/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include "pdfwriter_impl.hxx" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace vcl; using namespace com::sun::star; using namespace com::sun::star::uno; using namespace com::sun::star::beans; static bool lcl_canUsePDFAxialShading(const Gradient& rGradient); void PDFWriterImpl::implWriteGradient( const tools::PolyPolygon& i_rPolyPoly, const Gradient& i_rGradient, VirtualDevice* i_pDummyVDev, const vcl::PDFWriter::PlayMetafileContext& i_rContext ) { GDIMetaFile aTmpMtf; i_pDummyVDev->AddGradientActions( i_rPolyPoly.GetBoundRect(), i_rGradient, aTmpMtf ); m_rOuterFace.Push(); m_rOuterFace.IntersectClipRegion( i_rPolyPoly.getB2DPolyPolygon() ); playMetafile( aTmpMtf, nullptr, i_rContext, i_pDummyVDev ); m_rOuterFace.Pop(); } void PDFWriterImpl::implWriteBitmapEx( const Point& i_rPoint, const Size& i_rSize, const BitmapEx& i_rBitmapEx, const Graphic& i_Graphic, VirtualDevice const * i_pDummyVDev, const vcl::PDFWriter::PlayMetafileContext& i_rContext ) { if ( i_rBitmapEx.IsEmpty() || !i_rSize.Width() || !i_rSize.Height() ) return; BitmapEx aBitmapEx( i_rBitmapEx ); Point aPoint( i_rPoint ); Size aSize( i_rSize ); // #i19065# Negative sizes have mirror semantics on // OutputDevice. BitmapEx and co. have no idea about that, so // perform that _before_ doing anything with aBitmapEx. BmpMirrorFlags nMirrorFlags(BmpMirrorFlags::NONE); if( aSize.Width() < 0 ) { aSize.setWidth( aSize.Width() * -1 ); aPoint.AdjustX( -(aSize.Width()) ); nMirrorFlags |= BmpMirrorFlags::Horizontal; } if( aSize.Height() < 0 ) { aSize.setHeight( aSize.Height() * -1 ); aPoint.AdjustY( -(aSize.Height()) ); nMirrorFlags |= BmpMirrorFlags::Vertical; } if( nMirrorFlags != BmpMirrorFlags::NONE ) { aBitmapEx.Mirror( nMirrorFlags ); } bool bIsJpeg = false, bIsPng = false; if( i_Graphic.GetType() != GraphicType::NONE && i_Graphic.GetBitmapEx() == aBitmapEx ) { GfxLinkType eType = i_Graphic.GetGfxLink().GetType(); bIsJpeg = (eType == GfxLinkType::NativeJpg); bIsPng = (eType == GfxLinkType::NativePng); } // Do not downsample images smaller than 50x50px. const Size aBmpSize(aBitmapEx.GetSizePixel()); if (i_rContext.m_nMaxImageResolution > 50 && aBmpSize.getWidth() > 50 && aBmpSize.getHeight() > 50) { // do downsampling if necessary const Size aDstSizeTwip( i_pDummyVDev->PixelToLogic(i_pDummyVDev->LogicToPixel(aSize), MapMode(MapUnit::MapTwip)) ); const double fBmpPixelX = aBmpSize.Width(); const double fBmpPixelY = aBmpSize.Height(); const double fMaxPixelX = aDstSizeTwip.Width() * i_rContext.m_nMaxImageResolution / 1440.0; const double fMaxPixelY = aDstSizeTwip.Height() * i_rContext.m_nMaxImageResolution / 1440.0; // check, if the bitmap DPI exceeds the maximum DPI (allow 4 pixel rounding tolerance) if( ( ( fBmpPixelX > ( fMaxPixelX + 4 ) ) || ( fBmpPixelY > ( fMaxPixelY + 4 ) ) ) && ( fBmpPixelY > 0.0 ) && ( fMaxPixelY > 0.0 ) ) { // do scaling Size aNewBmpSize; const double fBmpWH = fBmpPixelX / fBmpPixelY; const double fMaxWH = fMaxPixelX / fMaxPixelY; if( fBmpWH < fMaxWH ) { aNewBmpSize.setWidth( FRound( fMaxPixelY * fBmpWH ) ); aNewBmpSize.setHeight( FRound( fMaxPixelY ) ); } else if( fBmpWH > 0.0 ) { aNewBmpSize.setWidth( FRound( fMaxPixelX ) ); aNewBmpSize.setHeight( FRound( fMaxPixelX / fBmpWH) ); } if( aNewBmpSize.Width() && aNewBmpSize.Height() ) { // #i121233# Use best quality for PDF exports aBitmapEx.Scale( aNewBmpSize, BmpScaleFlag::BestQuality ); } else { aBitmapEx.SetEmpty(); } } } const Size aSizePixel( aBitmapEx.GetSizePixel() ); if ( aSizePixel.Width() && aSizePixel.Height() ) { if( m_aContext.ColorMode == PDFWriter::DrawGreyscale ) { BmpConversion eConv = BmpConversion::N8BitGreys; int nDepth = aBitmapEx.GetBitmap().GetBitCount(); if( nDepth <= 4 ) eConv = BmpConversion::N4BitGreys; if( nDepth > 1 ) aBitmapEx.Convert( eConv ); } bool bUseJPGCompression = !i_rContext.m_bOnlyLosslessCompression; if ( bIsPng || ( aSizePixel.Width() < 32 ) || ( aSizePixel.Height() < 32 ) ) bUseJPGCompression = false; auto pStrm=std::make_shared(); Bitmap aMask; bool bTrueColorJPG = true; if ( bUseJPGCompression ) { // TODO this checks could be done much earlier, saving us // from trying conversion & stores before... if ( !aBitmapEx.IsTransparent() ) { const auto& rCacheEntry=m_aPDFBmpCache.find( aBitmapEx.GetChecksum()); if ( rCacheEntry != m_aPDFBmpCache.end() ) { m_rOuterFace.DrawJPGBitmap( *rCacheEntry->second, true, aSizePixel, tools::Rectangle( aPoint, aSize ), aMask, i_Graphic ); return; } } sal_uInt32 nZippedFileSize = 0; // sj: we will calculate the filesize of a zipped bitmap if ( !bIsJpeg ) // to determine if jpeg compression is useful { SvMemoryStream aTemp; aTemp.SetCompressMode( aTemp.GetCompressMode() | SvStreamCompressFlags::ZBITMAP ); aTemp.SetVersion( SOFFICE_FILEFORMAT_40 ); // sj: up from version 40 our bitmap stream operator WriteDIBBitmapEx(aBitmapEx, aTemp); // is capable of zlib stream compression nZippedFileSize = aTemp.TellEnd(); } if ( aBitmapEx.IsTransparent() ) { if ( aBitmapEx.IsAlpha() ) aMask = aBitmapEx.GetAlpha().GetBitmap(); else aMask = aBitmapEx.GetMask(); } Graphic aGraphic( aBitmapEx.GetBitmap() ); Sequence< PropertyValue > aFilterData( 2 ); aFilterData[ 0 ].Name = "Quality"; aFilterData[ 0 ].Value <<= sal_Int32(i_rContext.m_nJPEGQuality); aFilterData[ 1 ].Name = "ColorMode"; aFilterData[ 1 ].Value <<= sal_Int32(0); try { uno::Reference < io::XStream > xStream = new utl::OStreamWrapper( *pStrm ); uno::Reference< io::XSeekable > xSeekable( xStream, UNO_QUERY_THROW ); uno::Reference< uno::XComponentContext > xContext( comphelper::getProcessComponentContext() ); uno::Reference< graphic::XGraphicProvider > xGraphicProvider( graphic::GraphicProvider::create(xContext) ); uno::Reference< graphic::XGraphic > xGraphic( aGraphic.GetXGraphic() ); uno::Reference < io::XOutputStream > xOut( xStream->getOutputStream() ); uno::Sequence< beans::PropertyValue > aOutMediaProperties( 3 ); aOutMediaProperties[0].Name = "OutputStream"; aOutMediaProperties[0].Value <<= xOut; aOutMediaProperties[1].Name = "MimeType"; aOutMediaProperties[1].Value <<= OUString("image/jpeg"); aOutMediaProperties[2].Name = "FilterData"; aOutMediaProperties[2].Value <<= aFilterData; xGraphicProvider->storeGraphic( xGraphic, aOutMediaProperties ); xOut->flush(); if ( !bIsJpeg && xSeekable->getLength() > nZippedFileSize ) { bUseJPGCompression = false; } else { pStrm->Seek( STREAM_SEEK_TO_END ); xSeekable->seek( 0 ); Sequence< PropertyValue > aArgs( 1 ); aArgs[ 0 ].Name = "InputStream"; aArgs[ 0 ].Value <<= xStream; uno::Reference< XPropertySet > xPropSet( xGraphicProvider->queryGraphicDescriptor( aArgs ) ); if ( xPropSet.is() ) { sal_Int16 nBitsPerPixel = 24; if ( xPropSet->getPropertyValue("BitsPerPixel") >>= nBitsPerPixel ) { bTrueColorJPG = nBitsPerPixel != 8; } } } } catch( uno::Exception& ) { bUseJPGCompression = false; } } if ( bUseJPGCompression ) { m_rOuterFace.DrawJPGBitmap( *pStrm, bTrueColorJPG, aSizePixel, tools::Rectangle( aPoint, aSize ), aMask, i_Graphic ); if (!aBitmapEx.IsTransparent() && bTrueColorJPG) { // Cache last jpeg export m_aPDFBmpCache.insert( {aBitmapEx.GetChecksum(), pStrm}); } } else if ( aBitmapEx.IsTransparent() ) m_rOuterFace.DrawBitmapEx( aPoint, aSize, aBitmapEx ); else m_rOuterFace.DrawBitmap( aPoint, aSize, aBitmapEx.GetBitmap(), i_Graphic ); } } void PDFWriterImpl::playMetafile( const GDIMetaFile& i_rMtf, vcl::PDFExtOutDevData* i_pOutDevData, const vcl::PDFWriter::PlayMetafileContext& i_rContext, VirtualDevice* pDummyVDev ) { bool bAssertionFired( false ); ScopedVclPtr xPrivateDevice; if( ! pDummyVDev ) { xPrivateDevice.disposeAndReset(VclPtr::Create()); pDummyVDev = xPrivateDevice.get(); pDummyVDev->EnableOutput( false ); pDummyVDev->SetMapMode( i_rMtf.GetPrefMapMode() ); } const GDIMetaFile& aMtf( i_rMtf ); for( sal_uInt32 i = 0, nCount = aMtf.GetActionSize(); i < nCount; ) { if ( !i_pOutDevData || !i_pOutDevData->PlaySyncPageAct( m_rOuterFace, i, aMtf ) ) { const MetaAction* pAction = aMtf.GetAction( i ); const MetaActionType nType = pAction->GetType(); switch( nType ) { case MetaActionType::PIXEL: { const MetaPixelAction* pA = static_cast(pAction); m_rOuterFace.DrawPixel( pA->GetPoint(), pA->GetColor() ); } break; case MetaActionType::POINT: { const MetaPointAction* pA = static_cast(pAction); m_rOuterFace.DrawPixel( pA->GetPoint() ); } break; case MetaActionType::LINE: { const MetaLineAction* pA = static_cast(pAction); if ( pA->GetLineInfo().IsDefault() ) m_rOuterFace.DrawLine( pA->GetStartPoint(), pA->GetEndPoint() ); else m_rOuterFace.DrawLine( pA->GetStartPoint(), pA->GetEndPoint(), pA->GetLineInfo() ); } break; case MetaActionType::RECT: { const MetaRectAction* pA = static_cast(pAction); m_rOuterFace.DrawRect( pA->GetRect() ); } break; case MetaActionType::ROUNDRECT: { const MetaRoundRectAction* pA = static_cast(pAction); m_rOuterFace.DrawRect( pA->GetRect(), pA->GetHorzRound(), pA->GetVertRound() ); } break; case MetaActionType::ELLIPSE: { const MetaEllipseAction* pA = static_cast(pAction); m_rOuterFace.DrawEllipse( pA->GetRect() ); } break; case MetaActionType::ARC: { const MetaArcAction* pA = static_cast(pAction); m_rOuterFace.DrawArc( pA->GetRect(), pA->GetStartPoint(), pA->GetEndPoint() ); } break; case MetaActionType::PIE: { const MetaArcAction* pA = static_cast(pAction); m_rOuterFace.DrawPie( pA->GetRect(), pA->GetStartPoint(), pA->GetEndPoint() ); } break; case MetaActionType::CHORD: { const MetaChordAction* pA = static_cast(pAction); m_rOuterFace.DrawChord( pA->GetRect(), pA->GetStartPoint(), pA->GetEndPoint() ); } break; case MetaActionType::POLYGON: { const MetaPolygonAction* pA = static_cast(pAction); m_rOuterFace.DrawPolygon( pA->GetPolygon() ); } break; case MetaActionType::POLYLINE: { const MetaPolyLineAction* pA = static_cast(pAction); if ( pA->GetLineInfo().IsDefault() ) m_rOuterFace.DrawPolyLine( pA->GetPolygon() ); else m_rOuterFace.DrawPolyLine( pA->GetPolygon(), pA->GetLineInfo() ); } break; case MetaActionType::POLYPOLYGON: { const MetaPolyPolygonAction* pA = static_cast(pAction); m_rOuterFace.DrawPolyPolygon( pA->GetPolyPolygon() ); } break; case MetaActionType::GRADIENT: { const MetaGradientAction* pA = static_cast(pAction); const Gradient& rGradient = pA->GetGradient(); if (lcl_canUsePDFAxialShading(rGradient)) { m_rOuterFace.DrawGradient( pA->GetRect(), rGradient ); } else { const tools::PolyPolygon aPolyPoly( pA->GetRect() ); implWriteGradient( aPolyPoly, rGradient, pDummyVDev, i_rContext ); } } break; case MetaActionType::GRADIENTEX: { const MetaGradientExAction* pA = static_cast(pAction); const Gradient& rGradient = pA->GetGradient(); if (lcl_canUsePDFAxialShading(rGradient)) m_rOuterFace.DrawGradient( pA->GetPolyPolygon(), rGradient ); else implWriteGradient( pA->GetPolyPolygon(), rGradient, pDummyVDev, i_rContext ); } break; case MetaActionType::HATCH: { const MetaHatchAction* pA = static_cast(pAction); m_rOuterFace.DrawHatch( pA->GetPolyPolygon(), pA->GetHatch() ); } break; case MetaActionType::Transparent: { const MetaTransparentAction* pA = static_cast(pAction); m_rOuterFace.DrawTransparent( pA->GetPolyPolygon(), pA->GetTransparence() ); } break; case MetaActionType::FLOATTRANSPARENT: { const MetaFloatTransparentAction* pA = static_cast(pAction); GDIMetaFile aTmpMtf( pA->GetGDIMetaFile() ); const Point& rPos = pA->GetPoint(); const Size& rSize= pA->GetSize(); const Gradient& rTransparenceGradient = pA->GetGradient(); // special case constant alpha value if( rTransparenceGradient.GetStartColor() == rTransparenceGradient.GetEndColor() ) { const Color aTransCol( rTransparenceGradient.GetStartColor() ); const sal_uInt16 nTransPercent = aTransCol.GetLuminance() * 100 / 255; m_rOuterFace.BeginTransparencyGroup(); playMetafile( aTmpMtf, nullptr, i_rContext, pDummyVDev ); m_rOuterFace.EndTransparencyGroup( tools::Rectangle( rPos, rSize ), nTransPercent ); } else { const Size aDstSizeTwip( pDummyVDev->PixelToLogic(pDummyVDev->LogicToPixel(rSize), MapMode(MapUnit::MapTwip)) ); // i#115962# Always use at least 300 DPI for bitmap conversion of transparence gradients, // else the quality is not acceptable (see bugdoc as example) sal_Int32 nMaxBmpDPI(300); if( i_rContext.m_nMaxImageResolution > 50 ) { if ( nMaxBmpDPI > i_rContext.m_nMaxImageResolution ) nMaxBmpDPI = i_rContext.m_nMaxImageResolution; } const sal_Int32 nPixelX = static_cast(static_cast(aDstSizeTwip.Width()) * static_cast(nMaxBmpDPI) / 1440.0); const sal_Int32 nPixelY = static_cast(static_cast(aDstSizeTwip.Height()) * static_cast(nMaxBmpDPI) / 1440.0); if ( nPixelX && nPixelY ) { Size aDstSizePixel( nPixelX, nPixelY ); ScopedVclPtrInstance xVDev; if( xVDev->SetOutputSizePixel( aDstSizePixel ) ) { Bitmap aPaint, aMask; AlphaMask aAlpha; Point aPoint; MapMode aMapMode( pDummyVDev->GetMapMode() ); aMapMode.SetOrigin( aPoint ); xVDev->SetMapMode( aMapMode ); Size aDstSize( xVDev->PixelToLogic( aDstSizePixel ) ); Point aMtfOrigin( aTmpMtf.GetPrefMapMode().GetOrigin() ); if ( aMtfOrigin.X() || aMtfOrigin.Y() ) aTmpMtf.Move( -aMtfOrigin.X(), -aMtfOrigin.Y() ); double fScaleX = static_cast(aDstSize.Width()) / static_cast(aTmpMtf.GetPrefSize().Width()); double fScaleY = static_cast(aDstSize.Height()) / static_cast(aTmpMtf.GetPrefSize().Height()); if( fScaleX != 1.0 || fScaleY != 1.0 ) aTmpMtf.Scale( fScaleX, fScaleY ); aTmpMtf.SetPrefMapMode( aMapMode ); // create paint bitmap aTmpMtf.WindStart(); aTmpMtf.Play( xVDev.get(), aPoint, aDstSize ); aTmpMtf.WindStart(); xVDev->EnableMapMode( false ); aPaint = xVDev->GetBitmap( aPoint, aDstSizePixel ); xVDev->EnableMapMode(); // create mask bitmap xVDev->SetLineColor( COL_BLACK ); xVDev->SetFillColor( COL_BLACK ); xVDev->DrawRect( tools::Rectangle( aPoint, aDstSize ) ); xVDev->SetDrawMode( DrawModeFlags::WhiteLine | DrawModeFlags::WhiteFill | DrawModeFlags::WhiteText | DrawModeFlags::WhiteBitmap | DrawModeFlags::WhiteGradient ); aTmpMtf.WindStart(); aTmpMtf.Play( xVDev.get(), aPoint, aDstSize ); aTmpMtf.WindStart(); xVDev->EnableMapMode( false ); aMask = xVDev->GetBitmap( aPoint, aDstSizePixel ); xVDev->EnableMapMode(); // create alpha mask from gradient xVDev->SetDrawMode( DrawModeFlags::GrayGradient ); xVDev->DrawGradient( tools::Rectangle( aPoint, aDstSize ), rTransparenceGradient ); xVDev->SetDrawMode( DrawModeFlags::Default ); xVDev->EnableMapMode( false ); xVDev->DrawMask( aPoint, aDstSizePixel, aMask, COL_WHITE ); aAlpha = xVDev->GetBitmap( aPoint, aDstSizePixel ); Graphic aGraphic = i_pOutDevData ? i_pOutDevData->GetCurrentGraphic() : Graphic(); implWriteBitmapEx( rPos, rSize, BitmapEx( aPaint, aAlpha ), aGraphic, pDummyVDev, i_rContext ); } } } } break; case MetaActionType::EPS: { const MetaEPSAction* pA = static_cast(pAction); const GDIMetaFile& aSubstitute( pA->GetSubstitute() ); m_rOuterFace.Push(); pDummyVDev->Push(); MapMode aMapMode( aSubstitute.GetPrefMapMode() ); Size aOutSize( OutputDevice::LogicToLogic( pA->GetSize(), pDummyVDev->GetMapMode(), aMapMode ) ); aMapMode.SetScaleX( Fraction( aOutSize.Width(), aSubstitute.GetPrefSize().Width() ) ); aMapMode.SetScaleY( Fraction( aOutSize.Height(), aSubstitute.GetPrefSize().Height() ) ); aMapMode.SetOrigin( OutputDevice::LogicToLogic( pA->GetPoint(), pDummyVDev->GetMapMode(), aMapMode ) ); m_rOuterFace.SetMapMode( aMapMode ); pDummyVDev->SetMapMode( aMapMode ); playMetafile( aSubstitute, nullptr, i_rContext, pDummyVDev ); pDummyVDev->Pop(); m_rOuterFace.Pop(); } break; case MetaActionType::COMMENT: if( ! i_rContext.m_bTransparenciesWereRemoved ) { const MetaCommentAction* pA = static_cast(pAction); if( pA->GetComment().equalsIgnoreAsciiCase("XGRAD_SEQ_BEGIN")) { const MetaGradientExAction* pGradAction = nullptr; bool bDone = false; while( !bDone && ( ++i < nCount ) ) { pAction = aMtf.GetAction( i ); if( pAction->GetType() == MetaActionType::GRADIENTEX ) pGradAction = static_cast(pAction); else if( ( pAction->GetType() == MetaActionType::COMMENT ) && ( static_cast(pAction)->GetComment().equalsIgnoreAsciiCase("XGRAD_SEQ_END")) ) { bDone = true; } } if( pGradAction ) { if (lcl_canUsePDFAxialShading(pGradAction->GetGradient())) { m_rOuterFace.DrawGradient( pGradAction->GetPolyPolygon(), pGradAction->GetGradient() ); } else { implWriteGradient( pGradAction->GetPolyPolygon(), pGradAction->GetGradient(), pDummyVDev, i_rContext ); } } } else { const sal_uInt8* pData = pA->GetData(); if ( pData ) { SvMemoryStream aMemStm( const_cast(pData), pA->GetDataSize(), StreamMode::READ ); bool bSkipSequence = false; OString sSeqEnd; if( pA->GetComment() == "XPATHSTROKE_SEQ_BEGIN" ) { sSeqEnd = OString("XPATHSTROKE_SEQ_END"); SvtGraphicStroke aStroke; ReadSvtGraphicStroke( aMemStm, aStroke ); tools::Polygon aPath; aStroke.getPath( aPath ); tools::PolyPolygon aStartArrow; tools::PolyPolygon aEndArrow; double fTransparency( aStroke.getTransparency() ); double fStrokeWidth( aStroke.getStrokeWidth() ); SvtGraphicStroke::DashArray aDashArray; aStroke.getStartArrow( aStartArrow ); aStroke.getEndArrow( aEndArrow ); aStroke.getDashArray( aDashArray ); bSkipSequence = true; if ( aStartArrow.Count() || aEndArrow.Count() ) bSkipSequence = false; if ( !aDashArray.empty() && ( fStrokeWidth != 0.0 ) && ( fTransparency == 0.0 ) ) bSkipSequence = false; if ( bSkipSequence ) { PDFWriter::ExtLineInfo aInfo; aInfo.m_fLineWidth = fStrokeWidth; aInfo.m_fTransparency = fTransparency; aInfo.m_fMiterLimit = aStroke.getMiterLimit(); switch( aStroke.getCapType() ) { default: case SvtGraphicStroke::capButt: aInfo.m_eCap = PDFWriter::capButt;break; case SvtGraphicStroke::capRound: aInfo.m_eCap = PDFWriter::capRound;break; case SvtGraphicStroke::capSquare: aInfo.m_eCap = PDFWriter::capSquare;break; } switch( aStroke.getJoinType() ) { default: case SvtGraphicStroke::joinMiter: aInfo.m_eJoin = PDFWriter::joinMiter;break; case SvtGraphicStroke::joinRound: aInfo.m_eJoin = PDFWriter::joinRound;break; case SvtGraphicStroke::joinBevel: aInfo.m_eJoin = PDFWriter::joinBevel;break; case SvtGraphicStroke::joinNone: aInfo.m_eJoin = PDFWriter::joinMiter; aInfo.m_fMiterLimit = 0.0; break; } aInfo.m_aDashArray = aDashArray; if(SvtGraphicStroke::joinNone == aStroke.getJoinType() && fStrokeWidth > 0.0) { // emulate no edge rounding by handling single edges const sal_uInt16 nPoints(aPath.GetSize()); const bool bCurve(aPath.HasFlags()); for(sal_uInt16 a(0); a + 1 < nPoints; a++) { if(bCurve && PolyFlags::Normal != aPath.GetFlags(a + 1) && a + 2 < nPoints && PolyFlags::Normal != aPath.GetFlags(a + 2) && a + 3 < nPoints) { const tools::Polygon aSnippet(4, aPath.GetConstPointAry() + a, aPath.GetConstFlagAry() + a); m_rOuterFace.DrawPolyLine( aSnippet, aInfo ); a += 2; } else { const tools::Polygon aSnippet(2, aPath.GetConstPointAry() + a); m_rOuterFace.DrawPolyLine( aSnippet, aInfo ); } } } else { m_rOuterFace.DrawPolyLine( aPath, aInfo ); } } } else if ( pA->GetComment() == "XPATHFILL_SEQ_BEGIN" ) { sSeqEnd = OString("XPATHFILL_SEQ_END"); SvtGraphicFill aFill; ReadSvtGraphicFill( aMemStm, aFill ); if ( ( aFill.getFillType() == SvtGraphicFill::fillSolid ) && ( aFill.getFillRule() == SvtGraphicFill::fillEvenOdd ) ) { double fTransparency = aFill.getTransparency(); if ( fTransparency == 0.0 ) { tools::PolyPolygon aPath; aFill.getPath( aPath ); bSkipSequence = true; m_rOuterFace.DrawPolyPolygon( aPath ); } else if ( fTransparency == 1.0 ) bSkipSequence = true; } } if ( bSkipSequence ) { while( ++i < nCount ) { pAction = aMtf.GetAction( i ); if ( pAction->GetType() == MetaActionType::COMMENT ) { OString sComment( static_cast(pAction)->GetComment() ); if (sComment == sSeqEnd) break; } // #i44496# // the replacement action for stroke is a filled rectangle // the set fillcolor of the replacement is part of the graphics // state and must not be skipped else if( pAction->GetType() == MetaActionType::FILLCOLOR ) { const MetaFillColorAction* pMA = static_cast(pAction); if( pMA->IsSetting() ) m_rOuterFace.SetFillColor( pMA->GetColor() ); else m_rOuterFace.SetFillColor(); } } } } } } break; case MetaActionType::BMP: { const MetaBmpAction* pA = static_cast(pAction); BitmapEx aBitmapEx( pA->GetBitmap() ); Size aSize( OutputDevice::LogicToLogic( aBitmapEx.GetPrefSize(), aBitmapEx.GetPrefMapMode(), pDummyVDev->GetMapMode() ) ); if( ! ( aSize.Width() && aSize.Height() ) ) aSize = pDummyVDev->PixelToLogic( aBitmapEx.GetSizePixel() ); Graphic aGraphic = i_pOutDevData ? i_pOutDevData->GetCurrentGraphic() : Graphic(); implWriteBitmapEx( pA->GetPoint(), aSize, aBitmapEx, aGraphic, pDummyVDev, i_rContext ); } break; case MetaActionType::BMPSCALE: { const MetaBmpScaleAction* pA = static_cast(pAction); Graphic aGraphic = i_pOutDevData ? i_pOutDevData->GetCurrentGraphic() : Graphic(); implWriteBitmapEx( pA->GetPoint(), pA->GetSize(), BitmapEx( pA->GetBitmap() ), aGraphic, pDummyVDev, i_rContext ); } break; case MetaActionType::BMPSCALEPART: { const MetaBmpScalePartAction* pA = static_cast(pAction); BitmapEx aBitmapEx( pA->GetBitmap() ); aBitmapEx.Crop( tools::Rectangle( pA->GetSrcPoint(), pA->GetSrcSize() ) ); Graphic aGraphic = i_pOutDevData ? i_pOutDevData->GetCurrentGraphic() : Graphic(); implWriteBitmapEx( pA->GetDestPoint(), pA->GetDestSize(), aBitmapEx, aGraphic, pDummyVDev, i_rContext ); } break; case MetaActionType::BMPEX: { const MetaBmpExAction* pA = static_cast(pAction); const BitmapEx& aBitmapEx( pA->GetBitmapEx() ); Size aSize( OutputDevice::LogicToLogic( aBitmapEx.GetPrefSize(), aBitmapEx.GetPrefMapMode(), pDummyVDev->GetMapMode() ) ); Graphic aGraphic = i_pOutDevData ? i_pOutDevData->GetCurrentGraphic() : Graphic(); implWriteBitmapEx( pA->GetPoint(), aSize, aBitmapEx, aGraphic, pDummyVDev, i_rContext ); } break; case MetaActionType::BMPEXSCALE: { const MetaBmpExScaleAction* pA = static_cast(pAction); Graphic aGraphic = i_pOutDevData ? i_pOutDevData->GetCurrentGraphic() : Graphic(); implWriteBitmapEx( pA->GetPoint(), pA->GetSize(), pA->GetBitmapEx(), aGraphic, pDummyVDev, i_rContext ); } break; case MetaActionType::BMPEXSCALEPART: { const MetaBmpExScalePartAction* pA = static_cast(pAction); BitmapEx aBitmapEx( pA->GetBitmapEx() ); aBitmapEx.Crop( tools::Rectangle( pA->GetSrcPoint(), pA->GetSrcSize() ) ); Graphic aGraphic = i_pOutDevData ? i_pOutDevData->GetCurrentGraphic() : Graphic(); implWriteBitmapEx( pA->GetDestPoint(), pA->GetDestSize(), aBitmapEx, aGraphic, pDummyVDev, i_rContext ); } break; case MetaActionType::MASK: case MetaActionType::MASKSCALE: case MetaActionType::MASKSCALEPART: { SAL_WARN( "vcl", "MetaMask...Action not supported yet" ); } break; case MetaActionType::TEXT: { const MetaTextAction* pA = static_cast(pAction); m_rOuterFace.DrawText( pA->GetPoint(), pA->GetText().copy( pA->GetIndex(), std::min(pA->GetText().getLength() - pA->GetIndex(), pA->GetLen()) ) ); } break; case MetaActionType::TEXTRECT: { const MetaTextRectAction* pA = static_cast(pAction); m_rOuterFace.DrawText( pA->GetRect(), pA->GetText(), pA->GetStyle() ); } break; case MetaActionType::TEXTARRAY: { const MetaTextArrayAction* pA = static_cast(pAction); m_rOuterFace.DrawTextArray( pA->GetPoint(), pA->GetText(), pA->GetDXArray(), pA->GetIndex(), pA->GetLen() ); } break; case MetaActionType::STRETCHTEXT: { const MetaStretchTextAction* pA = static_cast(pAction); m_rOuterFace.DrawStretchText( pA->GetPoint(), pA->GetWidth(), pA->GetText(), pA->GetIndex(), pA->GetLen() ); } break; case MetaActionType::TEXTLINE: { const MetaTextLineAction* pA = static_cast(pAction); m_rOuterFace.DrawTextLine( pA->GetStartPoint(), pA->GetWidth(), pA->GetStrikeout(), pA->GetUnderline(), pA->GetOverline() ); } break; case MetaActionType::CLIPREGION: { const MetaClipRegionAction* pA = static_cast(pAction); if( pA->IsClipping() ) { if( pA->GetRegion().IsEmpty() ) m_rOuterFace.SetClipRegion( basegfx::B2DPolyPolygon() ); else { const vcl::Region& aReg( pA->GetRegion() ); m_rOuterFace.SetClipRegion( aReg.GetAsB2DPolyPolygon() ); } } else m_rOuterFace.SetClipRegion(); } break; case MetaActionType::ISECTRECTCLIPREGION: { const MetaISectRectClipRegionAction* pA = static_cast(pAction); m_rOuterFace.IntersectClipRegion( pA->GetRect() ); } break; case MetaActionType::ISECTREGIONCLIPREGION: { const MetaISectRegionClipRegionAction* pA = static_cast(pAction); const vcl::Region& aReg( pA->GetRegion() ); m_rOuterFace.IntersectClipRegion( aReg.GetAsB2DPolyPolygon() ); } break; case MetaActionType::MOVECLIPREGION: { const MetaMoveClipRegionAction* pA = static_cast(pAction); m_rOuterFace.MoveClipRegion( pA->GetHorzMove(), pA->GetVertMove() ); } break; case MetaActionType::MAPMODE: { const_cast< MetaAction* >( pAction )->Execute( pDummyVDev ); m_rOuterFace.SetMapMode( pDummyVDev->GetMapMode() ); } break; case MetaActionType::LINECOLOR: { const MetaLineColorAction* pA = static_cast(pAction); if( pA->IsSetting() ) m_rOuterFace.SetLineColor( pA->GetColor() ); else m_rOuterFace.SetLineColor(); } break; case MetaActionType::FILLCOLOR: { const MetaFillColorAction* pA = static_cast(pAction); if( pA->IsSetting() ) m_rOuterFace.SetFillColor( pA->GetColor() ); else m_rOuterFace.SetFillColor(); } break; case MetaActionType::TEXTLINECOLOR: { const MetaTextLineColorAction* pA = static_cast(pAction); if( pA->IsSetting() ) m_rOuterFace.SetTextLineColor( pA->GetColor() ); else m_rOuterFace.SetTextLineColor(); } break; case MetaActionType::OVERLINECOLOR: { const MetaOverlineColorAction* pA = static_cast(pAction); if( pA->IsSetting() ) m_rOuterFace.SetOverlineColor( pA->GetColor() ); else m_rOuterFace.SetOverlineColor(); } break; case MetaActionType::TEXTFILLCOLOR: { const MetaTextFillColorAction* pA = static_cast(pAction); if( pA->IsSetting() ) m_rOuterFace.SetTextFillColor( pA->GetColor() ); else m_rOuterFace.SetTextFillColor(); } break; case MetaActionType::TEXTCOLOR: { const MetaTextColorAction* pA = static_cast(pAction); m_rOuterFace.SetTextColor( pA->GetColor() ); } break; case MetaActionType::TEXTALIGN: { const MetaTextAlignAction* pA = static_cast(pAction); m_rOuterFace.SetTextAlign( pA->GetTextAlign() ); } break; case MetaActionType::FONT: { const MetaFontAction* pA = static_cast(pAction); m_rOuterFace.SetFont( pA->GetFont() ); } break; case MetaActionType::PUSH: { const MetaPushAction* pA = static_cast(pAction); pDummyVDev->Push( pA->GetFlags() ); m_rOuterFace.Push( pA->GetFlags() ); } break; case MetaActionType::POP: { pDummyVDev->Pop(); m_rOuterFace.Pop(); } break; case MetaActionType::LAYOUTMODE: { const MetaLayoutModeAction* pA = static_cast(pAction); m_rOuterFace.SetLayoutMode( pA->GetLayoutMode() ); } break; case MetaActionType::TEXTLANGUAGE: { const MetaTextLanguageAction* pA = static_cast(pAction); m_rOuterFace.SetDigitLanguage( pA->GetTextLanguage() ); } break; case MetaActionType::WALLPAPER: { const MetaWallpaperAction* pA = static_cast(pAction); m_rOuterFace.DrawWallpaper( pA->GetRect(), pA->GetWallpaper() ); } break; case MetaActionType::RASTEROP: { // !!! >>> we don't want to support this actions } break; case MetaActionType::REFPOINT: { // !!! >>> we don't want to support this actions } break; default: // #i24604# Made assertion fire only once per // metafile. The asserted actions here are all // deprecated if( !bAssertionFired ) { bAssertionFired = true; SAL_WARN( "vcl", "PDFExport::ImplWriteActions: deprecated and unsupported MetaAction encountered " << static_cast(nType) ); } break; } i++; } } } // Encryption methods /* a crutch to transport a ::comphelper::Hash safely though UNO API this is needed for the PDF export dialog, which otherwise would have to pass clear text passwords down till they can be used in PDFWriter. Unfortunately the MD5 sum of the password (which is needed to create the PDF encryption key) is not sufficient, since an MD5 digest cannot be created in an arbitrary state which would be needed in PDFWriterImpl::computeEncryptionKey. */ class EncHashTransporter : public cppu::WeakImplHelper < css::beans::XMaterialHolder > { ::std::unique_ptr<::comphelper::Hash> m_pDigest; sal_IntPtr maID; std::vector< sal_uInt8 > maOValue; static std::map< sal_IntPtr, EncHashTransporter* > sTransporters; public: EncHashTransporter() : m_pDigest(new ::comphelper::Hash(::comphelper::HashType::MD5)) { maID = reinterpret_cast< sal_IntPtr >(this); while( sTransporters.find( maID ) != sTransporters.end() ) // paranoia mode maID++; sTransporters[ maID ] = this; } virtual ~EncHashTransporter() override { sTransporters.erase( maID ); SAL_INFO( "vcl", "EncHashTransporter freed" ); } ::comphelper::Hash* getUDigest() { return m_pDigest.get(); }; std::vector< sal_uInt8 >& getOValue() { return maOValue; } void invalidate() { m_pDigest.reset(); } // XMaterialHolder virtual uno::Any SAL_CALL getMaterial() override { return uno::makeAny( sal_Int64(maID) ); } static EncHashTransporter* getEncHashTransporter( const uno::Reference< beans::XMaterialHolder >& ); }; std::map< sal_IntPtr, EncHashTransporter* > EncHashTransporter::sTransporters; EncHashTransporter* EncHashTransporter::getEncHashTransporter( const uno::Reference< beans::XMaterialHolder >& xRef ) { EncHashTransporter* pResult = nullptr; if( xRef.is() ) { uno::Any aMat( xRef->getMaterial() ); sal_Int64 nMat = 0; if( aMat >>= nMat ) { std::map< sal_IntPtr, EncHashTransporter* >::iterator it = sTransporters.find( static_cast(nMat) ); if( it != sTransporters.end() ) pResult = it->second; } } return pResult; } void PDFWriterImpl::checkAndEnableStreamEncryption( sal_Int32 nObject ) { if( m_aContext.Encryption.Encrypt() ) { m_bEncryptThisStream = true; sal_Int32 i = m_nKeyLength; m_aContext.Encryption.EncryptionKey[i++] = static_cast(nObject); m_aContext.Encryption.EncryptionKey[i++] = static_cast( nObject >> 8 ); m_aContext.Encryption.EncryptionKey[i++] = static_cast( nObject >> 16 ); // the other location of m_nEncryptionKey is already set to 0, our fixed generation number // do the MD5 hash ::std::vector const nMD5Sum(::comphelper::Hash::calculateHash( m_aContext.Encryption.EncryptionKey.data(), i+2, ::comphelper::HashType::MD5)); // the i+2 to take into account the generation number, always zero // initialize the RC4 with the key // key length: see algorithm 3.1, step 4: (N+5) max 16 rtl_cipher_initARCFOUR( m_aCipher, rtl_Cipher_DirectionEncode, nMD5Sum.data(), m_nRC4KeyLength, nullptr, 0 ); } } void PDFWriterImpl::enableStringEncryption( sal_Int32 nObject ) { if( m_aContext.Encryption.Encrypt() ) { sal_Int32 i = m_nKeyLength; m_aContext.Encryption.EncryptionKey[i++] = static_cast(nObject); m_aContext.Encryption.EncryptionKey[i++] = static_cast( nObject >> 8 ); m_aContext.Encryption.EncryptionKey[i++] = static_cast( nObject >> 16 ); // the other location of m_nEncryptionKey is already set to 0, our fixed generation number // do the MD5 hash // the i+2 to take into account the generation number, always zero ::std::vector const nMD5Sum(::comphelper::Hash::calculateHash( m_aContext.Encryption.EncryptionKey.data(), i+2, ::comphelper::HashType::MD5)); // initialize the RC4 with the key // key length: see algorithm 3.1, step 4: (N+5) max 16 rtl_cipher_initARCFOUR( m_aCipher, rtl_Cipher_DirectionEncode, nMD5Sum.data(), m_nRC4KeyLength, nullptr, 0 ); } } /* init the encryption engine 1. init the document id, used both for building the document id and for building the encryption key(s) 2. build the encryption key following algorithms described in the PDF specification */ uno::Reference< beans::XMaterialHolder > PDFWriterImpl::initEncryption( const OUString& i_rOwnerPassword, const OUString& i_rUserPassword ) { uno::Reference< beans::XMaterialHolder > xResult; if( !i_rOwnerPassword.isEmpty() || !i_rUserPassword.isEmpty() ) { EncHashTransporter* pTransporter = new EncHashTransporter; xResult = pTransporter; // get padded passwords sal_uInt8 aPadUPW[ENCRYPTED_PWD_SIZE], aPadOPW[ENCRYPTED_PWD_SIZE]; padPassword( i_rOwnerPassword.isEmpty() ? i_rUserPassword : i_rOwnerPassword, aPadOPW ); padPassword( i_rUserPassword, aPadUPW ); if( computeODictionaryValue( aPadOPW, aPadUPW, pTransporter->getOValue(), SECUR_128BIT_KEY ) ) { pTransporter->getUDigest()->update(aPadUPW, ENCRYPTED_PWD_SIZE); } else xResult.clear(); // trash temporary padded cleartext PWDs rtl_secureZeroMemory (aPadOPW, sizeof(aPadOPW)); rtl_secureZeroMemory (aPadUPW, sizeof(aPadUPW)); } return xResult; } bool PDFWriterImpl::prepareEncryption( const uno::Reference< beans::XMaterialHolder >& xEnc ) { bool bSuccess = false; EncHashTransporter* pTransporter = EncHashTransporter::getEncHashTransporter( xEnc ); if( pTransporter ) { sal_Int32 nKeyLength = 0, nRC4KeyLength = 0; sal_Int32 nAccessPermissions = computeAccessPermissions( m_aContext.Encryption, nKeyLength, nRC4KeyLength ); m_aContext.Encryption.OValue = pTransporter->getOValue(); bSuccess = computeUDictionaryValue( pTransporter, m_aContext.Encryption, nKeyLength, nAccessPermissions ); } if( ! bSuccess ) { m_aContext.Encryption.OValue.clear(); m_aContext.Encryption.UValue.clear(); m_aContext.Encryption.EncryptionKey.clear(); } return bSuccess; } sal_Int32 PDFWriterImpl::computeAccessPermissions( const vcl::PDFWriter::PDFEncryptionProperties& i_rProperties, sal_Int32& o_rKeyLength, sal_Int32& o_rRC4KeyLength ) { /* 2) compute the access permissions, in numerical form the default value depends on the revision 2 (40 bit) or 3 (128 bit security): - for 40 bit security the unused bit must be set to 1, since they are not used - for 128 bit security the same bit must be preset to 0 and set later if needed according to the table 3.15, pdf v 1.4 */ sal_Int32 nAccessPermissions = 0xfffff0c0; o_rKeyLength = SECUR_128BIT_KEY; o_rRC4KeyLength = 16; // for this value see PDF spec v 1.4, algorithm 3.1 step 4, where n is 16, // thus maximum permitted value is 16 nAccessPermissions |= ( i_rProperties.CanPrintTheDocument ) ? 1 << 2 : 0; nAccessPermissions |= ( i_rProperties.CanModifyTheContent ) ? 1 << 3 : 0; nAccessPermissions |= ( i_rProperties.CanCopyOrExtract ) ? 1 << 4 : 0; nAccessPermissions |= ( i_rProperties.CanAddOrModify ) ? 1 << 5 : 0; nAccessPermissions |= ( i_rProperties.CanFillInteractive ) ? 1 << 8 : 0; nAccessPermissions |= ( i_rProperties.CanExtractForAccessibility ) ? 1 << 9 : 0; nAccessPermissions |= ( i_rProperties.CanAssemble ) ? 1 << 10 : 0; nAccessPermissions |= ( i_rProperties.CanPrintFull ) ? 1 << 11 : 0; return nAccessPermissions; } /************************************************************* begin i12626 methods Implements Algorithm 3.2, step 1 only */ void PDFWriterImpl::padPassword( const OUString& i_rPassword, sal_uInt8* o_pPaddedPW ) { // get ansi-1252 version of the password string CHECKIT ! i12626 OString aString( OUStringToOString( i_rPassword, RTL_TEXTENCODING_MS_1252 ) ); //copy the string to the target sal_Int32 nToCopy = ( aString.getLength() < ENCRYPTED_PWD_SIZE ) ? aString.getLength() : ENCRYPTED_PWD_SIZE; sal_Int32 nCurrentChar; for( nCurrentChar = 0; nCurrentChar < nToCopy; nCurrentChar++ ) o_pPaddedPW[nCurrentChar] = static_cast( aString[nCurrentChar] ); //pad it with standard byte string sal_Int32 i,y; for( i = nCurrentChar, y = 0 ; i < ENCRYPTED_PWD_SIZE; i++, y++ ) o_pPaddedPW[i] = s_nPadString[y]; } /********************************** Algorithm 3.2 Compute the encryption key used step 1 should already be done before calling, the paThePaddedPassword parameter should contain the padded password and must be 32 byte long, the encryption key is returned into the paEncryptionKey parameter, it will be 16 byte long for 128 bit security; for 40 bit security only the first 5 bytes are used TODO: in pdf ver 1.5 and 1.6 the step 6 is different, should be implemented. See spec. */ bool PDFWriterImpl::computeEncryptionKey( EncHashTransporter* i_pTransporter, vcl::PDFWriter::PDFEncryptionProperties& io_rProperties, sal_Int32 i_nAccessPermissions ) { bool bSuccess = true; ::std::vector nMD5Sum; // transporter contains an MD5 digest with the padded user password already ::comphelper::Hash *const pDigest = i_pTransporter->getUDigest(); if (pDigest) { //step 3 if( ! io_rProperties.OValue.empty() ) pDigest->update(io_rProperties.OValue.data(), io_rProperties.OValue.size()); else bSuccess = false; //Step 4 sal_uInt8 nPerm[4]; nPerm[0] = static_cast(i_nAccessPermissions); nPerm[1] = static_cast( i_nAccessPermissions >> 8 ); nPerm[2] = static_cast( i_nAccessPermissions >> 16 ); nPerm[3] = static_cast( i_nAccessPermissions >> 24 ); pDigest->update(nPerm, sizeof(nPerm)); //step 5, get the document ID, binary form pDigest->update(io_rProperties.DocumentIdentifier.data(), io_rProperties.DocumentIdentifier.size()); //get the digest nMD5Sum = pDigest->finalize(); //step 6, only if 128 bit for (sal_Int32 i = 0; i < 50; i++) { nMD5Sum = ::comphelper::Hash::calculateHash(nMD5Sum.data(), nMD5Sum.size(), ::comphelper::HashType::MD5); } } else bSuccess = false; i_pTransporter->invalidate(); //Step 7 if( bSuccess ) { io_rProperties.EncryptionKey.resize( MAXIMUM_RC4_KEY_LENGTH ); for( sal_Int32 i = 0; i < MD5_DIGEST_SIZE; i++ ) io_rProperties.EncryptionKey[i] = nMD5Sum[i]; } else io_rProperties.EncryptionKey.clear(); return bSuccess; } /********************************** Algorithm 3.3 Compute the encryption dictionary /O value, save into the class data member the step numbers down here correspond to the ones in PDF v.1.4 specification */ bool PDFWriterImpl::computeODictionaryValue( const sal_uInt8* i_pPaddedOwnerPassword, const sal_uInt8* i_pPaddedUserPassword, std::vector< sal_uInt8 >& io_rOValue, sal_Int32 i_nKeyLength ) { bool bSuccess = true; io_rOValue.resize( ENCRYPTED_PWD_SIZE ); rtlCipher aCipher = rtl_cipher_createARCFOUR( rtl_Cipher_ModeStream ); if (aCipher) { //step 1 already done, data is in i_pPaddedOwnerPassword //step 2 ::std::vector nMD5Sum(::comphelper::Hash::calculateHash( i_pPaddedOwnerPassword, ENCRYPTED_PWD_SIZE, ::comphelper::HashType::MD5)); //step 3, only if 128 bit if (i_nKeyLength == SECUR_128BIT_KEY) { sal_Int32 i; for (i = 0; i < 50; i++) { nMD5Sum = ::comphelper::Hash::calculateHash(nMD5Sum.data(), nMD5Sum.size(), ::comphelper::HashType::MD5); } } //Step 4, the key is in nMD5Sum //step 5 already done, data is in i_pPaddedUserPassword //step 6 if (rtl_cipher_initARCFOUR( aCipher, rtl_Cipher_DirectionEncode, nMD5Sum.data(), i_nKeyLength , nullptr, 0 ) == rtl_Cipher_E_None) { // encrypt the user password using the key set above rtl_cipher_encodeARCFOUR( aCipher, i_pPaddedUserPassword, ENCRYPTED_PWD_SIZE, // the data to be encrypted io_rOValue.data(), sal_Int32(io_rOValue.size()) ); //encrypted data //Step 7, only if 128 bit if( i_nKeyLength == SECUR_128BIT_KEY ) { sal_uInt32 i; size_t y; sal_uInt8 nLocalKey[ SECUR_128BIT_KEY ]; // 16 = 128 bit key for( i = 1; i <= 19; i++ ) // do it 19 times, start with 1 { for( y = 0; y < sizeof( nLocalKey ); y++ ) nLocalKey[y] = static_cast( nMD5Sum[y] ^ i ); if (rtl_cipher_initARCFOUR( aCipher, rtl_Cipher_DirectionEncode, nLocalKey, SECUR_128BIT_KEY, nullptr, 0 ) //destination data area, on init can be NULL != rtl_Cipher_E_None) { bSuccess = false; break; } rtl_cipher_encodeARCFOUR( aCipher, io_rOValue.data(), sal_Int32(io_rOValue.size()), // the data to be encrypted io_rOValue.data(), sal_Int32(io_rOValue.size()) ); // encrypted data, can be the same as the input, encrypt "in place" //step 8, store in class data member } } } else bSuccess = false; } else bSuccess = false; if( aCipher ) rtl_cipher_destroyARCFOUR( aCipher ); if( ! bSuccess ) io_rOValue.clear(); return bSuccess; } /********************************** Algorithms 3.4 and 3.5 Compute the encryption dictionary /U value, save into the class data member, revision 2 (40 bit) or 3 (128 bit) */ bool PDFWriterImpl::computeUDictionaryValue( EncHashTransporter* i_pTransporter, vcl::PDFWriter::PDFEncryptionProperties& io_rProperties, sal_Int32 i_nKeyLength, sal_Int32 i_nAccessPermissions ) { bool bSuccess = true; io_rProperties.UValue.resize( ENCRYPTED_PWD_SIZE ); ::comphelper::Hash aDigest(::comphelper::HashType::MD5); rtlCipher aCipher = rtl_cipher_createARCFOUR( rtl_Cipher_ModeStream ); if (aCipher) { //step 1, common to both 3.4 and 3.5 if( computeEncryptionKey( i_pTransporter, io_rProperties, i_nAccessPermissions ) ) { // prepare encryption key for object for( sal_Int32 i = i_nKeyLength, y = 0; y < 5 ; y++ ) io_rProperties.EncryptionKey[i++] = 0; //or 3.5, for 128 bit security //step6, initialize the last 16 bytes of the encrypted user password to 0 for(sal_uInt32 i = MD5_DIGEST_SIZE; i < sal_uInt32(io_rProperties.UValue.size()); i++) io_rProperties.UValue[i] = 0; //steps 2 and 3 aDigest.update(s_nPadString, sizeof(s_nPadString)); aDigest.update(io_rProperties.DocumentIdentifier.data(), io_rProperties.DocumentIdentifier.size()); ::std::vector const nMD5Sum(aDigest.finalize()); //Step 4 rtl_cipher_initARCFOUR( aCipher, rtl_Cipher_DirectionEncode, io_rProperties.EncryptionKey.data(), SECUR_128BIT_KEY, nullptr, 0 ); //destination data area rtl_cipher_encodeARCFOUR( aCipher, nMD5Sum.data(), nMD5Sum.size(), // the data to be encrypted io_rProperties.UValue.data(), SECUR_128BIT_KEY ); //encrypted data, stored in class data member //step 5 sal_uInt32 i; size_t y; sal_uInt8 nLocalKey[SECUR_128BIT_KEY]; for( i = 1; i <= 19; i++ ) // do it 19 times, start with 1 { for( y = 0; y < sizeof( nLocalKey ) ; y++ ) nLocalKey[y] = static_cast( io_rProperties.EncryptionKey[y] ^ i ); rtl_cipher_initARCFOUR( aCipher, rtl_Cipher_DirectionEncode, nLocalKey, SECUR_128BIT_KEY, // key and key length nullptr, 0 ); //destination data area, on init can be NULL rtl_cipher_encodeARCFOUR( aCipher, io_rProperties.UValue.data(), SECUR_128BIT_KEY, // the data to be encrypted io_rProperties.UValue.data(), SECUR_128BIT_KEY ); // encrypted data, can be the same as the input, encrypt "in place" } } else bSuccess = false; } else bSuccess = false; if( aCipher ) rtl_cipher_destroyARCFOUR( aCipher ); if( ! bSuccess ) io_rProperties.UValue.clear(); return bSuccess; } /* end i12626 methods */ static const long unsetRun[256] = { 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, /* 0x00 - 0x0f */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, /* 0x10 - 0x1f */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0x20 - 0x2f */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0x30 - 0x3f */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x40 - 0x4f */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x50 - 0x5f */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x60 - 0x6f */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x70 - 0x7f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x80 - 0x8f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x90 - 0x9f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xa0 - 0xaf */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xb0 - 0xbf */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xc0 - 0xcf */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xd0 - 0xdf */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xe0 - 0xef */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xf0 - 0xff */ }; static const long setRun[256] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x00 - 0x0f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x10 - 0x1f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x20 - 0x2f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x30 - 0x3f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x40 - 0x4f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x50 - 0x5f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x60 - 0x6f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x70 - 0x7f */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x80 - 0x8f */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x90 - 0x9f */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0xa0 - 0xaf */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0xb0 - 0xbf */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0xc0 - 0xcf */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0xd0 - 0xdf */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, /* 0xe0 - 0xef */ 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 7, 8, /* 0xf0 - 0xff */ }; static bool isSet( const Scanline i_pLine, long i_nIndex ) { return (i_pLine[ i_nIndex/8 ] & (0x80 >> (i_nIndex&7))) != 0; } static long findBitRunImpl( const Scanline i_pLine, long i_nStartIndex, long i_nW, bool i_bSet ) { long nIndex = i_nStartIndex; if( nIndex < i_nW ) { const sal_uInt8 * pByte = i_pLine + (nIndex/8); sal_uInt8 nByte = *pByte; // run up to byte boundary long nBitInByte = (nIndex & 7); if( nBitInByte ) { sal_uInt8 nMask = 0x80 >> nBitInByte; while( nBitInByte != 8 ) { if( (nByte & nMask) != (i_bSet ? nMask : 0) ) return std::min(nIndex, i_nW); nMask = nMask >> 1; nBitInByte++; nIndex++; } if( nIndex < i_nW ) { pByte++; nByte = *pByte; } } sal_uInt8 nRunByte; const long* pRunTable; if( i_bSet ) { nRunByte = 0xff; pRunTable = setRun; } else { nRunByte = 0; pRunTable = unsetRun; } if( nIndex < i_nW ) { while( nByte == nRunByte ) { nIndex += 8; if (nIndex >= i_nW) break; pByte++; nByte = *pByte; } } if( nIndex < i_nW ) { nIndex += pRunTable[nByte]; } } return std::min(nIndex, i_nW); } static long findBitRun(const Scanline i_pLine, long i_nStartIndex, long i_nW, bool i_bSet) { if (i_nStartIndex < 0) return i_nW; return findBitRunImpl(i_pLine, i_nStartIndex, i_nW, i_bSet); } static long findBitRun(const Scanline i_pLine, long i_nStartIndex, long i_nW) { if (i_nStartIndex < 0) return i_nW; const bool bSet = i_nStartIndex < i_nW && isSet(i_pLine, i_nStartIndex); return findBitRunImpl(i_pLine, i_nStartIndex, i_nW, bSet); } struct BitStreamState { sal_uInt8 mnBuffer; sal_uInt32 mnNextBitPos; BitStreamState() : mnBuffer( 0 ) , mnNextBitPos( 8 ) { } const sal_uInt8& getByte() const { return mnBuffer; } void flush() { mnNextBitPos = 8; mnBuffer = 0; } }; void PDFWriterImpl::putG4Bits( sal_uInt32 i_nLength, sal_uInt32 i_nCode, BitStreamState& io_rState ) { while( i_nLength > io_rState.mnNextBitPos ) { io_rState.mnBuffer |= static_cast( i_nCode >> (i_nLength - io_rState.mnNextBitPos) ); i_nLength -= io_rState.mnNextBitPos; writeBuffer( &io_rState.getByte(), 1 ); io_rState.flush(); } assert(i_nLength < 9); static const unsigned int msbmask[9] = { 0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff }; io_rState.mnBuffer |= static_cast( (i_nCode & msbmask[i_nLength]) << (io_rState.mnNextBitPos - i_nLength) ); io_rState.mnNextBitPos -= i_nLength; if( io_rState.mnNextBitPos == 0 ) { writeBuffer( &io_rState.getByte(), 1 ); io_rState.flush(); } } namespace { struct PixelCode { sal_uInt32 mnEncodedPixels; sal_uInt32 mnCodeBits; sal_uInt32 mnCode; }; } static const PixelCode WhitePixelCodes[] = { { 0, 8, 0x35 }, // 0011 0101 { 1, 6, 0x7 }, // 0001 11 { 2, 4, 0x7 }, // 0111 { 3, 4, 0x8 }, // 1000 { 4, 4, 0xB }, // 1011 { 5, 4, 0xC }, // 1100 { 6, 4, 0xE }, // 1110 { 7, 4, 0xF }, // 1111 { 8, 5, 0x13 }, // 1001 1 { 9, 5, 0x14 }, // 1010 0 { 10, 5, 0x7 }, // 0011 1 { 11, 5, 0x8 }, // 0100 0 { 12, 6, 0x8 }, // 0010 00 { 13, 6, 0x3 }, // 0000 11 { 14, 6, 0x34 }, // 1101 00 { 15, 6, 0x35 }, // 1101 01 { 16, 6, 0x2A }, // 1010 10 { 17, 6, 0x2B }, // 1010 11 { 18, 7, 0x27 }, // 0100 111 { 19, 7, 0xC }, // 0001 100 { 20, 7, 0x8 }, // 0001 000 { 21, 7, 0x17 }, // 0010 111 { 22, 7, 0x3 }, // 0000 011 { 23, 7, 0x4 }, // 0000 100 { 24, 7, 0x28 }, // 0101 000 { 25, 7, 0x2B }, // 0101 011 { 26, 7, 0x13 }, // 0010 011 { 27, 7, 0x24 }, // 0100 100 { 28, 7, 0x18 }, // 0011 000 { 29, 8, 0x2 }, // 0000 0010 { 30, 8, 0x3 }, // 0000 0011 { 31, 8, 0x1A }, // 0001 1010 { 32, 8, 0x1B }, // 0001 1011 { 33, 8, 0x12 }, // 0001 0010 { 34, 8, 0x13 }, // 0001 0011 { 35, 8, 0x14 }, // 0001 0100 { 36, 8, 0x15 }, // 0001 0101 { 37, 8, 0x16 }, // 0001 0110 { 38, 8, 0x17 }, // 0001 0111 { 39, 8, 0x28 }, // 0010 1000 { 40, 8, 0x29 }, // 0010 1001 { 41, 8, 0x2A }, // 0010 1010 { 42, 8, 0x2B }, // 0010 1011 { 43, 8, 0x2C }, // 0010 1100 { 44, 8, 0x2D }, // 0010 1101 { 45, 8, 0x4 }, // 0000 0100 { 46, 8, 0x5 }, // 0000 0101 { 47, 8, 0xA }, // 0000 1010 { 48, 8, 0xB }, // 0000 1011 { 49, 8, 0x52 }, // 0101 0010 { 50, 8, 0x53 }, // 0101 0011 { 51, 8, 0x54 }, // 0101 0100 { 52, 8, 0x55 }, // 0101 0101 { 53, 8, 0x24 }, // 0010 0100 { 54, 8, 0x25 }, // 0010 0101 { 55, 8, 0x58 }, // 0101 1000 { 56, 8, 0x59 }, // 0101 1001 { 57, 8, 0x5A }, // 0101 1010 { 58, 8, 0x5B }, // 0101 1011 { 59, 8, 0x4A }, // 0100 1010 { 60, 8, 0x4B }, // 0100 1011 { 61, 8, 0x32 }, // 0011 0010 { 62, 8, 0x33 }, // 0011 0011 { 63, 8, 0x34 }, // 0011 0100 { 64, 5, 0x1B }, // 1101 1 { 128, 5, 0x12 }, // 1001 0 { 192, 6, 0x17 }, // 0101 11 { 256, 7, 0x37 }, // 0110 111 { 320, 8, 0x36 }, // 0011 0110 { 384, 8, 0x37 }, // 0011 0111 { 448, 8, 0x64 }, // 0110 0100 { 512, 8, 0x65 }, // 0110 0101 { 576, 8, 0x68 }, // 0110 1000 { 640, 8, 0x67 }, // 0110 0111 { 704, 9, 0xCC }, // 0110 0110 0 { 768, 9, 0xCD }, // 0110 0110 1 { 832, 9, 0xD2 }, // 0110 1001 0 { 896, 9, 0xD3 }, // 0110 1001 1 { 960, 9, 0xD4 }, // 0110 1010 0 { 1024, 9, 0xD5 }, // 0110 1010 1 { 1088, 9, 0xD6 }, // 0110 1011 0 { 1152, 9, 0xD7 }, // 0110 1011 1 { 1216, 9, 0xD8 }, // 0110 1100 0 { 1280, 9, 0xD9 }, // 0110 1100 1 { 1344, 9, 0xDA }, // 0110 1101 0 { 1408, 9, 0xDB }, // 0110 1101 1 { 1472, 9, 0x98 }, // 0100 1100 0 { 1536, 9, 0x99 }, // 0100 1100 1 { 1600, 9, 0x9A }, // 0100 1101 0 { 1664, 6, 0x18 }, // 0110 00 { 1728, 9, 0x9B }, // 0100 1101 1 { 1792, 11, 0x8 }, // 0000 0001 000 { 1856, 11, 0xC }, // 0000 0001 100 { 1920, 11, 0xD }, // 0000 0001 101 { 1984, 12, 0x12 }, // 0000 0001 0010 { 2048, 12, 0x13 }, // 0000 0001 0011 { 2112, 12, 0x14 }, // 0000 0001 0100 { 2176, 12, 0x15 }, // 0000 0001 0101 { 2240, 12, 0x16 }, // 0000 0001 0110 { 2304, 12, 0x17 }, // 0000 0001 0111 { 2368, 12, 0x1C }, // 0000 0001 1100 { 2432, 12, 0x1D }, // 0000 0001 1101 { 2496, 12, 0x1E }, // 0000 0001 1110 { 2560, 12, 0x1F } // 0000 0001 1111 }; static const PixelCode BlackPixelCodes[] = { { 0, 10, 0x37 }, // 0000 1101 11 { 1, 3, 0x2 }, // 010 { 2, 2, 0x3 }, // 11 { 3, 2, 0x2 }, // 10 { 4, 3, 0x3 }, // 011 { 5, 4, 0x3 }, // 0011 { 6, 4, 0x2 }, // 0010 { 7, 5, 0x3 }, // 0001 1 { 8, 6, 0x5 }, // 0001 01 { 9, 6, 0x4 }, // 0001 00 { 10, 7, 0x4 }, // 0000 100 { 11, 7, 0x5 }, // 0000 101 { 12, 7, 0x7 }, // 0000 111 { 13, 8, 0x4 }, // 0000 0100 { 14, 8, 0x7 }, // 0000 0111 { 15, 9, 0x18 }, // 0000 1100 0 { 16, 10, 0x17 }, // 0000 0101 11 { 17, 10, 0x18 }, // 0000 0110 00 { 18, 10, 0x8 }, // 0000 0010 00 { 19, 11, 0x67 }, // 0000 1100 111 { 20, 11, 0x68 }, // 0000 1101 000 { 21, 11, 0x6C }, // 0000 1101 100 { 22, 11, 0x37 }, // 0000 0110 111 { 23, 11, 0x28 }, // 0000 0101 000 { 24, 11, 0x17 }, // 0000 0010 111 { 25, 11, 0x18 }, // 0000 0011 000 { 26, 12, 0xCA }, // 0000 1100 1010 { 27, 12, 0xCB }, // 0000 1100 1011 { 28, 12, 0xCC }, // 0000 1100 1100 { 29, 12, 0xCD }, // 0000 1100 1101 { 30, 12, 0x68 }, // 0000 0110 1000 { 31, 12, 0x69 }, // 0000 0110 1001 { 32, 12, 0x6A }, // 0000 0110 1010 { 33, 12, 0x6B }, // 0000 0110 1011 { 34, 12, 0xD2 }, // 0000 1101 0010 { 35, 12, 0xD3 }, // 0000 1101 0011 { 36, 12, 0xD4 }, // 0000 1101 0100 { 37, 12, 0xD5 }, // 0000 1101 0101 { 38, 12, 0xD6 }, // 0000 1101 0110 { 39, 12, 0xD7 }, // 0000 1101 0111 { 40, 12, 0x6C }, // 0000 0110 1100 { 41, 12, 0x6D }, // 0000 0110 1101 { 42, 12, 0xDA }, // 0000 1101 1010 { 43, 12, 0xDB }, // 0000 1101 1011 { 44, 12, 0x54 }, // 0000 0101 0100 { 45, 12, 0x55 }, // 0000 0101 0101 { 46, 12, 0x56 }, // 0000 0101 0110 { 47, 12, 0x57 }, // 0000 0101 0111 { 48, 12, 0x64 }, // 0000 0110 0100 { 49, 12, 0x65 }, // 0000 0110 0101 { 50, 12, 0x52 }, // 0000 0101 0010 { 51, 12, 0x53 }, // 0000 0101 0011 { 52, 12, 0x24 }, // 0000 0010 0100 { 53, 12, 0x37 }, // 0000 0011 0111 { 54, 12, 0x38 }, // 0000 0011 1000 { 55, 12, 0x27 }, // 0000 0010 0111 { 56, 12, 0x28 }, // 0000 0010 1000 { 57, 12, 0x58 }, // 0000 0101 1000 { 58, 12, 0x59 }, // 0000 0101 1001 { 59, 12, 0x2B }, // 0000 0010 1011 { 60, 12, 0x2C }, // 0000 0010 1100 { 61, 12, 0x5A }, // 0000 0101 1010 { 62, 12, 0x66 }, // 0000 0110 0110 { 63, 12, 0x67 }, // 0000 0110 0111 { 64, 10, 0xF }, // 0000 0011 11 { 128, 12, 0xC8 }, // 0000 1100 1000 { 192, 12, 0xC9 }, // 0000 1100 1001 { 256, 12, 0x5B }, // 0000 0101 1011 { 320, 12, 0x33 }, // 0000 0011 0011 { 384, 12, 0x34 }, // 0000 0011 0100 { 448, 12, 0x35 }, // 0000 0011 0101 { 512, 13, 0x6C }, // 0000 0011 0110 0 { 576, 13, 0x6D }, // 0000 0011 0110 1 { 640, 13, 0x4A }, // 0000 0010 0101 0 { 704, 13, 0x4B }, // 0000 0010 0101 1 { 768, 13, 0x4C }, // 0000 0010 0110 0 { 832, 13, 0x4D }, // 0000 0010 0110 1 { 896, 13, 0x72 }, // 0000 0011 1001 0 { 960, 13, 0x73 }, // 0000 0011 1001 1 { 1024, 13, 0x74 }, // 0000 0011 1010 0 { 1088, 13, 0x75 }, // 0000 0011 1010 1 { 1152, 13, 0x76 }, // 0000 0011 1011 0 { 1216, 13, 0x77 }, // 0000 0011 1011 1 { 1280, 13, 0x52 }, // 0000 0010 1001 0 { 1344, 13, 0x53 }, // 0000 0010 1001 1 { 1408, 13, 0x54 }, // 0000 0010 1010 0 { 1472, 13, 0x55 }, // 0000 0010 1010 1 { 1536, 13, 0x5A }, // 0000 0010 1101 0 { 1600, 13, 0x5B }, // 0000 0010 1101 1 { 1664, 13, 0x64 }, // 0000 0011 0010 0 { 1728, 13, 0x65 }, // 0000 0011 0010 1 { 1792, 11, 0x8 }, // 0000 0001 000 { 1856, 11, 0xC }, // 0000 0001 100 { 1920, 11, 0xD }, // 0000 0001 101 { 1984, 12, 0x12 }, // 0000 0001 0010 { 2048, 12, 0x13 }, // 0000 0001 0011 { 2112, 12, 0x14 }, // 0000 0001 0100 { 2176, 12, 0x15 }, // 0000 0001 0101 { 2240, 12, 0x16 }, // 0000 0001 0110 { 2304, 12, 0x17 }, // 0000 0001 0111 { 2368, 12, 0x1C }, // 0000 0001 1100 { 2432, 12, 0x1D }, // 0000 0001 1101 { 2496, 12, 0x1E }, // 0000 0001 1110 { 2560, 12, 0x1F } // 0000 0001 1111 }; void PDFWriterImpl::putG4Span( long i_nSpan, bool i_bWhitePixel, BitStreamState& io_rState ) { const PixelCode* pTable = i_bWhitePixel ? WhitePixelCodes : BlackPixelCodes; // maximum encoded span is 2560 consecutive pixels while( i_nSpan > 2623 ) { // write 2560 bits, that is entry (63 + (2560 >> 6)) == 103 in the appropriate table putG4Bits( pTable[103].mnCodeBits, pTable[103].mnCode, io_rState ); i_nSpan -= pTable[103].mnEncodedPixels; } // write multiples of 64 pixels up to 2560 if( i_nSpan > 63 ) { sal_uInt32 nTabIndex = 63 + (i_nSpan >> 6); OSL_ASSERT( pTable[nTabIndex].mnEncodedPixels == static_cast(64*(i_nSpan >> 6)) ); putG4Bits( pTable[nTabIndex].mnCodeBits, pTable[nTabIndex].mnCode, io_rState ); i_nSpan -= pTable[nTabIndex].mnEncodedPixels; } putG4Bits( pTable[i_nSpan].mnCodeBits, pTable[i_nSpan].mnCode, io_rState ); } void PDFWriterImpl::writeG4Stream( BitmapReadAccess const * i_pBitmap ) { long nW = i_pBitmap->Width(); long nH = i_pBitmap->Height(); if( nW <= 0 || nH <= 0 ) return; if( i_pBitmap->GetBitCount() != 1 ) return; BitStreamState aBitState; // the first reference line is virtual and completely empty std::unique_ptr pFirstRefLine(new sal_uInt8[nW/8 + 1]); memset(pFirstRefLine.get(), 0, nW/8 + 1); Scanline pRefLine = pFirstRefLine.get(); for( long nY = 0; nY < nH; nY++ ) { const Scanline pCurLine = i_pBitmap->GetScanline( nY ); long nLineIndex = 0; bool bRunSet = (*pCurLine & 0x80) != 0; bool bRefSet = (*pRefLine & 0x80) != 0; long nRunIndex1 = bRunSet ? 0 : findBitRun( pCurLine, 0, nW, bRunSet ); long nRefIndex1 = bRefSet ? 0 : findBitRun( pRefLine, 0, nW, bRefSet ); for( ; nLineIndex < nW; ) { long nRefIndex2 = findBitRun( pRefLine, nRefIndex1, nW ); if( nRefIndex2 >= nRunIndex1 ) { long nDiff = nRefIndex1 - nRunIndex1; if( -3 <= nDiff && nDiff <= 3 ) { // vertical coding static const struct { sal_uInt32 mnCodeBits; sal_uInt32 mnCode; } VerticalCodes[7] = { { 7, 0x03 }, // 0000 011 { 6, 0x03 }, // 0000 11 { 3, 0x03 }, // 011 { 1, 0x1 }, // 1 { 3, 0x2 }, // 010 { 6, 0x02 }, // 0000 10 { 7, 0x02 } // 0000 010 }; // convert to index nDiff += 3; // emit diff code putG4Bits( VerticalCodes[nDiff].mnCodeBits, VerticalCodes[nDiff].mnCode, aBitState ); nLineIndex = nRunIndex1; } else { // difference too large, horizontal coding // emit horz code 001 putG4Bits( 3, 0x1, aBitState ); long nRunIndex2 = findBitRun( pCurLine, nRunIndex1, nW ); bool bWhiteFirst = ( nLineIndex + nRunIndex1 == 0 || ! isSet( pCurLine, nLineIndex ) ); putG4Span( nRunIndex1 - nLineIndex, bWhiteFirst, aBitState ); putG4Span( nRunIndex2 - nRunIndex1, ! bWhiteFirst, aBitState ); nLineIndex = nRunIndex2; } } else { // emit pass code 0001 putG4Bits( 4, 0x1, aBitState ); nLineIndex = nRefIndex2; } if( nLineIndex < nW ) { bool bSet = isSet( pCurLine, nLineIndex ); nRunIndex1 = findBitRun( pCurLine, nLineIndex, nW, bSet ); nRefIndex1 = findBitRun( pRefLine, nLineIndex, nW, ! bSet ); nRefIndex1 = findBitRun( pRefLine, nRefIndex1, nW, bSet ); } } // the current line is the reference for the next line pRefLine = pCurLine; } // terminate strip with EOFB putG4Bits( 12, 1, aBitState ); putG4Bits( 12, 1, aBitState ); if( aBitState.mnNextBitPos != 8 ) { writeBuffer( &aBitState.getByte(), 1 ); aBitState.flush(); } } void PDFWriterImpl::DrawHatchLine_DrawLine(const Point& rStartPoint, const Point& rEndPoint) { drawLine(rStartPoint, rEndPoint); } static bool lcl_canUsePDFAxialShading(const Gradient& rGradient) { switch (rGradient.GetStyle()) { case GradientStyle::Linear: case GradientStyle::Axial: break; default: return false; } // TODO: handle step count return rGradient.GetSteps() <= 0; } void PDFWriterImpl::ImplClearFontData(bool bNewFontLists) { VirtualDevice::ImplClearFontData(bNewFontLists); if (bNewFontLists && AcquireGraphics()) { ReleaseFontCollection(); ReleaseFontCache(); } } void PDFWriterImpl::ImplRefreshFontData(bool bNewFontLists) { if (bNewFontLists && AcquireGraphics()) { SetFontCollectionFromSVData(); ResetNewFontCache(); } } vcl::Region PDFWriterImpl::ClipToDeviceBounds(vcl::Region aRegion) const { return aRegion; } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */