/* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include CmapResult::CmapResult( bool bSymbolic, const sal_UCS4* pRangeCodes, int nRangeCount ) : mpRangeCodes( pRangeCodes) , mpStartGlyphs( nullptr) , mpGlyphIds( nullptr) , mnRangeCount( nRangeCount) , mbSymbolic( bSymbolic) , mbRecoded( false) {} static ImplFontCharMapRef g_pDefaultImplFontCharMap; static const sal_UCS4 aDefaultUnicodeRanges[] = {0x0020,0xD800, 0xE000,0xFFF0}; static const sal_UCS4 aDefaultSymbolRanges[] = {0x0020,0x0100, 0xF020,0xF100}; ImplFontCharMap::~ImplFontCharMap() { if( !isDefaultMap() ) { delete[] mpRangeCodes; delete[] mpStartGlyphs; delete[] mpGlyphIds; } } ImplFontCharMap::ImplFontCharMap( const CmapResult& rCR ) : mpRangeCodes( rCR.mpRangeCodes ) , mpStartGlyphs( rCR.mpStartGlyphs ) , mpGlyphIds( rCR.mpGlyphIds ) , mnRangeCount( rCR.mnRangeCount ) , mnCharCount( 0 ) { const sal_UCS4* pRangePtr = mpRangeCodes; for( int i = mnRangeCount; --i >= 0; pRangePtr += 2 ) { sal_UCS4 cFirst = pRangePtr[0]; sal_UCS4 cLast = pRangePtr[1]; mnCharCount += cLast - cFirst; } } ImplFontCharMapRef const & ImplFontCharMap::getDefaultMap( bool bSymbols ) { const sal_UCS4* pRangeCodes = aDefaultUnicodeRanges; int nCodesCount = SAL_N_ELEMENTS(aDefaultUnicodeRanges); if( bSymbols ) { pRangeCodes = aDefaultSymbolRanges; nCodesCount = SAL_N_ELEMENTS(aDefaultSymbolRanges); } CmapResult aDefaultCR( bSymbols, pRangeCodes, nCodesCount/2 ); g_pDefaultImplFontCharMap = ImplFontCharMapRef(new ImplFontCharMap(aDefaultCR)); return g_pDefaultImplFontCharMap; } bool ImplFontCharMap::isDefaultMap() const { const bool bIsDefault = (mpRangeCodes == aDefaultUnicodeRanges) || (mpRangeCodes == aDefaultSymbolRanges); return bIsDefault; } static unsigned GetUInt( const unsigned char* p ) { return((p[0]<<24)+(p[1]<<16)+(p[2]<<8)+p[3]);} static unsigned GetUShort( const unsigned char* p ){ return((p[0]<<8) | p[1]);} static int GetSShort( const unsigned char* p ){ return static_cast((p[0]<<8)|p[1]);} // TODO: move CMAP parsing directly into the ImplFontCharMap class bool ParseCMAP( const unsigned char* pCmap, int nLength, CmapResult& rResult ) { rResult.mpRangeCodes = nullptr; rResult.mpStartGlyphs= nullptr; rResult.mpGlyphIds = nullptr; rResult.mnRangeCount = 0; rResult.mbRecoded = false; rResult.mbSymbolic = false; // parse the table header and check for validity if( !pCmap || (nLength < 24) ) return false; if( GetUShort( pCmap ) != 0x0000 ) // simple check for CMAP corruption return false; int nSubTables = GetUShort( pCmap + 2 ); if( (nSubTables <= 0) || (nLength < (24 + 8*nSubTables)) ) return false; const unsigned char* pEndValidArea = pCmap + nLength; // find the most interesting subtable in the CMAP rtl_TextEncoding eRecodeFrom = RTL_TEXTENCODING_UNICODE; int nOffset = 0; int nFormat = -1; int nBestVal = 0; for( const unsigned char* p = pCmap + 4; --nSubTables >= 0; p += 8 ) { int nPlatform = GetUShort( p ); int nEncoding = GetUShort( p+2 ); int nPlatformEncoding = (nPlatform << 8) + nEncoding; int nValue; rtl_TextEncoding eTmpEncoding = RTL_TEXTENCODING_UNICODE; switch( nPlatformEncoding ) { case 0x000: nValue = 20; break; // Unicode 1.0 case 0x001: nValue = 21; break; // Unicode 1.1 case 0x002: nValue = 22; break; // iso10646_1993 case 0x003: nValue = 23; break; // UCS-2 case 0x004: nValue = 24; break; // UCS-4 case 0x100: nValue = 22; break; // Mac Unicode<2.0 case 0x103: nValue = 23; break; // Mac Unicode>2.0 case 0x300: nValue = 5; rResult.mbSymbolic = true; break; // Win Symbol case 0x301: nValue = 28; break; // Win UCS-2 case 0x30A: nValue = 29; break; // Win-UCS-4 case 0x302: nValue = 11; eTmpEncoding = RTL_TEXTENCODING_SHIFT_JIS; break; case 0x303: nValue = 12; eTmpEncoding = RTL_TEXTENCODING_GB_18030; break; case 0x304: nValue = 11; eTmpEncoding = RTL_TEXTENCODING_BIG5; break; case 0x305: nValue = 11; eTmpEncoding = RTL_TEXTENCODING_MS_949; break; case 0x306: nValue = 11; eTmpEncoding = RTL_TEXTENCODING_MS_1361; break; default: nValue = 0; break; } if( nValue <= 0 ) // ignore unknown encodings continue; int nTmpOffset = GetUInt( p+4 ); if (nTmpOffset > nLength - 2 || nTmpOffset < 0) continue; int nTmpFormat = GetUShort( pCmap + nTmpOffset ); if( nTmpFormat == 12 ) // 32bit code -> glyph map format nValue += 3; else if( nTmpFormat != 4 ) // 16bit code -> glyph map format continue; // ignore other formats if( nBestVal < nValue ) { nBestVal = nValue; nOffset = nTmpOffset; nFormat = nTmpFormat; eRecodeFrom = eTmpEncoding; } } // parse the best CMAP subtable int nRangeCount = 0; sal_UCS4* pCodePairs = nullptr; int* pStartGlyphs = nullptr; std::vector aGlyphIdArray; aGlyphIdArray.reserve( 0x1000 ); aGlyphIdArray.push_back( 0 ); // format 4, the most common 16bit char mapping table if( (nFormat == 4) && ((nOffset+16) < nLength) ) { int nSegCountX2 = GetUShort( pCmap + nOffset + 6 ); nRangeCount = nSegCountX2/2 - 1; if (nRangeCount < 0) { SAL_WARN("vcl.gdi", "negative RangeCount"); nRangeCount = 0; } const unsigned char* pLimitBase = pCmap + nOffset + 14; const unsigned char* pBeginBase = pLimitBase + nSegCountX2 + 2; const unsigned char* pDeltaBase = pBeginBase + nSegCountX2; const unsigned char* pOffsetBase = pDeltaBase + nSegCountX2; const int nOffsetBaseStart = pOffsetBase - pCmap; const int nRemainingLen = nLength - nOffsetBaseStart; const int nMaxPossibleRangeOffsets = nRemainingLen / 2; if (nRangeCount > nMaxPossibleRangeOffsets) { SAL_WARN("vcl.gdi", "more range offsets requested then space available"); nRangeCount = std::max(0, nMaxPossibleRangeOffsets); } pCodePairs = new sal_UCS4[ nRangeCount * 2 ]; pStartGlyphs = new int[ nRangeCount ]; sal_UCS4* pCP = pCodePairs; for( int i = 0; i < nRangeCount; ++i ) { const sal_UCS4 cMinChar = GetUShort( pBeginBase + 2*i ); const sal_UCS4 cMaxChar = GetUShort( pLimitBase + 2*i ); const int nGlyphDelta = GetSShort( pDeltaBase + 2*i ); const int nRangeOffset = GetUShort( pOffsetBase + 2*i ); if( cMinChar > cMaxChar ) { // no sane font should trigger this SAL_WARN("vcl.gdi", "Min char should never be more than the max char!"); break; } if( cMaxChar == 0xFFFF ) { SAL_WARN("vcl.gdi", "Format 4 char should not be 0xFFFF"); break; } if( !nRangeOffset ) { // glyphid can be calculated directly pStartGlyphs[i] = (cMinChar + nGlyphDelta) & 0xFFFF; } else { // update the glyphid-array with the glyphs in this range pStartGlyphs[i] = -static_cast(aGlyphIdArray.size()); const unsigned char* pGlyphIdPtr = pOffsetBase + 2*i + nRangeOffset; const size_t nRemainingSize = pEndValidArea >= pGlyphIdPtr ? pEndValidArea - pGlyphIdPtr : 0; const size_t nMaxPossibleRecords = nRemainingSize/2; if (nMaxPossibleRecords == 0) { // no sane font should trigger this SAL_WARN("vcl.gdi", "More indexes claimed that space available in font!"); break; } const size_t nMaxLegalChar = cMinChar + nMaxPossibleRecords-1; if (cMaxChar > nMaxLegalChar) { // no sane font should trigger this