summaryrefslogtreecommitdiffstats
path: root/sc/source/core/tool/interpr3.cxx
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 16:51:28 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 16:51:28 +0000
commit940b4d1848e8c70ab7642901a68594e8016caffc (patch)
treeeb72f344ee6c3d9b80a7ecc079ea79e9fba8676d /sc/source/core/tool/interpr3.cxx
parentInitial commit. (diff)
downloadlibreoffice-upstream.tar.xz
libreoffice-upstream.zip
Adding upstream version 1:7.0.4.upstream/1%7.0.4upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'sc/source/core/tool/interpr3.cxx')
-rw-r--r--sc/source/core/tool/interpr3.cxx5571
1 files changed, 5571 insertions, 0 deletions
diff --git a/sc/source/core/tool/interpr3.cxx b/sc/source/core/tool/interpr3.cxx
new file mode 100644
index 000000000..994d821f6
--- /dev/null
+++ b/sc/source/core/tool/interpr3.cxx
@@ -0,0 +1,5571 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
+/*
+ * This file is part of the LibreOffice project.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/.
+ *
+ * This file incorporates work covered by the following license notice:
+ *
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed
+ * with this work for additional information regarding copyright
+ * ownership. The ASF licenses this file to you under the Apache
+ * License, Version 2.0 (the "License"); you may not use this file
+ * except in compliance with the License. You may obtain a copy of
+ * the License at http://www.apache.org/licenses/LICENSE-2.0 .
+ */
+
+#include <tools/solar.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include <interpre.hxx>
+#include <global.hxx>
+#include <compiler.hxx>
+#include <formulacell.hxx>
+#include <document.hxx>
+#include <dociter.hxx>
+#include <matrixoperators.hxx>
+#include <scmatrix.hxx>
+
+#include <math.h>
+#include <cassert>
+#include <memory>
+#include <set>
+#include <vector>
+#include <algorithm>
+#include <comphelper/random.hxx>
+#include <o3tl/float_int_conversion.hxx>
+#include <osl/diagnose.h>
+#include <basegfx/numeric/ftools.hxx>
+
+using ::std::vector;
+using namespace formula;
+
+/// Two columns of data should be sortable with GetSortArray() and QuickSort()
+// This is an arbitrary limit.
+#define MAX_COUNT_DOUBLE_FOR_SORT (MAXROWCOUNT * 2)
+
+const double ScInterpreter::fMaxGammaArgument = 171.624376956302; // found experimental
+const double fMachEps = ::std::numeric_limits<double>::epsilon();
+
+namespace {
+
+class ScDistFunc
+{
+public:
+ virtual double GetValue(double x) const = 0;
+
+protected:
+ ~ScDistFunc() {}
+};
+
+}
+
+// iteration for inverse distributions
+
+//template< class T > double lcl_IterateInverse( const T& rFunction, double x0, double x1, bool& rConvError )
+
+/** u*w<0.0 fails for values near zero */
+static bool lcl_HasChangeOfSign( double u, double w )
+{
+ return (u < 0.0 && w > 0.0) || (u > 0.0 && w < 0.0);
+}
+
+static double lcl_IterateInverse( const ScDistFunc& rFunction, double fAx, double fBx, bool& rConvError )
+{
+ rConvError = false;
+ const double fYEps = 1.0E-307;
+ const double fXEps = ::std::numeric_limits<double>::epsilon();
+
+ OSL_ENSURE(fAx<fBx, "IterateInverse: wrong interval");
+
+ // find enclosing interval
+
+ double fAy = rFunction.GetValue(fAx);
+ double fBy = rFunction.GetValue(fBx);
+ double fTemp;
+ unsigned short nCount;
+ for (nCount = 0; nCount < 1000 && !lcl_HasChangeOfSign(fAy,fBy); nCount++)
+ {
+ if (fabs(fAy) <= fabs(fBy))
+ {
+ fTemp = fAx;
+ fAx += 2.0 * (fAx - fBx);
+ if (fAx < 0.0)
+ fAx = 0.0;
+ fBx = fTemp;
+ fBy = fAy;
+ fAy = rFunction.GetValue(fAx);
+ }
+ else
+ {
+ fTemp = fBx;
+ fBx += 2.0 * (fBx - fAx);
+ fAx = fTemp;
+ fAy = fBy;
+ fBy = rFunction.GetValue(fBx);
+ }
+ }
+
+ if (fAy == 0.0)
+ return fAx;
+ if (fBy == 0.0)
+ return fBx;
+ if (!lcl_HasChangeOfSign( fAy, fBy))
+ {
+ rConvError = true;
+ return 0.0;
+ }
+ // inverse quadric interpolation with additional brackets
+ // set three points
+ double fPx = fAx;
+ double fPy = fAy;
+ double fQx = fBx;
+ double fQy = fBy;
+ double fRx = fAx;
+ double fRy = fAy;
+ double fSx = 0.5 * (fAx + fBx); // potential next point
+ bool bHasToInterpolate = true;
+ nCount = 0;
+ while ( nCount < 500 && fabs(fRy) > fYEps &&
+ (fBx-fAx) > ::std::max( fabs(fAx), fabs(fBx)) * fXEps )
+ {
+ if (bHasToInterpolate)
+ {
+ if (fPy!=fQy && fQy!=fRy && fRy!=fPy)
+ {
+ fSx = fPx * fRy * fQy / (fRy-fPy) / (fQy-fPy)
+ + fRx * fQy * fPy / (fQy-fRy) / (fPy-fRy)
+ + fQx * fPy * fRy / (fPy-fQy) / (fRy-fQy);
+ bHasToInterpolate = (fAx < fSx) && (fSx < fBx); // inside the brackets?
+ }
+ else
+ bHasToInterpolate = false;
+ }
+ if(!bHasToInterpolate)
+ {
+ fSx = 0.5 * (fAx + fBx);
+ // reset points
+ fQx = fBx; fQy = fBy;
+ bHasToInterpolate = true;
+ }
+ // shift points for next interpolation
+ fPx = fQx; fQx = fRx; fRx = fSx;
+ fPy = fQy; fQy = fRy; fRy = rFunction.GetValue(fSx);
+ // update brackets
+ if (lcl_HasChangeOfSign( fAy, fRy))
+ {
+ fBx = fRx; fBy = fRy;
+ }
+ else
+ {
+ fAx = fRx; fAy = fRy;
+ }
+ // if last iteration brought too small advance, then do bisection next
+ // time, for safety
+ bHasToInterpolate = bHasToInterpolate && (fabs(fRy) * 2.0 <= fabs(fQy));
+ ++nCount;
+ }
+ return fRx;
+}
+
+// General functions
+
+void ScInterpreter::ScNoName()
+{
+ PushError(FormulaError::NoName);
+}
+
+void ScInterpreter::ScBadName()
+{
+ short nParamCount = GetByte();
+ while (nParamCount-- > 0)
+ {
+ PopError();
+ }
+ PushError( FormulaError::NoName);
+}
+
+double ScInterpreter::phi(double x)
+{
+ return 0.39894228040143268 * exp(-(x * x) / 2.0);
+}
+
+double ScInterpreter::integralPhi(double x)
+{ // Using gauss(x)+0.5 has severe cancellation errors for x<-4
+ return 0.5 * ::rtl::math::erfc(-x * 0.7071067811865475); // * 1/sqrt(2)
+}
+
+double ScInterpreter::taylor(const double* pPolynom, sal_uInt16 nMax, double x)
+{
+ double nVal = pPolynom[nMax];
+ for (short i = nMax-1; i >= 0; i--)
+ {
+ nVal = pPolynom[i] + (nVal * x);
+ }
+ return nVal;
+}
+
+double ScInterpreter::gauss(double x)
+{
+
+ double xAbs = fabs(x);
+ sal_uInt16 xShort = static_cast<sal_uInt16>(::rtl::math::approxFloor(xAbs));
+ double nVal = 0.0;
+ if (xShort == 0)
+ {
+ static const double t0[] =
+ { 0.39894228040143268, -0.06649038006690545, 0.00997355701003582,
+ -0.00118732821548045, 0.00011543468761616, -0.00000944465625950,
+ 0.00000066596935163, -0.00000004122667415, 0.00000000227352982,
+ 0.00000000011301172, 0.00000000000511243, -0.00000000000021218 };
+ nVal = taylor(t0, 11, (xAbs * xAbs)) * xAbs;
+ }
+ else if (xShort <= 2)
+ {
+ static const double t2[] =
+ { 0.47724986805182079, 0.05399096651318805, -0.05399096651318805,
+ 0.02699548325659403, -0.00449924720943234, -0.00224962360471617,
+ 0.00134977416282970, -0.00011783742691370, -0.00011515930357476,
+ 0.00003704737285544, 0.00000282690796889, -0.00000354513195524,
+ 0.00000037669563126, 0.00000019202407921, -0.00000005226908590,
+ -0.00000000491799345, 0.00000000366377919, -0.00000000015981997,
+ -0.00000000017381238, 0.00000000002624031, 0.00000000000560919,
+ -0.00000000000172127, -0.00000000000008634, 0.00000000000007894 };
+ nVal = taylor(t2, 23, (xAbs - 2.0));
+ }
+ else if (xShort <= 4)
+ {
+ static const double t4[] =
+ { 0.49996832875816688, 0.00013383022576489, -0.00026766045152977,
+ 0.00033457556441221, -0.00028996548915725, 0.00018178605666397,
+ -0.00008252863922168, 0.00002551802519049, -0.00000391665839292,
+ -0.00000074018205222, 0.00000064422023359, -0.00000017370155340,
+ 0.00000000909595465, 0.00000000944943118, -0.00000000329957075,
+ 0.00000000029492075, 0.00000000011874477, -0.00000000004420396,
+ 0.00000000000361422, 0.00000000000143638, -0.00000000000045848 };
+ nVal = taylor(t4, 20, (xAbs - 4.0));
+ }
+ else
+ {
+ static const double asympt[] = { -1.0, 1.0, -3.0, 15.0, -105.0 };
+ nVal = 0.5 + phi(xAbs) * taylor(asympt, 4, 1.0 / (xAbs * xAbs)) / xAbs;
+ }
+ if (x < 0.0)
+ return -nVal;
+ else
+ return nVal;
+}
+
+// #i26836# new gaussinv implementation by Martin Eitzenberger <m.eitzenberger@unix.net>
+
+double ScInterpreter::gaussinv(double x)
+{
+ double q,t,z;
+
+ q=x-0.5;
+
+ if(fabs(q)<=.425)
+ {
+ t=0.180625-q*q;
+
+ z=
+ q*
+ (
+ (
+ (
+ (
+ (
+ (
+ (
+ t*2509.0809287301226727+33430.575583588128105
+ )
+ *t+67265.770927008700853
+ )
+ *t+45921.953931549871457
+ )
+ *t+13731.693765509461125
+ )
+ *t+1971.5909503065514427
+ )
+ *t+133.14166789178437745
+ )
+ *t+3.387132872796366608
+ )
+ /
+ (
+ (
+ (
+ (
+ (
+ (
+ (
+ t*5226.495278852854561+28729.085735721942674
+ )
+ *t+39307.89580009271061
+ )
+ *t+21213.794301586595867
+ )
+ *t+5394.1960214247511077
+ )
+ *t+687.1870074920579083
+ )
+ *t+42.313330701600911252
+ )
+ *t+1.0
+ );
+
+ }
+ else
+ {
+ if(q>0) t=1-x;
+ else t=x;
+
+ t=sqrt(-log(t));
+
+ if(t<=5.0)
+ {
+ t+=-1.6;
+
+ z=
+ (
+ (
+ (
+ (
+ (
+ (
+ (
+ t*7.7454501427834140764e-4+0.0227238449892691845833
+ )
+ *t+0.24178072517745061177
+ )
+ *t+1.27045825245236838258
+ )
+ *t+3.64784832476320460504
+ )
+ *t+5.7694972214606914055
+ )
+ *t+4.6303378461565452959
+ )
+ *t+1.42343711074968357734
+ )
+ /
+ (
+ (
+ (
+ (
+ (
+ (
+ (
+ t*1.05075007164441684324e-9+5.475938084995344946e-4
+ )
+ *t+0.0151986665636164571966
+ )
+ *t+0.14810397642748007459
+ )
+ *t+0.68976733498510000455
+ )
+ *t+1.6763848301838038494
+ )
+ *t+2.05319162663775882187
+ )
+ *t+1.0
+ );
+
+ }
+ else
+ {
+ t+=-5.0;
+
+ z=
+ (
+ (
+ (
+ (
+ (
+ (
+ (
+ t*2.01033439929228813265e-7+2.71155556874348757815e-5
+ )
+ *t+0.0012426609473880784386
+ )
+ *t+0.026532189526576123093
+ )
+ *t+0.29656057182850489123
+ )
+ *t+1.7848265399172913358
+ )
+ *t+5.4637849111641143699
+ )
+ *t+6.6579046435011037772
+ )
+ /
+ (
+ (
+ (
+ (
+ (
+ (
+ (
+ t*2.04426310338993978564e-15+1.4215117583164458887e-7
+ )
+ *t+1.8463183175100546818e-5
+ )
+ *t+7.868691311456132591e-4
+ )
+ *t+0.0148753612908506148525
+ )
+ *t+0.13692988092273580531
+ )
+ *t+0.59983220655588793769
+ )
+ *t+1.0
+ );
+
+ }
+
+ if(q<0.0) z=-z;
+ }
+
+ return z;
+}
+
+double ScInterpreter::Fakultaet(double x)
+{
+ x = ::rtl::math::approxFloor(x);
+ if (x < 0.0)
+ return 0.0;
+ else if (x == 0.0)
+ return 1.0;
+ else if (x <= 170.0)
+ {
+ double fTemp = x;
+ while (fTemp > 2.0)
+ {
+ fTemp--;
+ x *= fTemp;
+ }
+ }
+ else
+ SetError(FormulaError::NoValue);
+ return x;
+}
+
+double ScInterpreter::BinomKoeff(double n, double k)
+{
+ // this method has been duplicated as BinomialCoefficient()
+ // in scaddins/source/analysis/analysishelper.cxx
+
+ double nVal = 0.0;
+ k = ::rtl::math::approxFloor(k);
+ if (n < k)
+ nVal = 0.0;
+ else if (k == 0.0)
+ nVal = 1.0;
+ else
+ {
+ nVal = n/k;
+ n--;
+ k--;
+ while (k > 0.0)
+ {
+ nVal *= n/k;
+ k--;
+ n--;
+ }
+
+ }
+ return nVal;
+}
+
+// The algorithm is based on lanczos13m53 in lanczos.hpp
+// in math library from http://www.boost.org
+/** you must ensure fZ>0
+ Uses a variant of the Lanczos sum with a rational function. */
+static double lcl_getLanczosSum(double fZ)
+{
+ static const double fNum[13] ={
+ 23531376880.41075968857200767445163675473,
+ 42919803642.64909876895789904700198885093,
+ 35711959237.35566804944018545154716670596,
+ 17921034426.03720969991975575445893111267,
+ 6039542586.35202800506429164430729792107,
+ 1439720407.311721673663223072794912393972,
+ 248874557.8620541565114603864132294232163,
+ 31426415.58540019438061423162831820536287,
+ 2876370.628935372441225409051620849613599,
+ 186056.2653952234950402949897160456992822,
+ 8071.672002365816210638002902272250613822,
+ 210.8242777515793458725097339207133627117,
+ 2.506628274631000270164908177133837338626
+ };
+ static const double fDenom[13] = {
+ 0,
+ 39916800,
+ 120543840,
+ 150917976,
+ 105258076,
+ 45995730,
+ 13339535,
+ 2637558,
+ 357423,
+ 32670,
+ 1925,
+ 66,
+ 1
+ };
+ // Horner scheme
+ double fSumNum;
+ double fSumDenom;
+ int nI;
+ if (fZ<=1.0)
+ {
+ fSumNum = fNum[12];
+ fSumDenom = fDenom[12];
+ for (nI = 11; nI >= 0; --nI)
+ {
+ fSumNum *= fZ;
+ fSumNum += fNum[nI];
+ fSumDenom *= fZ;
+ fSumDenom += fDenom[nI];
+ }
+ }
+ else
+ // Cancel down with fZ^12; Horner scheme with reverse coefficients
+ {
+ double fZInv = 1/fZ;
+ fSumNum = fNum[0];
+ fSumDenom = fDenom[0];
+ for (nI = 1; nI <=12; ++nI)
+ {
+ fSumNum *= fZInv;
+ fSumNum += fNum[nI];
+ fSumDenom *= fZInv;
+ fSumDenom += fDenom[nI];
+ }
+ }
+ return fSumNum/fSumDenom;
+}
+
+// The algorithm is based on tgamma in gamma.hpp
+// in math library from http://www.boost.org
+/** You must ensure fZ>0; fZ>171.624376956302 will overflow. */
+static double lcl_GetGammaHelper(double fZ)
+{
+ double fGamma = lcl_getLanczosSum(fZ);
+ const double fg = 6.024680040776729583740234375;
+ double fZgHelp = fZ + fg - 0.5;
+ // avoid intermediate overflow
+ double fHalfpower = pow( fZgHelp, fZ / 2 - 0.25);
+ fGamma *= fHalfpower;
+ fGamma /= exp(fZgHelp);
+ fGamma *= fHalfpower;
+ if (fZ <= 20.0 && fZ == ::rtl::math::approxFloor(fZ))
+ fGamma = ::rtl::math::round(fGamma);
+ return fGamma;
+}
+
+// The algorithm is based on tgamma in gamma.hpp
+// in math library from http://www.boost.org
+/** You must ensure fZ>0 */
+static double lcl_GetLogGammaHelper(double fZ)
+{
+ const double fg = 6.024680040776729583740234375;
+ double fZgHelp = fZ + fg - 0.5;
+ return log( lcl_getLanczosSum(fZ)) + (fZ-0.5) * log(fZgHelp) - fZgHelp;
+}
+
+/** You must ensure non integer arguments for fZ<1 */
+double ScInterpreter::GetGamma(double fZ)
+{
+ const double fLogPi = log(F_PI);
+ const double fLogDblMax = log( ::std::numeric_limits<double>::max());
+
+ if (fZ > fMaxGammaArgument)
+ {
+ SetError(FormulaError::IllegalFPOperation);
+ return HUGE_VAL;
+ }
+
+ if (fZ >= 1.0)
+ return lcl_GetGammaHelper(fZ);
+
+ if (fZ >= 0.5) // shift to x>=1 using Gamma(x)=Gamma(x+1)/x
+ return lcl_GetGammaHelper(fZ+1) / fZ;
+
+ if (fZ >= -0.5) // shift to x>=1, might overflow
+ {
+ double fLogTest = lcl_GetLogGammaHelper(fZ+2) - rtl::math::log1p(fZ) - log( fabs(fZ));
+ if (fLogTest >= fLogDblMax)
+ {
+ SetError( FormulaError::IllegalFPOperation);
+ return HUGE_VAL;
+ }
+ return lcl_GetGammaHelper(fZ+2) / (fZ+1) / fZ;
+ }
+ // fZ<-0.5
+ // Use Euler's reflection formula: gamma(x)= pi/ ( gamma(1-x)*sin(pi*x) )
+ double fLogDivisor = lcl_GetLogGammaHelper(1-fZ) + log( fabs( ::rtl::math::sin( F_PI*fZ)));
+ if (fLogDivisor - fLogPi >= fLogDblMax) // underflow
+ return 0.0;
+
+ if (fLogDivisor<0.0)
+ if (fLogPi - fLogDivisor > fLogDblMax) // overflow
+ {
+ SetError(FormulaError::IllegalFPOperation);
+ return HUGE_VAL;
+ }
+
+ return exp( fLogPi - fLogDivisor) * ((::rtl::math::sin( F_PI*fZ) < 0.0) ? -1.0 : 1.0);
+}
+
+/** You must ensure fZ>0 */
+double ScInterpreter::GetLogGamma(double fZ)
+{
+ if (fZ >= fMaxGammaArgument)
+ return lcl_GetLogGammaHelper(fZ);
+ if (fZ >= 1.0)
+ return log(lcl_GetGammaHelper(fZ));
+ if (fZ >= 0.5)
+ return log( lcl_GetGammaHelper(fZ+1) / fZ);
+ return lcl_GetLogGammaHelper(fZ+2) - rtl::math::log1p(fZ) - log(fZ);
+}
+
+double ScInterpreter::GetFDist(double x, double fF1, double fF2)
+{
+ double arg = fF2/(fF2+fF1*x);
+ double alpha = fF2/2.0;
+ double beta = fF1/2.0;
+ return GetBetaDist(arg, alpha, beta);
+}
+
+double ScInterpreter::GetTDist( double T, double fDF, int nType )
+{
+ switch ( nType )
+ {
+ case 1 : // 1-tailed T-distribution
+ return 0.5 * GetBetaDist( fDF / ( fDF + T * T ), fDF / 2.0, 0.5 );
+ case 2 : // 2-tailed T-distribution
+ return GetBetaDist( fDF / ( fDF + T * T ), fDF / 2.0, 0.5);
+ case 3 : // left-tailed T-distribution (probability density function)
+ return pow( 1 + ( T * T / fDF ), -( fDF + 1 ) / 2 ) / ( sqrt( fDF ) * GetBeta( 0.5, fDF / 2.0 ) );
+ case 4 : // left-tailed T-distribution (cumulative distribution function)
+ double X = fDF / ( T * T + fDF );
+ double R = 0.5 * GetBetaDist( X, 0.5 * fDF, 0.5 );
+ return ( T < 0 ? R : 1 - R );
+ }
+ SetError( FormulaError::IllegalArgument );
+ return HUGE_VAL;
+}
+
+// for LEGACY.CHIDIST, returns right tail, fDF=degrees of freedom
+/** You must ensure fDF>0.0 */
+double ScInterpreter::GetChiDist(double fX, double fDF)
+{
+ if (fX <= 0.0)
+ return 1.0; // see ODFF
+ else
+ return GetUpRegIGamma( fDF/2.0, fX/2.0);
+}
+
+// ready for ODF 1.2
+// for ODF CHISQDIST; cumulative distribution function, fDF=degrees of freedom
+// returns left tail
+/** You must ensure fDF>0.0 */
+double ScInterpreter::GetChiSqDistCDF(double fX, double fDF)
+{
+ if (fX <= 0.0)
+ return 0.0; // see ODFF
+ else
+ return GetLowRegIGamma( fDF/2.0, fX/2.0);
+}
+
+double ScInterpreter::GetChiSqDistPDF(double fX, double fDF)
+{
+ // you must ensure fDF is positive integer
+ double fValue;
+ if (fX <= 0.0)
+ return 0.0; // see ODFF
+ if (fDF*fX > 1391000.0)
+ {
+ // intermediate invalid values, use log
+ fValue = exp((0.5*fDF - 1) * log(fX*0.5) - 0.5 * fX - log(2.0) - GetLogGamma(0.5*fDF));
+ }
+ else // fDF is small in most cases, we can iterate
+ {
+ double fCount;
+ if (fmod(fDF,2.0)<0.5)
+ {
+ // even
+ fValue = 0.5;
+ fCount = 2.0;
+ }
+ else
+ {
+ fValue = 1/sqrt(fX*2*F_PI);
+ fCount = 1.0;
+ }
+ while ( fCount < fDF)
+ {
+ fValue *= (fX / fCount);
+ fCount += 2.0;
+ }
+ if (fX>=1425.0) // underflow in e^(-x/2)
+ fValue = exp(log(fValue)-fX/2);
+ else
+ fValue *= exp(-fX/2);
+ }
+ return fValue;
+}
+
+void ScInterpreter::ScChiSqDist()
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCount( nParamCount, 2, 3 ) )
+ return;
+ bool bCumulative;
+ if (nParamCount == 3)
+ bCumulative = GetBool();
+ else
+ bCumulative = true;
+ double fDF = ::rtl::math::approxFloor(GetDouble());
+ if (fDF < 1.0)
+ PushIllegalArgument();
+ else
+ {
+ double fX = GetDouble();
+ if (bCumulative)
+ PushDouble(GetChiSqDistCDF(fX,fDF));
+ else
+ PushDouble(GetChiSqDistPDF(fX,fDF));
+ }
+}
+
+void ScInterpreter::ScChiSqDist_MS()
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCount( nParamCount, 3, 3 ) )
+ return;
+ bool bCumulative = GetBool();
+ double fDF = ::rtl::math::approxFloor( GetDouble() );
+ if ( fDF < 1.0 || fDF > 1E10 )
+ PushIllegalArgument();
+ else
+ {
+ double fX = GetDouble();
+ if ( fX < 0 )
+ PushIllegalArgument();
+ else
+ {
+ if ( bCumulative )
+ PushDouble( GetChiSqDistCDF( fX, fDF ) );
+ else
+ PushDouble( GetChiSqDistPDF( fX, fDF ) );
+ }
+ }
+}
+
+void ScInterpreter::ScGamma()
+{
+ double x = GetDouble();
+ if (x <= 0.0 && x == ::rtl::math::approxFloor(x))
+ PushIllegalArgument();
+ else
+ {
+ double fResult = GetGamma(x);
+ if (nGlobalError != FormulaError::NONE)
+ {
+ PushError( nGlobalError);
+ return;
+ }
+ PushDouble(fResult);
+ }
+}
+
+void ScInterpreter::ScLogGamma()
+{
+ double x = GetDouble();
+ if (x > 0.0) // constraint from ODFF
+ PushDouble( GetLogGamma(x));
+ else
+ PushIllegalArgument();
+}
+
+double ScInterpreter::GetBeta(double fAlpha, double fBeta)
+{
+ double fA;
+ double fB;
+ if (fAlpha > fBeta)
+ {
+ fA = fAlpha; fB = fBeta;
+ }
+ else
+ {
+ fA = fBeta; fB = fAlpha;
+ }
+ if (fA+fB < fMaxGammaArgument) // simple case
+ return GetGamma(fA)/GetGamma(fA+fB)*GetGamma(fB);
+ // need logarithm
+ // GetLogGamma is not accurate enough, back to Lanczos for all three
+ // GetGamma and arrange factors newly.
