limit == UINT32_MAX);
+ return LZMA_OK;
+ }
+ }
+
+ // Make the uncompressed size available to the application.
+ if (coder->uncomp_size_ptr != NULL)
+ *coder->uncomp_size_ptr = coder->uncomp_size;
+
+ // LZMA2 doesn't use EOPM at LZMA level.
+ //
+ // Plain LZMA streams without EOPM aren't supported except when
+ // output size limiting is enabled.
+ if (coder->use_eopm)
+ encode_eopm(coder, (uint32_t)(coder->uncomp_size));
+
+ // Flush the remaining bytes from the range encoder.
+ rc_flush(&coder->rc);
+
+ // Copy the remaining bytes to the output buffer. If there
+ // isn't enough output space, we will copy out the remaining
+ // bytes on the next call to this function.
+ if (rc_encode(&coder->rc, out, out_pos, out_size)) {
+ // This cannot happen with LZMA2.
+ assert(limit == UINT32_MAX);
+
+ coder->is_flushed = true;
+ return LZMA_OK;
+ }
+
+ return LZMA_STREAM_END;
+}
+
+
+static lzma_ret
+lzma_encode(void *coder, lzma_mf *restrict mf,
+ uint8_t *restrict out, size_t *restrict out_pos,
+ size_t out_size)
+{
+ // Plain LZMA has no support for sync-flushing.
+ if (unlikely(mf->action == LZMA_SYNC_FLUSH))
+ return LZMA_OPTIONS_ERROR;
+
+ return lzma_lzma_encode(coder, mf, out, out_pos, out_size, UINT32_MAX);
+}
+
+
+static lzma_ret
+lzma_lzma_set_out_limit(
+ void *coder_ptr, uint64_t *uncomp_size, uint64_t out_limit)
+{
+ // Minimum output size is 5 bytes but that cannot hold any output
+ // so we use 6 bytes.
+ if (out_limit < 6)
+ return LZMA_BUF_ERROR;
+
+ lzma_lzma1_encoder *coder = coder_ptr;
+ coder->out_limit = out_limit;
+ coder->uncomp_size_ptr = uncomp_size;
+ coder->use_eopm = false;
+ return LZMA_OK;
+}
+
+
+////////////////////
+// Initialization //
+////////////////////
+
+static bool
+is_options_valid(const lzma_options_lzma *options)
+{
+ // Validate some of the options. LZ encoder validates nice_len too
+ // but we need a valid value here earlier.
+ return is_lclppb_valid(options)
+ && options->nice_len >= MATCH_LEN_MIN
+ && options->nice_len <= MATCH_LEN_MAX
+ && (options->mode == LZMA_MODE_FAST
+ || options->mode == LZMA_MODE_NORMAL);
+}
+
+
+static void
+set_lz_options(lzma_lz_options *lz_options, const lzma_options_lzma *options)
+{
+ // LZ encoder initialization does the validation for these so we
+ // don't need to validate here.
+ lz_options->before_size = OPTS;
+ lz_options->dict_size = options->dict_size;
+ lz_options->after_size = LOOP_INPUT_MAX;
+ lz_options->match_len_max = MATCH_LEN_MAX;
+ lz_options->nice_len = my_max(mf_get_hash_bytes(options->mf),
+ options->nice_len);
+ lz_options->match_finder = options->mf;
+ lz_options->depth = options->depth;
+ lz_options->preset_dict = options->preset_dict;
+ lz_options->preset_dict_size = options->preset_dict_size;
+ return;
+}
+
+
+static void
+length_encoder_reset(lzma_length_encoder *lencoder,
+ const uint32_t num_pos_states, const bool fast_mode)
+{
+ bit_reset(lencoder->choice);
+ bit_reset(lencoder->choice2);
+
+ for (size_t pos_state = 0; pos_state < num_pos_states; ++pos_state) {
+ bittree_reset(lencoder->low[pos_state], LEN_LOW_BITS);
+ bittree_reset(lencoder->mid[pos_state], LEN_MID_BITS);
+ }
+
+ bittree_reset(lencoder->high, LEN_HIGH_BITS);
+
+ if (!fast_mode)
+ for (uint32_t pos_state = 0; pos_state < num_pos_states;
+ ++pos_state)
+ length_update_prices(lencoder, pos_state);
+
+ return;
+}
+
+
+extern lzma_ret
+lzma_lzma_encoder_reset(lzma_lzma1_encoder *coder,
+ const lzma_options_lzma *options)
+{
+ if (!is_options_valid(options))
+ return LZMA_OPTIONS_ERROR;
+
+ coder->pos_mask = (1U << options->pb) - 1;
+ coder->literal_context_bits = options->lc;
+ coder->literal_pos_mask = (1U << options->lp) - 1;
+
+ // Range coder
+ rc_reset(&coder->rc);
+
+ // State
+ coder->state = STATE_LIT_LIT;
+ for (size_t i = 0; i < REPS; ++i)
+ coder->reps[i] = 0;
+
+ literal_init(coder->literal, options->lc, options->lp);
+
+ // Bit encoders
+ for (size_t i = 0; i < STATES; ++i) {
+ for (size_t j = 0; j <= coder->pos_mask; ++j) {
+ bit_reset(coder->is_match[i][j]);
+ bit_reset(coder->is_rep0_long[i][j]);
+ }
+
+ bit_reset(coder->is_rep[i]);
+ bit_reset(coder->is_rep0[i]);
+ bit_reset(coder->is_rep1[i]);
+ bit_reset(coder->is_rep2[i]);
+ }
+
+ for (size_t i = 0; i < FULL_DISTANCES - DIST_MODEL_END; ++i)
+ bit_reset(coder->dist_special[i]);
+
+ // Bit tree encoders
+ for (size_t i = 0; i < DIST_STATES; ++i)
+ bittree_reset(coder->dist_slot[i], DIST_SLOT_BITS);
+
+ bittree_reset(coder->dist_align, ALIGN_BITS);
+
+ // Length encoders
+ length_encoder_reset(&coder->match_len_encoder,
+ 1U << options->pb, coder->fast_mode);
+
+ length_encoder_reset(&coder->rep_len_encoder,
+ 1U << options->pb, coder->fast_mode);
+
+ // Price counts are incremented every time appropriate probabilities
+ // are changed. price counts are set to zero when the price tables
+ // are updated, which is done when the appropriate price counts have
+ // big enough value, and lzma_mf.read_ahead == 0 which happens at
+ // least every OPTS (a few thousand) possible price count increments.
+ //
+ // By resetting price counts to UINT32_MAX / 2, we make sure that the
+ // price tables will be initialized before they will be used (since
+ // the value is definitely big enough), and that it is OK to increment
+ // price counts without risk of integer overflow (since UINT32_MAX / 2
+ // is small enough). The current code doesn't increment price counts
+ // before initializing price tables, but it maybe done in future if
+ // we add support for saving the state between LZMA2 chunks.
+ coder->match_price_count = UINT32_MAX / 2;
+ coder->align_price_count = UINT32_MAX / 2;
+
+ coder->opts_end_index = 0;
+ coder->opts_current_index = 0;
+
+ return LZMA_OK;
+}
+
+
+extern lzma_ret
+lzma_lzma_encoder_create(void **coder_ptr, const lzma_allocator *allocator,
+ lzma_vli id, const lzma_options_lzma *options,
+ lzma_lz_options *lz_options)
+{
+ assert(id == LZMA_FILTER_LZMA1 || id == LZMA_FILTER_LZMA1EXT
+ || id == LZMA_FILTER_LZMA2);
+
+ // Allocate lzma_lzma1_encoder if it wasn't already allocated.
