diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 21:12:04 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 21:12:04 +0000 |
commit | eac54b7c4aec25060d7bd856f7cdc290943d6aae (patch) | |
tree | 9a6d81c9f88df4698e746d63d14ddafeddd918b8 /src/liblzma/simple/arm64.c | |
parent | Initial commit. (diff) | |
download | xz-utils-eac54b7c4aec25060d7bd856f7cdc290943d6aae.tar.xz xz-utils-eac54b7c4aec25060d7bd856f7cdc290943d6aae.zip |
Adding upstream version 5.4.1.upstream/5.4.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/liblzma/simple/arm64.c')
-rw-r--r-- | src/liblzma/simple/arm64.c | 137 |
1 files changed, 137 insertions, 0 deletions
diff --git a/src/liblzma/simple/arm64.c b/src/liblzma/simple/arm64.c new file mode 100644 index 0000000..0fe0824 --- /dev/null +++ b/src/liblzma/simple/arm64.c @@ -0,0 +1,137 @@ +/////////////////////////////////////////////////////////////////////////////// +// +/// \file arm64.c +/// \brief Filter for ARM64 binaries +/// +/// This converts ARM64 relative addresses in the BL and ADRP immediates +/// to absolute values to increase redundancy of ARM64 code. +/// +/// Converting B or ADR instructions was also tested but it's not useful. +/// A majority of the jumps for the B instruction are very small (+/- 0xFF). +/// These are typical for loops and if-statements. Encoding them to their +/// absolute address reduces redundancy since many of the small relative +/// jump values are repeated, but very few of the absolute addresses are. +// +// Authors: Lasse Collin +// Jia Tan +// Igor Pavlov +// +// This file has been put into the public domain. +// You can do whatever you want with this file. +// +/////////////////////////////////////////////////////////////////////////////// + +#include "simple_private.h" + + +static size_t +arm64_code(void *simple lzma_attribute((__unused__)), + uint32_t now_pos, bool is_encoder, + uint8_t *buffer, size_t size) +{ + size_t i; + + // Clang 14.0.6 on x86-64 makes this four times bigger and 40 % slower + // with auto-vectorization that is enabled by default with -O2. + // Such vectorization bloat happens with -O2 when targeting ARM64 too + // but performance hasn't been tested. +#ifdef __clang__ +# pragma clang loop vectorize(disable) +#endif + for (i = 0; i + 4 <= size; i += 4) { + uint32_t pc = (uint32_t)(now_pos + i); + uint32_t instr = read32le(buffer + i); + + if ((instr >> 26) == 0x25) { + // BL instruction: + // The full 26-bit immediate is converted. + // The range is +/-128 MiB. + // + // Using the full range is helps quite a lot with + // big executables. Smaller range would reduce false + // positives in non-code sections of the input though + // so this is a compromise that slightly favors big + // files. With the full range only six bits of the 32 + // need to match to trigger a conversion. + const uint32_t src = instr; + instr = 0x94000000; + + pc >>= 2; + if (!is_encoder) + pc = 0U - pc; + + instr |= (src + pc) & 0x03FFFFFF; + write32le(buffer + i, instr); + + } else if ((instr & 0x9F000000) == 0x90000000) { + // ADRP instruction: + // Only values in the range +/-512 MiB are converted. + // + // Using less than the full +/-4 GiB range reduces + // false positives on non-code sections of the input + // while being excellent for executables up to 512 MiB. + // The positive effect of ADRP conversion is smaller + // than that of BL but it also doesn't hurt so much in + // non-code sections of input because, with +/-512 MiB + // range, nine bits of 32 need to match to trigger a + // conversion (two 10-bit match choices = 9 bits). + const uint32_t src = ((instr >> 29) & 3) + | ((instr >> 3) & 0x001FFFFC); + + // With the addition only one branch is needed to + // check the +/- range. This is usually false when + // processing ARM64 code so branch prediction will + // handle it well in terms of performance. + // + //if ((src & 0x001E0000) != 0 + // && (src & 0x001E0000) != 0x001E0000) + if ((src + 0x00020000) & 0x001C0000) + continue; + + instr &= 0x9000001F; + + pc >>= 12; + if (!is_encoder) + pc = 0U - pc; + + const uint32_t dest = src + pc; + instr |= (dest & 3) << 29; + instr |= (dest & 0x0003FFFC) << 3; + instr |= (0U - (dest & 0x00020000)) & 0x00E00000; + write32le(buffer + i, instr); + } + } + + return i; +} + + +static lzma_ret +arm64_coder_init(lzma_next_coder *next, const lzma_allocator *allocator, + const lzma_filter_info *filters, bool is_encoder) +{ + return lzma_simple_coder_init(next, allocator, filters, + &arm64_code, 0, 4, 4, is_encoder); +} + + +#ifdef HAVE_ENCODER_ARM64 +extern lzma_ret +lzma_simple_arm64_encoder_init(lzma_next_coder *next, + const lzma_allocator *allocator, + const lzma_filter_info *filters) +{ + return arm64_coder_init(next, allocator, filters, true); +} +#endif + + +#ifdef HAVE_DECODER_ARM64 +extern lzma_ret +lzma_simple_arm64_decoder_init(lzma_next_coder *next, + const lzma_allocator *allocator, + const lzma_filter_info *filters) +{ + return arm64_coder_init(next, allocator, filters, false); +} +#endif |