SAL_WARN("vcl.gdi", "More indexes claimed that space available in font!"); break; } for( sal_UCS4 c = cMinChar; c <= cMaxChar; ++c, pGlyphIdPtr+=2 ) { const int nGlyphIndex = GetUShort( pGlyphIdPtr ) + nGlyphDelta; aGlyphIdArray.push_back( static_cast(nGlyphIndex) ); } } *(pCP++) = cMinChar; *(pCP++) = cMaxChar + 1; } nRangeCount = (pCP - pCodePairs) / 2; } // format 12, the most common 32bit char mapping table else if( (nFormat == 12) && ((nOffset+16) < nLength) ) { nRangeCount = GetUInt( pCmap + nOffset + 12 ); if (nRangeCount < 0) { SAL_WARN("vcl.gdi", "negative RangeCount"); nRangeCount = 0; } const int nGroupOffset = nOffset + 16; const int nRemainingLen = nLength - nGroupOffset; const int nMaxPossiblePairs = nRemainingLen / 12; if (nRangeCount > nMaxPossiblePairs) { SAL_WARN("vcl.gdi", "more code pairs requested then space available"); nRangeCount = std::max(0, nMaxPossiblePairs); } pCodePairs = new sal_UCS4[ nRangeCount * 2 ]; pStartGlyphs = new int[ nRangeCount ]; const unsigned char* pGroup = pCmap + nGroupOffset; sal_UCS4* pCP = pCodePairs; for( int i = 0; i < nRangeCount; ++i ) { sal_UCS4 cMinChar = GetUInt( pGroup + 0 ); sal_UCS4 cMaxChar = GetUInt( pGroup + 4 ); int nGlyphId = GetUInt( pGroup + 8 ); pGroup += 12; if( cMinChar > cMaxChar ) { // no sane font should trigger this SAL_WARN("vcl.gdi", "Min char should never be more than the max char!"); break; } *(pCP++) = cMinChar; *(pCP++) = cMaxChar + 1; pStartGlyphs[i] = nGlyphId; } nRangeCount = (pCP - pCodePairs) / 2; } // check if any subtable resulted in something usable if( nRangeCount <= 0 ) { delete[] pCodePairs; delete[] pStartGlyphs; // even when no CMAP is available we know it for symbol fonts if( rResult.mbSymbolic ) { pCodePairs = new sal_UCS4[4]; pCodePairs[0] = 0x0020; // aliased symbols pCodePairs[1] = 0x0100; pCodePairs[2] = 0xF020; // original symbols pCodePairs[3] = 0xF100; rResult.mpRangeCodes = pCodePairs; rResult.mnRangeCount = 2; return true; } return false; } // recode the code ranges to their unicode encoded ranges if needed rtl_TextToUnicodeConverter aConverter = nullptr; rtl_UnicodeToTextContext aCvtContext = nullptr; rResult.mbRecoded = ( eRecodeFrom != RTL_TEXTENCODING_UNICODE ); if( rResult.mbRecoded ) { aConverter = rtl_createTextToUnicodeConverter( eRecodeFrom ); aCvtContext = rtl_createTextToUnicodeContext( aConverter ); } if( aConverter && aCvtContext ) { // determine the set of supported code points from encoded ranges std::set aSupportedCodePoints; static const int NINSIZE = 64; static const int NOUTSIZE = 64; std::vector cCharsInp; cCharsInp.reserve(NINSIZE); sal_Unicode cCharsOut[ NOUTSIZE ]; sal_UCS4* pCP = pCodePairs; for( int i = 0; i < nRangeCount; ++i ) { sal_UCS4 cMin = *(pCP++); sal_UCS4 cEnd = *(pCP++); // ofz#25868 the conversion only makes sense with // input codepoints in 0..SAL_MAX_UINT16 range while (cMin < cEnd && cMin <= SAL_MAX_UINT16) { for (int j = 0; (cMin < cEnd) && (j < NINSIZE); ++cMin, ++j) { if( cMin >= 0x0100 ) cCharsInp.push_back(static_cast(cMin >> 8)); if( (cMin >= 0x0100) || (cMin < 0x00A0) ) cCharsInp.push_back(static_cast(cMin)); } sal_uInt32 nCvtInfo; sal_Size nSrcCvtBytes; int nOutLen = rtl_convertTextToUnicode( aConverter, aCvtContext, cCharsInp.data(), cCharsInp.size(), cCharsOut, NOUTSIZE, RTL_TEXTTOUNICODE_FLAGS_INVALID_IGNORE | RTL_TEXTTOUNICODE_FLAGS_UNDEFINED_IGNORE, &nCvtInfo, &nSrcCvtBytes ); cCharsInp.clear(); for (int j = 0; j < nOutLen; ++j) aSupportedCodePoints.insert( cCharsOut[j] ); } } rtl_destroyTextToUnicodeConverter( aCvtContext ); rtl_destroyTextToUnicodeConverter( aConverter ); // convert the set of supported code points to ranges std::vector aSupportedRanges; for (auto const& supportedPoint : aSupportedCodePoints) { if( aSupportedRanges.empty() || (aSupportedRanges.back() != supportedPoint) ) { // add new range beginning with current unicode aSupportedRanges.push_back(supportedPoint); aSupportedRanges.push_back( 0 ); } // extend existing range to include current unicode aSupportedRanges.back() = supportedPoint + 1; } // glyph mapping for non-unicode fonts not implemented delete[] pStartGlyphs; pStartGlyphs = nullptr; aGlyphIdArray.clear(); // make a pCodePairs array using the vector from above delete[] pCodePairs; nRangeCount = aSupportedRanges.size() / 2; if( nRangeCount <= 0 ) return false; pCodePairs = new sal_UCS4[ nRangeCount * 2 ]; pCP = pCodePairs; for (auto const& supportedRange : aSupportedRanges) *(pCP++) = supportedRange; } // prepare the glyphid-array if needed // TODO: merge ranges if they are close enough? sal_uInt16* pGlyphIds = nullptr; if( !aGlyphIdArray.empty()) { pGlyphIds = new sal_uInt16[ aGlyphIdArray.size() ]; sal_uInt16* pOut = pGlyphIds; for (auto const& glyphId : aGlyphIdArray) *(pOut++) = glyphId; } // update the result struct rResult.mpRangeCodes = pCodePairs; rResult.mpStartGlyphs = pStartGlyphs; rResult.mnRangeCount = nRangeCount; rResult.mpGlyphIds = pGlyphIds; return true; } FontCharMap::FontCharMap() : mpImplFontCharMap( ImplFontCharMap::getDefaultMap() ) { } FontCharMap::FontCharMap( ImplFontCharMapRef const & pIFCMap ) : mpImplFontCharMap( pIFCMap ) { } FontCharMap::FontCharMap( const CmapResult& rCR ) : mpImplFontCharMap(new ImplFontCharMap(rCR)) { } FontCharMap::~FontCharMap() { mpImplFontCharMap = nullptr; } FontCharMapRef FontCharMap::GetDefaultMap( bool bSymbol ) { FontCharMapRef xFontCharMap( new FontCharMap( ImplFontCharMap::getDefaultMap( bSymbol ) ) ); return xFontCharMap; } bool FontCharMap::IsDefaultMap() const { return mpImplFontCharMap->isDefaultMap(); } int FontCharMap::GetCharCount() const { return mpImplFontCharMap->mnCharCount; } int FontCharMap::CountCharsInRange( sal_UCS4 cMin, sal_UCS4 cMax ) const { int nCount = 0; // find and adjust range and char count for cMin int nRangeMin = findRangeIndex( cMin ); if( nRangeMin & 1 ) ++nRangeMin; else if( cMin > mpImplFontCharMap->mpRangeCodes[ nRangeMin ] ) nCount -= cMin - mpImplFontCharMap->mpRangeCodes[ nRangeMin ]; // find and adjust range and char count for cMax int nRangeMax = findRangeIndex( cMax ); if( nRangeMax & 1 ) --nRangeMax; else nCount -= mpImplFontCharMap->mpRangeCodes[ nRangeMax+1 ] - cMax - 1; // count chars in complete ranges between cMin and cMax for( int i = nRangeMin; i <= nRangeMax; i+=2 ) nCount += mpImplFontCharMap->mpRangeCodes[i+1] - mpImplFontCharMap->mpRangeCodes[i]; return nCount; } bool FontCharMap::HasChar( sal_UCS4 cChar ) const { bool bHasChar = false; if( mpImplFontCharMap->mpStartGlyphs == nullptr ) { // only the char-ranges are known const int nRange = findRangeIndex( cChar ); if( nRange==0 && cChar < mpImplFontCharMap->mpRangeCodes[0] ) return false; bHasChar = ((nRange & 1) == 0); // inside a range } else { // glyph mapping is available const int nGlyphIndex = GetGlyphIndex( cChar ); bHasChar = (nGlyphIndex != 0); // not the notdef-glyph } return bHasChar; } sal_UCS4 