+ if (*coder_ptr == NULL) {
+ *coder_ptr = lzma_alloc(sizeof(lzma_lzma1_encoder), allocator);
+ if (*coder_ptr == NULL)
+ return LZMA_MEM_ERROR;
+ }
+
+ lzma_lzma1_encoder *coder = *coder_ptr;
+
+ // Set compression mode. Note that we haven't validated the options
+ // yet. Invalid options will get rejected by lzma_lzma_encoder_reset()
+ // call at the end of this function.
+ switch (options->mode) {
+ case LZMA_MODE_FAST:
+ coder->fast_mode = true;
+ break;
+
+ case LZMA_MODE_NORMAL: {
+ coder->fast_mode = false;
+
+ // Set dist_table_size.
+ // Round the dictionary size up to next 2^n.
+ //
+ // Currently the maximum encoder dictionary size
+ // is 1.5 GiB due to lz_encoder.c and here we need
+ // to be below 2 GiB to make the rounded up value
+ // fit in an uint32_t and avoid an infite while-loop
+ // (and undefined behavior due to a too large shift).
+ // So do the same check as in LZ encoder,
+ // limiting to 1.5 GiB.
+ if (options->dict_size > (UINT32_C(1) << 30)
+ + (UINT32_C(1) << 29))
+ return LZMA_OPTIONS_ERROR;
+
+ uint32_t log_size = 0;
+ while ((UINT32_C(1) << log_size) < options->dict_size)
+ ++log_size;
+
+ coder->dist_table_size = log_size * 2;
+
+ // Length encoders' price table size
+ const uint32_t nice_len = my_max(
+ mf_get_hash_bytes(options->mf),
+ options->nice_len);
+
+ coder->match_len_encoder.table_size
+ = nice_len + 1 - MATCH_LEN_MIN;
+ coder->rep_len_encoder.table_size
+ = nice_len + 1 - MATCH_LEN_MIN;
+ break;
+ }
+
+ default:
+ return LZMA_OPTIONS_ERROR;
+ }
+
+ // We don't need to write the first byte as literal if there is
+ // a non-empty preset dictionary. encode_init() wouldn't even work
+ // if there is a non-empty preset dictionary, because encode_init()
+ // assumes that position is zero and previous byte is also zero.
+ coder->is_initialized = options->preset_dict != NULL
+ && options->preset_dict_size > 0;
+ coder->is_flushed = false;
+ coder->uncomp_size = 0;
+ coder->uncomp_size_ptr = NULL;
+
+ // Output size limitting is disabled by default.
+ coder->out_limit = 0;
+
+ // Determine if end marker is wanted:
+ // - It is never used with LZMA2.
+ // - It is always used with LZMA_FILTER_LZMA1 (unless
+ // lzma_lzma_set_out_limit() is called later).
+ // - LZMA_FILTER_LZMA1EXT has a flag for it in the options.
+ coder->use_eopm = (id == LZMA_FILTER_LZMA1);
+ if (id == LZMA_FILTER_LZMA1EXT) {
+ // Check if unsupported flags are present.
+ if (options->ext_flags & ~LZMA_LZMA1EXT_ALLOW_EOPM)
+ return LZMA_OPTIONS_ERROR;
+
+ coder->use_eopm = (options->ext_flags
+ & LZMA_LZMA1EXT_ALLOW_EOPM) != 0;
+
+ // TODO? As long as there are no filters that change the size
+ // of the data, it is enough to look at lzma_stream.total_in
+ // after encoding has been finished to know the uncompressed
+ // size of the LZMA1 stream. But in the future there could be
+ // filters that change the size of the data and then total_in
+ // doesn't work as the LZMA1 stream size might be different
+ // due to another filter in the chain. The problem is simple
+ // to solve: Add another flag to ext_flags and then set
+ // coder->uncomp_size_ptr to the address stored in
+ // lzma_options_lzma.reserved_ptr2 (or _ptr1).
+ }
+
+ set_lz_options(lz_options, options);
+
+ return lzma_lzma_encoder_reset(coder, options);
+}
+
+
+static lzma_ret
+lzma_encoder_init(lzma_lz_encoder *lz, const lzma_allocator *allocator,
+ lzma_vli id, const void *options, lzma_lz_options *lz_options)
+{
+ lz->code = &lzma_encode;
+ lz->set_out_limit = &lzma_lzma_set_out_limit;
+ return lzma_lzma_encoder_create(
+ &lz->coder, allocator, id, options, lz_options);
+}
+
+
+extern lzma_ret
+lzma_lzma_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
+ const lzma_filter_info *filters)
+{
+ return lzma_lz_encoder_init(
+ next, allocator, filters, &lzma_encoder_init);
+}
+
+
+extern uint64_t
+lzma_lzma_encoder_memusage(const void *options)
+{
+ if (!is_options_valid(options))
+ return UINT64_MAX;
+
+ lzma_lz_options lz_options;
+ set_lz_options(&lz_options, options);
+
+ const uint64_t lz_memusage = lzma_lz_encoder_memusage(&lz_options);
+ if (lz_memusage == UINT64_MAX)
+ return UINT64_MAX;
+
+ return (uint64_t)(sizeof(lzma_lzma1_encoder)) + lz_memusage;
+}
+
+
+extern bool
+lzma_lzma_lclppb_encode(const lzma_options_lzma *options, uint8_t *byte)
+{
+ if (!is_lclppb_valid(options))
+ return true;
+
+ *byte = (options->pb * 5 + options->lp) * 9 + options->lc;
+ assert(*byte <= (4 * 5 + 4) * 9 + 8);
+
+ return false;
+}
+
+
+#ifdef HAVE_ENCODER_LZMA1
+extern lzma_ret
+lzma_lzma_props_encode(const void *options, uint8_t *out)
+{
+ if (options == NULL)
+ return LZMA_PROG_ERROR;
+
+ const lzma_options_lzma *const opt = options;
+
+ if (lzma_lzma_lclppb_encode(opt, out))
+ return LZMA_PROG_ERROR;
+
+ write32le(out + 1, opt->dict_size);
+
+ return LZMA_OK;
+}
+#endif
+
+
+extern LZMA_API(lzma_bool)
+lzma_mode_is_supported(lzma_mode mode)
+{
+ return mode == LZMA_MODE_FAST || mode == LZMA_MODE_NORMAL;
+}
diff --git a/src/liblzma/lzma/lzma_encoder.h b/src/liblzma/lzma/lzma_encoder.h
new file mode 100644
index 0000000..84d8c91
--- /dev/null
+++ b/src/liblzma/lzma/lzma_encoder.h
@@ -0,0 +1,59 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file lzma_encoder.h
+/// \brief LZMA encoder API
+///
+// Authors: Igor Pavlov
+// Lasse Collin
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#ifndef LZMA_LZMA_ENCODER_H
+#define LZMA_LZMA_ENCODER_H
+
+#include "common.h"
+
+
+typedef struct lzma_lzma1_encoder_s lzma_lzma1_encoder;
+
+
+extern lzma_ret lzma_lzma_encoder_init(lzma_next_coder *next,
+ const lzma_allocator *allocator,
+ const lzma_filter_info *filters);
+
+
+extern uint64_t lzma_lzma_encoder_memusage(const void *options);
+
+extern lzma_ret lzma_lzma_props_encode(const void *options, uint8_t *out);
+
+
+/// Encodes lc/lp/pb into one byte. Returns false on success and true on error.
+extern bool lzma_lzma_lclppb_encode(
+ const lzma_options_lzma *options, uint8_t *byte);
+
+
+#ifdef LZMA_LZ_ENCODER_H
+
+/// Initializes raw LZMA encoder; this is used by LZMA2.
+extern lzma_ret lzma_lzma_encoder_create(
+ void **coder_ptr, const lzma_allocator *allocator,
+ lzma_vli id, const lzma_options_lzma *options,
+ lzma_lz_options *lz_options);
+
+
+/// Resets an already initialized LZMA encoder; this is used by LZMA2.
+extern lzma_ret lzma_lzma_encoder_reset(
+ lzma_lzma1_encoder *coder, const lzma_options_lzma *options);
+
+
+extern lzma_ret lzma_lzma_encode(lzma_lzma1_encoder *restrict coder,
+ lzma_mf *restrict mf, uint8_t *restrict out,
+ size_t *restrict out_pos, size_t out_size,
+ uint32_t read_limit);
+
+#endif
+
+#endif
diff --git a/src/liblzma/lzma/lzma_encoder_optimum_fast.c b/src/liblzma/lzma/lzma_encoder_optimum_fast.c
new file mode 100644
index 0000000..6c53d2b
--- /dev/null
+++ b/src/liblzma/lzma/lzma_encoder_optimum_fast.c
@@ -0,0 +1,170 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file lzma_encoder_optimum_fast.c
+//
+// Author: Igor Pavlov
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#include "lzma_encoder_private.h"
+#include "memcmplen.h"
+
+
+#define change_pair(small_dist, big_dist) \
+ (((big_dist) >> 7) > (small_dist))
+
+
+extern void
+lzma_lzma_optimum_fast(lzma_lzma1_encoder *restrict coder,
+ lzma_mf *restrict mf,
+ uint32_t *restrict back_res, uint32_t *restrict len_res)
+{
+ const uint32_t nice_len = mf->nice_len;
+
+ uint32_t len_main;
+ uint32_t matches_count;
+ if (mf->read_ahead == 0) {
+ len_main = mf_find(mf, &matches_count, coder->matches);
+ } else {
+ assert(mf->read_ahead == 1);
+ len_main = coder->longest_match_length;
+ matches_count = coder->matches_count;
+ }
+
+ const uint8_t *buf = mf_ptr(mf) - 1;
+ const uint32_t buf_avail = my_min(mf_avail(mf) + 1, MATCH_LEN_MAX);
+
+ if (buf_avail < 2) {
+ // There's not enough input left to encode a match.
+ *back_res = UINT32_MAX;
+ *len_res = 1;
+ return;
+ }
+
+ // Look for repeated matches; scan the previous four match distances
+ uint32_t rep_len = 0;
+ uint32_t rep_index = 0;
+
+ for (uint32_t i = 0; i < REPS; ++i) {
+ // Pointer to the beginning of the match candidate
+ const uint8_t *const buf_back = buf - coder->reps[i] - 1;
+
+ // If the first two bytes (2 == MATCH_LEN_MIN) do not match,
+ // this rep is not useful.
+ if (not_equal_16(buf, buf_back))
+ continue;
+
+ // The first two bytes matched.
+ // Calculate the length of the match.
+ const uint32_t len = lzma_memcmplen(
+ buf, buf_back, 2, buf_avail);
+
+ // If we have found a repeated match that is at least
+ // nice_len long, return it immediately.
+ if (len >= nice_len) {
+ *back_res = i;
+ *len_res = len;
+ mf_skip(mf, len - 1);
+ return;
+ }
+
+ if (len > rep_len) {
+ rep_index = i;
+ rep_len = len;
+ }
+ }
+
+ // We didn't find a long enough repeated match. Encode it as a normal
+ // match if the match length is at least nice_len.
+ if (len_main >= nice_len) {
+ *back_res = coder->matches[matches_count - 1].dist + REPS;
+ *len_res = len_main;
+ mf_skip(mf, len_main - 1);
+ return;
+ }
+
+ uint32_t back_main = 0;
+ if (len_main >= 2) {
+ back_main = coder->matches[matches_count - 1].dist;
+
+ while (matches_count > 1 && len_main ==
+ coder->matches[matches_count - 2].len + 1) {
+ if (!change_pair(coder->matches[
+ matches_count - 2].dist,
+ back_main))
+ break;
+
+ --matches_count;
+ len_main = coder->matches[matches_count - 1].len;
+ back_main = coder->matches[matches_count - 1].dist;
+ }
+
+ if (len_main == 2 && back_main >= 0x80)
+ len_main = 1;
+ }
+
+ if (rep_len >= 2) {
+ if (rep_len + 1 >= len_main
+ || (rep_len + 2 >= len_main
+ && back_main > (UINT32_C(1) << 9))
+ || (rep_len + 3 >= len_main
+ && back_main > (UINT32_C(1) << 15))) {
+ *back_res = rep_index;
+ *len_res = rep_len;
+ mf_skip(mf, rep_len - 1);
+ return;
+ }
+ }
+
+ if (len_main < 2 || buf_avail <= 2) {
+ *back_res = UINT32_MAX;
+ *len_res = 1;
+ return;
+ }
+
+ // Get the matches for the next byte. If we find a better match,
+ // the current byte is encoded as a literal.
+ coder->longest_match_length = mf_find(mf,
+ &coder->matches_count, coder->matches);
+
+ if (coder->longest_match_length >= 2) {
+ const uint32_t new_dist = coder->matches[
+ coder->matches_count - 1].dist;
+
+ if ((coder->longest_match_length >= len_main
+ && new_dist < back_main)
+ || (coder->longest_match_length == len_main + 1
+ && !change_pair(back_main, new_dist))
+ || (coder->longest_match_length > len_main + 1)
+ || (coder->longest_match_length + 1 >= len_main
+ && len_main >= 3
+ && change_pair(new_dist, back_main))) {
+ *back_res = UINT32_MAX;
+ *len_res = 1;
+ return;
+ }
+ }
+
+ // In contrast to LZMA SDK, dictionary could not have been moved
+ // between mf_find() calls, thus it is safe to just increment
+ // the old buf pointer instead of recalculating it with mf_ptr().
+ ++buf;
+
+ const uint32_t limit = my_max(2, len_main - 1);
+
+ for (uint32_t i = 0; i < REPS; ++i) {
+ if (memcmp(buf, buf - coder->reps[i] - 1, limit) == 0) {
+ *back_res = UINT32_MAX;
+ *len_res = 1;
+ return;
+ }
+ }
+
+ *back_res = back_main + REPS;
+ *len_res = len_main;
+ mf_skip(mf, len_main - 2);
+ return;
+}
diff --git a/src/liblzma/lzma/lzma_encoder_optimum_normal.c b/src/liblzma/lzma/lzma_encoder_optimum_normal.c
new file mode 100644
index 0000000..101c8d4
--- /dev/null
+++ b/src/liblzma/lzma/lzma_encoder_optimum_normal.c
@@ -0,0 +1,859 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file lzma_encoder_optimum_normal.c
+//
+// Author: Igor Pavlov
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#include "lzma_encoder_private.h"
+#include "fastpos.h"
+#include "memcmplen.h"
+
+
+////////////
+// Prices //
+////////////
+
+static uint32_t
+get_literal_price(const lzma_lzma1_encoder *const coder, const uint32_t pos,
+ const uint32_t prev_byte, const bool match_mode,
+ uint32_t match_byte, uint32_t symbol)
+{
+ const probability *const subcoder = literal_subcoder(coder->literal,
+ coder->literal_context_bits, coder->literal_pos_mask,
+ pos, prev_byte);
+
+ uint32_t price = 0;
+
+ if (!match_mode) {
+ price = rc_bittree_price(subcoder, 8, symbol);
+ } else {
+ uint32_t offset = 0x100;
+ symbol += UINT32_C(1) << 8;
+
+ do {
+ match_byte <<= 1;
+
+ const uint32_t match_bit = match_byte & offset;
+ const uint32_t subcoder_index
+ = offset + match_bit + (symbol >> 8);
+ const uint32_t bit = (symbol >> 7) & 1;
+ price += rc_bit_price(subcoder[subcoder_index], bit);
+
+ symbol <<= 1;
+ offset &= ~(match_byte ^ symbol);
+
+ } while (symbol < (UINT32_C(1) << 16));
+ }
+
+ return price;
+}
+
+
+static inline uint32_t
+get_len_price(const lzma_length_encoder *const lencoder,
+ const uint32_t len, const uint32_t pos_state)
+{
+ // NOTE: Unlike the other price tables, length prices are updated
+ // in lzma_encoder.c
+ return lencoder->prices[pos_state][len - MATCH_LEN_MIN];
+}
+
+
+static inline uint32_t
+get_short_rep_price(const lzma_lzma1_encoder *const coder,
+ const lzma_lzma_state state, const uint32_t pos_state)
+{
+ return rc_bit_0_price(coder->is_rep0[state])
+ + rc_bit_0_price(coder->is_rep0_long[state][pos_state]);
+}
+
+
+static inline uint32_t
+get_pure_rep_price(const lzma_lzma1_encoder *const coder, const uint32_t rep_index,
+ const lzma_lzma_state state, uint32_t pos_state)
+{
+ uint32_t price;
+
+ if (rep_index == 0) {
+ price = rc_bit_0_price(coder->is_rep0[state]);
+ price += rc_bit_1_price(coder->is_rep0_long[state][pos_state]);
+ } else {
+ price = rc_bit_1_price(coder->is_rep0[state]);
+
+ if (rep_index == 1) {
+ price += rc_bit_0_price(coder->is_rep1[state]);
+ } else {
+ price += rc_bit_1_price(coder->is_rep1[state]);
+ price += rc_bit_price(coder->is_rep2[state],
+ rep_index - 2);
+ }
+ }
+
+ return price;
+}
+
+
+static inline uint32_t
+get_rep_price(const lzma_lzma1_encoder *const coder, const uint32_t rep_index,
+ const uint32_t len, const lzma_lzma_state state,
+ const uint32_t pos_state)
+{
+ return get_len_price(&coder->rep_len_encoder, len, pos_state)
+ + get_pure_rep_price(coder, rep_index, state, pos_state);
+}
+
+
+static inline uint32_t
+get_dist_len_price(const lzma_lzma1_encoder *const coder, const uint32_t dist,
+ const uint32_t len, const uint32_t pos_state)
+{
+ const uint32_t dist_state = get_dist_state(len);
+ uint32_t price;
+
+ if (dist < FULL_DISTANCES) {
+ price = coder->dist_prices[dist_state][dist];
+ } else {
+ const uint32_t dist_slot = get_dist_slot_2(dist);
+ price = coder->dist_slot_prices[dist_state][dist_slot]
+ + coder->align_prices[dist & ALIGN_MASK];
+ }
+
+ price += get_len_price(&coder->match_len_encoder, len, pos_state);
+
+ return price;
+}
+
+
+static void
+fill_dist_prices(lzma_lzma1_encoder *coder)
+{
+ for (uint32_t dist_state = 0; dist_state < DIST_STATES; ++dist_state) {
+
+ uint32_t *const dist_slot_prices
+ = coder->dist_slot_prices[dist_state];
+
+ // Price to encode the dist_slot.
+ for (uint32_t dist_slot = 0;
+ dist_slot < coder->dist_table_size; ++dist_slot)
+ dist_slot_prices[dist_slot] = rc_bittree_price(
+ coder->dist_slot[dist_state],
+ DIST_SLOT_BITS, dist_slot);
+
+ // For matches with distance >= FULL_DISTANCES, add the price
+ // of the direct bits part of the match distance. (Align bits
+ // are handled by fill_align_prices()).
+ for (uint32_t dist_slot = DIST_MODEL_END;
+ dist_slot < coder->dist_table_size;
+ ++dist_slot)
+ dist_slot_prices[dist_slot] += rc_direct_price(
+ ((dist_slot >> 1) - 1) - ALIGN_BITS);
+
+ // Distances in the range [0, 3] are fully encoded with
+ // dist_slot, so they are used for coder->dist_prices
+ // as is.
+ for (uint32_t i = 0; i < DIST_MODEL_START; ++i)
+ coder->dist_prices[dist_state][i]
+ = dist_slot_prices[i];
+ }
+
+ // Distances in the range [4, 127] depend on dist_slot and
+ // dist_special. We do this in a loop separate from the above
+ // loop to avoid redundant calls to get_dist_slot().
+ for (uint32_t i = DIST_MODEL_START; i < FULL_DISTANCES; ++i) {
+ const uint32_t dist_slot = get_dist_slot(i);
+ const uint32_t footer_bits = ((dist_slot >> 1) - 1);
+ const uint32_t base = (2 | (dist_slot & 1)) << footer_bits;
+ const uint32_t price = rc_bittree_reverse_price(
+ coder->dist_special + base - dist_slot - 1,
+ footer_bits, i - base);
+
+ for (uint32_t dist_state = 0; dist_state < DIST_STATES;
+ ++dist_state)
+ coder->dist_prices[dist_state][i]
+ = price + coder->dist_slot_prices[
+ dist_state][dist_slot];
+ }
+
+ coder->match_price_count = 0;
+ return;
+}
+
+
+static void
+fill_align_prices(lzma_lzma1_encoder *coder)
+{
+ for (uint32_t i = 0; i < ALIGN_SIZE; ++i)
+ coder->align_prices[i] = rc_bittree_reverse_price(
+ coder->dist_align, ALIGN_BITS, i);
+
+ coder->align_price_count = 0;
+ return;
+}
+
+
+/////////////
+// Optimal //
+/////////////
+
+static inline void
+make_literal(lzma_optimal *optimal)
+{
+ optimal->back_prev = UINT32_MAX;
+ optimal->prev_1_is_literal = false;
+}
+
+
+static inline void
+make_short_rep(lzma_optimal *optimal)
+{
+ optimal->back_prev = 0;
+ optimal->prev_1_is_literal = false;
+}
+
+
+#define is_short_rep(optimal) \
+ ((optimal).back_prev == 0)
+
+
+static void
+backward(lzma_lzma1_encoder *restrict coder, uint32_t *restrict len_res,
+ uint32_t *restrict back_res, uint32_t cur)
+{
+ coder->opts_end_index = cur;
+
+ uint32_t pos_mem = coder->opts[cur].pos_prev;
+ uint32_t back_mem = coder->opts[cur].back_prev;
+
+ do {
+ if (coder->opts[cur].prev_1_is_literal) {
+ make_literal(&coder->opts[pos_mem]);
+ coder->opts[pos_mem].pos_prev = pos_mem - 1;
+
+ if (coder->opts[cur].prev_2) {
+ coder->opts[pos_mem - 1].prev_1_is_literal
+ = false;
+ coder->opts[pos_mem - 1].pos_prev
+ = coder->opts[cur].pos_prev_2;
+ coder->opts[pos_mem - 1].back_prev
+ = coder->opts[cur].back_prev_2;
+ }
+ }
+
+ const uint32_t pos_prev = pos_mem;
+ const uint32_t back_cur = back_mem;
+
+ back_mem = coder->opts[pos_prev].back_prev;
+ pos_mem = coder->opts[pos_prev].pos_prev;
+
+ coder->opts[pos_prev].back_prev = back_cur;
+ coder->opts[pos_prev].pos_prev = cur;
+ cur = pos_prev;
+
+ } while (cur != 0);
+
+ coder->opts_current_index = coder->opts[0].pos_prev;
+ *len_res = coder->opts[0].pos_prev;
+ *back_res = coder->opts[0].back_prev;
+
+ return;
+}
+
+
+//////////
+// Main //
+//////////
+
+static inline uint32_t
+helper1(lzma_lzma1_encoder *restrict coder, lzma_mf *restrict mf,
+ uint32_t *restrict back_res, uint32_t *restrict len_res,
+ uint32_t position)
+{
+ const uint32_t nice_len = mf->nice_len;
+
+ uint32_t len_main;
+ uint32_t matches_count;
+
+ if (mf->read_ahead == 0) {
+ len_main = mf_find(mf, &matches_count, coder->matches);
+ } else {
+ assert(mf->read_ahead == 1);
+ len_main = coder->longest_match_length;
+ matches_count = coder->matches_count;
+ }
+
+ const uint32_t buf_avail = my_min(mf_avail(mf) + 1, MATCH_LEN_MAX);
+ if (buf_avail < 2) {
+ *back_res = UINT32_MAX;
+ *len_res = 1;
+ return UINT32_MAX;
+ }
+
+ const uint8_t *const buf = mf_ptr(mf) - 1;
+
+ uint32_t rep_lens[REPS];
+ uint32_t rep_max_index = 0;
+
+ for (uint32_t i = 0; i < REPS; ++i) {
+ const uint8_t *const buf_back = buf - coder->reps[i] - 1;
+
+ if (not_equal_16(buf, buf_back)) {
+ rep_lens[i] = 0;
+ continue;
+ }
+
+ rep_lens[i] = lzma_memcmplen(buf, buf_back, 2, buf_avail);
+
+ if (rep_lens[i] > rep_lens[rep_max_index])
+ rep_max_index = i;
+ }
+
+ if (rep_lens[rep_max_index] >= nice_len) {
+ *back_res = rep_max_index;
+ *len_res = rep_lens[rep_max_index];
+ mf_skip(mf, *len_res - 1);
+ return UINT32_MAX;
+ }
+
+
+ if (len_main >= nice_len) {
+ *back_res = coder->matches[matches_count - 1].dist + REPS;
+ *len_res = len_main;
+ mf_skip(mf, len_main - 1);
+ return UINT32_MAX;
+ }
+
+ const uint8_t current_byte = *buf;
+ const uint8_t match_byte = *(buf - coder->reps[0] - 1);
+
+ if (len_main < 2 && current_byte != match_byte
+ && rep_lens[rep_max_index] < 2) {
+ *back_res = UINT32_MAX;
+ *len_res = 1;
+ return UINT32_MAX;
+ }
+
+ coder->opts[0].state = coder->state;
+
+ const uint32_t pos_state = position & coder->pos_mask;
+
+ coder->opts[1].price = rc_bit_0_price(
+ coder->is_match[coder->state][pos_state])
+ + get_literal_price(coder, position, buf[-1],
+ !is_literal_state(coder->state),
+ match_byte, current_byte);
+
+ make_literal(&coder->opts[1]);
+
+ const uint32_t match_price = rc_bit_1_price(
+ coder->is_match[coder->state][pos_state]);
+ const uint32_t rep_match_price = match_price
+ + rc_bit_1_price(coder->is_rep[coder->state]);
+
+ if (match_byte == current_byte) {
+ const uint32_t short_rep_price = rep_match_price
+ + get_short_rep_price(
+ coder, coder->state, pos_state);
+
+ if (short_rep_price < coder->opts[1].price) {
+ coder->opts[1].price = short_rep_price;
+ make_short_rep(&coder->opts[1]);
+ }
+ }
+
+ const uint32_t len_end = my_max(len_main, rep_lens[rep_max_index]);
+
+ if (len_end < 2) {
+ *back_res = coder->opts[1].back_prev;
+ *len_res = 1;
+ return UINT32_MAX;
+ }
+
+ coder->opts[1].pos_prev = 0;
+
+ for (uint32_t i = 0; i < REPS; ++i)
+ coder->opts[0].backs[i] = coder->reps[i];
+
+ uint32_t len = len_end;
+ do {
+ coder->opts[len].price = RC_INFINITY_PRICE;
+ } while (--len >= 2);
+
+
+ for (uint32_t i = 0; i < REPS; ++i) {
+ uint32_t rep_len = rep_lens[i];
+ if (rep_len < 2)
+ continue;
+
+ const uint32_t price = rep_match_price + get_pure_rep_price(
+ coder, i, coder->state, pos_state);
+
+ do {
+ const uint32_t cur_and_len_price = price
+ + get_len_price(
+ &coder->rep_len_encoder,
+ rep_len, pos_state);
+
+ if (cur_and_len_price < coder->opts[rep_len].price) {
+ coder->opts[rep_len].price = cur_and_len_price;
+ coder->opts[rep_len].pos_prev = 0;
+ coder->opts[rep_len].back_prev = i;
+ coder->opts[rep_len].prev_1_is_literal = false;
+ }
+ } while (--rep_len >= 2);
+ }
+
+
+ const uint32_t normal_match_price = match_price
+ + rc_bit_0_price(coder->is_rep[coder->state]);
+
+ len = rep_lens[0] >= 2 ? rep_lens[0] + 1 : 2;
+ if (len <= len_main) {
+ uint32_t i = 0;
+ while (len > coder->matches[i].len)
+ ++i;
+
+ for(; ; ++len) {
+ const uint32_t dist = coder->matches[i].dist;
+ const uint32_t cur_and_len_price = normal_match_price
+ + get_dist_len_price(coder,
+ dist, len, pos_state);
+
+ if (cur_and_len_price < coder->opts[len].price) {
+ coder->opts[len].price = cur_and_len_price;
+ coder->opts[len].pos_prev = 0;
+ coder->opts[len].back_prev = dist + REPS;
+ coder->opts[len].prev_1_is_literal = false;
+ }
+
+ if (len == coder->matches[i].len)
+ if (++i == matches_count)
+ break;
+ }
+ }
+
+ return len_end;
+}
+
+
+static inline uint32_t
+helper2(lzma_lzma1_encoder *coder, uint32_t *reps, const uint8_t *buf,
+ uint32_t len_end, uint32_t position, const uint32_t cur,
+ const uint32_t nice_len, const uint32_t buf_avail_full)
+{
+ uint32_t matches_count = coder->matches_count;
+ uint32_t new_len = coder->longest_match_length;
+ uint32_t pos_prev = coder->opts[cur].pos_prev;
+ lzma_lzma_state state;
+
+ if (coder->opts[cur].prev_1_is_literal) {
+ --pos_prev;
+
+ if (coder->opts[cur].prev_2) {
+ state = coder->opts[coder->opts[cur].pos_prev_2].state;
+
+ if (coder->opts[cur].back_prev_2 < REPS)
+ update_long_rep(state);
+ else
+ update_match(state);
+
+ } else {
+ state = coder->opts[pos_prev].state;
+ }
+
+ update_literal(state);
+
+ } else {
+ state = coder->opts[pos_prev].state;
+ }
+
+ if (pos_prev == cur - 1) {
+ if (is_short_rep(coder->opts[cur]))
+ update_short_rep(state);
+ else
+ update_literal(state);
+ } else {
+ uint32_t pos;
+ if (coder->opts[cur].prev_1_is_literal
+ && coder->opts[cur].prev_2) {
+ pos_prev = coder->opts[cur].pos_prev_2;
+ pos = coder->opts[cur].back_prev_2;
+ update_long_rep(state);
+ } else {
+ pos = coder->opts[cur].back_prev;
+ if (pos < REPS)
+ update_long_rep(state);
+ else
+ update_match(state);
+ }
+
+ if (pos < REPS) {
+ reps[0] = coder->opts[pos_prev].backs[pos];
+
+ uint32_t i;
+ for (i = 1; i <= pos; ++i)
+ reps[i] = coder->opts[pos_prev].backs[i - 1];
+
+ for (; i < REPS; ++i)
+ reps[i] = coder->opts[pos_prev].backs[i];
+
+ } else {
+ reps[0] = pos - REPS;
+
+ for (uint32_t i = 1; i < REPS; ++i)
+ reps[i] = coder->opts[pos_prev].backs[i - 1];
+ }
+ }
+
+ coder->opts[cur].state = state;
+
+ for (uint32_t i = 0; i < REPS; ++i)
+ coder->opts[cur].backs[i] = reps[i];
+
+ const uint32_t cur_price = coder->opts[cur].price;
+
+ const uint8_t current_byte = *buf;
+ const uint8_t match_byte = *(buf - reps[0] - 1);
+
+ const uint32_t pos_state = position & coder->pos_mask;
+
+ const uint32_t cur_and_1_price = cur_price
+ + rc_bit_0_price(coder->is_match[state][pos_state])
+ + get_literal_price(coder, position, buf[-1],
+ !is_literal_state(state), match_byte, current_byte);
+
+ bool next_is_literal = false;
+
+ if (cur_and_1_price < coder->opts[cur + 1].price) {
+ coder->opts[cur + 1].price = cur_and_1_price;
+ coder->opts[cur + 1].pos_prev = cur;
+ make_literal(&coder->opts[cur + 1]);
+ next_is_literal = true;
+ }
+
+ const uint32_t match_price = cur_price
+ + rc_bit_1_price(coder->is_match[state][pos_state]);
+ const uint32_t rep_match_price = match_price
+ + rc_bit_1_price(coder->is_rep[state]);
+
+ if (match_byte == current_byte
+ && !(coder->opts[cur + 1].pos_prev < cur
+ && coder->opts[cur + 1].back_prev == 0)) {
+
+ const uint32_t short_rep_price = rep_match_price
+ + get_short_rep_price(coder, state, pos_state);
+
+ if (short_rep_price <= coder->opts[cur + 1].price) {
+ coder->opts[cur + 1].price = short_rep_price;
+ coder->opts[cur + 1].pos_prev = cur;
+ make_short_rep(&coder->opts[cur + 1]);
+ next_is_literal = true;
+ }
+ }
+
+ if (buf_avail_full < 2)
+ return len_end;
+
+ const uint32_t buf_avail = my_min(buf_avail_full, nice_len);
+
+ if (!next_is_literal && match_byte != current_byte) { // speed optimization
+ // try literal + rep0
+ const uint8_t *const buf_back = buf - reps[0] - 1;
+ const uint32_t limit = my_min(buf_avail_full, nice_len + 1);
+
+ const uint32_t len_test = lzma_memcmplen(buf, buf_back, 1, limit) - 1;
+
+ if (len_test >= 2) {
+ lzma_lzma_state state_2 = state;
+ update_literal(state_2);
+
+ const uint32_t pos_state_next = (position + 1) & coder->pos_mask;
+ const uint32_t next_rep_match_price = cur_and_1_price
+ + rc_bit_1_price(coder->is_match[state_2][pos_state_next])
+ + rc_bit_1_price(coder->is_rep[state_2]);
+
+ //for (; len_test >= 2; --len_test) {
+ const uint32_t offset = cur + 1 + len_test;
+
+ while (len_end < offset)
+ coder->opts[++len_end].price = RC_INFINITY_PRICE;
+
+ const uint32_t cur_and_len_price = next_rep_match_price
+ + get_rep_price(coder, 0, len_test,
+ state_2, pos_state_next);
+
+ if (cur_and_len_price < coder->opts[offset].price) {
+ coder->opts[offset].price = cur_and_len_price;
+ coder->opts[offset].pos_prev = cur + 1;
+ coder->opts[offset].back_prev = 0;
+ coder->opts[offset].prev_1_is_literal = true;
+ coder->opts[offset].prev_2 = false;
+ }
+ //}
+ }
+ }
+
+
+ uint32_t start_len = 2; // speed optimization
+
+ for (uint32_t rep_index = 0; rep_index < REPS; ++rep_index) {
+ const uint8_t *const buf_back = buf - reps[rep_index] - 1;
+ if (not_equal_16(buf, buf_back))
+ continue;
+
+ uint32_t len_test = lzma_memcmplen(buf, buf_back, 2, buf_avail);
+
+ while (len_end < cur + len_test)
+ coder->opts[++len_end].price = RC_INFINITY_PRICE;
+
+ const uint32_t len_test_temp = len_test;
+ const uint32_t price = rep_match_price + get_pure_rep_price(
+ coder, rep_index, state, pos_state);
+
+ do {
+ const uint32_t cur_and_len_price = price
+ + get_len_price(&coder->rep_len_encoder,
+ len_test, pos_state);
+
+ if (cur_and_len_price < coder->opts[cur + len_test].price) {
+ coder->opts[cur + len_test].price = cur_and_len_price;
+ coder->opts[cur + len_test].pos_prev = cur;
+ coder->opts[cur + len_test].back_prev = rep_index;
+ coder->opts[cur + len_test].prev_1_is_literal = false;
+ }
+ } while (--len_test >= 2);
+
+ len_test = len_test_temp;
+
+ if (rep_index == 0)
+ start_len = len_test + 1;
+
+
+ uint32_t len_test_2 = len_test + 1;
+ const uint32_t limit = my_min(buf_avail_full,
+ len_test_2 + nice_len);
+ // NOTE: len_test_2 may be greater than limit so the call to
+ // lzma_memcmplen() must be done conditionally.
+ if (len_test_2 < limit)
+ len_test_2 = lzma_memcmplen(buf, buf_back, len_test_2, limit);
+
+ len_test_2 -= len_test + 1;
+
+ if (len_test_2 >= 2) {
+ lzma_lzma_state state_2 = state;
+ update_long_rep(state_2);
+
+ uint32_t pos_state_next = (position + len_test) & coder->pos_mask;
+
+ const uint32_t cur_and_len_literal_price = price
+ + get_len_price(&coder->rep_len_encoder,
+ len_test, pos_state)
+ + rc_bit_0_price(coder->is_match[state_2][pos_state_next])
+ + get_literal_price(coder, position + len_test,
+ buf[len_test - 1], true,
+ buf_back[len_test], buf[len_test]);
+
+ update_literal(state_2);
+
+ pos_state_next = (position + len_test + 1) & coder->pos_mask;
+
+ const uint32_t next_rep_match_price = cur_and_len_literal_price
+ + rc_bit_1_price(coder->is_match[state_2][pos_state_next])
+ + rc_bit_1_price(coder->is_rep[state_2]);
+
+ //for(; len_test_2 >= 2; len_test_2--) {
+ const uint32_t offset = cur + len_test + 1 + len_test_2;
+
+ while (len_end < offset)
+ coder->opts[++len_end].price = RC_INFINITY_PRICE;
+
+ const uint32_t cur_and_len_price = next_rep_match_price
+ + get_rep_price(coder, 0, len_test_2,
+ state_2, pos_state_next);
+
+ if (cur_and_len_price < coder->opts[offset].price) {
+ coder->opts[offset].price = cur_and_len_price;
+ coder->opts[offset].pos_prev = cur + len_test + 1;
+ coder->opts[offset].back_prev = 0;
+ coder->opts[offset].prev_1_is_literal = true;
+ coder->opts[offset].prev_2 = true;
+ coder->opts[offset].pos_prev_2 = cur;
+ coder->opts[offset].back_prev_2 = rep_index;
+ }
+ //}
+ }
+ }
+
+
+ //for (uint32_t len_test = 2; len_test <= new_len; ++len_test)
+ if (new_len > buf_avail) {
+ new_len = buf_avail;
+
+ matches_count = 0;
+ while (new_len > coder->matches[matches_count].len)
+ ++matches_count;
+
+ coder->matches[matches_count++].len = new_len;
+ }
+
+
+ if (new_len >= start_len) {
+ const uint32_t normal_match_price = match_price
+ + rc_bit_0_price(coder->is_rep[state]);
+
+ while (len_end < cur + new_len)
+ coder->opts[++len_end].price = RC_INFINITY_PRICE;
+
+ uint32_t i = 0;
+ while (start_len > coder->matches[i].len)
+ ++i;
+
+ for (uint32_t len_test = start_len; ; ++len_test) {
+ const uint32_t cur_back = coder->matches[i].dist;
+ uint32_t cur_and_len_price = normal_match_price
+ + get_dist_len_price(coder,
+ cur_back, len_test, pos_state);
+
+ if (cur_and_len_price < coder->opts[cur + len_test].price) {
+ coder->opts[cur + len_test].price = cur_and_len_price;
+ coder->opts[cur + len_test].pos_prev = cur;
+ coder->opts[cur + len_test].back_prev
+ = cur_back + REPS;
+ coder->opts[cur + len_test].prev_1_is_literal = false;
+ }
+
+ if (len_test == coder->matches[i].len) {
+ // Try Match + Literal + Rep0
+ const uint8_t *const buf_back = buf - cur_back - 1;
+ uint32_t len_test_2 = len_test + 1;
+ const uint32_t limit = my_min(buf_avail_full,
+ len_test_2 + nice_len);
+
+ // NOTE: len_test_2 may be greater than limit
+ // so the call to lzma_memcmplen() must be
+ // done conditionally.
+ if (len_test_2 < limit)
+ len_test_2 = lzma_memcmplen(buf, buf_back,
+ len_test_2, limit);
+
+ len_test_2 -= len_test + 1;
+
+ if (len_test_2 >= 2) {
+ lzma_lzma_state state_2 = state;
+ update_match(state_2);
+ uint32_t pos_state_next
+ = (position + len_test) & coder->pos_mask;
+
+ const uint32_t cur_and_len_literal_price = cur_and_len_price
+ + rc_bit_0_price(
+ coder->is_match[state_2][pos_state_next])
+ + get_literal_price(coder,
+ position + len_test,
+ buf[len_test - 1],
+ true,
+ buf_back[len_test],
+ buf[len_test]);
+
+ update_literal(state_2);
+ pos_state_next = (pos_state_next + 1) & coder->pos_mask;
+
+ const uint32_t next_rep_match_price
+ = cur_and_len_literal_price
+ + rc_bit_1_price(
+ coder->is_match[state_2][pos_state_next])
+ + rc_bit_1_price(coder->is_rep[state_2]);
+
+ // for(; len_test_2 >= 2; --len_test_2) {
+ const uint32_t offset = cur + len_test + 1 + len_test_2;
+
+ while (len_end < offset)
+ coder->opts[++len_end].price = RC_INFINITY_PRICE;
+
+ cur_and_len_price = next_rep_match_price
+ + get_rep_price(coder, 0, len_test_2,
+ state_2, pos_state_next);
+
+ if (cur_and_len_price < coder->opts[offset].price) {
+ coder->opts[offset].price = cur_and_len_price;
+ coder->opts[offset].pos_prev = cur + len_test + 1;
+ coder->opts[offset].back_prev = 0;
+ coder->opts[offset].prev_1_is_literal = true;
+ coder->opts[offset].prev_2 = true;
+ coder->opts[offset].pos_prev_2 = cur;
+ coder->opts[offset].back_prev_2
+ = cur_back + REPS;
+ }
+ //}
+ }
+
+ if (++i == matches_count)
+ break;
+ }
+ }
+ }
+
+ return len_end;
+}
+
+
+extern void
+lzma_lzma_optimum_normal(lzma_lzma1_encoder *restrict coder,
+ lzma_mf *restrict mf,
+ uint32_t *restrict back_res, uint32_t *restrict len_res,
+ uint32_t position)
+{
+ // If we have symbols pending, return the next pending symbol.
+ if (coder->opts_end_index != coder->opts_current_index) {
+ assert(mf->read_ahead > 0);
+ *len_res = coder->opts[coder->opts_current_index].pos_prev
+ - coder->opts_current_index;
+ *back_res = coder->opts[coder->opts_current_index].back_prev;
+ coder->opts_current_index = coder->opts[
+ coder->opts_current_index].pos_prev;
+ return;
+ }
+
+ // Update the price tables. In LZMA SDK <= 4.60 (and possibly later)
+ // this was done in both initialization function and in the main loop.
+ // In liblzma they were moved into this single place.
+ if (mf->read_ahead == 0) {
+ if (coder->match_price_count >= (1 << 7))
+ fill_dist_prices(coder);
+
+ if (coder->align_price_count >= ALIGN_SIZE)
+ fill_align_prices(coder);
+ }
+
+ // TODO: This needs quite a bit of cleaning still. But splitting
+ // the original function into two pieces makes it at least a little
+ // more readable, since those two parts don't share many variables.
+
+ uint32_t len_end = helper1(coder, mf, back_res, len_res, position);
+ if (len_end == UINT32_MAX)
+ return;
+
+ uint32_t reps[REPS];
+ memcpy(reps, coder->reps, sizeof(reps));
+
+ uint32_t cur;
+ for (cur = 1; cur < len_end; ++cur) {
+ assert(cur < OPTS);
+
+ coder->longest_match_length = mf_find(
+ mf, &coder->matches_count, coder->matches);
+
+ if (coder->longest_match_length >= mf->nice_len)
+ break;
+
+ len_end = helper2(coder, reps, mf_ptr(mf) - 1, len_end,
+ position + cur, cur, mf->nice_len,
+ my_min(mf_avail(mf) + 1, OPTS - 1 - cur));
+ }
+
+ backward(coder, len_res, back_res, cur);
+ return;
+}
diff --git a/src/liblzma/lzma/lzma_encoder_presets.c b/src/liblzma/lzma/lzma_encoder_presets.c
new file mode 100644
index 0000000..711df02
--- /dev/null
+++ b/src/liblzma/lzma/lzma_encoder_presets.c
@@ -0,0 +1,64 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file lzma_encoder_presets.c
+/// \brief Encoder presets
+/// \note xz needs this even when only decoding is enabled.
