Produces the Fourier analysis of a data set by computing the Discrete Fourier Transform (DFT) of an input array of complex numbers using a couple of Fast Fourier Transform (FFT) algorithms.Choose For more information on Fourier analysis, refer to the corresponding Wikipedia article.Input range has label: Mark when the first row or column of the input array is actually a label and not part of the data analysis.Input Range is a 2 x N or N x 2 range representing an array of complex number to be transformed, where N is the length of the array. The array represents the real and imaginary parts of the data.
Options:
Inverse: When checked, calculates the inverse Discrete Fourier Transform.Polar: When checked, the results are in polar coordinates (magnitude, phase).Minimum magnitude for polar form output (in dB): used only when output is in polar form. All frequency components with magnitude less than this value in decibels will be suppressed with a zero magnitude-phase entry. This is very useful when looking at the magnitude-phase spectrum of a signal because there is always some very tiny amount of rounding error when doing FFT algorithms and results in incorrect non-zero phase for non-existent frequencies. By providing a suitable value to this parameter, these non-existent frequency components can be suppressed.The source data for this example is the same of the FOURIER function page.
Fourier TransformFourier TransformInput data range : $B$6:$C$40Input data range : $B$6:$C$40RealImaginaryMagnitudePhase17.17755787431343.88635177703826E-1517.17755787431342.26245884628906E-163.4288687953592.371647900001894.169155187489440.605113892937279-6.80271615433369-15.134543929757616.5931120359682-1.99322000923881-1.605447356601-5.086530603789725.33387802617444-1.876527622696150.395847917447356-2.419267855276252.45143886917874-1.40861048708919-1.49410383304833-2.391480412752.81984482347817-2.129223800283290.87223579298981-1.143940862067971.43853952829993-0.9193536654683681.53324585059290.6781591688709831.67652697463660.4164346541533690.4505637084114590.229112487926340.5054702636765920.4704259487798980.5451066169403580.4110289277404380.6827049166892070.6460778794183022.22685996425193-2.430922367483023.29670879167654-0.829181229907427-1.61522859107175-2.416826572848992.90689079338124-2.159946978684411.302450782901681.454437857331261.952374841755440.8404723415253441.57930628561185-1.338627365916772.07029745895472-0.70310180067089-1.07572227365276-0.9215579680038091.41649126309482-2.43322886402899-0.055782417923803-1.813360294518311.81421807837012-1.60154853447151-0.5776660400040671.388872438919511.504215644568361.96495487990047-0.826878282157686-0.1865910007964030.847669685126376-2.91965280961949-0.8268782821577150.1865910007964160.8476696851264082.91965280961948-0.577666040004051-1.388872438919541.50421564456838-1.96495487990045-0.0557824179237851.813360294518321.814218078370121.6015485344715-1.075722273652760.9215579680038021.416491263094822.4332288640291.579306285611871.338627365916782.070297458954740.7031018006708881.3024507829017-1.454437857331251.95237484175543-0.840472341525331-1.615228591071762.4168265728492.906890793381252.159946978684412.226859964251912.430922367483043.296708791676530.8291812299074350.545106616940365-0.4110289277404410.682704916689214-0.6460778794182990.450563708411458-0.2291124879263440.505470263676594-0.4704259487799051.53324585059292-0.6781591688709651.6765269746366-0.4164346541533550.8722357929897971.143940862067991.438539528299940.919353665468386-1.494103833048342.391480412750012.819844823478182.129223800283290.3958479174473272.419267855276262.451438869178751.4086104870892-1.605447356601025.086530603789725.333878026174451.87652762269616-6.8027161543337915.134543929757516.59311203596821.993220009238823.42886879535907-2.371647900001944.16915518748952-0.605113892937279