+ const double fg = 6.024680040776729583740234375; //see GetGamma
+ double fgm = fg - 0.5;
+ double fLanczos = lcl_getLanczosSum(fA);
+ fLanczos /= lcl_getLanczosSum(fA+fB);
+ fLanczos *= lcl_getLanczosSum(fB);
+ double fABgm = fA+fB+fgm;
+ fLanczos *= sqrt((fABgm/(fA+fgm))/(fB+fgm));
+ double fTempA = fB/(fA+fgm); // (fA+fgm)/fABgm = 1 / ( 1 + fB/(fA+fgm))
+ double fTempB = fA/(fB+fgm);
+ double fResult = exp(-fA * ::rtl::math::log1p(fTempA)
+ -fB * ::rtl::math::log1p(fTempB)-fgm);
+ fResult *= fLanczos;
+ return fResult;
+}
+
+// Same as GetBeta but with logarithm
+double ScInterpreter::GetLogBeta(double fAlpha, double fBeta)
+{
+ double fA;
+ double fB;
+ if (fAlpha > fBeta)
+ {
+ fA = fAlpha; fB = fBeta;
+ }
+ else
+ {
+ fA = fBeta; fB = fAlpha;
+ }
+ const double fg = 6.024680040776729583740234375; //see GetGamma
+ double fgm = fg - 0.5;
+ double fLanczos = lcl_getLanczosSum(fA);
+ fLanczos /= lcl_getLanczosSum(fA+fB);
+ fLanczos *= lcl_getLanczosSum(fB);
+ double fLogLanczos = log(fLanczos);
+ double fABgm = fA+fB+fgm;
+ fLogLanczos += 0.5*(log(fABgm)-log(fA+fgm)-log(fB+fgm));
+ double fTempA = fB/(fA+fgm); // (fA+fgm)/fABgm = 1 / ( 1 + fB/(fA+fgm))
+ double fTempB = fA/(fB+fgm);
+ double fResult = -fA * ::rtl::math::log1p(fTempA)
+ -fB * ::rtl::math::log1p(fTempB)-fgm;
+ fResult += fLogLanczos;
+ return fResult;
+}
+
+// beta distribution probability density function
+double ScInterpreter::GetBetaDistPDF(double fX, double fA, double fB)
+{
+ // special cases
+ if (fA == 1.0) // result b*(1-x)^(b-1)
+ {
+ if (fB == 1.0)
+ return 1.0;
+ if (fB == 2.0)
+ return -2.0*fX + 2.0;
+ if (fX == 1.0 && fB < 1.0)
+ {
+ SetError(FormulaError::IllegalArgument);
+ return HUGE_VAL;
+ }
+ if (fX <= 0.01)
+ return fB + fB * ::rtl::math::expm1((fB-1.0) * ::rtl::math::log1p(-fX));
+ else
+ return fB * pow(0.5-fX+0.5,fB-1.0);
+ }
+ if (fB == 1.0) // result a*x^(a-1)
+ {
+ if (fA == 2.0)
+ return fA * fX;
+ if (fX == 0.0 && fA < 1.0)
+ {
+ SetError(FormulaError::IllegalArgument);
+ return HUGE_VAL;
+ }
+ return fA * pow(fX,fA-1);
+ }
+ if (fX <= 0.0)
+ {
+ if (fA < 1.0 && fX == 0.0)
+ {
+ SetError(FormulaError::IllegalArgument);
+ return HUGE_VAL;
+ }
+ else
+ return 0.0;
+ }
+ if (fX >= 1.0)
+ {
+ if (fB < 1.0 && fX == 1.0)
+ {
+ SetError(FormulaError::IllegalArgument);
+ return HUGE_VAL;
+ }
+ else
+ return 0.0;
+ }
+
+ // normal cases; result x^(a-1)*(1-x)^(b-1)/Beta(a,b)
+ const double fLogDblMax = log( ::std::numeric_limits<double>::max());
+ const double fLogDblMin = log( ::std::numeric_limits<double>::min());
+ double fLogY = (fX < 0.1) ? ::rtl::math::log1p(-fX) : log(0.5-fX+0.5);
+ double fLogX = log(fX);
+ double fAm1LogX = (fA-1.0) * fLogX;
+ double fBm1LogY = (fB-1.0) * fLogY;
+ double fLogBeta = GetLogBeta(fA,fB);
+ // check whether parts over- or underflow
+ if ( fAm1LogX < fLogDblMax && fAm1LogX > fLogDblMin
+ && fBm1LogY < fLogDblMax && fBm1LogY > fLogDblMin
+ && fLogBeta < fLogDblMax && fLogBeta > fLogDblMin
+ && fAm1LogX + fBm1LogY < fLogDblMax && fAm1LogX + fBm1LogY > fLogDblMin)
+ return pow(fX,fA-1.0) * pow(0.5-fX+0.5,fB-1.0) / GetBeta(fA,fB);
+ else // need logarithm;
+ // might overflow as a whole, but seldom, not worth to pre-detect it
+ return exp( fAm1LogX + fBm1LogY - fLogBeta);
+}
+
+/*
+ x^a * (1-x)^b
+ I_x(a,b) = ---------------- * result of ContFrac
+ a * Beta(a,b)
+*/
+static double lcl_GetBetaHelperContFrac(double fX, double fA, double fB)
+{ // like old version
+ double a1, b1, a2, b2, fnorm, cfnew, cf;
+ a1 = 1.0; b1 = 1.0;
+ b2 = 1.0 - (fA+fB)/(fA+1.0)*fX;
+ if (b2 == 0.0)
+ {
+ a2 = 0.0;
+ fnorm = 1.0;
+ cf = 1.0;
+ }
+ else
+ {
+ a2 = 1.0;
+ fnorm = 1.0/b2;
+ cf = a2*fnorm;
+ }
+ cfnew = 1.0;
+ double rm = 1.0;
+
+ const double fMaxIter = 50000.0;
+ // loop security, normal cases converge in less than 100 iterations.
+ // FIXME: You will get so much iterations for fX near mean,
+ // I do not know a better algorithm.
+ bool bfinished = false;
+ do
+ {
+ const double apl2m = fA + 2.0*rm;
+ const double d2m = rm*(fB-rm)*fX/((apl2m-1.0)*apl2m);
+ const double d2m1 = -(fA+rm)*(fA+fB+rm)*fX/(apl2m*(apl2m+1.0));
+ a1 = (a2+d2m*a1)*fnorm;
+ b1 = (b2+d2m*b1)*fnorm;
+ a2 = a1 + d2m1*a2*fnorm;
+ b2 = b1 + d2m1*b2*fnorm;
+ if (b2 != 0.0)
+ {
+ fnorm = 1.0/b2;
+ cfnew = a2*fnorm;
+ bfinished = (fabs(cf-cfnew) < fabs(cf)*fMachEps);
+ }
+ cf = cfnew;
+ rm += 1.0;
+ }
+ while (rm < fMaxIter && !bfinished);
+ return cf;
+}
+
+// cumulative distribution function, normalized
+double ScInterpreter::GetBetaDist(double fXin, double fAlpha, double fBeta)
+{
+// special cases
+ if (fXin <= 0.0) // values are valid, see spec
+ return 0.0;
+ if (fXin >= 1.0) // values are valid, see spec
+ return 1.0;
+ if (fBeta == 1.0)
+ return pow(fXin, fAlpha);
+ if (fAlpha == 1.0)
+ // 1.0 - pow(1.0-fX,fBeta) is not accurate enough
+ return -::rtl::math::expm1(fBeta * ::rtl::math::log1p(-fXin));
+ //FIXME: need special algorithm for fX near fP for large fA,fB
+ double fResult;
+ // I use always continued fraction, power series are neither
+ // faster nor more accurate.
+ double fY = (0.5-fXin)+0.5;
+ double flnY = ::rtl::math::log1p(-fXin);
+ double fX = fXin;
+ double flnX = log(fXin);
+ double fA = fAlpha;
+ double fB = fBeta;
+ bool bReflect = fXin > fAlpha/(fAlpha+fBeta);
+ if (bReflect)
+ {
+ fA = fBeta;
+ fB = fAlpha;
+ fX = fY;
+ fY = fXin;
+ flnX = flnY;
+ flnY = log(fXin);
+ }
+ fResult = lcl_GetBetaHelperContFrac(fX,fA,fB);
+ fResult = fResult/fA;
+ double fP = fA/(fA+fB);
+ double fQ = fB/(fA+fB);
+ double fTemp;
+ if (fA > 1.0 && fB > 1.0 && fP < 0.97 && fQ < 0.97) //found experimental
+ fTemp = GetBetaDistPDF(fX,fA,fB)*fX*fY;
+ else
+ fTemp = exp(fA*flnX + fB*flnY - GetLogBeta(fA,fB));
+ fResult *= fTemp;
+ if (bReflect)
+ fResult = 0.5 - fResult + 0.5;
+ if (fResult > 1.0) // ensure valid range
+ fResult = 1.0;
+ if (fResult < 0.0)
+ fResult = 0.0;
+ return fResult;
+}
+
+void ScInterpreter::ScBetaDist()
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCount( nParamCount, 3, 6 ) ) // expanded, see #i91547#
+ return;
+ double fLowerBound, fUpperBound;
+ double alpha, beta, x;
+ bool bIsCumulative;
+ if (nParamCount == 6)
+ bIsCumulative = GetBool();
+ else
+ bIsCumulative = true;
+ if (nParamCount >= 5)
+ fUpperBound = GetDouble();
+ else
+ fUpperBound = 1.0;
+ if (nParamCount >= 4)
+ fLowerBound = GetDouble();
+ else
+ fLowerBound = 0.0;
+ beta = GetDouble();
+ alpha = GetDouble();
+ x = GetDouble();
+ double fScale = fUpperBound - fLowerBound;
+ if (fScale <= 0.0 || alpha <= 0.0 || beta <= 0.0)
+ {
+ PushIllegalArgument();
+ return;
+ }
+ if (bIsCumulative) // cumulative distribution function
+ {
+ // special cases
+ if (x < fLowerBound)
+ {
+ PushDouble(0.0); return; //see spec
+ }
+ if (x > fUpperBound)
+ {
+ PushDouble(1.0); return; //see spec
+ }
+ // normal cases
+ x = (x-fLowerBound)/fScale; // convert to standard form
+ PushDouble(GetBetaDist(x, alpha, beta));
+ return;
+ }
+ else // probability density function
+ {
+ if (x < fLowerBound || x > fUpperBound)
+ {
+ PushDouble(0.0);
+ return;
+ }
+ x = (x-fLowerBound)/fScale;
+ PushDouble(GetBetaDistPDF(x, alpha, beta)/fScale);
+ return;
+ }
+}
+
+/**
+ Microsoft version has parameters in different order
+ Also, upper and lowerbound are optional and have default values
+ and different constraints apply.
+ Basically, function is identical with ScInterpreter::ScBetaDist()
+*/
+void ScInterpreter::ScBetaDist_MS()
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCount( nParamCount, 4, 6 ) )
+ return;
+ double fLowerBound, fUpperBound;
+ double alpha, beta, x;
+ bool bIsCumulative;
+ if (nParamCount == 6)
+ fUpperBound = GetDouble();
+ else
+ fUpperBound = 1.0;
+ if (nParamCount >= 5)
+ fLowerBound = GetDouble();
+ else
+ fLowerBound = 0.0;
+ bIsCumulative = GetBool();
+ beta = GetDouble();
+ alpha = GetDouble();
+ x = GetDouble();
+ if (alpha <= 0.0 || beta <= 0.0 || x < fLowerBound || x > fUpperBound)
+ {
+ PushIllegalArgument();
+ return;
+ }
+ double fScale = fUpperBound - fLowerBound;
+ if (bIsCumulative) // cumulative distribution function
+ {
+ x = (x-fLowerBound)/fScale; // convert to standard form
+ PushDouble(GetBetaDist(x, alpha, beta));
+ return;
+ }
+ else // probability density function
+ {
+ x = (x-fLowerBound)/fScale;
+ PushDouble(GetBetaDistPDF(x, alpha, beta)/fScale);
+ return;
+ }
+}
+
+void ScInterpreter::ScPhi()
+{
+ PushDouble(phi(GetDouble()));
+}
+
+void ScInterpreter::ScGauss()
+{
+ PushDouble(gauss(GetDouble()));
+}
+
+void ScInterpreter::ScFisher()
+{
+ double fVal = GetDouble();
+ if (fabs(fVal) >= 1.0)
+ PushIllegalArgument();
+ else
+ PushDouble( ::rtl::math::atanh( fVal));
+}
+
+void ScInterpreter::ScFisherInv()
+{
+ PushDouble( tanh( GetDouble()));
+}
+
+void ScInterpreter::ScFact()
+{
+ double nVal = GetDouble();
+ if (nVal < 0.0)
+ PushIllegalArgument();
+ else
+ PushDouble(Fakultaet(nVal));
+}
+
+void ScInterpreter::ScCombin()
+{
+ if ( MustHaveParamCount( GetByte(), 2 ) )
+ {
+ double k = ::rtl::math::approxFloor(GetDouble());
+ double n = ::rtl::math::approxFloor(GetDouble());
+ if (k < 0.0 || n < 0.0 || k > n)
+ PushIllegalArgument();
+ else
+ PushDouble(BinomKoeff(n, k));
+ }
+}
+
+void ScInterpreter::ScCombinA()
+{
+ if ( MustHaveParamCount( GetByte(), 2 ) )
+ {
+ double k = ::rtl::math::approxFloor(GetDouble());
+ double n = ::rtl::math::approxFloor(GetDouble());
+ if (k < 0.0 || n < 0.0 || k > n)
+ PushIllegalArgument();
+ else
+ PushDouble(BinomKoeff(n + k - 1, k));
+ }
+}
+
+void ScInterpreter::ScPermut()
+{
+ if ( MustHaveParamCount( GetByte(), 2 ) )
+ {
+ double k = ::rtl::math::approxFloor(GetDouble());
+ double n = ::rtl::math::approxFloor(GetDouble());
+ if (n < 0.0 || k < 0.0 || k > n)
+ PushIllegalArgument();
+ else if (k == 0.0)
+ PushInt(1); // (n! / (n - 0)!) == 1
+ else
+ {
+ double nVal = n;
+ for (sal_uLong i = static_cast<sal_uLong>(k)-1; i >= 1; i--)
+ nVal *= n-static_cast<double>(i);
+ PushDouble(nVal);
+ }
+ }
+}
+
+void ScInterpreter::ScPermutationA()
+{
+ if ( MustHaveParamCount( GetByte(), 2 ) )
+ {
+ double k = ::rtl::math::approxFloor(GetDouble());
+ double n = ::rtl::math::approxFloor(GetDouble());
+ if (n < 0.0 || k < 0.0)
+ PushIllegalArgument();
+ else
+ PushDouble(pow(n,k));
+ }
+}
+
+double ScInterpreter::GetBinomDistPMF(double x, double n, double p)
+// used in ScB and ScBinomDist
+// preconditions: 0.0 <= x <= n, 0.0 < p < 1.0; x,n integral although double
+{
+ double q = (0.5 - p) + 0.5;
+ double fFactor = pow(q, n);
+ if (fFactor <=::std::numeric_limits<double>::min())
+ {
+ fFactor = pow(p, n);
+ if (fFactor <= ::std::numeric_limits<double>::min())
+ return GetBetaDistPDF(p, x+1.0, n-x+1.0)/(n+1.0);
+ else
+ {
+ sal_uInt32 max = static_cast<sal_uInt32>(n - x);
+ for (sal_uInt32 i = 0; i < max && fFactor > 0.0; i++)
+ fFactor *= (n-i)/(i+1)*q/p;
+ return fFactor;
+ }
+ }
+ else
+ {
+ sal_uInt32 max = static_cast<sal_uInt32>(x);
+ for (sal_uInt32 i = 0; i < max && fFactor > 0.0; i++)
+ fFactor *= (n-i)/(i+1)*p/q;
+ return fFactor;
+ }
+}
+
+static double lcl_GetBinomDistRange(double n, double xs,double xe,
+ double fFactor /* q^n */, double p, double q)
+//preconditions: 0.0 <= xs < xe <= n; xs,xe,n integral although double
+{
+ sal_uInt32 i;
+ double fSum;
+ // skip summands index 0 to xs-1, start sum with index xs
+ sal_uInt32 nXs = static_cast<sal_uInt32>( xs );
+ for (i = 1; i <= nXs && fFactor > 0.0; i++)
+ fFactor *= (n-i+1)/i * p/q;
+ fSum = fFactor; // Summand xs
+ sal_uInt32 nXe = static_cast<sal_uInt32>(xe);
+ for (i = nXs+1; i <= nXe && fFactor > 0.0; i++)
+ {
+ fFactor *= (n-i+1)/i * p/q;
+ fSum += fFactor;
+ }
+ return std::min(fSum,1.0);
+}
+
+void ScInterpreter::ScB()
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCount( nParamCount, 3, 4 ) )
+ return ;
+ if (nParamCount == 3) // mass function
+ {
+ double x = ::rtl::math::approxFloor(GetDouble());
+ double p = GetDouble();
+ double n = ::rtl::math::approxFloor(GetDouble());
+ if (n < 0.0 || x < 0.0 || x > n || p < 0.0 || p > 1.0)
+ PushIllegalArgument();
+ else if (p == 0.0)
+ PushDouble( (x == 0.0) ? 1.0 : 0.0 );
+ else if ( p == 1.0)
+ PushDouble( (x == n) ? 1.0 : 0.0);
+ else
+ PushDouble(GetBinomDistPMF(x,n,p));
+ }
+ else
+ { // nParamCount == 4
+ double xe = ::rtl::math::approxFloor(GetDouble());
+ double xs = ::rtl::math::approxFloor(GetDouble());
+ double p = GetDouble();
+ double n = ::rtl::math::approxFloor(GetDouble());
+ double q = (0.5 - p) + 0.5;
+ bool bIsValidX = ( 0.0 <= xs && xs <= xe && xe <= n);
+ if ( bIsValidX && 0.0 < p && p < 1.0)
+ {
+ if (xs == xe) // mass function
+ PushDouble(GetBinomDistPMF(xs,n,p));
+ else
+ {
+ double fFactor = pow(q, n);
+ if (fFactor > ::std::numeric_limits<double>::min())
+ PushDouble(lcl_GetBinomDistRange(n,xs,xe,fFactor,p,q));
+ else
+ {
+ fFactor = pow(p, n);
+ if (fFactor > ::std::numeric_limits<double>::min())
+ {
+ // sum from j=xs to xe {(n choose j) * p^j * q^(n-j)}
+ // = sum from i = n-xe to n-xs { (n choose i) * q^i * p^(n-i)}
+ PushDouble(lcl_GetBinomDistRange(n,n-xe,n-xs,fFactor,q,p));
+ }
+ else
+ PushDouble(GetBetaDist(q,n-xe,xe+1.0)-GetBetaDist(q,n-xs+1,xs) );
+ }
+ }
+ }
+ else
+ {
+ if ( bIsValidX ) // not(0<p<1)
+ {
+ if ( p == 0.0 )
+ PushDouble( (xs == 0.0) ? 1.0 : 0.0 );
+ else if ( p == 1.0 )
+ PushDouble( (xe == n) ? 1.0 : 0.0 );
+ else
+ PushIllegalArgument();
+ }
+ else
+ PushIllegalArgument();
+ }
+ }
+}
+
+void ScInterpreter::ScBinomDist()
+{
+ if ( MustHaveParamCount( GetByte(), 4 ) )
+ {
+ bool bIsCum = GetBool(); // false=mass function; true=cumulative
+ double p = GetDouble();
+ double n = ::rtl::math::approxFloor(GetDouble());
+ double x = ::rtl::math::approxFloor(GetDouble());
+ double q = (0.5 - p) + 0.5; // get one bit more for p near 1.0
+ if (n < 0.0 || x < 0.0 || x > n || p < 0.0 || p > 1.0)
+ {
+ PushIllegalArgument();
+ return;
+ }
+ if ( p == 0.0)
+ {
+ PushDouble( (x==0.0 || bIsCum) ? 1.0 : 0.0 );
+ return;
+ }
+ if ( p == 1.0)
+ {
+ PushDouble( (x==n) ? 1.0 : 0.0);
+ return;
+ }
+ if (!bIsCum)
+ PushDouble( GetBinomDistPMF(x,n,p));
+ else
+ {
+ if (x == n)
+ PushDouble(1.0);
+ else
+ {
+ double fFactor = pow(q, n);
+ if (x == 0.0)
+ PushDouble(fFactor);
+ else if (fFactor <= ::std::numeric_limits<double>::min())
+ {
+ fFactor = pow(p, n);
+ if (fFactor <= ::std::numeric_limits<double>::min())
+ PushDouble(GetBetaDist(q,n-x,x+1.0));
+ else
+ {
+ if (fFactor > fMachEps)
+ {
+ double fSum = 1.0 - fFactor;
+ sal_uInt32 max = static_cast<sal_uInt32> (n - x) - 1;
+ for (sal_uInt32 i = 0; i < max && fFactor > 0.0; i++)
+ {
+ fFactor *= (n-i)/(i+1)*q/p;
+ fSum -= fFactor;
+ }
+ PushDouble( (fSum < 0.0) ? 0.0 : fSum );
+ }
+ else
+ PushDouble(lcl_GetBinomDistRange(n,n-x,n,fFactor,q,p));
+ }
+ }
+ else
+ PushDouble( lcl_GetBinomDistRange(n,0.0,x,fFactor,p,q)) ;
+ }
+ }
+ }
+}
+
+void ScInterpreter::ScCritBinom()
+{
+ if ( MustHaveParamCount( GetByte(), 3 ) )
+ {
+ double alpha = GetDouble();
+ double p = GetDouble();
+ double n = ::rtl::math::approxFloor(GetDouble());
+ if (n < 0.0 || alpha < 0.0 || alpha > 1.0 || p < 0.0 || p > 1.0)
+ PushIllegalArgument();
+ else if ( alpha == 0.0 )
+ PushDouble( 0.0 );
+ else if ( alpha == 1.0 )
+ PushDouble( p == 0 ? 0.0 : n );
+ else
+ {
+ double fFactor;
+ double q = (0.5 - p) + 0.5; // get one bit more for p near 1.0
+ if ( q > p ) // work from the side where the cumulative curve is
+ {
+ // work from 0 upwards
+ fFactor = pow(q,n);
+ if (fFactor > ::std::numeric_limits<double>::min())
+ {
+ double fSum = fFactor;
+ sal_uInt32 max = static_cast<sal_uInt32> (n), i;
+ for (i = 0; i < max && fSum < alpha; i++)
+ {
+ fFactor *= (n-i)/(i+1)*p/q;
+ fSum += fFactor;
+ }
+ PushDouble(i);
+ }
+ else
+ {
+ // accumulate BinomDist until accumulated BinomDist reaches alpha
+ double fSum = 0.0;
+ sal_uInt32 max = static_cast<sal_uInt32> (n), i;
+ for (i = 0; i < max && fSum < alpha; i++)
+ {
+ const double x = GetBetaDistPDF( p, ( i + 1 ), ( n - i + 1 ) )/( n + 1 );
+ if ( nGlobalError == FormulaError::NONE )
+ {
+ fSum += x;
+ }
+ else
+ {
+ PushNoValue();
+ return;
+ }
+ }
+ PushDouble( i - 1 );
+ }
+ }
+ else
+ {
+ // work from n backwards
+ fFactor = pow(p, n);
+ if (fFactor > ::std::numeric_limits<double>::min())
+ {
+ double fSum = 1.0 - fFactor;
+ sal_uInt32 max = static_cast<sal_uInt32> (n), i;
+ for (i = 0; i < max && fSum >= alpha; i++)
+ {
+ fFactor *= (n-i)/(i+1)*q/p;
+ fSum -= fFactor;
+ }
+ PushDouble(n-i);
+ }
+ else
+ {
+ // accumulate BinomDist until accumulated BinomDist reaches alpha
+ double fSum = 0.0;
+ sal_uInt32 max = static_cast<sal_uInt32> (n), i;
+ alpha = 1 - alpha;
+ for (i = 0; i < max && fSum < alpha; i++)
+ {
+ const double x = GetBetaDistPDF( q, ( i + 1 ), ( n - i + 1 ) )/( n + 1 );