+//
+// Author: Lasse Collin
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#include "common.h"
+
+
+extern LZMA_API(lzma_bool)
+lzma_lzma_preset(lzma_options_lzma *options, uint32_t preset)
+{
+ const uint32_t level = preset & LZMA_PRESET_LEVEL_MASK;
+ const uint32_t flags = preset & ~LZMA_PRESET_LEVEL_MASK;
+ const uint32_t supported_flags = LZMA_PRESET_EXTREME;
+
+ if (level > 9 || (flags & ~supported_flags))
+ return true;
+
+ options->preset_dict = NULL;
+ options->preset_dict_size = 0;
+
+ options->lc = LZMA_LC_DEFAULT;
+ options->lp = LZMA_LP_DEFAULT;
+ options->pb = LZMA_PB_DEFAULT;
+
+ static const uint8_t dict_pow2[]
+ = { 18, 20, 21, 22, 22, 23, 23, 24, 25, 26 };
+ options->dict_size = UINT32_C(1) << dict_pow2[level];
+
+ if (level <= 3) {
+ options->mode = LZMA_MODE_FAST;
+ options->mf = level == 0 ? LZMA_MF_HC3 : LZMA_MF_HC4;
+ options->nice_len = level <= 1 ? 128 : 273;
+ static const uint8_t depths[] = { 4, 8, 24, 48 };
+ options->depth = depths[level];
+ } else {
+ options->mode = LZMA_MODE_NORMAL;
+ options->mf = LZMA_MF_BT4;
+ options->nice_len = level == 4 ? 16 : level == 5 ? 32 : 64;
+ options->depth = 0;
+ }
+
+ if (flags & LZMA_PRESET_EXTREME) {
+ options->mode = LZMA_MODE_NORMAL;
+ options->mf = LZMA_MF_BT4;
+ if (level == 3 || level == 5) {
+ options->nice_len = 192;
+ options->depth = 0;
+ } else {
+ options->nice_len = 273;
+ options->depth = 512;
+ }
+ }
+
+ return false;
+}
diff --git a/src/liblzma/lzma/lzma_encoder_private.h b/src/liblzma/lzma/lzma_encoder_private.h
new file mode 100644
index 0000000..b228c57
--- /dev/null
+++ b/src/liblzma/lzma/lzma_encoder_private.h
@@ -0,0 +1,162 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+/// \file lzma_encoder_private.h
+/// \brief Private definitions for LZMA encoder
+///
+// Authors: Igor Pavlov
+// Lasse Collin
+//
+// This file has been put into the public domain.
+// You can do whatever you want with this file.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#ifndef LZMA_LZMA_ENCODER_PRIVATE_H
+#define LZMA_LZMA_ENCODER_PRIVATE_H
+
+#include "lz_encoder.h"
+#include "range_encoder.h"
+#include "lzma_common.h"
+#include "lzma_encoder.h"
+
+
+// Macro to compare if the first two bytes in two buffers differ. This is
+// needed in lzma_lzma_optimum_*() to test if the match is at least
+// MATCH_LEN_MIN bytes. Unaligned access gives tiny gain so there's no
+// reason to not use it when it is supported.
+#ifdef TUKLIB_FAST_UNALIGNED_ACCESS
+# define not_equal_16(a, b) (read16ne(a) != read16ne(b))
+#else
+# define not_equal_16(a, b) \
+ ((a)[0] != (b)[0] || (a)[1] != (b)[1])
+#endif
+
+
+// Optimal - Number of entries in the optimum array.
+#define OPTS (1 << 12)
+
+
+typedef struct {
+ probability choice;
+ probability choice2;
+ probability low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
+ probability mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
+ probability high[LEN_HIGH_SYMBOLS];
+
+ uint32_t prices[POS_STATES_MAX][LEN_SYMBOLS];
+ uint32_t table_size;
+ uint32_t counters[POS_STATES_MAX];
+
+} lzma_length_encoder;
+
+
+typedef struct {
+ lzma_lzma_state state;
+
+ bool prev_1_is_literal;
+ bool prev_2;
+
+ uint32_t pos_prev_2;
+ uint32_t back_prev_2;
+
+ uint32_t price;
+ uint32_t pos_prev; // pos_next;
+ uint32_t back_prev;
+
+ uint32_t backs[REPS];
+
+} lzma_optimal;
+
+
+struct lzma_lzma1_encoder_s {
+ /// Range encoder
+ lzma_range_encoder rc;
+
+ /// Uncompressed size (doesn't include possible preset dictionary)
+ uint64_t uncomp_size;
+
+ /// If non-zero, produce at most this much output.
+ /// Some input may then be missing from the output.
+ uint64_t out_limit;
+
+ /// If the above out_limit is non-zero, *uncomp_size_ptr is set to
+ /// the amount of uncompressed data that we were able to fit
+ /// in the output buffer.
+ uint64_t *uncomp_size_ptr;
+
+ /// State
+ lzma_lzma_state state;
+
+ /// The four most recent match distances
+ uint32_t reps[REPS];
+
+ /// Array of match candidates
+ lzma_match matches[MATCH_LEN_MAX + 1];
+
+ /// Number of match candidates in matches[]
+ uint32_t matches_count;
+
+ /// Variable to hold the length of the longest match between calls
+ /// to lzma_lzma_optimum_*().
+ uint32_t longest_match_length;
+
+ /// True if using getoptimumfast
+ bool fast_mode;
+
+ /// True if the encoder has been initialized by encoding the first
+ /// byte as a literal.
+ bool is_initialized;
+
+ /// True if the range encoder has been flushed, but not all bytes
+ /// have been written to the output buffer yet.
+ bool is_flushed;
+
+ /// True if end of payload marker will be written.
+ bool use_eopm;
+
+ uint32_t pos_mask; ///< (1 << pos_bits) - 1
+ uint32_t literal_context_bits;
+ uint32_t literal_pos_mask;
+
+ // These are the same as in lzma_decoder.c. See comments there.
+ probability literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
+ probability is_match[STATES][POS_STATES_MAX];
+ probability is_rep[STATES];
+ probability is_rep0[STATES];
+ probability is_rep1[STATES];
+ probability is_rep2[STATES];
+ probability is_rep0_long[STATES][POS_STATES_MAX];
+ probability dist_slot[DIST_STATES][DIST_SLOTS];
+ probability dist_special[FULL_DISTANCES - DIST_MODEL_END];
+ probability dist_align[ALIGN_SIZE];
+
+ // These are the same as in lzma_decoder.c except that the encoders
+ // include also price tables.
+ lzma_length_encoder match_len_encoder;
+ lzma_length_encoder rep_len_encoder;
+
+ // Price tables
+ uint32_t dist_slot_prices[DIST_STATES][DIST_SLOTS];
+ uint32_t dist_prices[DIST_STATES][FULL_DISTANCES];
+ uint32_t dist_table_size;
+ uint32_t match_price_count;
+
+ uint32_t align_prices[ALIGN_SIZE];
+ uint32_t align_price_count;
+
+ // Optimal
+ uint32_t opts_end_index;
+ uint32_t opts_current_index;
+ lzma_optimal opts[OPTS];
+};
+
+
+extern void lzma_lzma_optimum_fast(
+ lzma_lzma1_encoder *restrict coder, lzma_mf *restrict mf,
+ uint32_t *restrict back_res, uint32_t *restrict len_res);
+
+extern void lzma_lzma_optimum_normal(lzma_lzma1_encoder *restrict coder,
+ lzma_mf *restrict mf, uint32_t *restrict back_res,
+ uint32_t *restrict len_res, uint32_t position);
+
+#endif