2016-06-25T07:16:38.437590147P0D1LibreOfficeDev/5.3.0.0.alpha0$Linux_X86_64 LibreOffice_project/54f2a4184d1296814e64cfeab1d06ae90d002357 0 0 33166 19868 view1 2 8 0 0 0 0 2 0 0 0 0 0 100 60 true false 3 40 0 0 0 0 2 0 0 0 27 0 100 60 true false Sheet2 1241 0 100 60 false true true true 12632256 true true true true false false false 1270 1270 1 1 true false 7 false false true true false false false 1270 1270 true true true true true false 12632256 false Lexmark-E352dn en US true true 3 1 true 1 true qQH+/0xleG1hcmstRTM1MmRuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ1VQUzpMZXhtYXJrLUUzNTJkbgAAAAAAAAAAAAAAAAAWAAMAzwAAAAAAAAAEAAhSAAAEdAAASm9iRGF0YSAxCnByaW50ZXI9TGV4bWFyay1FMzUyZG4Kb3JpZW50YXRpb249UG9ydHJhaXQKY29waWVzPTEKY29sbGF0ZT1mYWxzZQptYXJnaW5kYWp1c3RtZW50PTAsMCwwLDAKY29sb3JkZXB0aD0yNApwc2xldmVsPTAKcGRmZGV2aWNlPTEKY29sb3JkZXZpY2U9MApQUERDb250ZXhEYXRhClBhZ2VTaXplOkE0AElucHV0U2xvdDpUcmF5MQBEdXBsZXg6Tm9uZQAAEgBDT01QQVRfRFVQTEVYX01PREUKAERVUExFWF9PRkY= false 0 - $ $( ) $- £ - £ £ - £ £ - £ £ - £ £ - £ ( ) ( ) £ - £ £ - £ - - - - - - - - - - - - € - - - - : : : : $ ($ ) $ ($ ) $ ($ ) $ ($ ) ( ) - $ $ ( ) $ - ( ) - $ $ ( ) $ - Yes Yes No True True False On On Off ( ) \ \- \ \- \ \- \ \- \ \ - \ - - - \ \ - \ - - - - - - - - - - . / - $ - $ ( ) - $ $( ) $- ( ) - $ - . . WAHR WAHR FALSCH - / / - - - - : : : : : : / / : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) - ( ) - ( ) - ( ) - . . : : : . . : - - - - - - - - - - - - - - - - - - : : : : : : - - : - - - - - - - - - - - - : : : - ??? Page 1 ??? (???) 00/00/0000, 00:00:00 Page 1 / 99 GCD Function Result TRUE Sheet Result Description 1 TRUE Simple GCD formulas with local references and values Function Expected Correct FunctionString Comment 8 1.2 2.4 8 8 TRUE =GCD(16,32,24) 6 1.2 3.6 2 2 TRUE =GCD(J1:J3) 4 1.2 7.2 1 1 TRUE =GCD(5, 2) 2.4 3.6 12 12 TRUE =GCD(24, 36) 2.4 4.8 1 1 TRUE =GCD(7, 1) 2.4 7.2 5 5 TRUE =GCD(5, 0) 1.1 2.2 1 1 TRUE =GCD(1.2,2.4) AOO#71158 1.1 3.3 1 1 TRUE =GCD(1.2,3.6) 2.2 3.3 3 3 TRUE =GCD(3,0) 18.1 24.1 1 1 TRUE =GCD(L1,M1) 18 24 1 1 TRUE =GCD(L2,M2) 3.3 2.2 1 1 TRUE =GCD(L3,M3) 4.8 2.4 1 1 TRUE =GCD(L4,M4) 99.1 55.1 2 2 TRUE =GCD(L5,M5) 2.2 4.4 1 1 TRUE =GCD(L6,M6) 2.2 8.8 1 1 TRUE =GCD(L7,M7) 2.2 11 1 1 TRUE =GCD(L8,M8) 2.2 13.2 1 1 TRUE =GCD(L9,M9) 4.4 8.8 6 6 TRUE =GCD(L10,M10) 11 2.2 6 6 TRUE =GCD(L11,M11) 100.2 200.4 1 1 TRUE =GCD(L12,M12) 100.2 300.6 2 2 TRUE =GCD(L13,M13) 200.4 300.6 11 11 TRUE =GCD(L14,M14) 0 1.1 2 2 TRUE =GCD(L15,M15) -1 1 2 2 TRUE =GCD(L16,M16) 1 1 TRUE =GCD(L17,M17) 1 1 TRUE =GCD(L18,M18) 4 4 TRUE =GCD(L19,M19) 1 1 TRUE =GCD(L20,M20) 100 100 TRUE =GCD(L21,M21) 100 100 TRUE =GCD(L22,M22) 100 100 TRUE =GCD(L23,M23) 1 1 TRUE =GCD(L24,M24) Err:502 #NUM! TRUE =GCD(L25,M25) Err:511 error TRUE =GCD() 2 2 TRUE =GCD(6,{2,4}) 6 6 TRUE =GCD(6,) 0 0 TRUE =GCD(0,0) 1 1 TRUE =GCD({1,2,3,5}) 6.16.36 GCD Summary: Returns the greatest common divisor (GCD) Syntax: GCD( { NumberSequenceList X }+ ) Returns: Number Constraints: For all a in X: INT(a) >= 0 and for at least one a in X: INT(a)>0 Semantics: Return the largest integer N such that for every a in X: INT(a) is a multiple of N. Note: If for all a in X: INT(a)=0 the return value is implementation-defined but is either an Error or 0. 4 O5