+ if ( nGlobalError == FormulaError::NONE )
+ {
+ fSum += x;
+ }
+ else
+ {
+ PushNoValue();
+ return;
+ }
+ }
+ PushDouble( n - i + 1 );
+ }
+ }
+ }
+ }
+}
+
+void ScInterpreter::ScNegBinomDist()
+{
+ if ( MustHaveParamCount( GetByte(), 3 ) )
+ {
+ double p = GetDouble(); // probability
+ double s = ::rtl::math::approxFloor(GetDouble()); // No of successes
+ double f = ::rtl::math::approxFloor(GetDouble()); // No of failures
+ if ((f + s) <= 1.0 || p < 0.0 || p > 1.0)
+ PushIllegalArgument();
+ else
+ {
+ double q = 1.0 - p;
+ double fFactor = pow(p,s);
+ for (double i = 0.0; i < f; i++)
+ fFactor *= (i+s)/(i+1.0)*q;
+ PushDouble(fFactor);
+ }
+ }
+}
+
+void ScInterpreter::ScNegBinomDist_MS()
+{
+ if ( MustHaveParamCount( GetByte(), 4 ) )
+ {
+ bool bCumulative = GetBool();
+ double p = GetDouble(); // probability
+ double s = ::rtl::math::approxFloor(GetDouble()); // No of successes
+ double f = ::rtl::math::approxFloor(GetDouble()); // No of failures
+ if ( s < 1.0 || f < 0.0 || p < 0.0 || p > 1.0 )
+ PushIllegalArgument();
+ else
+ {
+ double q = 1.0 - p;
+ if ( bCumulative )
+ PushDouble( 1.0 - GetBetaDist( q, f + 1, s ) );
+ else
+ {
+ double fFactor = pow( p, s );
+ for ( double i = 0.0; i < f; i++ )
+ fFactor *= ( i + s ) / ( i + 1.0 ) * q;
+ PushDouble( fFactor );
+ }
+ }
+ }
+}
+
+void ScInterpreter::ScNormDist( int nMinParamCount )
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCount( nParamCount, nMinParamCount, 4 ) )
+ return;
+ bool bCumulative = nParamCount != 4 || GetBool();
+ double sigma = GetDouble(); // standard deviation
+ double mue = GetDouble(); // mean
+ double x = GetDouble(); // x
+ if (sigma <= 0.0)
+ {
+ PushIllegalArgument();
+ return;
+ }
+ if (bCumulative)
+ PushDouble(integralPhi((x-mue)/sigma));
+ else
+ PushDouble(phi((x-mue)/sigma)/sigma);
+}
+
+void ScInterpreter::ScLogNormDist( int nMinParamCount ) //expanded, see #i100119# and fdo72158
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCount( nParamCount, nMinParamCount, 4 ) )
+ return;
+ bool bCumulative = nParamCount != 4 || GetBool(); // cumulative
+ double sigma = nParamCount >= 3 ? GetDouble() : 1.0; // standard deviation
+ double mue = nParamCount >= 2 ? GetDouble() : 0.0; // mean
+ double x = GetDouble(); // x
+ if (sigma <= 0.0)
+ {
+ PushIllegalArgument();
+ return;
+ }
+ if (bCumulative)
+ { // cumulative
+ if (x <= 0.0)
+ PushDouble(0.0);
+ else
+ PushDouble(integralPhi((log(x)-mue)/sigma));
+ }
+ else
+ { // density
+ if (x <= 0.0)
+ PushIllegalArgument();
+ else
+ PushDouble(phi((log(x)-mue)/sigma)/sigma/x);
+ }
+}
+
+void ScInterpreter::ScStdNormDist()
+{
+ PushDouble(integralPhi(GetDouble()));
+}
+
+void ScInterpreter::ScStdNormDist_MS()
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCount( nParamCount, 2 ) )
+ return;
+ bool bCumulative = GetBool(); // cumulative
+ double x = GetDouble(); // x
+
+ if ( bCumulative )
+ PushDouble( integralPhi( x ) );
+ else
+ PushDouble( exp( - pow( x, 2 ) / 2 ) / sqrt( 2 * F_PI ) );
+}
+
+void ScInterpreter::ScExpDist()
+{
+ if ( MustHaveParamCount( GetByte(), 3 ) )
+ {
+ double kum = GetDouble(); // 0 or 1
+ double lambda = GetDouble(); // lambda
+ double x = GetDouble(); // x
+ if (lambda <= 0.0)
+ PushIllegalArgument();
+ else if (kum == 0.0) // density
+ {
+ if (x >= 0.0)
+ PushDouble(lambda * exp(-lambda*x));
+ else
+ PushInt(0);
+ }
+ else // distribution
+ {
+ if (x > 0.0)
+ PushDouble(1.0 - exp(-lambda*x));
+ else
+ PushInt(0);
+ }
+ }
+}
+
+void ScInterpreter::ScTDist()
+{
+ if ( !MustHaveParamCount( GetByte(), 3 ) )
+ return;
+ double fFlag = ::rtl::math::approxFloor(GetDouble());
+ double fDF = ::rtl::math::approxFloor(GetDouble());
+ double T = GetDouble();
+ if (fDF < 1.0 || T < 0.0 || (fFlag != 1.0 && fFlag != 2.0) )
+ {
+ PushIllegalArgument();
+ return;
+ }
+ PushDouble( GetTDist( T, fDF, static_cast<int>(fFlag) ) );
+}
+
+void ScInterpreter::ScTDist_T( int nTails )
+{
+ if ( !MustHaveParamCount( GetByte(), 2 ) )
+ return;
+ double fDF = ::rtl::math::approxFloor( GetDouble() );
+ double fT = GetDouble();
+ if ( fDF < 1.0 || ( nTails == 2 && fT < 0.0 ) )
+ {
+ PushIllegalArgument();
+ return;
+ }
+ double fRes = GetTDist( fT, fDF, nTails );
+ if ( nTails == 1 && fT < 0.0 )
+ PushDouble( 1.0 - fRes ); // tdf#105937, right tail, negative X
+ else
+ PushDouble( fRes );
+}
+
+void ScInterpreter::ScTDist_MS()
+{
+ if ( !MustHaveParamCount( GetByte(), 3 ) )
+ return;
+ bool bCumulative = GetBool();
+ double fDF = ::rtl::math::approxFloor( GetDouble() );
+ double T = GetDouble();
+ if ( fDF < 1.0 )
+ {
+ PushIllegalArgument();
+ return;
+ }
+ PushDouble( GetTDist( T, fDF, ( bCumulative ? 4 : 3 ) ) );
+}
+
+void ScInterpreter::ScFDist()
+{
+ if ( !MustHaveParamCount( GetByte(), 3 ) )
+ return;
+ double fF2 = ::rtl::math::approxFloor(GetDouble());
+ double fF1 = ::rtl::math::approxFloor(GetDouble());
+ double fF = GetDouble();
+ if (fF < 0.0 || fF1 < 1.0 || fF2 < 1.0 || fF1 >= 1.0E10 || fF2 >= 1.0E10)
+ {
+ PushIllegalArgument();
+ return;
+ }
+ PushDouble(GetFDist(fF, fF1, fF2));
+}
+
+void ScInterpreter::ScFDist_LT()
+{
+ int nParamCount = GetByte();
+ if ( !MustHaveParamCount( nParamCount, 3, 4 ) )
+ return;
+ bool bCum;
+ if ( nParamCount == 3 )
+ bCum = true;
+ else if ( IsMissing() )
+ {
+ bCum = true;
+ Pop();
+ }
+ else
+ bCum = GetBool();
+ double fF2 = ::rtl::math::approxFloor( GetDouble() );
+ double fF1 = ::rtl::math::approxFloor( GetDouble() );
+ double fF = GetDouble();
+ if ( fF < 0.0 || fF1 < 1.0 || fF2 < 1.0 || fF1 >= 1.0E10 || fF2 >= 1.0E10 )
+ {
+ PushIllegalArgument();
+ return;
+ }
+ if ( bCum )
+ {
+ // left tail cumulative distribution
+ PushDouble( 1.0 - GetFDist( fF, fF1, fF2 ) );
+ }
+ else
+ {
+ // probability density function
+ PushDouble( pow( fF1 / fF2, fF1 / 2 ) * pow( fF, ( fF1 / 2 ) - 1 ) /
+ ( pow( ( 1 + ( fF * fF1 / fF2 ) ), ( fF1 + fF2 ) / 2 ) *
+ GetBeta( fF1 / 2, fF2 / 2 ) ) );
+ }
+}
+
+void ScInterpreter::ScChiDist( bool bODFF )
+{
+ double fResult;
+ if ( !MustHaveParamCount( GetByte(), 2 ) )
+ return;
+ double fDF = ::rtl::math::approxFloor(GetDouble());
+ double fChi = GetDouble();
+ if ( fDF < 1.0 // x<=0 returns 1, see ODFF1.2 6.18.11
+ || ( !bODFF && fChi < 0 ) ) // Excel does not accept negative fChi
+ {
+ PushIllegalArgument();
+ return;
+ }
+ fResult = GetChiDist( fChi, fDF);
+ if (nGlobalError != FormulaError::NONE)
+ {
+ PushError( nGlobalError);
+ return;
+ }
+ PushDouble(fResult);
+}
+
+void ScInterpreter::ScWeibull()
+{
+ if ( MustHaveParamCount( GetByte(), 4 ) )
+ {
+ double kum = GetDouble(); // 0 or 1
+ double beta = GetDouble(); // beta
+ double alpha = GetDouble(); // alpha
+ double x = GetDouble(); // x
+ if (alpha <= 0.0 || beta <= 0.0 || x < 0.0)
+ PushIllegalArgument();
+ else if (kum == 0.0) // Density
+ PushDouble(alpha/pow(beta,alpha)*pow(x,alpha-1.0)*
+ exp(-pow(x/beta,alpha)));
+ else // Distribution
+ PushDouble(1.0 - exp(-pow(x/beta,alpha)));
+ }
+}
+
+void ScInterpreter::ScPoissonDist( bool bODFF )
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( MustHaveParamCount( nParamCount, ( bODFF ? 2 : 3 ), 3 ) )
+ {
+ bool bCumulative = nParamCount != 3 || GetBool(); // default cumulative
+ double lambda = GetDouble(); // Mean
+ double x = ::rtl::math::approxFloor(GetDouble()); // discrete distribution
+ if (lambda <= 0.0 || x < 0.0)
+ PushIllegalArgument();
+ else if (!bCumulative) // Probability mass function
+ {
+ if (lambda >712.0) // underflow in exp(-lambda)
+ { // accuracy 11 Digits
+ PushDouble( exp(x*log(lambda)-lambda-GetLogGamma(x+1.0)));
+ }
+ else
+ {
+ double fPoissonVar = 1.0;
+ for ( double f = 0.0; f < x; ++f )
+ fPoissonVar *= lambda / ( f + 1.0 );
+ PushDouble( fPoissonVar * exp( -lambda ) );
+ }
+ }
+ else // Cumulative distribution function
+ {
+ if (lambda > 712.0) // underflow in exp(-lambda)
+ { // accuracy 12 Digits
+ PushDouble(GetUpRegIGamma(x+1.0,lambda));
+ }
+ else
+ {
+ if (x >= 936.0) // result is always indistinguishable from 1
+ PushDouble (1.0);
+ else
+ {
+ double fSummand = exp(-lambda);
+ double fSum = fSummand;
+ int nEnd = sal::static_int_cast<int>( x );
+ for (int i = 1; i <= nEnd; i++)
+ {
+ fSummand = (fSummand * lambda)/static_cast<double>(i);
+ fSum += fSummand;
+ }
+ PushDouble(fSum);
+ }
+ }
+ }
+ }
+}
+
+/** Local function used in the calculation of the hypergeometric distribution.
+ */
+static void lcl_PutFactorialElements( ::std::vector< double >& cn, double fLower, double fUpper, double fBase )
+{
+ for ( double i = fLower; i <= fUpper; ++i )
+ {
+ double fVal = fBase - i;
+ if ( fVal > 1.0 )
+ cn.push_back( fVal );
+ }
+}
+
+/** Calculates a value of the hypergeometric distribution.
+
+ @see #i47296#
+
+ This function has an extra argument bCumulative,
+ which only calculates the non-cumulative distribution and
+ which is optional in Calc and mandatory with Excel's HYPGEOM.DIST()
+
+ @see fdo#71722
+ @see tdf#102948, make Calc function ODFF1.2-compliant
+ @see tdf#117041, implement note at bottom of ODFF1.2 par.6.18.37
+ */
+void ScInterpreter::ScHypGeomDist( int nMinParamCount )
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCount( nParamCount, nMinParamCount, 5 ) )
+ return;
+
+ bool bCumulative = ( nParamCount == 5 && GetBool() );
+ double N = ::rtl::math::approxFloor(GetDouble());
+ double M = ::rtl::math::approxFloor(GetDouble());
+ double n = ::rtl::math::approxFloor(GetDouble());
+ double x = ::rtl::math::approxFloor(GetDouble());
+
+ if ( (x < 0.0) || (n < x) || (N < n) || (N < M) || (M < 0.0) )
+ {
+ PushIllegalArgument();
+ return;
+ }
+
+ double fVal = 0.0;
+
+ for ( int i = ( bCumulative ? 0 : x ); i <= x && nGlobalError == FormulaError::NONE; i++ )
+ {
+ if ( (n - i <= N - M) && (i <= M) )
+ fVal += GetHypGeomDist( i, n, M, N );
+ }
+
+ PushDouble( fVal );
+}
+
+/** Calculates a value of the hypergeometric distribution.
+
+ The algorithm is designed to avoid unnecessary multiplications and division
+ by expanding all factorial elements (9 of them). It is done by excluding
+ those ranges that overlap in the numerator and the denominator. This allows
+ for a fast calculation for large values which would otherwise cause an overflow
+ in the intermediate values.
+
+ @see #i47296#
+ */
+double ScInterpreter::GetHypGeomDist( double x, double n, double M, double N )
+{
+ const size_t nMaxArraySize = 500000; // arbitrary max array size
+
+ std::vector<double> cnNumer, cnDenom;
+
+ size_t nEstContainerSize = static_cast<size_t>( x + ::std::min( n, M ) );
+ size_t nMaxSize = ::std::min( cnNumer.max_size(), nMaxArraySize );
+ if ( nEstContainerSize > nMaxSize )
+ {
+ PushNoValue();
+ return 0;
+ }
+ cnNumer.reserve( nEstContainerSize + 10 );
+ cnDenom.reserve( nEstContainerSize + 10 );
+
+ // Trim coefficient C first
+ double fCNumVarUpper = N - n - M + x - 1.0;
+ double fCDenomVarLower = 1.0;
+ if ( N - n - M + x >= M - x + 1.0 )
+ {
+ fCNumVarUpper = M - x - 1.0;
+ fCDenomVarLower = N - n - 2.0*(M - x) + 1.0;
+ }
+
+ double fCNumLower = N - n - fCNumVarUpper;
+ double fCDenomUpper = N - n - M + x + 1.0 - fCDenomVarLower;
+
+ double fDNumVarLower = n - M;
+
+ if ( n >= M + 1.0 )
+ {
+ if ( N - M < n + 1.0 )
+ {
+ // Case 1
+
+ if ( N - n < n + 1.0 )
+ {
+ // no overlap
+ lcl_PutFactorialElements( cnNumer, 0.0, fCNumVarUpper, N - n );
+ lcl_PutFactorialElements( cnDenom, 0.0, N - n - 1.0, N );
+ }
+ else
+ {
+ // overlap
+ OSL_ENSURE( fCNumLower < n + 1.0, "ScHypGeomDist: wrong assertion" );
+ lcl_PutFactorialElements( cnNumer, N - 2.0*n, fCNumVarUpper, N - n );
+ lcl_PutFactorialElements( cnDenom, 0.0, n - 1.0, N );
+ }
+
+ OSL_ENSURE( fCDenomUpper <= N - M, "ScHypGeomDist: wrong assertion" );
+
+ if ( fCDenomUpper < n - x + 1.0 )
+ // no overlap
+ lcl_PutFactorialElements( cnNumer, 1.0, N - M - n + x, N - M + 1.0 );
+ else
+ {
+ // overlap
+ lcl_PutFactorialElements( cnNumer, 1.0, N - M - fCDenomUpper, N - M + 1.0 );
+
+ fCDenomUpper = n - x;
+ fCDenomVarLower = N - M - 2.0*(n - x) + 1.0;
+ }
+ }
+ else
+ {
+ // Case 2
+
+ if ( n > M - 1.0 )
+ {
+ // no overlap
+ lcl_PutFactorialElements( cnNumer, 0.0, fCNumVarUpper, N - n );
+ lcl_PutFactorialElements( cnDenom, 0.0, M - 1.0, N );
+ }
+ else
+ {
+ lcl_PutFactorialElements( cnNumer, M - n, fCNumVarUpper, N - n );
+ lcl_PutFactorialElements( cnDenom, 0.0, n - 1.0, N );
+ }
+
+ OSL_ENSURE( fCDenomUpper <= n, "ScHypGeomDist: wrong assertion" );
+
+ if ( fCDenomUpper < n - x + 1.0 )
+ // no overlap
+ lcl_PutFactorialElements( cnNumer, N - M - n + 1.0, N - M - n + x, N - M + 1.0 );
+ else
+ {
+ lcl_PutFactorialElements( cnNumer, N - M - n + 1.0, N - M - fCDenomUpper, N - M + 1.0 );
+ fCDenomUpper = n - x;
+ fCDenomVarLower = N - M - 2.0*(n - x) + 1.0;
+ }
+ }
+
+ OSL_ENSURE( fCDenomUpper <= M, "ScHypGeomDist: wrong assertion" );
+ }
+ else
+ {
+ if ( N - M < M + 1.0 )
+ {
+ // Case 3
+
+ if ( N - n < M + 1.0 )
+ {
+ // No overlap
+ lcl_PutFactorialElements( cnNumer, 0.0, fCNumVarUpper, N - n );
+ lcl_PutFactorialElements( cnDenom, 0.0, N - M - 1.0, N );
+ }
+ else
+ {
+ lcl_PutFactorialElements( cnNumer, N - n - M, fCNumVarUpper, N - n );
+ lcl_PutFactorialElements( cnDenom, 0.0, n - 1.0, N );
+ }
+
+ if ( n - x + 1.0 > fCDenomUpper )
+ // No overlap
+ lcl_PutFactorialElements( cnNumer, 1.0, N - M - n + x, N - M + 1.0 );
+ else
+ {
+ // Overlap
+ lcl_PutFactorialElements( cnNumer, 1.0, N - M - fCDenomUpper, N - M + 1.0 );
+
+ fCDenomVarLower = N - M - 2.0*(n - x) + 1.0;
+ fCDenomUpper = n - x;
+ }
+ }
+ else
+ {
+ // Case 4
+
+ OSL_ENSURE( M >= n - x, "ScHypGeomDist: wrong assertion" );
+ OSL_ENSURE( M - x <= N - M + 1.0, "ScHypGeomDist: wrong assertion" );
+
+ if ( N - n < N - M + 1.0 )
+ {
+ // No overlap
+ lcl_PutFactorialElements( cnNumer, 0.0, fCNumVarUpper, N - n );
+ lcl_PutFactorialElements( cnDenom, 0.0, M - 1.0, N );
+ }
+ else
+ {
+ // Overlap
+ OSL_ENSURE( fCNumLower <= N - M + 1.0, "ScHypGeomDist: wrong assertion" );
+ lcl_PutFactorialElements( cnNumer, M - n, fCNumVarUpper, N - n );
+ lcl_PutFactorialElements( cnDenom, 0.0, n - 1.0, N );
+ }
+
+ if ( n - x + 1.0 > fCDenomUpper )
+ // No overlap
+ lcl_PutFactorialElements( cnNumer, N - 2.0*M + 1.0, N - M - n + x, N - M + 1.0 );
+ else if ( M >= fCDenomUpper )
+ {
+ lcl_PutFactorialElements( cnNumer, N - 2.0*M + 1.0, N - M - fCDenomUpper, N - M + 1.0 );
+
+ fCDenomUpper = n - x;
+ fCDenomVarLower = N - M - 2.0*(n - x) + 1.0;
+ }
+ else
+ {
+ OSL_ENSURE( M <= fCDenomUpper, "ScHypGeomDist: wrong assertion" );
+ lcl_PutFactorialElements( cnDenom, fCDenomVarLower, N - n - 2.0*M + x,
+ N - n - M + x + 1.0 );
+
+ fCDenomUpper = n - x;
+ fCDenomVarLower = N - M - 2.0*(n - x) + 1.0;
+ }
+ }
+
+ OSL_ENSURE( fCDenomUpper <= n, "ScHypGeomDist: wrong assertion" );
+
+ fDNumVarLower = 0.0;
+ }
+
+ double nDNumVarUpper = fCDenomUpper < x + 1.0 ? n - x - 1.0 : n - fCDenomUpper - 1.0;
+ double nDDenomVarLower = fCDenomUpper < x + 1.0 ? fCDenomVarLower : N - n - M + 1.0;
+ lcl_PutFactorialElements( cnNumer, fDNumVarLower, nDNumVarUpper, n );
+ lcl_PutFactorialElements( cnDenom, nDDenomVarLower, N - n - M + x, N - n - M + x + 1.0 );
+
+ ::std::sort( cnNumer.begin(), cnNumer.end() );
+ ::std::sort( cnDenom.begin(), cnDenom.end() );
+ auto it1 = cnNumer.rbegin(), it1End = cnNumer.rend();
+ auto it2 = cnDenom.rbegin(), it2End = cnDenom.rend();
+
+ double fFactor = 1.0;
+ for ( ; it1 != it1End || it2 != it2End; )
+ {
+ double fEnum = 1.0, fDenom = 1.0;
+ if ( it1 != it1End )
+ fEnum = *it1++;
+ if ( it2 != it2End )
+ fDenom = *it2++;
+ fFactor *= fEnum / fDenom;
+ }
+
+ return fFactor;
+}
+
+void ScInterpreter::ScGammaDist( bool bODFF )
+{
+ sal_uInt8 nMinParamCount = ( bODFF ? 3 : 4 );
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCount( nParamCount, nMinParamCount, 4 ) )
+ return;
+ bool bCumulative;
+ if (nParamCount == 4)
+ bCumulative = GetBool();
+ else
+ bCumulative = true;
+ double fBeta = GetDouble(); // scale
+ double fAlpha = GetDouble(); // shape
+ double fX = GetDouble(); // x
+ if ((!bODFF && fX < 0) || fAlpha <= 0.0 || fBeta <= 0.0)
+ PushIllegalArgument();
+ else
+ {
+ if (bCumulative) // distribution
+ PushDouble( GetGammaDist( fX, fAlpha, fBeta));
+ else // density
+ PushDouble( GetGammaDistPDF( fX, fAlpha, fBeta));
+ }
+}
+
+void ScInterpreter::ScNormInv()
+{
+ if ( MustHaveParamCount( GetByte(), 3 ) )
+ {
+ double sigma = GetDouble();
+ double mue = GetDouble();
+ double x = GetDouble();
+ if (sigma <= 0.0 || x < 0.0 || x > 1.0)
+ PushIllegalArgument();
+ else if (x == 0.0 || x == 1.0)
+ PushNoValue();
+ else
+ PushDouble(gaussinv(x)*sigma + mue);
+ }
+}
+
+void ScInterpreter::ScSNormInv()
+{
+ double x = GetDouble();
+ if (x < 0.0 || x > 1.0)
+ PushIllegalArgument();
+ else if (x == 0.0 || x == 1.0)
+ PushNoValue();
+ else
+ PushDouble(gaussinv(x));
+}
+
+void ScInterpreter::ScLogNormInv()
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( MustHaveParamCount( nParamCount, 1, 3 ) )
+ {
+ double fSigma = ( nParamCount == 3 ? GetDouble() : 1.0 ); // Stddev
+ double fMue = ( nParamCount >= 2 ? GetDouble() : 0.0 ); // Mean
+ double fP = GetDouble(); // p
+ if ( fSigma <= 0.0 || fP <= 0.0 || fP >= 1.0 )
+ PushIllegalArgument();
+ else
+ PushDouble( exp( fMue + fSigma * gaussinv( fP ) ) );
+ }
+}
+
+class ScGammaDistFunction : public ScDistFunc
+{
+ ScInterpreter& rInt;
+ double fp, fAlpha, fBeta;
+
+public:
+ ScGammaDistFunction( ScInterpreter& rI, double fpVal, double fAlphaVal, double fBetaVal ) :
+ rInt(rI), fp(fpVal), fAlpha(fAlphaVal), fBeta(fBetaVal) {}
+
+ virtual ~ScGammaDistFunction() {}
+
+ double GetValue( double x ) const override { return fp - rInt.GetGammaDist(x, fAlpha, fBeta); }
+};
+
+void ScInterpreter::ScGammaInv()
+{
+ if ( !MustHaveParamCount( GetByte(), 3 ) )
+ return;
+ double fBeta = GetDouble();
+ double fAlpha = GetDouble();
+ double fP = GetDouble();
+ if (fAlpha <= 0.0 || fBeta <= 0.0 || fP < 0.0 || fP >= 1.0 )
+ {
+ PushIllegalArgument();
+ return;
+ }
+ if (fP == 0.0)
+ PushInt(0);
+ else
+ {
+ bool bConvError;
+ ScGammaDistFunction aFunc( *this, fP, fAlpha, fBeta );
+ double fStart = fAlpha * fBeta;
+ double fVal = lcl_IterateInverse( aFunc, fStart*0.5, fStart, bConvError );
+ if (bConvError)
+ SetError(FormulaError::NoConvergence);
+ PushDouble(fVal);
+ }
+}
+
+class ScBetaDistFunction : public ScDistFunc
+{
+ ScInterpreter& rInt;
+ double fp, fAlpha, fBeta;
+
+public:
+ ScBetaDistFunction( ScInterpreter& rI, double fpVal, double fAlphaVal, double fBetaVal ) :
+ rInt(rI), fp(fpVal), fAlpha(fAlphaVal), fBeta(fBetaVal) {}
+
+ virtual ~ScBetaDistFunction() {}
+
+ double GetValue( double x ) const override { return fp - rInt.GetBetaDist(x, fAlpha, fBeta); }
+};
+
+void ScInterpreter::ScBetaInv()
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCount( nParamCount, 3, 5 ) )
+ return;
+ double fP, fA, fB, fAlpha, fBeta;
+ if (nParamCount == 5)
+ fB = GetDouble();
+ else
+ fB = 1.0;
+ if (nParamCount >= 4)
+ fA = GetDouble();
+ else
+ fA = 0.0;
+ fBeta = GetDouble();
+ fAlpha = GetDouble();
+ fP = GetDouble();
+ if (fP < 0.0 || fP > 1.0 || fA >= fB || fAlpha <= 0.0 || fBeta <= 0.0)
+ {
+ PushIllegalArgument();
+ return;
+ }
+
+ bool bConvError;
+ ScBetaDistFunction aFunc( *this, fP, fAlpha, fBeta );
+ // 0..1 as range for iteration so it isn't extended beyond the valid range
+ double fVal = lcl_IterateInverse( aFunc, 0.0, 1.0, bConvError );
+ if (bConvError)
+ PushError( FormulaError::NoConvergence);
+ else
+ PushDouble(fA + fVal*(fB-fA)); // scale to (A,B)
+}
+
+// Note: T, F, and Chi are
+// monotonically decreasing,
+// therefore 1-Dist as function
+
+class ScTDistFunction : public ScDistFunc
+{
+ ScInterpreter& rInt;
+ double fp, fDF;
+ int nT;
+
+public:
+ ScTDistFunction( ScInterpreter& rI, double fpVal, double fDFVal, int nType ) :
+ rInt( rI ), fp( fpVal ), fDF( fDFVal ), nT( nType ) {}
+
+ virtual ~ScTDistFunction() {}
+
+ double GetValue( double x ) const override { return fp - rInt.GetTDist( x, fDF, nT ); }
+};
+
+void ScInterpreter::ScTInv( int nType )
+{
+ if ( !MustHaveParamCount( GetByte(), 2 ) )
+ return;
+ double fDF = ::rtl::math::approxFloor(GetDouble());
+ double fP = GetDouble();
+ if (fDF < 1.0 || fP <= 0.0 || fP > 1.0 )
+ {
+ PushIllegalArgument();
+ return;
+ }
+ if ( nType == 4 ) // left-tailed cumulative t-distribution
+ {
+ if ( fP == 1.0 )
+ PushIllegalArgument();
+ else if ( fP < 0.5 )
+ PushDouble( -GetTInv( 1 - fP, fDF, nType ) );
+ else
+ PushDouble( GetTInv( fP, fDF, nType ) );
+ }
+ else
+ PushDouble( GetTInv( fP, fDF, nType ) );
+};
+
+double ScInterpreter::GetTInv( double fAlpha, double fSize, int nType )
+{
+ bool bConvError;
+ ScTDistFunction aFunc( *this, fAlpha, fSize, nType );
+ double fVal = lcl_IterateInverse( aFunc, fSize * 0.5, fSize, bConvError );
+ if (bConvError)
+ SetError(FormulaError::NoConvergence);
+ return fVal;
+}
+
+class ScFDistFunction : public ScDistFunc
+{
+ ScInterpreter& rInt;
+ double fp, fF1, fF2;
+
+public:
+ ScFDistFunction( ScInterpreter& rI, double fpVal, double fF1Val, double fF2Val ) :
+ rInt(rI), fp(fpVal), fF1(fF1Val), fF2(fF2Val) {}
+
+ virtual ~ScFDistFunction() {}
+
+ double GetValue( double x ) const override { return fp - rInt.GetFDist(x, fF1, fF2); }
+};
+
+void ScInterpreter::ScFInv()
+{
+ if ( !MustHaveParamCount( GetByte(), 3 ) )
+ return;
+ double fF2 = ::rtl::math::approxFloor(GetDouble());
+ double fF1 = ::rtl::math::approxFloor(GetDouble());
+ double fP = GetDouble();
+ if (fP <= 0.0 || fF1 < 1.0 || fF2 < 1.0 || fF1 >= 1.0E10 || fF2 >= 1.0E10 || fP > 1.0)
+ {
+ PushIllegalArgument();
+ return;
+ }
+
+ bool bConvError;
+ ScFDistFunction aFunc( *this, fP, fF1, fF2 );
+ double fVal = lcl_IterateInverse( aFunc, fF1*0.5, fF1, bConvError );
+ if (bConvError)
+ SetError(FormulaError::NoConvergence);
+ PushDouble(fVal);
+}
+
+void ScInterpreter::ScFInv_LT()
+{
+ if ( !MustHaveParamCount( GetByte(), 3 ) )
+ return;
+ double fF2 = ::rtl::math::approxFloor(GetDouble());
+ double fF1 = ::rtl::math::approxFloor(GetDouble());
+ double fP = GetDouble();
+ if (fP <= 0.0 || fF1 < 1.0 || fF2 < 1.0 || fF1 >= 1.0E10 || fF2 >= 1.0E10 || fP > 1.0)
+ {
+ PushIllegalArgument();
+ return;
+ }
+
+ bool bConvError;
+ ScFDistFunction aFunc( *this, ( 1.0 - fP ), fF1, fF2 );
+ double fVal = lcl_IterateInverse( aFunc, fF1*0.5, fF1, bConvError );
+ if (bConvError)
+ SetError(FormulaError::NoConvergence);
+ PushDouble(fVal);
+}
+
+class ScChiDistFunction : public ScDistFunc
+{
+ ScInterpreter& rInt;
+ double fp, fDF;
+
+public:
+ ScChiDistFunction( ScInterpreter& rI, double fpVal, double fDFVal ) :
+ rInt(rI), fp(fpVal), fDF(fDFVal) {}
+
+ virtual ~ScChiDistFunction() {}
+
+ double GetValue( double x ) const override { return fp - rInt.GetChiDist(x, fDF); }
+};
+
+void ScInterpreter::ScChiInv()
+{
+ if ( !MustHaveParamCount( GetByte(), 2 ) )
+ return;
+ double fDF = ::rtl::math::approxFloor(GetDouble());
+ double fP = GetDouble();
+ if (fDF < 1.0 || fP <= 0.0 || fP > 1.0 )
+ {
+ PushIllegalArgument();
+ return;
+ }
+
+ bool bConvError;
+ ScChiDistFunction aFunc( *this, fP, fDF );
+ double fVal = lcl_IterateInverse( aFunc, fDF*0.5, fDF, bConvError );
+ if (bConvError)
+ SetError(FormulaError::NoConvergence);
+ PushDouble(fVal);
+}
+
+/***********************************************/
+class ScChiSqDistFunction : public ScDistFunc
+{
+ ScInterpreter& rInt;
+ double fp, fDF;
+
+public:
+ ScChiSqDistFunction( ScInterpreter& rI, double fpVal, double fDFVal ) :
+ rInt(rI), fp(fpVal), fDF(fDFVal) {}
+
+ virtual ~ScChiSqDistFunction() {}
+
+ double GetValue( double x ) const override { return fp - rInt.GetChiSqDistCDF(x, fDF); }
+};
+
+void ScInterpreter::ScChiSqInv()
+{
+ if ( !MustHaveParamCount( GetByte(), 2 ) )
+ return;
+ double fDF = ::rtl::math::approxFloor(GetDouble());
+ double fP = GetDouble();
+ if (fDF < 1.0 || fP < 0.0 || fP >= 1.0 )
+ {
+ PushIllegalArgument();
+ return;
+ }
+
+ bool bConvError;
+ ScChiSqDistFunction aFunc( *this, fP, fDF );
+ double fVal = lcl_IterateInverse( aFunc, fDF*0.5, fDF, bConvError );
+ if (bConvError)
+ SetError(FormulaError::NoConvergence);
+ PushDouble(fVal);
+}
+
+void ScInterpreter::ScConfidence()
+{
+ if ( MustHaveParamCount( GetByte(), 3 ) )
+ {
+ double n = ::rtl::math::approxFloor(GetDouble());
+ double sigma = GetDouble();
+ double alpha = GetDouble();
+ if (sigma <= 0.0 || alpha <= 0.0 || alpha >= 1.0 || n < 1.0)
+ PushIllegalArgument();
+ else
+ PushDouble( gaussinv(1.0-alpha/2.0) * sigma/sqrt(n) );
+ }
+}
+
+void ScInterpreter::ScConfidenceT()
+{
+ if ( MustHaveParamCount( GetByte(), 3 ) )
+ {
+ double n = ::rtl::math::approxFloor(GetDouble());
+ double sigma = GetDouble();
+ double alpha = GetDouble();
+ if (sigma <= 0.0 || alpha <= 0.0 || alpha >= 1.0 || n < 1.0)
+ PushIllegalArgument();
+ else if (n == 1.0) // for interoperability with Excel
+ PushError(FormulaError::DivisionByZero);
+ else
+ PushDouble( sigma * GetTInv( alpha, n - 1, 2 ) / sqrt( n ) );
+ }
+}
+
+void ScInterpreter::ScZTest()
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCount( nParamCount, 2, 3 ) )
+ return;
+ double sigma = 0.0, x;
+ if (nParamCount == 3)
+ {
+ sigma = GetDouble();
+ if (sigma <= 0.0)
+ {
+ PushIllegalArgument();
+ return;
+ }
+ }
+ x = GetDouble();
+
+ double fSum = 0.0;
+ double fSumSqr = 0.0;
+ double fVal;
+ double rValCount = 0.0;
+ switch (GetStackType())
+ {
+ case svDouble :
+ {
+ fVal = GetDouble();
+ fSum += fVal;
+ fSumSqr += fVal*fVal;
+ rValCount++;
+ }
+ break;
+ case svSingleRef :
+ {
+ ScAddress aAdr;
+ PopSingleRef( aAdr );
+ ScRefCellValue aCell(*pDok, aAdr);
+ if (aCell.hasNumeric())
+ {
+ fVal = GetCellValue(aAdr, aCell);
+ fSum += fVal;
+ fSumSqr += fVal*fVal;
+ rValCount++;
+ }
+ }
+ break;
+ case svRefList :
+ case svDoubleRef :
+ {
+ short nParam = 1;
+ size_t nRefInList = 0;
+ while (nParam-- > 0)
+ {
+ ScRange aRange;
+ FormulaError nErr = FormulaError::NONE;
+ PopDoubleRef( aRange, nParam, nRefInList);
+ ScValueIterator aValIter( pDok, aRange, mnSubTotalFlags );
+ if (aValIter.GetFirst(fVal, nErr))
+ {
+ fSum += fVal;
+ fSumSqr += fVal*fVal;
+ rValCount++;
+ while ((nErr == FormulaError::NONE) && aValIter.GetNext(fVal, nErr))
+ {
+ fSum += fVal;
+ fSumSqr += fVal*fVal;
+ rValCount++;
+ }
+ SetError(nErr);
+ }
+ }
+ }
+ break;
+ case svMatrix :
+ case svExternalSingleRef:
+ case svExternalDoubleRef:
+ {
+ ScMatrixRef pMat = GetMatrix();
+ if (pMat)
+ {
+ SCSIZE nCount = pMat->GetElementCount();
+ if (pMat->IsNumeric())
+ {
+ for ( SCSIZE i = 0; i < nCount; i++ )
+ {
+ fVal= pMat->GetDouble(i);
+ fSum += fVal;
+ fSumSqr += fVal * fVal;
+ rValCount++;
+ }
+ }
+ else
+ {
+ for (SCSIZE i = 0; i < nCount; i++)
+ if (!pMat->IsStringOrEmpty(i))
+ {
+ fVal= pMat->GetDouble(i);
+ fSum += fVal;
+ fSumSqr += fVal * fVal;
+ rValCount++;
+ }
+ }
+ }
+ }
+ break;
+ default : SetError(FormulaError::IllegalParameter); break;
+ }
+ if (rValCount <= 1.0)
+ PushError( FormulaError::DivisionByZero);
+ else
+ {
+ double mue = fSum/rValCount;
+
+ if (nParamCount != 3)
+ {
+ sigma = (fSumSqr - fSum*fSum/rValCount)/(rValCount-1.0);
+ if (sigma == 0.0)
+ {
+ PushError(FormulaError::DivisionByZero);
+ return;
+ }
+ PushDouble(0.5 - gauss((mue-x)/sqrt(sigma/rValCount)));
+ }
+ else
+ PushDouble(0.5 - gauss((mue-x)*sqrt(rValCount)/sigma));
+ }
+}
+
+bool ScInterpreter::CalculateTest(bool _bTemplin
+ ,const SCSIZE nC1, const SCSIZE nC2,const SCSIZE nR1,const SCSIZE nR2
+ ,const ScMatrixRef& pMat1,const ScMatrixRef& pMat2
+ ,double& fT,double& fF)
+{
+ double fCount1 = 0.0;
+ double fCount2 = 0.0;
+ double fSum1 = 0.0;
+ double fSumSqr1 = 0.0;
+ double fSum2 = 0.0;
+ double fSumSqr2 = 0.0;
+ double fVal;
+ SCSIZE i,j;
+ for (i = 0; i < nC1; i++)
+ for (j = 0; j < nR1; j++)
+ {
+ if (!pMat1->IsStringOrEmpty(i,j))
+ {
+ fVal = pMat1->GetDouble(i,j);
+ fSum1 += fVal;
+ fSumSqr1 += fVal * fVal;
+ fCount1++;
+ }
+ }
+ for (i = 0; i < nC2; i++)
+ for (j = 0; j < nR2; j++)
+ {
+ if (!pMat2->IsStringOrEmpty(i,j))
+ {
+ fVal = pMat2->GetDouble(i,j);
+ fSum2 += fVal;
+ fSumSqr2 += fVal * fVal;
+ fCount2++;
+ }
+ }
+ if (fCount1 < 2.0 || fCount2 < 2.0)
+ {
+ PushNoValue();
+ return false;
+ } // if (fCount1 < 2.0 || fCount2 < 2.0)
+ if ( _bTemplin )
+ {
+ double fS1 = (fSumSqr1-fSum1*fSum1/fCount1)/(fCount1-1.0)/fCount1;
+ double fS2 = (fSumSqr2-fSum2*fSum2/fCount2)/(fCount2-1.0)/fCount2;
+ if (fS1 + fS2 == 0.0)
+ {
+ PushNoValue();
+ return false;
+ }
+ fT = fabs(fSum1/fCount1 - fSum2/fCount2)/sqrt(fS1+fS2);
+ double c = fS1/(fS1+fS2);
+ // GetTDist is calculated via GetBetaDist and also works with non-integral
+ // degrees of freedom. The result matches Excel
+ fF = 1.0/(c*c/(fCount1-1.0)+(1.0-c)*(1.0-c)/(fCount2-1.0));
+ }
+ else
+ {
+ // according to Bronstein-Semendjajew
+ double fS1 = (fSumSqr1 - fSum1*fSum1/fCount1) / (fCount1 - 1.0); // Variance
+ double fS2 = (fSumSqr2 - fSum2*fSum2/fCount2) / (fCount2 - 1.0);
+ fT = fabs( fSum1/fCount1 - fSum2/fCount2 ) /
+ sqrt( (fCount1-1.0)*fS1 + (fCount2-1.0)*fS2 ) *
+ sqrt( fCount1*fCount2*(fCount1+fCount2-2)/(fCount1+fCount2) );
+ fF = fCount1 + fCount2 - 2;
+ }
+ return true;
+}
+void ScInterpreter::ScTTest()
+{
+ if ( !MustHaveParamCount( GetByte(), 4 ) )
+ return;
+ double fTyp = ::rtl::math::approxFloor(GetDouble());
+ double fTails = ::rtl::math::approxFloor(GetDouble());
+ if (fTails != 1.0 && fTails != 2.0)
+ {
+ PushIllegalArgument();
+ return;
+ }
+
+ ScMatrixRef pMat2 = GetMatrix();
+ ScMatrixRef pMat1 = GetMatrix();
+ if (!pMat1 || !pMat2)
+ {
+ PushIllegalParameter();
+ return;
+ }
+ double fT, fF;
+ SCSIZE nC1, nC2;
+ SCSIZE nR1, nR2;
+ SCSIZE i, j;
+ pMat1->GetDimensions(nC1, nR1);
+ pMat2->GetDimensions(nC2, nR2);
+ if (fTyp == 1.0)
+ {
+ if (nC1 != nC2 || nR1 != nR2)
+ {
+ PushIllegalArgument();
+ return;
+ }
+ double fCount = 0.0;
+ double fSum1 = 0.0;
+ double fSum2 = 0.0;
+ double fSumSqrD = 0.0;
+ double fVal1, fVal2;
+ for (i = 0; i < nC1; i++)
+ for (j = 0; j < nR1; j++)
+ {
+ if (!pMat1->IsStringOrEmpty(i,j) && !pMat2->IsStringOrEmpty(i,j))
+ {
+ fVal1 = pMat1->GetDouble(i,j);
+ fVal2 = pMat2->GetDouble(i,j);
+ fSum1 += fVal1;
+ fSum2 += fVal2;
+ fSumSqrD += (fVal1 - fVal2)*(fVal1 - fVal2);
+ fCount++;
+ }
+ }
+ if (fCount < 1.0)
+ {
+ PushNoValue();
+ return;
+ }
+ double fSumD = fSum1 - fSum2;
+ double fDivider = fCount*fSumSqrD - fSumD*fSumD;
+ if ( fDivider == 0.0 )
+ {
+ PushError(FormulaError::DivisionByZero);
+ return;
+ }
+ fT = fabs(fSumD) * sqrt((fCount-1.0) / fDivider);
+ fF = fCount - 1.0;
+ }
+ else if (fTyp == 2.0)
+ {
+ if (!CalculateTest(false,nC1, nC2,nR1, nR2,pMat1,pMat2,fT,fF))
+ return; // error was pushed
+ }
+ else if (fTyp == 3.0)
+ {
+ if (!CalculateTest(true,nC1, nC2,nR1, nR2,pMat1,pMat2,fT,fF))
+ return; // error was pushed
+ }
+ else
+ {
+ PushIllegalArgument();
+ return;
+ }
+ PushDouble( GetTDist( fT, fF, static_cast<int>(fTails) ) );
+}
+
+void ScInterpreter::ScFTest()
+{
+ if ( !MustHaveParamCount( GetByte(), 2 ) )
+ return;
+ ScMatrixRef pMat2 = GetMatrix();
+ ScMatrixRef pMat1 = GetMatrix();
+ if (!pMat1 || !pMat2)
+ {
+ PushIllegalParameter();
+ return;
+ }
+ SCSIZE nC1, nC2;
+ SCSIZE nR1, nR2;
+ pMat1->GetDimensions(nC1, nR1);
+ pMat2->GetDimensions(nC2, nR2);
+ double fCount1 = 0.0;
+ double fCount2 = 0.0;
+ double fSum1 = 0.0;
+ double fSumSqr1 = 0.0;
+ double fSum2 = 0.0;
+ double fSumSqr2 = 0.0;
+
+ std::vector<sc::op::Op> aOp;
+ aOp.emplace_back(sc::op::Op(0.0, [](double& rAccum, double fVal){rAccum += fVal;}));
+ aOp.emplace_back(sc::op::Op(0.0, [](double& rAccum, double fVal){rAccum += fVal * fVal;}));
+
+ auto aVal1 = pMat1->Collect(aOp);
+ fSum1 = aVal1[0].mfFirst + aVal1[0].mfRest;
+ fSumSqr1 = aVal1[1].mfFirst + aVal1[1].mfRest;
+ fCount1 = aVal1[2].mnCount;
+
+ auto aVal2 = pMat2->Collect(aOp);
+ fSum2 = aVal2[0].mfFirst + aVal2[0].mfRest;
+ fSumSqr2 = aVal2[1].mfFirst + aVal2[1].mfRest;
+ fCount2 = aVal2[2].mnCount;
+
+ if (fCount1 < 2.0 || fCount2 < 2.0)
+ {
+ PushNoValue();
+ return;
+ }
+ double fS1 = (fSumSqr1-fSum1*fSum1/fCount1)/(fCount1-1.0);
+ double fS2 = (fSumSqr2-fSum2*fSum2/fCount2)/(fCount2-1.0);
+ if (fS1 == 0.0 || fS2 == 0.0)
+ {
+ PushNoValue();
+ return;
+ }
+ double fF, fF1, fF2;
+ if (fS1 > fS2)
+ {
+ fF = fS1/fS2;
+ fF1 = fCount1-1.0;
+ fF2 = fCount2-1.0;
+ }
+ else
+ {
+ fF = fS2/fS1;
+ fF1 = fCount2-1.0;
+ fF2 = fCount1-1.0;
+ }
+ double fFcdf = GetFDist(fF, fF1, fF2);
+ PushDouble(2.0*std::min(fFcdf, 1.0 - fFcdf));
+}
+
+void ScInterpreter::ScChiTest()
+{
+ if ( !MustHaveParamCount( GetByte(), 2 ) )
+ return;
+ ScMatrixRef pMat2 = GetMatrix();
+ ScMatrixRef pMat1 = GetMatrix();
+ if (!pMat1 || !pMat2)
+ {
+ PushIllegalParameter();
+ return;
+ }
+ SCSIZE nC1, nC2;
+ SCSIZE nR1, nR2;
+ pMat1->GetDimensions(nC1, nR1);
+ pMat2->GetDimensions(nC2, nR2);
+ if (nR1 != nR2 || nC1 != nC2)
+ {
+ PushIllegalArgument();
+ return;
+ }
+ double fChi = 0.0;
+ bool bEmpty = true;
+ for (SCSIZE i = 0; i < nC1; i++)
+ {
+ for (SCSIZE j = 0; j < nR1; j++)
+ {
+ if (!(pMat1->IsEmpty(i,j) || pMat2->IsEmpty(i,j)))
+ {
+ bEmpty = false;
+ if (!pMat1->IsStringOrEmpty(i,j) && !pMat2->IsStringOrEmpty(i,j))
+ {
+ double fValX = pMat1->GetDouble(i,j);
+ double fValE = pMat2->GetDouble(i,j);
+ if ( fValE == 0.0 )
+ {
+ PushError(FormulaError::DivisionByZero);
+ return;
+ }
+ // These fTemp values guard against a failure when compiled
+ // with optimization (using g++ 4.8.2 on tinderbox 71-TDF),
+ // where ((fValX - fValE) * (fValX - fValE)) with
+ // fValE==1e+308 should had produced Infinity but did
+ // not, instead the result of divide() then was 1e+308.
+ volatile double fTemp1 = (fValX - fValE) * (fValX - fValE);
+ double fTemp2 = fTemp1;
+ fChi += sc::divide( fTemp2, fValE);
+ }
+ else
+ {
+ PushIllegalArgument();
+ return;
+ }
+ }
+ }
+ }
+ if ( bEmpty )
+ {
+ // not in ODFF1.2, but for interoperability with Excel
+ PushIllegalArgument();
+ return;
+ }
+ double fDF;
+ if (nC1 == 1 || nR1 == 1)
+ {
+ fDF = static_cast<double>(nC1*nR1 - 1);
+ if (fDF == 0.0)
+ {
+ PushNoValue();
+ return;
+ }
+ }
+ else
+ fDF = static_cast<double>(nC1-1)*static_cast<double>(nR1-1);
+ PushDouble(GetChiDist(fChi, fDF));
+}
+
+void ScInterpreter::ScKurt()
+{
+ double fSum,fCount,vSum;
+ std::vector<double> values;
+ if ( !CalculateSkew(fSum,fCount,vSum,values) )
+ return;
+
+ // ODF 1.2 constraints: # of numbers >= 4
+ if (fCount < 4.0)
+ {
+ // for interoperability with Excel
+ PushError( FormulaError::DivisionByZero);
+ return;
+ }
+
+ double fMean = fSum / fCount;
+
+ for (double v : values)
+ vSum += (v - fMean) * (v - fMean);
+
+ double fStdDev = sqrt(vSum / (fCount - 1.0));
+ double xpower4 = 0.0;
+
+ if (fStdDev == 0.0)
+ {
+ PushError( FormulaError::DivisionByZero);
+ return;
+ }
+
+ for (double v : values)
+ {
+ double dx = (v - fMean) / fStdDev;
+ xpower4 = xpower4 + (dx * dx * dx * dx);
+ }
+
+ double k_d = (fCount - 2.0) * (fCount - 3.0);
+ double k_l = fCount * (fCount + 1.0) / ((fCount - 1.0) * k_d);
+ double k_t = 3.0 * (fCount - 1.0) * (fCount - 1.0) / k_d;
+
+ PushDouble(xpower4 * k_l - k_t);
+}
+
+void ScInterpreter::ScHarMean()
+{
+ short nParamCount = GetByte();
+ double nVal = 0.0;
+ double nValCount = 0.0;
+ ScAddress aAdr;
+ ScRange aRange;
+ size_t nRefInList = 0;
+ while ((nGlobalError == FormulaError::NONE) && (nParamCount-- > 0))
+ {
+ switch (GetStackType())
+ {
+ case svDouble :
+ {
+ double x = GetDouble();
+ if (x > 0.0)
+ {
+ nVal += 1.0/x;
+ nValCount++;
+ }
+ else
+ SetError( FormulaError::IllegalArgument);
+ break;
+ }
+ case svSingleRef :
+ {
+ PopSingleRef( aAdr );
+ ScRefCellValue aCell(*pDok, aAdr);
+ if (aCell.hasNumeric())
+ {
+ double x = GetCellValue(aAdr, aCell);
+ if (x > 0.0)
+ {
+ nVal += 1.0/x;
+ nValCount++;
+ }
+ else
+ SetError( FormulaError::IllegalArgument);
+ }
+ break;
+ }
+ case svDoubleRef :
+ case svRefList :
+ {
+ FormulaError nErr = FormulaError::NONE;
+ PopDoubleRef( aRange, nParamCount, nRefInList);
+ double nCellVal;
+ ScValueIterator aValIter( pDok, aRange, mnSubTotalFlags );
+ if (aValIter.GetFirst(nCellVal, nErr))
+ {
+ if (nCellVal > 0.0)
+ {
+ nVal += 1.0/nCellVal;
+ nValCount++;
+ }
+ else
+ SetError( FormulaError::IllegalArgument);
+ SetError(nErr);
+ while ((nErr == FormulaError::NONE) && aValIter.GetNext(nCellVal, nErr))
+ {
+ if (nCellVal > 0.0)
+ {
+ nVal += 1.0/nCellVal;
+ nValCount++;
+ }
+ else
+ SetError( FormulaError::IllegalArgument);
+ }
+ SetError(nErr);
+ }
+ }
+ break;
+ case svMatrix :
+ case svExternalSingleRef:
+ case svExternalDoubleRef:
+ {
+ ScMatrixRef pMat = GetMatrix();
+ if (pMat)
+ {
+ SCSIZE nCount = pMat->GetElementCount();
+ if (pMat->IsNumeric())
+ {
+ for (SCSIZE nElem = 0; nElem < nCount; nElem++)
+ {
+ double x = pMat->GetDouble(nElem);
+ if (x > 0.0)
+ {
+ nVal += 1.0/x;
+ nValCount++;
+ }
+ else
+ SetError( FormulaError::IllegalArgument);
+ }
+ }
+ else
+ {
+ for (SCSIZE nElem = 0; nElem < nCount; nElem++)
+ if (!pMat->IsStringOrEmpty(nElem))
+ {
+ double x = pMat->GetDouble(nElem);
+ if (x > 0.0)
+ {
+ nVal += 1.0/x;
+ nValCount++;
+ }
+ else
+ SetError( FormulaError::IllegalArgument);
+ }
+ }
+ }
+ }
+ break;
+ default : SetError(FormulaError::IllegalParameter); break;
+ }
+ }
+ if (nGlobalError == FormulaError::NONE)
+ PushDouble( nValCount / nVal );
+ else
+ PushError( nGlobalError);
+}
+
+void ScInterpreter::ScGeoMean()
+{
+ short nParamCount = GetByte();
+ double nVal = 0.0;
+ double nValCount = 0.0;
+ ScAddress aAdr;
+ ScRange aRange;
+
+ size_t nRefInList = 0;
+ while ((nGlobalError == FormulaError::NONE) && (nParamCount-- > 0))
+ {
+ switch (GetStackType())
+ {
+ case svDouble :
+ {
+ double x = GetDouble();
+ if (x > 0.0)
+ {
+ nVal += log(x);
+ nValCount++;
+ }
+ else if ( x == 0.0 )
+ {
+ // value of 0 means that function result will be 0
+ while ( nParamCount-- > 0 )
+ PopError();
+ PushDouble( 0.0 );
+ return;
+ }
+ else
+ SetError( FormulaError::IllegalArgument);
+ break;
+ }
+ case svSingleRef :
+ {
+ PopSingleRef( aAdr );
+ ScRefCellValue aCell(*pDok, aAdr);
+ if (aCell.hasNumeric())
+ {
+ double x = GetCellValue(aAdr, aCell);
+ if (x > 0.0)
+ {
+ nVal += log(x);
+ nValCount++;
+ }
+ else if ( x == 0.0 )
+ {
+ // value of 0 means that function result will be 0
+ while ( nParamCount-- > 0 )
+ PopError();
+ PushDouble( 0.0 );
+ return;
+ }
+ else
+ SetError( FormulaError::IllegalArgument);
+ }
+ break;
+ }
+ case svDoubleRef :
+ case svRefList :
+ {
+ FormulaError nErr = FormulaError::NONE;
+ PopDoubleRef( aRange, nParamCount, nRefInList);
+ double nCellVal;
+ ScValueIterator aValIter( pDok, aRange, mnSubTotalFlags );
+ if (aValIter.GetFirst(nCellVal, nErr))
+ {
+ if (nCellVal > 0.0)
+ {
+ nVal += log(nCellVal);
+ nValCount++;
+ }
+ else if ( nCellVal == 0.0 )
+ {
+ // value of 0 means that function result will be 0
+ while ( nParamCount-- > 0 )
+ PopError();
+ PushDouble( 0.0 );
+ return;
+ }
+ else
+ SetError( FormulaError::IllegalArgument);
+ SetError(nErr);
+ while ((nErr == FormulaError::NONE) && aValIter.GetNext(nCellVal, nErr))
+ {
+ if (nCellVal > 0.0)
+ {
+ nVal += log(nCellVal);
+ nValCount++;
+ }
+ else if ( nCellVal == 0.0 )
+ {
+ // value of 0 means that function result will be 0
+ while ( nParamCount-- > 0 )
+ PopError();
+ PushDouble( 0.0 );
+ return;
+ }
+ else
+ SetError( FormulaError::IllegalArgument);
+ }
+ SetError(nErr);
+ }
+ }
+ break;
+ case svMatrix :
+ case svExternalSingleRef:
+ case svExternalDoubleRef:
+ {
+ ScMatrixRef pMat = GetMatrix();
+ if (pMat)
+ {
+ SCSIZE nCount = pMat->GetElementCount();
+ if (pMat->IsNumeric())
+ {
+ for (SCSIZE ui = 0; ui < nCount; ui++)
+ {
+ double x = pMat->GetDouble(ui);
+ if (x > 0.0)
+ {
+ nVal += log(x);
+ nValCount++;
+ }
+ else if ( x == 0.0 )
+ {
+ // value of 0 means that function result will be 0
+ while ( nParamCount-- > 0 )
+ PopError();
+ PushDouble( 0.0 );
+ return;
+ }
+ else
+ SetError( FormulaError::IllegalArgument);
+ }
+ }
+ else
+ {
+ for (SCSIZE ui = 0; ui < nCount; ui++)
+ {
+ if (!pMat->IsStringOrEmpty(ui))
+ {
+ double x = pMat->GetDouble(ui);
+ if (x > 0.0)
+ {
+ nVal += log(x);
+ nValCount++;
+ }
+ else if ( x == 0.0 )
+ {
+ // value of 0 means that function result will be 0
+ while ( nParamCount-- > 0 )
+ PopError();
+ PushDouble( 0.0 );
+ return;
+ }
+ else
+ SetError( FormulaError::IllegalArgument);
+ }
+ }
+ }
+ }
+ }
+ break;
+ default : SetError(FormulaError::IllegalParameter); break;
+ }
+ }
+ if (nGlobalError == FormulaError::NONE)
+ PushDouble(exp(nVal / nValCount));
+ else
+ PushError( nGlobalError);
+}
+
+void ScInterpreter::ScStandard()
+{
+ if ( MustHaveParamCount( GetByte(), 3 ) )
+ {
+ double sigma = GetDouble();
+ double mue = GetDouble();
+ double x = GetDouble();
+ if (sigma < 0.0)
+ PushError( FormulaError::IllegalArgument);
+ else if (sigma == 0.0)
+ PushError( FormulaError::DivisionByZero);
+ else
+ PushDouble((x-mue)/sigma);
+ }
+}
+bool ScInterpreter::CalculateSkew(double& fSum,double& fCount,double& vSum,std::vector<double>& values)
+{
+ short nParamCount = GetByte();
+ if ( !MustHaveParamCountMin( nParamCount, 1 ) )
+ return false;
+
+ fSum = 0.0;
+ fCount = 0.0;
+ vSum = 0.0;
+ double fVal = 0.0;
+ ScAddress aAdr;
+ ScRange aRange;
+ size_t nRefInList = 0;
+ while (nParamCount-- > 0)
+ {
+ switch (GetStackType())
+ {
+ case svDouble :
+ {
+ fVal = GetDouble();
+ fSum += fVal;
+ values.push_back(fVal);
+ fCount++;
+ }
+ break;
+ case svSingleRef :
+ {
+ PopSingleRef( aAdr );
+ ScRefCellValue aCell(*pDok, aAdr);
+ if (aCell.hasNumeric())
+ {
+ fVal = GetCellValue(aAdr, aCell);
+ fSum += fVal;
+ values.push_back(fVal);
+ fCount++;
+ }
+ }
+ break;
+ case svDoubleRef :
+ case svRefList :
+ {
+ PopDoubleRef( aRange, nParamCount, nRefInList);
+ FormulaError nErr = FormulaError::NONE;
+ ScValueIterator aValIter( pDok, aRange, mnSubTotalFlags );
+ if (aValIter.GetFirst(fVal, nErr))
+ {
+ fSum += fVal;
+ values.push_back(fVal);
+ fCount++;
+ SetError(nErr);
+ while ((nErr == FormulaError::NONE) && aValIter.GetNext(fVal, nErr))
+ {
+ fSum += fVal;
+ values.push_back(fVal);
+ fCount++;
+ }
+ SetError(nErr);
+ }
+ }
+ break;
+ case svMatrix :
+ case svExternalSingleRef:
+ case svExternalDoubleRef:
+ {
+ ScMatrixRef pMat = GetMatrix();
+ if (pMat)
+ {
+ SCSIZE nCount = pMat->GetElementCount();
+ if (pMat->IsNumeric())
+ {
+ for (SCSIZE nElem = 0; nElem < nCount; nElem++)
+ {
+ fVal = pMat->GetDouble(nElem);
+ fSum += fVal;
+ values.push_back(fVal);
+ fCount++;
+ }
+ }
+ else
+ {
+ for (SCSIZE nElem = 0; nElem < nCount; nElem++)
+ if (!pMat->IsStringOrEmpty(nElem))
+ {
+ fVal = pMat->GetDouble(nElem);
+ fSum += fVal;
+ values.push_back(fVal);
+ fCount++;
+ }
+ }
+ }
+ }
+ break;
+ default :
+ SetError(FormulaError::IllegalParameter);
+ break;
+ }
+ }
+
+ if (nGlobalError != FormulaError::NONE)
+ {
+ PushError( nGlobalError);
+ return false;
+ } // if (nGlobalError != FormulaError::NONE)
+ return true;
+}
+
+void ScInterpreter::CalculateSkewOrSkewp( bool bSkewp )
+{
+ double fSum, fCount, vSum;
+ std::vector<double> values;
+ if (!CalculateSkew( fSum, fCount, vSum, values))
+ return;
+ // SKEW/SKEWP's constraints: they require at least three numbers
+ if (fCount < 3.0)
+ {
+ // for interoperability with Excel
+ PushError(FormulaError::DivisionByZero);
+ return;
+ }
+
+ double fMean = fSum / fCount;
+
+ for (double v : values)
+ vSum += (v - fMean) * (v - fMean);
+
+ double fStdDev = sqrt( vSum / (bSkewp ? fCount : (fCount - 1.0)));
+ double xcube = 0.0;
+
+ if (fStdDev == 0)
+ {
+ PushIllegalArgument();
+ return;
+ }
+
+ for (double v : values)
+ {
+ double dx = (v - fMean) / fStdDev;
+ xcube = xcube + (dx * dx * dx);
+ }
+
+ if (bSkewp)
+ PushDouble( xcube / fCount );
+ else
+ PushDouble( ((xcube * fCount) / (fCount - 1.0)) / (fCount - 2.0) );
+}
+
+void ScInterpreter::ScSkew()
+{
+ CalculateSkewOrSkewp( false );
+}
+
+void ScInterpreter::ScSkewp()
+{
+ CalculateSkewOrSkewp( true );
+}
+
+double ScInterpreter::GetMedian( vector<double> & rArray )
+{
+ size_t nSize = rArray.size();
+ if (nSize == 0 || nGlobalError != FormulaError::NONE)
+ {
+ SetError( FormulaError::NoValue);
+ return 0.0;
+ }
+
+ // Upper median.
+ size_t nMid = nSize / 2;
+ vector<double>::iterator iMid = rArray.begin() + nMid;
+ ::std::nth_element( rArray.begin(), iMid, rArray.end());
+ if (nSize & 1)
+ return *iMid; // Lower and upper median are equal.
+ else
+ {
+ double fUp = *iMid;
+ // Lower median.
+ iMid = ::std::max_element( rArray.begin(), rArray.begin() + nMid);
+ return (fUp + *iMid) / 2;
+ }
+}
+
+void ScInterpreter::ScMedian()
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCountMin( nParamCount, 1 ) )
+ return;
+ vector<double> aArray;
+ GetNumberSequenceArray( nParamCount, aArray, false );
+ PushDouble( GetMedian( aArray));
+}
+
+double ScInterpreter::GetPercentile( vector<double> & rArray, double fPercentile )
+{
+ size_t nSize = rArray.size();
+ if (nSize == 1)
+ return rArray[0];
+ else
+ {
+ size_t nIndex = static_cast<size_t>(::rtl::math::approxFloor( fPercentile * (nSize-1)));
+ double fDiff = fPercentile * (nSize-1) - ::rtl::math::approxFloor( fPercentile * (nSize-1));
+ OSL_ENSURE(nIndex < nSize, "GetPercentile: wrong index(1)");
+ vector<double>::iterator iter = rArray.begin() + nIndex;
+ ::std::nth_element( rArray.begin(), iter, rArray.end());
+ if (fDiff == 0.0)
+ return *iter;
+ else
+ {
+ OSL_ENSURE(nIndex < nSize-1, "GetPercentile: wrong index(2)");
+ double fVal = *iter;
+ iter = ::std::min_element( rArray.begin() + nIndex + 1, rArray.end());
+ return fVal + fDiff * (*iter - fVal);
+ }
+ }
+}
+
+double ScInterpreter::GetPercentileExclusive( vector<double> & rArray, double fPercentile )
+{
+ size_t nSize1 = rArray.size() + 1;
+ if ( rArray.empty() || nSize1 == 1 || nGlobalError != FormulaError::NONE)
+ {
+ SetError( FormulaError::NoValue );
+ return 0.0;
+ }
+ if ( fPercentile * nSize1 < 1.0 || fPercentile * nSize1 > static_cast<double>( nSize1 - 1 ) )
+ {
+ SetError( FormulaError::IllegalParameter );
+ return 0.0;
+ }
+
+ size_t nIndex = static_cast<size_t>(::rtl::math::approxFloor( fPercentile * nSize1 - 1 ));
+ double fDiff = fPercentile * nSize1 - 1 - ::rtl::math::approxFloor( fPercentile * nSize1 - 1 );
+ OSL_ENSURE(nIndex < ( nSize1 - 1 ), "GetPercentile: wrong index(1)");
+ vector<double>::iterator iter = rArray.begin() + nIndex;
+ ::std::nth_element( rArray.begin(), iter, rArray.end());
+ if (fDiff == 0.0)
+ return *iter;
+ else
+ {
+ OSL_ENSURE(nIndex < nSize1, "GetPercentile: wrong index(2)");
+ double fVal = *iter;
+ iter = ::std::min_element( rArray.begin() + nIndex + 1, rArray.end());
+ return fVal + fDiff * (*iter - fVal);
+ }
+}
+
+void ScInterpreter::ScPercentile( bool bInclusive )
+{
+ if ( !MustHaveParamCount( GetByte(), 2 ) )
+ return;
+ double alpha = GetDouble();
+ if ( bInclusive ? ( alpha < 0.0 || alpha > 1.0 ) : ( alpha <= 0.0 || alpha >= 1.0 ) )
+ {
+ PushIllegalArgument();
+ return;
+ }
+ vector<double> aArray;
+ GetNumberSequenceArray( 1, aArray, false );
+ if ( aArray.empty() || nGlobalError != FormulaError::NONE )
+ {
+ SetError( FormulaError::NoValue );
+ return;
+ }
+ if ( bInclusive )
+ PushDouble( GetPercentile( aArray, alpha ));
+ else
+ PushDouble( GetPercentileExclusive( aArray, alpha ));
+}
+
+void ScInterpreter::ScQuartile( bool bInclusive )
+{
+ if ( !MustHaveParamCount( GetByte(), 2 ) )
+ return;
+ double fFlag = ::rtl::math::approxFloor(GetDouble());
+ if ( bInclusive ? ( fFlag < 0.0 || fFlag > 4.0 ) : ( fFlag <= 0.0 || fFlag >= 4.0 ) )
+ {
+ PushIllegalArgument();
+ return;
+ }
+ vector<double> aArray;
+ GetNumberSequenceArray( 1, aArray, false );
+ if ( aArray.empty() || nGlobalError != FormulaError::NONE )
+ {
+ SetError( FormulaError::NoValue );
+ return;
+ }
+ if ( bInclusive )
+ PushDouble( fFlag == 2.0 ? GetMedian( aArray ) : GetPercentile( aArray, 0.25 * fFlag ) );
+ else
+ PushDouble( fFlag == 2.0 ? GetMedian( aArray ) : GetPercentileExclusive( aArray, 0.25 * fFlag ) );
+}
+
+void ScInterpreter::ScModalValue()
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCountMin( nParamCount, 1 ) )
+ return;
+ vector<double> aSortArray;
+ GetSortArray( nParamCount, aSortArray, nullptr, false, false );
+ SCSIZE nSize = aSortArray.size();
+ if (nSize == 0 || nGlobalError != FormulaError::NONE)
+ PushNoValue();
+ else
+ {
+ SCSIZE nMaxIndex = 0, nMax = 1, nCount = 1;
+ double nOldVal = aSortArray[0];
+ SCSIZE i;
+ for ( i = 1; i < nSize; i++)
+ {
+ if (aSortArray[i] == nOldVal)
+ nCount++;
+ else
+ {
+ nOldVal = aSortArray[i];
+ if (nCount > nMax)
+ {
+ nMax = nCount;
+ nMaxIndex = i-1;
+ }
+ nCount = 1;
+ }
+ }
+ if (nCount > nMax)
+ {
+ nMax = nCount;
+ nMaxIndex = i-1;
+ }
+ if (nMax == 1 && nCount == 1)
+ PushNoValue();
+ else if (nMax == 1)
+ PushDouble(nOldVal);
+ else
+ PushDouble(aSortArray[nMaxIndex]);
+ }
+}
+
+void ScInterpreter::ScModalValue_MS( bool bSingle )
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCountMin( nParamCount, 1 ) )
+ return;
+ vector<double> aArray;
+ GetNumberSequenceArray( nParamCount, aArray, false );
+ vector< double > aSortArray( aArray );
+ QuickSort( aSortArray, nullptr );
+ SCSIZE nSize = aSortArray.size();
+ if ( nSize == 0 || nGlobalError != FormulaError::NONE )
+ PushNoValue();
+ else
+ {
+ SCSIZE nMax = 1, nCount = 1;
+ double nOldVal = aSortArray[ 0 ];
+ vector< double > aResultArray( 1 );
+ SCSIZE i;
+ for ( i = 1; i < nSize; i++ )
+ {
+ if ( aSortArray[ i ] == nOldVal )
+ nCount++;
+ else
+ {
+ if ( nCount >= nMax && nCount > 1 )
+ {
+ if ( nCount > nMax )
+ {
+ nMax = nCount;
+ if ( aResultArray.size() != 1 )
+ vector< double >( 1 ).swap( aResultArray );
+ aResultArray[ 0 ] = nOldVal;
+ }
+ else
+ aResultArray.emplace_back( nOldVal );
+ }
+ nOldVal = aSortArray[ i ];
+ nCount = 1;
+ }
+ }
+ if ( nCount >= nMax && nCount > 1 )
+ {
+ if ( nCount > nMax )
+ vector< double >().swap( aResultArray );
+ aResultArray.emplace_back( nOldVal );
+ }
+ if ( nMax == 1 && nCount == 1 )
+ PushNoValue();
+ else if ( nMax == 1 )
+ PushDouble( nOldVal ); // there is only 1 result, no reordering needed
+ else
+ {
+ // sort resultArray according to ordering of aArray
+ vector< vector< double > > aOrder;
+ aOrder.resize( aResultArray.size(), vector< double >( 2 ) );
+ for ( i = 0; i < aResultArray.size(); i++ )
+ {
+ for ( SCSIZE j = 0; j < nSize; j++ )
+ {
+ if ( aArray[ j ] == aResultArray[ i ] )
+ {
+ aOrder[ i ][ 0 ] = aResultArray[ i ];
+ aOrder[ i ][ 1 ] = j;
+ break;
+ }
+ }
+ }
+ sort( aOrder.begin(), aOrder.end(), []( const std::vector< double >& lhs,
+ const std::vector< double >& rhs )
+ { return lhs[ 1 ] < rhs[ 1 ]; } );
+
+ if ( bSingle )
+ PushDouble( aOrder[ 0 ][ 0 ] );
+ else
+ {
+ // put result in correct order in aResultArray
+ for ( i = 0; i < aResultArray.size(); i++ )
+ aResultArray[ i ] = aOrder[ i ][ 0 ];
+ ScMatrixRef pResMatrix = GetNewMat( 1, aResultArray.size(), true );
+ pResMatrix->PutDoubleVector( aResultArray, 0, 0 );
+ PushMatrix( pResMatrix );
+ }
+ }
+ }
+}
+
+void ScInterpreter::CalculateSmallLarge(bool bSmall)
+{
+ if ( !MustHaveParamCount( GetByte(), 2 ) )
+ return;
+
+ SCSIZE nCol = 0, nRow = 0;
+ auto aArray = GetTopNumberArray(nCol, nRow);
+ const auto nRankArraySize = aArray.size();
+ if (nRankArraySize == 0 || nGlobalError != FormulaError::NONE)
+ {
+ PushNoValue();
+ return;
+ }
+ assert(nRankArraySize == nCol * nRow);
+
+ std::vector<SCSIZE> aRankArray;
+ aRankArray.reserve(nRankArraySize);
+ std::transform(aArray.begin(), aArray.end(), std::back_inserter(aRankArray),
+ [](double f) {
+ f = rtl::math::approxFloor(f);
+ // Valid ranks are >= 1.
+ if (f < 1.0 || !o3tl::convertsToAtMost(f, std::numeric_limits<SCSIZE>::max()))
+ return static_cast<SCSIZE>(0);
+ return static_cast<SCSIZE>(f);
+ });
+
+ vector<double> aSortArray;
+ GetNumberSequenceArray(1, aSortArray, false );
+ const SCSIZE nSize = aSortArray.size();
+ if (nSize == 0 || nGlobalError != FormulaError::NONE)
+ PushNoValue();
+ else if (nRankArraySize == 1)
+ {
+ const SCSIZE k = aRankArray[0];
+ if (k < 1 || nSize < k)
+ PushNoValue();
+ else
+ {
+ vector<double>::iterator iPos = aSortArray.begin() + (bSmall ? k-1 : nSize-k);
+ ::std::nth_element( aSortArray.begin(), iPos, aSortArray.end());
+ PushDouble( *iPos);
+ }
+ }
+ else
+ {
+ std::set<SCSIZE> aIndices;
+ for (SCSIZE n : aRankArray)
+ {
+ if (1 <= n && n <= nSize)
+ aIndices.insert(bSmall ? n-1 : nSize-n);
+ }
+ // We can spare sorting when the total number of ranks is small enough.
+ // Find only the elements at given indices if, arbitrarily, the index size is
+ // smaller than 1/3 of the haystack array's size; just sort it squarely, otherwise.
+ if (aIndices.size() < nSize/3)
+ {
+ auto itBegin = aSortArray.begin();
+ for (SCSIZE i : aIndices)
+ {
+ auto it = aSortArray.begin() + i;
+ std::nth_element(itBegin, it, aSortArray.end());
+ itBegin = ++it;
+ }
+ }
+ else
+ std::sort(aSortArray.begin(), aSortArray.end());
+
+ aArray.clear();
+ for (SCSIZE n : aRankArray)
+ {
+ if (1 <= n && n <= nSize)
+ aArray.push_back( aSortArray[bSmall ? n-1 : nSize-n]);
+ else
+ aArray.push_back( CreateDoubleError( FormulaError::NoValue));
+ }
+ ScMatrixRef pResult = GetNewMat(nCol, nRow, aArray);
+ PushMatrix(pResult);
+ }
+}
+
+void ScInterpreter::ScLarge()
+{
+ CalculateSmallLarge(false);
+}
+
+void ScInterpreter::ScSmall()
+{
+ CalculateSmallLarge(true);
+}
+
+void ScInterpreter::ScPercentrank( bool bInclusive )
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCount( nParamCount, 2, 3 ) )
+ return;
+ double fSignificance = ( nParamCount == 3 ? ::rtl::math::approxFloor( GetDouble() ) : 3.0 );
+ if ( fSignificance < 1.0 )
+ {
+ PushIllegalArgument();
+ return;
+ }
+ double fNum = GetDouble();
+ vector<double> aSortArray;
+ GetSortArray( 1, aSortArray, nullptr, false, false );
+ SCSIZE nSize = aSortArray.size();
+ if ( nSize == 0 || nGlobalError != FormulaError::NONE )
+ PushNoValue();
+ else
+ {
+ if ( fNum < aSortArray[ 0 ] || fNum > aSortArray[ nSize - 1 ] )
+ PushNoValue();
+ else
+ {
+ double fRes;
+ if ( nSize == 1 )
+ fRes = 1.0; // fNum == aSortArray[ 0 ], see test above
+ else
+ fRes = GetPercentrank( aSortArray, fNum, bInclusive );
+ if ( fRes != 0.0 )
+ {
+ double fExp = ::rtl::math::approxFloor( log10( fRes ) ) + 1.0 - fSignificance;
+ fRes = ::rtl::math::round( fRes * pow( 10, -fExp ) ) / pow( 10, -fExp );
+ }
+ PushDouble( fRes );
+ }
+ }
+}
+
+double ScInterpreter::GetPercentrank( ::std::vector<double> & rArray, double fVal, bool bInclusive )
+{
+ SCSIZE nSize = rArray.size();
+ double fRes;
+ if ( fVal == rArray[ 0 ] )
+ {
+ if ( bInclusive )
+ fRes = 0.0;
+ else
+ fRes = 1.0 / static_cast<double>( nSize + 1 );
+ }
+ else
+ {
+ SCSIZE nOldCount = 0;
+ double fOldVal = rArray[ 0 ];
+ SCSIZE i;
+ for ( i = 1; i < nSize && rArray[ i ] < fVal; i++ )
+ {
+ if ( rArray[ i ] != fOldVal )
+ {
+ nOldCount = i;
+ fOldVal = rArray[ i ];
+ }
+ }
+ if ( rArray[ i ] != fOldVal )
+ nOldCount = i;
+ if ( fVal == rArray[ i ] )
+ {
+ if ( bInclusive )
+ fRes = div( nOldCount, nSize - 1 );
+ else
+ fRes = static_cast<double>( i + 1 ) / static_cast<double>( nSize + 1 );
+ }
+ else
+ {
+ // nOldCount is the count of smaller entries
+ // fVal is between rArray[ nOldCount - 1 ] and rArray[ nOldCount ]
+ // use linear interpolation to find a position between the entries
+ if ( nOldCount == 0 )
+ {
+ OSL_FAIL( "should not happen" );
+ fRes = 0.0;
+ }
+ else
+ {
+ double fFract = ( fVal - rArray[ nOldCount - 1 ] ) /
+ ( rArray[ nOldCount ] - rArray[ nOldCount - 1 ] );
+ if ( bInclusive )
+ fRes = div( static_cast<double>( nOldCount - 1 ) + fFract, nSize - 1 );
+ else
+ fRes = ( static_cast<double>(nOldCount) + fFract ) / static_cast<double>( nSize + 1 );
+ }
+ }
+ }
+ return fRes;
+}
+
+void ScInterpreter::ScTrimMean()
+{
+ if ( !MustHaveParamCount( GetByte(), 2 ) )
+ return;
+ double alpha = GetDouble();
+ if (alpha < 0.0 || alpha >= 1.0)
+ {
+ PushIllegalArgument();
+ return;
+ }
+ vector<double> aSortArray;
+ GetSortArray( 1, aSortArray, nullptr, false, false );
+ SCSIZE nSize = aSortArray.size();
+ if (nSize == 0 || nGlobalError != FormulaError::NONE)
+ PushNoValue();
+ else
+ {
+ sal_uLong nIndex = static_cast<sal_uLong>(::rtl::math::approxFloor(alpha*static_cast<double>(nSize)));
+ if (nIndex % 2 != 0)
+ nIndex--;
+ nIndex /= 2;
+ OSL_ENSURE(nIndex < nSize, "ScTrimMean: wrong index");
+ double fSum = 0.0;
+ for (SCSIZE i = nIndex; i < nSize-nIndex; i++)
+ fSum += aSortArray[i];
+ PushDouble(fSum/static_cast<double>(nSize-2*nIndex));
+ }
+}
+
+std::vector<double> ScInterpreter::GetTopNumberArray( SCSIZE& rCol, SCSIZE& rRow )
+{
+ std::vector<double> aArray;
+ switch (GetStackType())
+ {
+ case svDouble:
+ aArray.push_back(PopDouble());
+ rCol = rRow = 1;
+ break;
+ case svSingleRef:
+ {
+ ScAddress aAdr;
+ PopSingleRef(aAdr);
+ ScRefCellValue aCell(*pDok, aAdr);
+ if (aCell.hasNumeric())
+ {
+ aArray.push_back(GetCellValue(aAdr, aCell));
+ rCol = rRow = 1;
+ }
+ }
+ break;
+ case svDoubleRef:
+ {
+ ScRange aRange;
+ PopDoubleRef(aRange, true);
+ if (nGlobalError != FormulaError::NONE)
+ break;
+
+ // give up unless the start and end are in the same sheet
+ if (aRange.aStart.Tab() != aRange.aEnd.Tab())
+ {
+ SetError(FormulaError::IllegalParameter);
+ break;
+ }
+
+ // the range already is in order
+ assert(aRange.aStart.Col() <= aRange.aEnd.Col());
+ assert(aRange.aStart.Row() <= aRange.aEnd.Row());
+ rCol = aRange.aEnd.Col() - aRange.aStart.Col() + 1;
+ rRow = aRange.aEnd.Row() - aRange.aStart.Row() + 1;
+ aArray.reserve(rCol * rRow);
+
+ FormulaError nErr = FormulaError::NONE;
+ double fCellVal;
+ ScValueIterator aValIter(pDok, aRange, mnSubTotalFlags);
+ if (aValIter.GetFirst(fCellVal, nErr))
+ {
+ do
+ aArray.push_back(fCellVal);
+ while (aValIter.GetNext(fCellVal, nErr) && nErr == FormulaError::NONE);
+ }
+ if (aArray.size() != rCol * rRow)
+ {
+ aArray.clear();
+ SetError(nErr);
+ }
+ }
+ break;
+ case svMatrix:
+ case svExternalSingleRef:
+ case svExternalDoubleRef:
+ {
+ ScMatrixRef pMat = GetMatrix();
+ if (!pMat)
+ break;
+
+ if (pMat->IsNumeric())
+ {
+ SCSIZE nCount = pMat->GetElementCount();
+ aArray.reserve(nCount);
+ for (SCSIZE i = 0; i < nCount; ++i)
+ aArray.push_back(pMat->GetDouble(i));
+ pMat->GetDimensions(rCol, rRow);
+ }
+ else
+ SetError(FormulaError::IllegalParameter);
+ }
+ break;
+ default:
+ SetError(FormulaError::IllegalParameter);
+ break;
+ }
+ return aArray;
+}
+
+void ScInterpreter::GetNumberSequenceArray( sal_uInt8 nParamCount, vector<double>& rArray, bool bConvertTextInArray )
+{
+ ScAddress aAdr;
+ ScRange aRange;
+ const bool bIgnoreErrVal = bool(mnSubTotalFlags & SubtotalFlags::IgnoreErrVal);
+ short nParam = nParamCount;
+ size_t nRefInList = 0;
+ ReverseStack( nParamCount );
+ while (nParam-- > 0)
+ {
+ const StackVar eStackType = GetStackType();
+ switch (eStackType)
+ {
+ case svDouble :
+ rArray.push_back( PopDouble());
+ break;
+ case svSingleRef :
+ {
+ PopSingleRef( aAdr );
+ ScRefCellValue aCell(*pDok, aAdr);
+ if (bIgnoreErrVal && aCell.hasError())
+ ; // nothing
+ else if (aCell.hasNumeric())
+ rArray.push_back(GetCellValue(aAdr, aCell));
+ }
+ break;
+ case svDoubleRef :
+ case svRefList :
+ {
+ PopDoubleRef( aRange, nParam, nRefInList);
+ if (nGlobalError != FormulaError::NONE)
+ break;
+
+ aRange.PutInOrder();
+ SCSIZE nCellCount = aRange.aEnd.Col() - aRange.aStart.Col() + 1;
+ nCellCount *= aRange.aEnd.Row() - aRange.aStart.Row() + 1;
+ rArray.reserve( rArray.size() + nCellCount);
+
+ FormulaError nErr = FormulaError::NONE;
+ double fCellVal;
+ ScValueIterator aValIter( pDok, aRange, mnSubTotalFlags );
+ if (aValIter.GetFirst( fCellVal, nErr))
+ {
+ if (bIgnoreErrVal)
+ {
+ if (nErr == FormulaError::NONE)
+ rArray.push_back( fCellVal);
+ while (aValIter.GetNext( fCellVal, nErr))
+ {
+ if (nErr == FormulaError::NONE)
+ rArray.push_back( fCellVal);
+ }
+ }
+ else
+ {
+ rArray.push_back( fCellVal);
+ SetError(nErr);
+ while ((nErr == FormulaError::NONE) && aValIter.GetNext( fCellVal, nErr))
+ rArray.push_back( fCellVal);
+ SetError(nErr);
+ }
+ }
+ }
+ break;
+ case svMatrix :
+ case svExternalSingleRef:
+ case svExternalDoubleRef:
+ {
+ ScMatrixRef pMat = GetMatrix();
+ if (!pMat)
+ break;
+
+ SCSIZE nCount = pMat->GetElementCount();
+ rArray.reserve( rArray.size() + nCount);
+ if (pMat->IsNumeric())
+ {
+ if (bIgnoreErrVal)
+ {
+ for (SCSIZE i = 0; i < nCount; ++i)
+ {
+ const double fVal = pMat->GetDouble(i);
+ if (nGlobalError == FormulaError::NONE)
+ rArray.push_back( fVal);
+ else
+ nGlobalError = FormulaError::NONE;
+ }
+ }
+ else
+ {
+ for (SCSIZE i = 0; i < nCount; ++i)
+ rArray.push_back( pMat->GetDouble(i));
+ }
+ }
+ else if (bConvertTextInArray && eStackType == svMatrix)
+ {
+ for (SCSIZE i = 0; i < nCount; ++i)
+ {
+ if ( pMat->IsValue( i ) )
+ {
+ if (bIgnoreErrVal)
+ {
+ const double fVal = pMat->GetDouble(i);
+ if (nGlobalError == FormulaError::NONE)
+ rArray.push_back( fVal);
+ else
+ nGlobalError = FormulaError::NONE;
+ }
+ else
+ rArray.push_back( pMat->GetDouble(i));
+ }
+ else
+ {
+ // tdf#88547 try to convert string to (date)value
+ OUString aStr = pMat->GetString( i ).getString();
+ if ( aStr.getLength() > 0 )
+ {
+ FormulaError nErr = nGlobalError;
+ nGlobalError = FormulaError::NONE;
+ double fVal = ConvertStringToValue( aStr );
+ if ( nGlobalError == FormulaError::NONE )
+ {
+ rArray.push_back( fVal );
+ nGlobalError = nErr;
+ }
+ else
+ {
+ if (!bIgnoreErrVal)
+ rArray.push_back( CreateDoubleError( FormulaError::NoValue));
+ // Propagate previous error if any, else
+ // the current #VALUE! error, unless
+ // ignoring error values.
+ if (nErr != FormulaError::NONE)
+ nGlobalError = nErr;
+ else if (!bIgnoreErrVal)
+ nGlobalError = FormulaError::NoValue;
+ else
+ nGlobalError = FormulaError::NONE;
+ }
+ }
+ }
+ }
+ }
+ else
+ {
+ if (bIgnoreErrVal)
+ {
+ for (SCSIZE i = 0; i < nCount; ++i)
+ {
+ if (pMat->IsValue(i))
+ {
+ const double fVal = pMat->GetDouble(i);
+ if (nGlobalError == FormulaError::NONE)
+ rArray.push_back( fVal);
+ else
+ nGlobalError = FormulaError::NONE;
+ }
+ }
+ }
+ else
+ {
+ for (SCSIZE i = 0; i < nCount; ++i)
+ {
+ if (pMat->IsValue(i))
+ rArray.push_back( pMat->GetDouble(i));
+ }
+ }
+ }
+ }
+ break;
+ default :
+ PopError();
+ SetError( FormulaError::IllegalParameter);
+ break;
+ }
+ if (nGlobalError != FormulaError::NONE)
+ break; // while
+ }
+ // nParam > 0 in case of error, clean stack environment and obtain earlier
+ // error if there was one.
+ while (nParam-- > 0)
+ PopError();
+}
+
+void ScInterpreter::GetSortArray( sal_uInt8 nParamCount, vector<double>& rSortArray, vector<long>* pIndexOrder, bool bConvertTextInArray, bool bAllowEmptyArray )
+{
+ GetNumberSequenceArray( nParamCount, rSortArray, bConvertTextInArray );
+ if (rSortArray.size() > MAX_COUNT_DOUBLE_FOR_SORT)
+ SetError( FormulaError::MatrixSize);
+ else if ( rSortArray.empty() )
+ {
+ if ( bAllowEmptyArray )
+ return;
+ SetError( FormulaError::NoValue);
+ }
+
+ if (nGlobalError == FormulaError::NONE)
+ QuickSort( rSortArray, pIndexOrder);
+}
+
+static void lcl_QuickSort( long nLo, long nHi, vector<double>& rSortArray, vector<long>* pIndexOrder )
+{
+ // If pIndexOrder is not NULL, we assume rSortArray.size() == pIndexOrder->size().
+
+ using ::std::swap;
+
+ if (nHi - nLo == 1)
+ {
+ if (rSortArray[nLo] > rSortArray[nHi])
+ {
+ swap(rSortArray[nLo], rSortArray[nHi]);
+ if (pIndexOrder)
+ swap(pIndexOrder->at(nLo), pIndexOrder->at(nHi));
+ }
+ return;
+ }
+
+ long ni = nLo;
+ long nj = nHi;
+ do
+ {
+ double fLo = rSortArray[nLo];
+ while (ni <= nHi && rSortArray[ni] < fLo) ni++;
+ while (nj >= nLo && fLo < rSortArray[nj]) nj--;
+ if (ni <= nj)
+ {
+ if (ni != nj)
+ {
+ swap(rSortArray[ni], rSortArray[nj]);
+ if (pIndexOrder)
+ swap(pIndexOrder->at(ni), pIndexOrder->at(nj));
+ }
+
+ ++ni;
+ --nj;
+ }
+ }
+ while (ni < nj);
+
+ if ((nj - nLo) < (nHi - ni))
+ {
+ if (nLo < nj) lcl_QuickSort(nLo, nj, rSortArray, pIndexOrder);
+ if (ni < nHi) lcl_QuickSort(ni, nHi, rSortArray, pIndexOrder);
+ }
+ else
+ {
+ if (ni < nHi) lcl_QuickSort(ni, nHi, rSortArray, pIndexOrder);
+ if (nLo < nj) lcl_QuickSort(nLo, nj, rSortArray, pIndexOrder);
+ }
+}
+
+void ScInterpreter::QuickSort( vector<double>& rSortArray, vector<long>* pIndexOrder )
+{
+ long n = static_cast<long>(rSortArray.size());
+
+ if (pIndexOrder)
+ {
+ pIndexOrder->clear();
+ pIndexOrder->reserve(n);
+ for (long i = 0; i < n; ++i)
+ pIndexOrder->push_back(i);
+ }
+
+ if (n < 2)
+ return;
+
+ size_t nValCount = rSortArray.size();
+ for (size_t i = 0; (i + 4) <= nValCount-1; i += 4)
+ {
+ size_t nInd = comphelper::rng::uniform_size_distribution(0, nValCount-2);
+ ::std::swap( rSortArray[i], rSortArray[nInd]);
+ if (pIndexOrder)
+ ::std::swap( pIndexOrder->at(i), pIndexOrder->at(nInd));
+ }
+
+ lcl_QuickSort(0, n-1, rSortArray, pIndexOrder);
+}
+
+void ScInterpreter::ScRank( bool bAverage )
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCount( nParamCount, 2, 3 ) )
+ return;
+ bool bAscending;
+ if ( nParamCount == 3 )
+ bAscending = GetBool();
+ else
+ bAscending = false;
+
+ vector<double> aSortArray;
+ GetSortArray( 1, aSortArray, nullptr, false, false );
+ double fVal = GetDouble();
+ SCSIZE nSize = aSortArray.size();
+ if ( nSize == 0 || nGlobalError != FormulaError::NONE )
+ PushNoValue();
+ else
+ {
+ if ( fVal < aSortArray[ 0 ] || fVal > aSortArray[ nSize - 1 ] )
+ PushNoValue();
+ else
+ {
+ double fLastPos = 0;
+ double fFirstPos = -1.0;
+ bool bFinished = false;
+ SCSIZE i;
+ for (i = 0; i < nSize && !bFinished; i++)
+ {
+ if ( aSortArray[ i ] == fVal )
+ {
+ if ( fFirstPos < 0 )
+ fFirstPos = i + 1.0;
+ }
+ else
+ {
+ if ( aSortArray[ i ] > fVal )
+ {
+ fLastPos = i;
+ bFinished = true;
+ }
+ }
+ }
+ if ( !bFinished )
+ fLastPos = i;
+ if ( !bAverage )
+ {
+ if ( bAscending )
+ PushDouble( fFirstPos );
+ else
+ PushDouble( nSize + 1.0 - fLastPos );
+ }
+ else
+ {
+ if ( bAscending )
+ PushDouble( ( fFirstPos + fLastPos ) / 2.0 );
+ else
+ PushDouble( nSize + 1.0 - ( fFirstPos + fLastPos ) / 2.0 );
+ }
+ }
+ }
+}
+
+void ScInterpreter::ScAveDev()
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCountMin( nParamCount, 1 ) )
+ return;
+ sal_uInt16 SaveSP = sp;
+ double nMiddle = 0.0;
+ double rVal = 0.0;
+ double rValCount = 0.0;
+ ScAddress aAdr;
+ ScRange aRange;
+ short nParam = nParamCount;
+ size_t nRefInList = 0;
+ while (nParam-- > 0)
+ {
+ switch (GetStackType())
+ {
+ case svDouble :
+ rVal += GetDouble();
+ rValCount++;
+ break;
+ case svSingleRef :
+ {
+ PopSingleRef( aAdr );
+ ScRefCellValue aCell(*pDok, aAdr);
+ if (aCell.hasNumeric())
+ {
+ rVal += GetCellValue(aAdr, aCell);
+ rValCount++;
+ }
+ }
+ break;
+ case svDoubleRef :
+ case svRefList :
+ {
+ FormulaError nErr = FormulaError::NONE;
+ double nCellVal;
+ PopDoubleRef( aRange, nParam, nRefInList);
+ ScValueIterator aValIter( pDok, aRange, mnSubTotalFlags );
+ if (aValIter.GetFirst(nCellVal, nErr))
+ {
+ rVal += nCellVal;
+ rValCount++;
+ SetError(nErr);
+ while ((nErr == FormulaError::NONE) && aValIter.GetNext(nCellVal, nErr))
+ {
+ rVal += nCellVal;
+ rValCount++;
+ }
+ SetError(nErr);
+ }
+ }
+ break;
+ case svMatrix :
+ case svExternalSingleRef:
+ case svExternalDoubleRef:
+ {
+ ScMatrixRef pMat = GetMatrix();
+ if (pMat)
+ {
+ SCSIZE nCount = pMat->GetElementCount();
+ if (pMat->IsNumeric())
+ {
+ for (SCSIZE nElem = 0; nElem < nCount; nElem++)
+ {
+ rVal += pMat->GetDouble(nElem);
+ rValCount++;
+ }
+ }
+ else
+ {
+ for (SCSIZE nElem = 0; nElem < nCount; nElem++)
+ if (!pMat->IsStringOrEmpty(nElem))
+ {
+ rVal += pMat->GetDouble(nElem);
+ rValCount++;
+ }
+ }
+ }
+ }
+ break;
+ default :
+ SetError(FormulaError::IllegalParameter);
+ break;
+ }
+ }
+ if (nGlobalError != FormulaError::NONE)
+ {
+ PushError( nGlobalError);
+ return;
+ }
+ nMiddle = rVal / rValCount;
+ sp = SaveSP;
+ rVal = 0.0;
+ nParam = nParamCount;
+ nRefInList = 0;
+ while (nParam-- > 0)
+ {
+ switch (GetStackType())
+ {
+ case svDouble :
+ rVal += fabs(GetDouble() - nMiddle);
+ break;
+ case svSingleRef :
+ {
+ PopSingleRef( aAdr );
+ ScRefCellValue aCell(*pDok, aAdr);
+ if (aCell.hasNumeric())
+ rVal += fabs(GetCellValue(aAdr, aCell) - nMiddle);
+ }
+ break;
+ case svDoubleRef :
+ case svRefList :
+ {
+ FormulaError nErr = FormulaError::NONE;
+ double nCellVal;
+ PopDoubleRef( aRange, nParam, nRefInList);
+ ScValueIterator aValIter( pDok, aRange, mnSubTotalFlags );
+ if (aValIter.GetFirst(nCellVal, nErr))
+ {
+ rVal += (fabs(nCellVal - nMiddle));
+ while (aValIter.GetNext(nCellVal, nErr))
+ rVal += fabs(nCellVal - nMiddle);
+ }
+ }
+ break;
+ case svMatrix :
+ case svExternalSingleRef:
+ case svExternalDoubleRef:
+ {
+ ScMatrixRef pMat = GetMatrix();
+ if (pMat)
+ {
+ SCSIZE nCount = pMat->GetElementCount();
+ if (pMat->IsNumeric())
+ {
+ for (SCSIZE nElem = 0; nElem < nCount; nElem++)
+ {
+ rVal += fabs(pMat->GetDouble(nElem) - nMiddle);
+ }
+ }
+ else
+ {
+ for (SCSIZE nElem = 0; nElem < nCount; nElem++)
+ {
+ if (!pMat->IsStringOrEmpty(nElem))
+ rVal += fabs(pMat->GetDouble(nElem) - nMiddle);
+ }
+ }
+ }
+ }
+ break;
+ default : SetError(FormulaError::IllegalParameter); break;
+ }
+ }
+ PushDouble(rVal / rValCount);
+}
+
+void ScInterpreter::ScDevSq()
+{
+ auto VarResult = []( double fVal, size_t /*nValCount*/ )
+ {
+ return fVal;
+ };
+ GetStVarParams( false /*bTextAsZero*/, VarResult);
+}
+
+void ScInterpreter::ScProbability()
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCount( nParamCount, 3, 4 ) )
+ return;
+ double fUp, fLo;
+ fUp = GetDouble();
+ if (nParamCount == 4)
+ fLo = GetDouble();
+ else
+ fLo = fUp;
+ if (fLo > fUp)
+ {
+ double fTemp = fLo;
+ fLo = fUp;
+ fUp = fTemp;
+ }
+ ScMatrixRef pMatP = GetMatrix();
+ ScMatrixRef pMatW = GetMatrix();
+ if (!pMatP || !pMatW)
+ PushIllegalParameter();
+ else
+ {
+ SCSIZE nC1, nC2;
+ SCSIZE nR1, nR2;
+ pMatP->GetDimensions(nC1, nR1);
+ pMatW->GetDimensions(nC2, nR2);
+ if (nC1 != nC2 || nR1 != nR2 || nC1 == 0 || nR1 == 0 ||
+ nC2 == 0 || nR2 == 0)
+ PushNA();
+ else
+ {
+ double fSum = 0.0;
+ double fRes = 0.0;
+ bool bStop = false;
+ double fP, fW;
+ for ( SCSIZE i = 0; i < nC1 && !bStop; i++ )
+ {
+ for (SCSIZE j = 0; j < nR1 && !bStop; ++j )
+ {
+ if (pMatP->IsValue(i,j) && pMatW->IsValue(i,j))
+ {
+ fP = pMatP->GetDouble(i,j);
+ fW = pMatW->GetDouble(i,j);
+ if (fP < 0.0 || fP > 1.0)
+ bStop = true;
+ else
+ {
+ fSum += fP;
+ if (fW >= fLo && fW <= fUp)
+ fRes += fP;
+ }
+ }
+ else
+ SetError( FormulaError::IllegalArgument);
+ }
+ }
+ if (bStop || fabs(fSum -1.0) > 1.0E-7)
+ PushNoValue();
+ else
+ PushDouble(fRes);
+ }
+ }
+}
+
+void ScInterpreter::ScCorrel()
+{
+ // This is identical to ScPearson()
+ ScPearson();
+}
+
+void ScInterpreter::ScCovarianceP()
+{
+ CalculatePearsonCovar( false, false, false );
+}
+
+void ScInterpreter::ScCovarianceS()
+{
+ CalculatePearsonCovar( false, false, true );
+}
+
+void ScInterpreter::ScPearson()
+{
+ CalculatePearsonCovar( true, false, false );
+}
+
+void ScInterpreter::CalculatePearsonCovar( bool _bPearson, bool _bStexy, bool _bSample )
+{
+ if ( !MustHaveParamCount( GetByte(), 2 ) )
+ return;
+ ScMatrixRef pMat1 = GetMatrix();
+ ScMatrixRef pMat2 = GetMatrix();
+ if (!pMat1 || !pMat2)
+ {
+ PushIllegalParameter();
+ return;
+ }
+ SCSIZE nC1, nC2;
+ SCSIZE nR1, nR2;
+ pMat1->GetDimensions(nC1, nR1);
+ pMat2->GetDimensions(nC2, nR2);
+ if (nR1 != nR2 || nC1 != nC2)
+ {
+ PushIllegalArgument();
+ return;
+ }
+ /* #i78250#
+ * (sum((X-MeanX)(Y-MeanY)))/N equals (SumXY)/N-MeanX*MeanY mathematically,
+ * but the latter produces wrong results if the absolute values are high,
+ * for example above 10^8
+ */
+ double fCount = 0.0;
+ double fSumX = 0.0;
+ double fSumY = 0.0;
+
+ for (SCSIZE i = 0; i < nC1; i++)
+ {
+ for (SCSIZE j = 0; j < nR1; j++)
+ {
+ if (!pMat1->IsStringOrEmpty(i,j) && !pMat2->IsStringOrEmpty(i,j))
+ {
+ double fValX = pMat1->GetDouble(i,j);
+ double fValY = pMat2->GetDouble(i,j);
+ fSumX += fValX;
+ fSumY += fValY;
+ fCount++;
+ }
+ }
+ }
+ if (fCount < (_bStexy ? 3.0 : (_bSample ? 2.0 : 1.0)))
+ PushNoValue();
+ else
+ {
+ double fSumDeltaXDeltaY = 0.0; // sum of (ValX-MeanX)*(ValY-MeanY)
+ double fSumSqrDeltaX = 0.0; // sum of (ValX-MeanX)^2
+ double fSumSqrDeltaY = 0.0; // sum of (ValY-MeanY)^2
+ const double fMeanX = fSumX / fCount;
+ const double fMeanY = fSumY / fCount;
+ for (SCSIZE i = 0; i < nC1; i++)
+ {
+ for (SCSIZE j = 0; j < nR1; j++)
+ {
+ if (!pMat1->IsStringOrEmpty(i,j) && !pMat2->IsStringOrEmpty(i,j))
+ {
+ const double fValX = pMat1->GetDouble(i,j);
+ const double fValY = pMat2->GetDouble(i,j);
+ fSumDeltaXDeltaY += (fValX - fMeanX) * (fValY - fMeanY);
+ if ( _bPearson )
+ {
+ fSumSqrDeltaX += (fValX - fMeanX) * (fValX - fMeanX);
+ fSumSqrDeltaY += (fValY - fMeanY) * (fValY - fMeanY);
+ }
+ }
+ }
+ }
+ if ( _bPearson )
+ {
+ if (fSumSqrDeltaX == 0.0 || ( !_bStexy && fSumSqrDeltaY == 0.0) )
+ PushError( FormulaError::DivisionByZero);
+ else if ( _bStexy )
+ PushDouble( sqrt( (fSumSqrDeltaY - fSumDeltaXDeltaY *
+ fSumDeltaXDeltaY / fSumSqrDeltaX) / (fCount-2)));
+ else
+ PushDouble( fSumDeltaXDeltaY / sqrt( fSumSqrDeltaX * fSumSqrDeltaY));
+ }
+ else
+ {
+ if ( _bSample )
+ PushDouble( fSumDeltaXDeltaY / ( fCount - 1 ) );
+ else
+ PushDouble( fSumDeltaXDeltaY / fCount);
+ }
+ }
+}
+
+void ScInterpreter::ScRSQ()
+{
+ // Same as ScPearson()*ScPearson()
+ ScPearson();
+ if (nGlobalError == FormulaError::NONE)
+ {
+ switch (GetStackType())
+ {
+ case svDouble:
+ {
+ double fVal = PopDouble();
+ PushDouble( fVal * fVal);
+ }
+ break;
+ default:
+ PopError();
+ PushNoValue();
+ }
+ }
+}
+
+void ScInterpreter::ScSTEYX()
+{
+ CalculatePearsonCovar( true, true, false );
+}
+void ScInterpreter::CalculateSlopeIntercept(bool bSlope)
+{
+ if ( !MustHaveParamCount( GetByte(), 2 ) )
+ return;
+ ScMatrixRef pMat1 = GetMatrix();
+ ScMatrixRef pMat2 = GetMatrix();
+ if (!pMat1 || !pMat2)
+ {
+ PushIllegalParameter();
+ return;
+ }
+ SCSIZE nC1, nC2;
+ SCSIZE nR1, nR2;
+ pMat1->GetDimensions(nC1, nR1);
+ pMat2->GetDimensions(nC2, nR2);
+ if (nR1 != nR2 || nC1 != nC2)
+ {
+ PushIllegalArgument();
+ return;
+ }
+ // #i78250# numerical stability improved
+ double fCount = 0.0;
+ double fSumX = 0.0;
+ double fSumY = 0.0;
+
+ for (SCSIZE i = 0; i < nC1; i++)
+ {
+ for (SCSIZE j = 0; j < nR1; j++)
+ {
+ if (!pMat1->IsStringOrEmpty(i,j) && !pMat2->IsStringOrEmpty(i,j))
+ {
+ double fValX = pMat1->GetDouble(i,j);
+ double fValY = pMat2->GetDouble(i,j);
+ fSumX += fValX;
+ fSumY += fValY;
+ fCount++;
+ }
+ }
+ }
+ if (fCount < 1.0)
+ PushNoValue();
+ else
+ {
+ double fSumDeltaXDeltaY = 0.0; // sum of (ValX-MeanX)*(ValY-MeanY)
+ double fSumSqrDeltaX = 0.0; // sum of (ValX-MeanX)^2
+ double fMeanX = fSumX / fCount;
+ double fMeanY = fSumY / fCount;
+ for (SCSIZE i = 0; i < nC1; i++)
+ {
+ for (SCSIZE j = 0; j < nR1; j++)
+ {
+ if (!pMat1->IsStringOrEmpty(i,j) && !pMat2->IsStringOrEmpty(i,j))
+ {
+ double fValX = pMat1->GetDouble(i,j);
+ double fValY = pMat2->GetDouble(i,j);
+ fSumDeltaXDeltaY += (fValX - fMeanX) * (fValY - fMeanY);
+ fSumSqrDeltaX += (fValX - fMeanX) * (fValX - fMeanX);
+ }
+ }
+ }
+ if (fSumSqrDeltaX == 0.0)
+ PushError( FormulaError::DivisionByZero);
+ else
+ {
+ if ( bSlope )
+ PushDouble( fSumDeltaXDeltaY / fSumSqrDeltaX);
+ else
+ PushDouble( fMeanY - fSumDeltaXDeltaY / fSumSqrDeltaX * fMeanX);
+ }
+ }
+}
+
+void ScInterpreter::ScSlope()
+{
+ CalculateSlopeIntercept(true);
+}
+
+void ScInterpreter::ScIntercept()
+{
+ CalculateSlopeIntercept(false);
+}
+
+void ScInterpreter::ScForecast()
+{
+ if ( !MustHaveParamCount( GetByte(), 3 ) )
+ return;
+ ScMatrixRef pMat1 = GetMatrix();
+ ScMatrixRef pMat2 = GetMatrix();
+ if (!pMat1 || !pMat2)
+ {
+ PushIllegalParameter();
+ return;
+ }
+ SCSIZE nC1, nC2;
+ SCSIZE nR1, nR2;
+ pMat1->GetDimensions(nC1, nR1);
+ pMat2->GetDimensions(nC2, nR2);
+ if (nR1 != nR2 || nC1 != nC2)
+ {
+ PushIllegalArgument();
+ return;
+ }
+ double fVal = GetDouble();
+ // #i78250# numerical stability improved
+ double fCount = 0.0;
+ double fSumX = 0.0;
+ double fSumY = 0.0;
+
+ for (SCSIZE i = 0; i < nC1; i++)
+ {
+ for (SCSIZE j = 0; j < nR1; j++)
+ {
+ if (!pMat1->IsStringOrEmpty(i,j) && !pMat2->IsStringOrEmpty(i,j))
+ {
+ double fValX = pMat1->GetDouble(i,j);
+ double fValY = pMat2->GetDouble(i,j);
+ fSumX += fValX;
+ fSumY += fValY;
+ fCount++;
+ }
+ }
+ }
+ if (fCount < 1.0)
+ PushNoValue();
+ else
+ {
+ double fSumDeltaXDeltaY = 0.0; // sum of (ValX-MeanX)*(ValY-MeanY)
+ double fSumSqrDeltaX = 0.0; // sum of (ValX-MeanX)^2
+ double fMeanX = fSumX / fCount;
+ double fMeanY = fSumY / fCount;
+ for (SCSIZE i = 0; i < nC1; i++)
+ {
+ for (SCSIZE j = 0; j < nR1; j++)
+ {
+ if (!pMat1->IsStringOrEmpty(i,j) && !pMat2->IsStringOrEmpty(i,j))
+ {
+ double fValX = pMat1->GetDouble(i,j);
+ double fValY = pMat2->GetDouble(i,j);
+ fSumDeltaXDeltaY += (fValX - fMeanX) * (fValY - fMeanY);
+ fSumSqrDeltaX += (fValX - fMeanX) * (fValX - fMeanX);
+ }
+ }
+ }
+ if (fSumSqrDeltaX == 0.0)
+ PushError( FormulaError::DivisionByZero);
+ else
+ PushDouble( fMeanY + fSumDeltaXDeltaY / fSumSqrDeltaX * (fVal - fMeanX));
+ }
+}
+
+static void lcl_roundUpNearestPow2(SCSIZE& nNum, SCSIZE& nNumBits)
+{
+ // Find the least power of 2 that is less than or equal to nNum.
+ SCSIZE nPow2(1);
+ nNumBits = std::numeric_limits<SCSIZE>::digits;
+ nPow2 <<= (nNumBits - 1);
+ while (nPow2 >= 1)
+ {
+ if (nNum & nPow2)
+ break;
+
+ --nNumBits;
+ nPow2 >>= 1;
+ }
+
+ if (nPow2 != nNum)
+ nNum = nPow2 ? (nPow2 << 1) : 1;
+ else
+ --nNumBits;
+}
+
+static SCSIZE lcl_bitReverse(SCSIZE nIn, SCSIZE nBound)
+{
+ SCSIZE nOut = 0;
+ for (SCSIZE nMask = 1; nMask < nBound; nMask <<= 1)
+ {
+ nOut <<= 1;
+
+ if (nIn & nMask)
+ nOut |= 1;
+ }
+
+ return nOut;
+}
+
+namespace {
+
+// Computes and stores twiddle factors for computing DFT later.
+struct ScTwiddleFactors
+{
+ ScTwiddleFactors(SCSIZE nN, bool bInverse) :
+ mfWReal(nN),
+ mfWImag(nN),
+ mnN(nN),
+ mbInverse(bInverse)
+ {}
+
+ void Compute();
+
+ void Conjugate()
+ {
+ mbInverse = !mbInverse;
+ for (SCSIZE nIdx = 0; nIdx < mnN; ++nIdx)
+ mfWImag[nIdx] = -mfWImag[nIdx];
+ }
+
+ std::vector<double> mfWReal;
+ std::vector<double> mfWImag;
+ SCSIZE mnN;
+ bool mbInverse;
+};
+
+}
+
+void ScTwiddleFactors::Compute()
+{
+ mfWReal.resize(mnN);
+ mfWImag.resize(mnN);
+
+ double nW = (mbInverse ? 2 : -2)*F_PI/static_cast<double>(mnN);
+
+ if (mnN == 1)
+ {
+ mfWReal[0] = 1.0;
+ mfWImag[0] = 0.0;
+ }
+ else if (mnN == 2)
+ {
+ mfWReal[0] = 1;
+ mfWImag[0] = 0;
+
+ mfWReal[1] = -1;
+ mfWImag[1] = 0;
+ }
+ else if (mnN == 4)
+ {
+ mfWReal[0] = 1;
+ mfWImag[0] = 0;
+
+ mfWReal[1] = 0;
+ mfWImag[1] = (mbInverse ? 1.0 : -1.0);
+
+ mfWReal[2] = -1;
+ mfWImag[2] = 0;
+
+ mfWReal[3] = 0;
+ mfWImag[3] = (mbInverse ? -1.0 : 1.0);
+ }
+ else if ((mnN % 4) == 0)
+ {
+ const SCSIZE nQSize = mnN >> 2;
+ // Compute cos of the start quadrant.
+ // This is the first quadrant if mbInverse == true, else it is the fourth quadrant.
+ for (SCSIZE nIdx = 0; nIdx <= nQSize; ++nIdx)
+ mfWReal[nIdx] = cos(nW*static_cast<double>(nIdx));
+
+ if (mbInverse)
+ {
+ const SCSIZE nQ1End = nQSize;
+ // First quadrant
+ for (SCSIZE nIdx = 0; nIdx <= nQ1End; ++nIdx)
+ mfWImag[nIdx] = mfWReal[nQ1End-nIdx];
+
+ // Second quadrant
+ const SCSIZE nQ2End = nQ1End << 1;
+ for (SCSIZE nIdx = nQ1End+1; nIdx <= nQ2End; ++nIdx)
+ {
+ mfWReal[nIdx] = -mfWReal[nQ2End - nIdx];
+ mfWImag[nIdx] = mfWImag[nQ2End - nIdx];
+ }
+
+ // Third quadrant
+ const SCSIZE nQ3End = nQ2End + nQ1End;
+ for (SCSIZE nIdx = nQ2End+1; nIdx <= nQ3End; ++nIdx)
+ {
+ mfWReal[nIdx] = -mfWReal[nIdx - nQ2End];
+ mfWImag[nIdx] = -mfWImag[nIdx - nQ2End];
+ }
+
+ // Fourth Quadrant
+ for (SCSIZE nIdx = nQ3End+1; nIdx < mnN; ++nIdx)
+ {
+ mfWReal[nIdx] = mfWReal[mnN - nIdx];
+ mfWImag[nIdx] = -mfWImag[mnN - nIdx];
+ }
+ }
+ else
+ {
+ const SCSIZE nQ4End = nQSize;
+ const SCSIZE nQ3End = nQSize << 1;
+ const SCSIZE nQ2End = nQ3End + nQSize;
+
+ // Fourth quadrant.
+ for (SCSIZE nIdx = 0; nIdx <= nQ4End; ++nIdx)
+ mfWImag[nIdx] = -mfWReal[nQ4End - nIdx];
+
+ // Third quadrant.
+ for (SCSIZE nIdx = nQ4End+1; nIdx <= nQ3End; ++nIdx)
+ {
+ mfWReal[nIdx] = -mfWReal[nQ3End - nIdx];
+ mfWImag[nIdx] = mfWImag[nQ3End - nIdx];
+ }
+
+ // Second quadrant.
+ for (SCSIZE nIdx = nQ3End+1; nIdx <= nQ2End; ++nIdx)
+ {
+ mfWReal[nIdx] = -mfWReal[nIdx - nQ3End];
+ mfWImag[nIdx] = -mfWImag[nIdx - nQ3End];
+ }
+
+ // First quadrant.
+ for (SCSIZE nIdx = nQ2End+1; nIdx < mnN; ++nIdx)
+ {
+ mfWReal[nIdx] = mfWReal[mnN - nIdx];
+ mfWImag[nIdx] = -mfWImag[mnN - nIdx];
+ }
+ }
+ }
+ else
+ {
+ for (SCSIZE nIdx = 0; nIdx < mnN; ++nIdx)
+ {
+ double fAngle = nW*static_cast<double>(nIdx);
+ mfWReal[nIdx] = cos(fAngle);
+ mfWImag[nIdx] = sin(fAngle);
+ }
+ }
+}
+
+namespace {
+
+// A radix-2 decimation in time FFT algorithm for complex valued input.
+class ScComplexFFT2
+{
+public:
+ // rfArray.size() would always be even and a power of 2. (asserted in prepare())
+ // rfArray's first half contains the real parts and the later half contains the imaginary parts.
+ ScComplexFFT2(std::vector<double>& raArray, bool bInverse, bool bPolar, double fMinMag,
+ ScTwiddleFactors& rTF, bool bSubSampleTFs = false, bool bDisableNormalize = false) :
+ mrArray(raArray),
+ mfWReal(rTF.mfWReal),
+ mfWImag(rTF.mfWImag),
+ mnPoints(raArray.size()/2),
+ mnStages(0),
+ mfMinMag(fMinMag),
+ mbInverse(bInverse),
+ mbPolar(bPolar),
+ mbDisableNormalize(bDisableNormalize),
+ mbSubSampleTFs(bSubSampleTFs)
+ {}
+
+ void Compute();
+
+private:
+
+ void prepare();
+
+ double getReal(SCSIZE nIdx)
+ {
+ return mrArray[nIdx];
+ }
+
+ void setReal(double fVal, SCSIZE nIdx)
+ {
+ mrArray[nIdx] = fVal;
+ }
+
+ double getImag(SCSIZE nIdx)
+ {
+ return mrArray[mnPoints + nIdx];
+ }
+
+ void setImag(double fVal, SCSIZE nIdx)
+ {
+ mrArray[mnPoints + nIdx] = fVal;
+ }
+
+ SCSIZE getTFactorIndex(SCSIZE nPtIndex, SCSIZE nTfIdxScaleBits)
+ {
+ return ( ( nPtIndex << nTfIdxScaleBits ) & ( mnPoints - 1 ) ); // (x & (N-1)) is same as (x % N) but faster.
+ }
+
+ void computeFly(SCSIZE nTopIdx, SCSIZE nBottomIdx, SCSIZE nWIdx1, SCSIZE nWIdx2)
+ {
+ if (mbSubSampleTFs)
+ {
+ nWIdx1 <<= 1;
+ nWIdx2 <<= 1;
+ }
+
+ const double x1r = getReal(nTopIdx);
+ const double x2r = getReal(nBottomIdx);
+
+ const double& w1r = mfWReal[nWIdx1];
+ const double& w1i = mfWImag[nWIdx1];
+
+ const double& w2r = mfWReal[nWIdx2];
+ const double& w2i = mfWImag[nWIdx2];
+
+ const double x1i = getImag(nTopIdx);
+ const double x2i = getImag(nBottomIdx);
+
+ setReal(x1r + x2r*w1r - x2i*w1i, nTopIdx);
+ setImag(x1i + x2i*w1r + x2r*w1i, nTopIdx);
+
+ setReal(x1r + x2r*w2r - x2i*w2i, nBottomIdx);
+ setImag(x1i + x2i*w2r + x2r*w2i, nBottomIdx);
+ }
+
+ std::vector<double>& mrArray;
+ std::vector<double>& mfWReal;
+ std::vector<double>& mfWImag;
+ SCSIZE mnPoints;
+ SCSIZE mnStages;
+ double mfMinMag;
+ bool mbInverse:1;
+ bool mbPolar:1;
+ bool mbDisableNormalize:1;
+ bool mbSubSampleTFs:1;
+};
+
+}
+
+void ScComplexFFT2::prepare()
+{
+ SCSIZE nPoints = mnPoints;
+ lcl_roundUpNearestPow2(nPoints, mnStages);
+ assert(nPoints == mnPoints);
+
+ // Reorder array by bit-reversed indices.
+ for (SCSIZE nIdx = 0; nIdx < mnPoints; ++nIdx)
+ {
+ SCSIZE nRevIdx = lcl_bitReverse(nIdx, mnPoints);
+ if (nIdx < nRevIdx)
+ {
+ double fTmp = getReal(nIdx);
+ setReal(getReal(nRevIdx), nIdx);
+ setReal(fTmp, nRevIdx);
+
+ fTmp = getImag(nIdx);
+ setImag(getImag(nRevIdx), nIdx);
+ setImag(fTmp, nRevIdx);
+ }
+ }
+}
+
+static void lcl_normalize(std::vector<double>& rCmplxArray, bool bScaleOnlyReal)
+{
+ const SCSIZE nPoints = rCmplxArray.size()/2;
+ const double fScale = 1.0/static_cast<double>(nPoints);
+
+ // Scale the real part
+ for (SCSIZE nIdx = 0; nIdx < nPoints; ++nIdx)
+ rCmplxArray[nIdx] *= fScale;
+
+ if (!bScaleOnlyReal)
+ {
+ const SCSIZE nLen = nPoints*2;
+ for (SCSIZE nIdx = nPoints; nIdx < nLen; ++nIdx)
+ rCmplxArray[nIdx] *= fScale;
+ }
+}
+
+static void lcl_convertToPolar(std::vector<double>& rCmplxArray, double fMinMag)
+{
+ const SCSIZE nPoints = rCmplxArray.size()/2;
+ double fMag, fPhase, fR, fI;
+ for (SCSIZE nIdx = 0; nIdx < nPoints; ++nIdx)
+ {
+ fR = rCmplxArray[nIdx];
+ fI = rCmplxArray[nPoints+nIdx];
+ fMag = sqrt(fR*fR + fI*fI);
+ if (fMag < fMinMag)
+ {
+ fMag = 0.0;
+ fPhase = 0.0;
+ }
+ else
+ {
+ fPhase = atan2(fI, fR);
+ }
+
+ rCmplxArray[nIdx] = fMag;
+ rCmplxArray[nPoints+nIdx] = fPhase;
+ }
+}
+
+void ScComplexFFT2::Compute()
+{
+ prepare();
+
+ const SCSIZE nFliesInStage = mnPoints/2;
+ for (SCSIZE nStage = 0; nStage < mnStages; ++nStage)
+ {
+ const SCSIZE nTFIdxScaleBits = mnStages - nStage - 1; // Twiddle factor index's scale factor in bits.
+ const SCSIZE nFliesInGroup = SCSIZE(1) << nStage;
+ const SCSIZE nGroups = nFliesInStage/nFliesInGroup;
+ const SCSIZE nFlyWidth = nFliesInGroup;
+ for (SCSIZE nGroup = 0, nFlyTopIdx = 0; nGroup < nGroups; ++nGroup)
+ {
+ for (SCSIZE nFly = 0; nFly < nFliesInGroup; ++nFly, ++nFlyTopIdx)
+ {
+ SCSIZE nFlyBottomIdx = nFlyTopIdx + nFlyWidth;
+ SCSIZE nWIdx1 = getTFactorIndex(nFlyTopIdx, nTFIdxScaleBits);
+ SCSIZE nWIdx2 = getTFactorIndex(nFlyBottomIdx, nTFIdxScaleBits);
+
+ computeFly(nFlyTopIdx, nFlyBottomIdx, nWIdx1, nWIdx2);
+ }
+
+ nFlyTopIdx += nFlyWidth;
+ }
+ }
+
+ if (mbPolar)
+ lcl_convertToPolar(mrArray, mfMinMag);
+
+ // Normalize after converting to polar, so we have a chance to
+ // save O(mnPoints) flops.
+ if (mbInverse && !mbDisableNormalize)
+ lcl_normalize(mrArray, mbPolar);
+}
+
+namespace {
+
+// Bluestein's algorithm or chirp z-transform algorithm that can be used to
+// compute DFT of a complex valued input of any length N in O(N lgN) time.
+class ScComplexBluesteinFFT
+{
+public:
+
+ ScComplexBluesteinFFT(std::vector<double>& rArray, bool bReal, bool bInverse,
+ bool bPolar, double fMinMag, bool bDisableNormalize = false) :
+ mrArray(rArray),
+ mnPoints(rArray.size()/2), // rArray should have space for imaginary parts even if real input.
+ mfMinMag(fMinMag),
+ mbReal(bReal),
+ mbInverse(bInverse),
+ mbPolar(bPolar),
+ mbDisableNormalize(bDisableNormalize)
+ {}
+
+ void Compute();
+
+private:
+ std::vector<double>& mrArray;
+ const SCSIZE mnPoints;
+ double mfMinMag;
+ bool mbReal:1;
+ bool mbInverse:1;
+ bool mbPolar:1;
+ bool mbDisableNormalize:1;
+};
+
+}
+
+void ScComplexBluesteinFFT::Compute()
+{
+ std::vector<double> aRealScalars(mnPoints);
+ std::vector<double> aImagScalars(mnPoints);
+ double fW = (mbInverse ? 2 : -2)*F_PI/static_cast<double>(mnPoints);
+ for (SCSIZE nIdx = 0; nIdx < mnPoints; ++nIdx)
+ {
+ double fAngle = 0.5*fW*static_cast<double>(nIdx*nIdx);
+ aRealScalars[nIdx] = cos(fAngle);
+ aImagScalars[nIdx] = sin(fAngle);
+ }
+
+ SCSIZE nMinSize = mnPoints*2 - 1;
+ SCSIZE nExtendedLength = nMinSize, nTmp = 0;
+ lcl_roundUpNearestPow2(nExtendedLength, nTmp);
+ std::vector<double> aASignal(nExtendedLength*2); // complex valued
+ std::vector<double> aBSignal(nExtendedLength*2); // complex valued
+
+ double fReal, fImag;
+ for (SCSIZE nIdx = 0; nIdx < mnPoints; ++nIdx)
+ {
+ // Real part of A signal.
+ aASignal[nIdx] = mrArray[nIdx]*aRealScalars[nIdx] + (mbReal ? 0.0 : -mrArray[mnPoints+nIdx]*aImagScalars[nIdx]);
+ // Imaginary part of A signal.
+ aASignal[nExtendedLength + nIdx] = mrArray[nIdx]*aImagScalars[nIdx] + (mbReal ? 0.0 : mrArray[mnPoints+nIdx]*aRealScalars[nIdx]);
+
+ // Real part of B signal.
+ aBSignal[nIdx] = fReal = aRealScalars[nIdx];
+ // Imaginary part of B signal.
+ aBSignal[nExtendedLength + nIdx] = fImag = -aImagScalars[nIdx]; // negative sign because B signal is the conjugation of the scalars.
+
+ if (nIdx)
+ {
+ // B signal needs a mirror of its part in 0 < n < mnPoints at the tail end.
+ aBSignal[nExtendedLength - nIdx] = fReal;
+ aBSignal[(nExtendedLength<<1) - nIdx] = fImag;
+ }
+ }
+
+ {
+ ScTwiddleFactors aTF(nExtendedLength, false /*not inverse*/);
+ aTF.Compute();
+
+ // Do complex-FFT2 of both A and B signal.
+ ScComplexFFT2 aFFT2A(aASignal, false /*not inverse*/, false /*no polar*/, 0.0 /* no clipping */,
+ aTF, false /*no subsample*/, true /* disable normalize */);
+ aFFT2A.Compute();
+
+ ScComplexFFT2 aFFT2B(aBSignal, false /*not inverse*/, false /*no polar*/, 0.0 /* no clipping */,
+ aTF, false /*no subsample*/, true /* disable normalize */);
+ aFFT2B.Compute();
+
+ double fAR, fAI, fBR, fBI;
+ for (SCSIZE nIdx = 0; nIdx < nExtendedLength; ++nIdx)
+ {
+ fAR = aASignal[nIdx];
+ fAI = aASignal[nExtendedLength + nIdx];
+ fBR = aBSignal[nIdx];
+ fBI = aBSignal[nExtendedLength + nIdx];
+
+ // Do point-wise product inplace in A signal.
+ aASignal[nIdx] = fAR*fBR - fAI*fBI;
+ aASignal[nExtendedLength + nIdx] = fAR*fBI + fAI*fBR;
+ }
+
+ // Do complex-inverse-FFT2 of aASignal.
+ aTF.Conjugate();
+ ScComplexFFT2 aFFT2AI(aASignal, true /*inverse*/, false /*no polar*/, 0.0 /* no clipping */, aTF); // Need normalization here.
+ aFFT2AI.Compute();
+ }
+
+ // Point-wise multiply with scalars.
+ for (SCSIZE nIdx = 0; nIdx < mnPoints; ++nIdx)
+ {
+ fReal = aASignal[nIdx];
+ fImag = aASignal[nExtendedLength + nIdx];
+ mrArray[nIdx] = fReal*aRealScalars[nIdx] - fImag*aImagScalars[nIdx]; // no conjugation needed here.
+ mrArray[mnPoints + nIdx] = fReal*aImagScalars[nIdx] + fImag*aRealScalars[nIdx];
+ }
+
+ // Normalize/Polar operations
+ if (mbPolar)
+ lcl_convertToPolar(mrArray, mfMinMag);
+
+ // Normalize after converting to polar, so we have a chance to
+ // save O(mnPoints) flops.
+ if (mbInverse && !mbDisableNormalize)
+ lcl_normalize(mrArray, mbPolar);
+}
+
+namespace {
+
+// Computes DFT of an even length(N) real-valued input by using a
+// ScComplexFFT2 if N == 2^k for some k or else by using a ScComplexBluesteinFFT
+// with a complex valued input of length = N/2.
+class ScRealFFT
+{
+public:
+
+ ScRealFFT(std::vector<double>& rInArray, std::vector<double>& rOutArray, bool bInverse,
+ bool bPolar, double fMinMag) :
+ mrInArray(rInArray),
+ mrOutArray(rOutArray),
+ mfMinMag(fMinMag),
+ mbInverse(bInverse),
+ mbPolar(bPolar)
+ {}
+
+ void Compute();
+
+private:
+ std::vector<double>& mrInArray;
+ std::vector<double>& mrOutArray;
+ double mfMinMag;
+ bool mbInverse:1;
+ bool mbPolar:1;
+};
+
+}
+
+void ScRealFFT::Compute()
+{
+ // input length has to be even to do this optimization.
+ assert(mrInArray.size() % 2 == 0);
+ assert(mrInArray.size()*2 == mrOutArray.size());
+ // nN is the number of points in the complex-fft input
+ // which will be half of the number of points in real array.
+ const SCSIZE nN = mrInArray.size()/2;
+ if (nN == 0)
+ {
+ mrOutArray[0] = mrInArray[0];
+ mrOutArray[1] = 0.0;
+ return;
+ }
+
+ // work array should be the same length as mrInArray
+ std::vector<double> aWorkArray(nN*2);
+ for (SCSIZE nIdx = 0; nIdx < nN; ++nIdx)
+ {
+ SCSIZE nDoubleIdx = 2*nIdx;
+ // Use even elements as real part
+ aWorkArray[nIdx] = mrInArray[nDoubleIdx];
+ // and odd elements as imaginary part of the contrived complex sequence.
+ aWorkArray[nN+nIdx] = mrInArray[nDoubleIdx+1];
+ }
+
+ ScTwiddleFactors aTFs(nN*2, mbInverse);
+ aTFs.Compute();
+ SCSIZE nNextPow2 = nN, nTmp = 0;
+ lcl_roundUpNearestPow2(nNextPow2, nTmp);
+
+ if (nNextPow2 == nN)
+ {
+ ScComplexFFT2 aFFT2(aWorkArray, mbInverse, false /*disable polar*/, 0.0 /* no clipping */,
+ aTFs, true /*subsample tf*/, true /*disable normalize*/);
+ aFFT2.Compute();
+ }
+ else
+ {
+ ScComplexBluesteinFFT aFFT(aWorkArray, false /*complex input*/, mbInverse, false /*disable polar*/,
+ 0.0 /* no clipping */, true /*disable normalize*/);
+ aFFT.Compute();
+ }
+
+ // Post process aWorkArray to populate mrOutArray
+
+ const SCSIZE nTwoN = 2*nN, nThreeN = 3*nN;
+ double fY1R, fY2R, fY1I, fY2I, fResR, fResI, fWR, fWI;
+ for (SCSIZE nIdx = 0; nIdx < nN; ++nIdx)
+ {
+ const SCSIZE nIdxRev = nIdx ? (nN - nIdx) : 0;
+ fY1R = aWorkArray[nIdx];
+ fY2R = aWorkArray[nIdxRev];
+ fY1I = aWorkArray[nN + nIdx];
+ fY2I = aWorkArray[nN + nIdxRev];
+ fWR = aTFs.mfWReal[nIdx];
+ fWI = aTFs.mfWImag[nIdx];
+
+ // mrOutArray has length = 4*nN
+ // Real part of the final output (only half of the symmetry around Nyquist frequency)
+ // Fills the first quarter.
+ mrOutArray[nIdx] = fResR = 0.5*(
+ fY1R + fY2R +
+ fWR * (fY1I + fY2I) +
+ fWI * (fY1R - fY2R) );
+ // Imaginary part of the final output (only half of the symmetry around Nyquist frequency)
+ // Fills the third quarter.
+ mrOutArray[nTwoN + nIdx] = fResI = 0.5*(
+ fY1I - fY2I +
+ fWI * (fY1I + fY2I) -
+ fWR * (fY1R - fY2R) );
+
+ // Fill the missing 2 quarters using symmetry argument.
+ if (nIdx)
+ {
+ // Fills the 2nd quarter.
+ mrOutArray[nN + nIdxRev] = fResR;
+ // Fills the 4th quarter.
+ mrOutArray[nThreeN + nIdxRev] = -fResI;
+ }
+ else
+ {
+ mrOutArray[nN] = fY1R - fY1I;
+ mrOutArray[nThreeN] = 0.0;
+ }
+ }
+
+ // Normalize/Polar operations
+ if (mbPolar)
+ lcl_convertToPolar(mrOutArray, mfMinMag);
+
+ // Normalize after converting to polar, so we have a chance to
+ // save O(mnPoints) flops.
+ if (mbInverse)
+ lcl_normalize(mrOutArray, mbPolar);
+}
+
+using ScMatrixGenerator = ScMatrixRef(SCSIZE, SCSIZE, std::vector<double>&);
+
+namespace {
+
+// Generic FFT class that decides which FFT implementation to use.
+class ScFFT
+{
+public:
+
+ ScFFT(ScMatrixRef& pMat, bool bReal, bool bInverse, bool bPolar, double fMinMag) :
+ mpInputMat(pMat),
+ mfMinMag(fMinMag),
+ mbReal(bReal),
+ mbInverse(bInverse),
+ mbPolar(bPolar)
+ {}
+
+ ScMatrixRef Compute(const std::function<ScMatrixGenerator>& rMatGenFunc);
+
+private:
+ ScMatrixRef& mpInputMat;
+ double mfMinMag;
+ bool mbReal:1;
+ bool mbInverse:1;
+ bool mbPolar:1;
+};
+
+}
+
+ScMatrixRef ScFFT::Compute(const std::function<ScMatrixGenerator>& rMatGenFunc)
+{
+ std::vector<double> aArray;
+ mpInputMat->GetDoubleArray(aArray);
+ SCSIZE nPoints = mbReal ? aArray.size() : (aArray.size()/2);
+ if (nPoints == 1)
+ {
+ std::vector<double> aOutArray(2);
+ aOutArray[0] = aArray[0];
+ aOutArray[1] = mbReal ? 0.0 : aArray[1];
+ if (mbPolar)
+ lcl_convertToPolar(aOutArray, mfMinMag);
+ return rMatGenFunc(2, 1, aOutArray);
+ }
+
+ if (mbReal && (nPoints % 2) == 0)
+ {
+ std::vector<double> aOutArray(nPoints*2);
+ ScRealFFT aFFT(aArray, aOutArray, mbInverse, mbPolar, mfMinMag);
+ aFFT.Compute();
+ return rMatGenFunc(2, nPoints, aOutArray);
+ }
+
+ SCSIZE nNextPow2 = nPoints, nTmp = 0;
+ lcl_roundUpNearestPow2(nNextPow2, nTmp);
+ if (nNextPow2 == nPoints && !mbReal)
+ {
+ ScTwiddleFactors aTF(nPoints, mbInverse);
+ aTF.Compute();
+ ScComplexFFT2 aFFT2(aArray, mbInverse, mbPolar, mfMinMag, aTF);
+ aFFT2.Compute();
+ return rMatGenFunc(2, nPoints, aArray);
+ }
+
+ if (mbReal)
+ aArray.resize(nPoints*2, 0.0);
+ ScComplexBluesteinFFT aFFT(aArray, mbReal, mbInverse, mbPolar, mfMinMag);
+ aFFT.Compute();
+ return rMatGenFunc(2, nPoints, aArray);
+}
+
+void ScInterpreter::ScFourier()
+{
+ sal_uInt8 nParamCount = GetByte();
+ if ( !MustHaveParamCount( nParamCount, 2, 5 ) )
+ return;
+
+ bool bInverse = false;
+ bool bPolar = false;
+ double fMinMag = 0.0;
+
+ if (nParamCount == 5)
+ {
+ if (IsMissing())
+ Pop();
+ else
+ fMinMag = GetDouble();
+ }
+
+ if (nParamCount >= 4)
+ {
+ if (IsMissing())
+ Pop();
+ else
+ bPolar = GetBool();
+ }
+
+ if (nParamCount >= 3)
+ {
+ if (IsMissing())
+ Pop();
+ else
+ bInverse = GetBool();
+ }
+
+ bool bGroupedByColumn = GetBool();
+
+ ScMatrixRef pInputMat = GetMatrix();
+ if (!pInputMat)
+ {
+ PushIllegalParameter();
+ return;
+ }
+
+ SCSIZE nC, nR;
+ pInputMat->GetDimensions(nC, nR);
+
+ if ((bGroupedByColumn && nC > 2) || (!bGroupedByColumn && nR > 2))
+ {
+ // There can be no more than 2 columns (real, imaginary) if data grouped by columns.
+ // and no more than 2 rows if data is grouped by rows.
+ PushIllegalArgument();
+ return;
+ }
+
+ if (!pInputMat->IsNumeric())
+ {
+ PushNoValue();
+ return;
+ }
+
+ bool bRealInput = true;
+ if (!bGroupedByColumn)
+ {
+ pInputMat->MatTrans(*pInputMat);
+ bRealInput = (nR == 1);
+ }
+ else
+ {
+ bRealInput = (nC == 1);
+ }
+
+ ScFFT aFFT(pInputMat, bRealInput, bInverse, bPolar, fMinMag);
+ std::function<ScMatrixGenerator> aFunc = [this](SCSIZE nCol, SCSIZE nRow, std::vector<double>& rVec) -> ScMatrixRef
+ {
+ return this->GetNewMat(nCol, nRow, rVec);
+ };
+ ScMatrixRef pOut = aFFT.Compute(aFunc);
+ PushMatrix(pOut);
+}
+
+/* vim:set shiftwidth=4 softtabstop=4 expandtab: */