FontCharMap::GetFirstChar() const { return mpImplFontCharMap->mpRangeCodes[0]; } sal_UCS4 FontCharMap::GetLastChar() const { return (mpImplFontCharMap->mpRangeCodes[ 2*mpImplFontCharMap->mnRangeCount-1 ] - 1); } sal_UCS4 FontCharMap::GetNextChar( sal_UCS4 cChar ) const { if( cChar < GetFirstChar() ) return GetFirstChar(); if( cChar >= GetLastChar() ) return GetLastChar(); int nRange = findRangeIndex( cChar + 1 ); if( nRange & 1 ) // outside of range? return mpImplFontCharMap->mpRangeCodes[ nRange + 1 ]; // => first in next range return (cChar + 1); } sal_UCS4 FontCharMap::GetPrevChar( sal_UCS4 cChar ) const { if( cChar <= GetFirstChar() ) return GetFirstChar(); if( cChar > GetLastChar() ) return GetLastChar(); int nRange = findRangeIndex( cChar - 1 ); if( nRange & 1 ) // outside a range? return (mpImplFontCharMap->mpRangeCodes[ nRange ] - 1); // => last in prev range return (cChar - 1); } int FontCharMap::GetIndexFromChar( sal_UCS4 cChar ) const { // TODO: improve linear walk? int nCharIndex = 0; const sal_UCS4* pRange = &mpImplFontCharMap->mpRangeCodes[0]; for( int i = 0; i < mpImplFontCharMap->mnRangeCount; ++i ) { sal_UCS4 cFirst = *(pRange++); sal_UCS4 cLast = *(pRange++); if( cChar >= cLast ) nCharIndex += cLast - cFirst; else if( cChar >= cFirst ) return nCharIndex + (cChar - cFirst); else break; } return -1; } sal_UCS4 FontCharMap::GetCharFromIndex( int nIndex ) const { // TODO: improve linear walk? const sal_UCS4* pRange = &mpImplFontCharMap->mpRangeCodes[0]; for( int i = 0; i < mpImplFontCharMap->mnRangeCount; ++i ) { sal_UCS4 cFirst = *(pRange++); sal_UCS4 cLast = *(pRange++); nIndex -= cLast - cFirst; if( nIndex < 0 ) return (cLast + nIndex); } // we can only get here with an out-of-bounds charindex return mpImplFontCharMap->mpRangeCodes[0]; } int FontCharMap::findRangeIndex( sal_UCS4 cChar ) const { int nLower = 0; int nMid = mpImplFontCharMap->mnRangeCount; int nUpper = 2 * mpImplFontCharMap->mnRangeCount - 1; while( nLower < nUpper ) { if( cChar >= mpImplFontCharMap->mpRangeCodes[ nMid ] ) nLower = nMid; else nUpper = nMid - 1; nMid = (nLower + nUpper + 1) / 2; } return nMid; } int FontCharMap::GetGlyphIndex( sal_UCS4 cChar ) const { // return -1 if the object doesn't know the glyph ids if( !mpImplFontCharMap->mpStartGlyphs ) return -1; // return 0 if the unicode doesn't have a matching glyph int nRange = findRangeIndex( cChar ); // check that we are inside any range if( (nRange == 0) && (cChar < mpImplFontCharMap->mpRangeCodes[0]) ) { // symbol aliasing gives symbol fonts a second chance const bool bSymbolic = cChar <= 0xFF && (mpImplFontCharMap->mpRangeCodes[0]>=0xF000) && (mpImplFontCharMap->mpRangeCodes[1]<=0xF0FF); if( !bSymbolic ) return 0; // check for symbol aliasing (U+F0xx -> U+00xx) cChar |= 0xF000; nRange = findRangeIndex( cChar ); if( (nRange == 0) && (cChar < mpImplFontCharMap->mpRangeCodes[0]) ) { return 0; } } // check that we are inside a range if( (nRange & 1) != 0 ) return 0; // get glyph index directly or indirectly int nGlyphIndex = cChar - mpImplFontCharMap->mpRangeCodes[ nRange ]; const int nStartIndex = mpImplFontCharMap->mpStartGlyphs[ nRange/2 ]; if( nStartIndex >= 0 ) { // the glyph index can be calculated nGlyphIndex += nStartIndex; } else { // the glyphid array has the glyph index nGlyphIndex = mpImplFontCharMap->mpGlyphIds[ nGlyphIndex - nStartIndex]; } return nGlyphIndex; } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */