/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include "bmp.hxx" using namespace x11; /* * helper functions */ static void writeLE( sal_uInt16 nNumber, sal_uInt8* pBuffer ) { pBuffer[ 0 ] = (nNumber & 0xff); pBuffer[ 1 ] = ((nNumber>>8)&0xff); } static void writeLE( sal_uInt32 nNumber, sal_uInt8* pBuffer ) { pBuffer[ 0 ] = (nNumber & 0xff); pBuffer[ 1 ] = ((nNumber>>8)&0xff); pBuffer[ 2 ] = ((nNumber>>16)&0xff); pBuffer[ 3 ] = ((nNumber>>24)&0xff); } static sal_uInt16 readLE16( const sal_uInt8* pBuffer ) { //This is untainted data which comes from a controlled source //so, using a byte-swapping pattern which coverity doesn't //detect as such //http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html sal_uInt16 v = pBuffer[1]; v <<= 8; v |= pBuffer[0]; return v; } static sal_uInt32 readLE32( const sal_uInt8* pBuffer ) { //This is untainted data which comes from a controlled source //so, using a byte-swapping pattern which coverity doesn't //detect as such //http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html sal_uInt32 v = pBuffer[3]; v <<= 8; v |= pBuffer[2]; v <<= 8; v |= pBuffer[1]; v <<= 8; v |= pBuffer[0]; return v; } /* * scanline helpers */ static void X11_writeScanlinePixel( unsigned long nColor, sal_uInt8* pScanline, int depth, int x ) { switch( depth ) { case 1: pScanline[ x/8 ] &= ~(1 << (x&7)); pScanline[ x/8 ] |= ((nColor & 1) << (x&7)); break; case 4: pScanline[ x/2 ] &= ((x&1) ? 0x0f : 0xf0); pScanline[ x/2 ] |= ((x&1) ? (nColor & 0x0f) : ((nColor & 0x0f) << 4)); break; default: case 8: pScanline[ x ] = (nColor & 0xff); break; } } static sal_uInt8* X11_getPaletteBmpFromImage( Display* pDisplay, XImage* pImage, Colormap aColormap, sal_Int32& rOutSize ) { sal_uInt32 nColors = 0; rOutSize = 0; sal_uInt8* pBuffer = nullptr; sal_uInt32 nHeaderSize, nScanlineSize; sal_uInt16 nBitCount; // determine header and scanline size switch( pImage->depth ) { case 1: nHeaderSize = 64; nScanlineSize = (pImage->width+31)/32; nBitCount = 1; break; case 4: nHeaderSize = 72; nScanlineSize = (pImage->width+1)/2; nBitCount = 4; break; default: case 8: nHeaderSize = 1084; nScanlineSize = pImage->width; nBitCount = 8; break; } // adjust scan lines to begin on %4 boundaries if( nScanlineSize & 3 ) { nScanlineSize &= 0xfffffffc; nScanlineSize += 4; } // allocate buffer to hold header and scanlines, initialize to zero rOutSize = nHeaderSize + nScanlineSize*pImage->height; pBuffer = static_cast(rtl_allocateZeroMemory( rOutSize )); for( int y = 0; y < pImage->height; y++ ) { sal_uInt8* pScanline = pBuffer + nHeaderSize + (pImage->height-1-y)*nScanlineSize; for( int x = 0; x < pImage->width; x++ ) { unsigned long nPixel = XGetPixel( pImage, x, y ); if( nPixel >= nColors ) nColors = nPixel+1; X11_writeScanlinePixel( nPixel, pScanline, pImage->depth, x ); } } // fill in header fields pBuffer[ 0 ] = 'B'; pBuffer[ 1 ] = 'M'; writeLE( nHeaderSize, pBuffer+10 ); writeLE( sal_uInt32(40), pBuffer+14 ); writeLE( static_cast(pImage->width), pBuffer+18 ); writeLE( static_cast(pImage->height), pBuffer+22 ); writeLE( sal_uInt16(1), pBuffer+26 ); writeLE( nBitCount, pBuffer+28 ); writeLE( static_cast(DisplayWidth(pDisplay,DefaultScreen(pDisplay))*1000/DisplayWidthMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+38); writeLE( static_cast(DisplayHeight(pDisplay,DefaultScreen(pDisplay))*1000/DisplayHeightMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+42); writeLE( nColors, pBuffer+46 ); writeLE( nColors, pBuffer+50 ); XColor aColors[256]; if( nColors > (1U << nBitCount) ) // paranoia nColors = (1U << nBitCount); for( unsigned long nPixel = 0; nPixel < nColors; nPixel++ ) { aColors[nPixel].flags = DoRed | DoGreen | DoBlue; aColors[nPixel].pixel = nPixel; } XQueryColors( pDisplay, aColormap, aColors, nColors ); for( sal_uInt32 i = 0; i < nColors; i++ ) { pBuffer[ 54 + i*4 ] = static_cast(aColors[i].blue >> 8); pBuffer[ 55 + i*4 ] = static_cast(aColors[i].green >> 8); pBuffer[ 56 + i*4 ] = static_cast(aColors[i].red >> 8); } // done return pBuffer; } static unsigned long doRightShift( unsigned long nValue, int nShift ) { return (nShift > 0) ? (nValue >> nShift) : (nValue << (-nShift)); } static unsigned long doLeftShift( unsigned long nValue, int nShift ) { return (nShift > 0) ? (nValue << nShift) : (nValue >> (-nShift)); } static void getShift( unsigned long nMask, int& rShift, int& rSigBits, int& rShift2 ) { unsigned long nUseMask = nMask; rShift = 0; while( nMask & 0xffffff00 ) { rShift++; nMask >>= 1; } if( rShift == 0 ) while( ! (nMask & 0x00000080) ) { rShift--; nMask <<= 1; } int nRotate = sizeof(unsigned long)*8 - rShift; rSigBits = 0; nMask = doRightShift( nUseMask, rShift) ; while( nRotate-- ) { if( nMask & 1 ) rSigBits++; nMask >>= 1; } rShift2 = 0; if( rSigBits < 8 ) rShift2 = 8-rSigBits; } static sal_uInt8* X11_getTCBmpFromImage( Display* pDisplay, XImage* pImage, sal_Int32& rOutSize, int nScreenNo ) { // get masks from visual info (guesswork) XVisualInfo aVInfo; if( ! XMatchVisualInfo( pDisplay, nScreenNo, pImage->depth, TrueColor, &aVInfo ) ) return nullptr; rOutSize = 0; sal_uInt8* pBuffer = nullptr; sal_uInt32 nHeaderSize = 60; sal_uInt32 nScanlineSize = pImage->width*3; // adjust scan lines to begin on %4 boundaries if( nScanlineSize & 3 ) { nScanlineSize &= 0xfffffffc; nScanlineSize += 4; } int nRedShift, nRedSig, nRedShift2 = 0; getShift( aVInfo.red_mask, nRedShift, nRedSig, nRedShift2 ); int nGreenShift, nGreenSig, nGreenShift2 = 0; getShift( aVInfo.green_mask, nGreenShift, nGreenSig, nGreenShift2 ); int nBlueShift, nBlueSig, nBlueShift2 = 0; getShift( aVInfo.blue_mask, nBlueShift, nBlueSig, nBlueShift2 ); // allocate buffer to hold header and scanlines, initialize to zero rOutSize = nHeaderSize + nScanlineSize*pImage->height; pBuffer = static_cast(rtl_allocateZeroMemory( rOutSize )); for( int y = 0; y < pImage->height; y++ ) { sal_uInt8* pScanline = pBuffer + nHeaderSize + (pImage->height-1-y)*nScanlineSize; for( int x = 0; x < pImage->width; x++ ) { unsigned long nPixel = XGetPixel( pImage, x, y ); sal_uInt8 nValue = static_cast(doRightShift( nPixel&aVInfo.blue_mask, nBlueShift)); if( nBlueShift2 ) nValue |= (nValue >> nBlueShift2 ); *pScanline++ = nValue; nValue = static_cast(doRightShift( nPixel&aVInfo.green_mask, nGreenShift)); if( nGreenShift2 ) nValue |= (nValue >> nGreenShift2 ); *pScanline++ = nValue; nValue = static_cast(doRightShift( nPixel&aVInfo.red_mask, nRedShift)); if( nRedShift2 ) nValue |= (nValue >> nRedShift2 ); *pScanline++ = nValue; } } // fill in header fields pBuffer[ 0 ] = 'B'; pBuffer[ 1 ] = 'M'; writeLE( nHeaderSize, pBuffer+10 ); writeLE( sal_uInt32(40), pBuffer+14 ); writeLE( static_cast(pImage->width), pBuffer+18 ); writeLE( static_cast(pImage->height), pBuffer+22 ); writeLE( sal_uInt16(1), pBuffer+26 ); writeLE( sal_uInt16(24), pBuffer+28 ); writeLE( static_cast(DisplayWidth(pDisplay,DefaultScreen(pDisplay))*1000/DisplayWidthMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+38); writeLE( static_cast(DisplayHeight(pDisplay,DefaultScreen(pDisplay))*1000/DisplayHeightMM(pDisplay,DefaultScreen(pDisplay))), pBuffer+42); // done return pBuffer; } sal_uInt8* x11::X11_getBmpFromPixmap( Display* pDisplay, Drawable aDrawable, Colormap aColormap, sal_Int32& rOutSize ) { // get geometry of drawable ::Window aRoot; int x,y; unsigned int w, h, bw, d; XGetGeometry( pDisplay, aDrawable, &aRoot, &x, &y, &w, &h, &bw, &d ); // find which screen we are on int nScreenNo = ScreenCount( pDisplay ); while( nScreenNo-- ) { if( RootWindow( pDisplay, nScreenNo ) == aRoot ) break; } if( nScreenNo < 0 ) return nullptr; if( aColormap == None ) aColormap = DefaultColormap( pDisplay, nScreenNo ); // get the image XImage* pImage = XGetImage( pDisplay, aDrawable, 0, 0, w, h, AllPlanes, ZPixmap ); if( ! pImage ) return nullptr; sal_uInt8* pBmp = d <= 8 ? X11_getPaletteBmpFromImage( pDisplay, pImage, aColormap, rOutSize ) : X11_getTCBmpFromImage( pDisplay, pImage, rOutSize, nScreenNo ); XDestroyImage( pImage ); return pBmp; } /* * PixmapHolder */ PixmapHolder::PixmapHolder( Display* pDisplay ) : m_pDisplay(pDisplay) , m_aColormap(None) , m_aPixmap(None) , m_aBitmap(None) , m_nRedShift(0) , m_nGreenShift(0) , m_nBlueShift(0) , m_nBlueShift2Mask(0) , m_nRedShift2Mask(0) , m_nGreenShift2Mask(0) { /* try to get a 24 bit true color visual, if that fails, * revert to default visual */ if( ! XMatchVisualInfo( m_pDisplay, DefaultScreen( m_pDisplay ), 24, TrueColor, &m_aInfo ) ) { #if OSL_DEBUG_LEVEL > 1 SAL_INFO("vcl.unx.dtrans", "PixmapHolder reverting to default visual."); #endif Visual* pVisual = DefaultVisual( m_pDisplay, DefaultScreen( m_pDisplay ) ); m_aInfo.screen = DefaultScreen( m_pDisplay ); m_aInfo.visual = pVisual; m_aInfo.visualid = pVisual->visualid; m_aInfo.c_class = pVisual->c_class; m_aInfo.red_mask = pVisual->red_mask; m_aInfo.green_mask = pVisual->green_mask; m_aInfo.blue_mask = pVisual->blue_mask; m_aInfo.depth = DefaultDepth( m_pDisplay, m_aInfo.screen ); } m_aColormap = DefaultColormap( m_pDisplay, m_aInfo.screen ); #if OSL_DEBUG_LEVEL > 1 static const char* pClasses[] = { "StaticGray", "GrayScale", "StaticColor", "PseudoColor", "TrueColor", "DirectColor" }; SAL_INFO("vcl.unx.dtrans", "PixmapHolder visual: id = " << std::showbase << std::hex << m_aInfo.visualid << ", class = " << ((m_aInfo.c_class >= 0 && unsigned(m_aInfo.c_class) < SAL_N_ELEMENTS(pClasses)) ? pClasses[m_aInfo.c_class] : "") << " (" << std::dec << m_aInfo.c_class << "), depth=" << m_aInfo.depth << "; color map = " << std::showbase << std::hex << m_aColormap); #endif if( m_aInfo.c_class == TrueColor ) { int nRedShift2(0); int nGreenShift2(0); int nBlueShift2(0); int nRedSig, nGreenSig, nBlueSig; getShift( m_aInfo.red_mask, m_nRedShift, nRedSig, nRedShift2 ); getShift( m_aInfo.green_mask, m_nGreenShift, nGreenSig, nGreenShift2 ); getShift( m_aInfo.blue_mask, m_nBlueShift, nBlueSig, nBlueShift2 ); m_nBlueShift2Mask = nBlueShift2 ? ~static_cast((1<((1<((1<(b); nValue &= m_nBlueShift2Mask; nPixel |= doLeftShift( nValue, m_nBlueShift ); nValue = static_cast(g); nValue &= m_nGreenShift2Mask; nPixel |= doLeftShift( nValue, m_nGreenShift ); nValue = static_cast(r); nValue &= m_nRedShift2Mask; nPixel |= doLeftShift( nValue, m_nRedShift ); return nPixel; } void PixmapHolder::setBitmapDataPalette( const sal_uInt8* pData, XImage* pImage ) { // setup palette XColor aPalette[256]; sal_uInt32 nColors = readLE32( pData+32 ); sal_uInt32 nWidth = readLE32( pData+4 ); sal_uInt32 nHeight = readLE32( pData+8 ); sal_uInt16 nDepth = readLE16( pData+14 ); for( sal_uInt32 i = 0 ; i < nColors; i++ ) { if( m_aInfo.c_class != TrueColor ) { //This is untainted data which comes from a controlled source //so, using a byte-swapping pattern which coverity doesn't //detect as such //http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html aPalette[i].red = static_cast(pData[42 + i*4]); aPalette[i].red <<= 8; aPalette[i].red |= static_cast(pData[42 + i*4]); aPalette[i].green = static_cast(pData[41 + i*4]); aPalette[i].green <<= 8; aPalette[i].green |= static_cast(pData[41 + i*4]); aPalette[i].blue = static_cast(pData[40 + i*4]); aPalette[i].blue <<= 8; aPalette[i].blue |= static_cast(pData[40 + i*4]); XAllocColor( m_pDisplay, m_aColormap, aPalette+i ); } else aPalette[i].pixel = getTCPixel( pData[42+i*4], pData[41+i*4], pData[40+i*4] ); } const sal_uInt8* pBMData = pData + readLE32( pData ) + 4*nColors; sal_uInt32 nScanlineSize = 0; switch( nDepth ) { case 1: nScanlineSize = (nWidth+31)/32; break; case 4: nScanlineSize = (nWidth+1)/2; break; case 8: nScanlineSize = nWidth; break; } // adjust scan lines to begin on %4 boundaries if( nScanlineSize & 3 ) { nScanlineSize &= 0xfffffffc; nScanlineSize += 4; } // allocate buffer to hold header and scanlines, initialize to zero for( unsigned int y = 0; y < nHeight; y++ ) { const sal_uInt8* pScanline = pBMData + (nHeight-1-y)*nScanlineSize; for( unsigned int x = 0; x < nWidth; x++ ) { int nCol = 0; switch( nDepth ) { case 1: nCol = (pScanline[ x/8 ] & (0x80 >> (x&7))) != 0 ? 0 : 1; break; case 4: if( x & 1 ) nCol = static_cast(pScanline[ x/2 ] >> 4); else nCol = static_cast(pScanline[ x/2 ] & 0x0f); break; case 8: nCol = static_cast(pScanline[x]); } XPutPixel( pImage, x, y, aPalette[nCol].pixel ); } } } void PixmapHolder::setBitmapDataTCDither( const sal_uInt8* pData, XImage* pImage ) { XColor aPalette[216]; int nNonAllocs = 0; for( int r = 0; r < 6; r++ ) { for( int g = 0; g < 6; g++ ) { for( int b = 0; b < 6; b++ ) { int i = r*36+g*6+b; aPalette[i].red = r == 5 ? 0xffff : r*10922; aPalette[i].green = g == 5 ? 0xffff : g*10922; aPalette[i].blue = b == 5 ? 0xffff : b*10922; aPalette[i].pixel = 0; if( ! XAllocColor( m_pDisplay, m_aColormap, aPalette+i ) ) nNonAllocs++; } } } if( nNonAllocs ) { XColor aRealPalette[256]; int nColors = 1 << m_aInfo.depth; int i; for( i = 0; i < nColors; i++ ) aRealPalette[i].pixel = static_cast(i); XQueryColors( m_pDisplay, m_aColormap, aRealPalette, nColors ); for( i = 0; i < nColors; i++ ) { sal_uInt8 nIndex = 36*static_cast(aRealPalette[i].red/10923) + 6*static_cast(aRealPalette[i].green/10923) + static_cast(aRealPalette[i].blue/10923); if( aPalette[nIndex].pixel == 0 ) aPalette[nIndex] = aRealPalette[i]; } } sal_uInt32 nWidth = readLE32( pData+4 ); sal_uInt32 nHeight = readLE32( pData+8 ); const sal_uInt8* pBMData = pData + readLE32( pData ); sal_uInt32 nScanlineSize = nWidth*3; // adjust scan lines to begin on %4 boundaries if( nScanlineSize & 3 ) { nScanlineSize &= 0xfffffffc; nScanlineSize += 4; } for( int y = 0; y < static_cast(nHeight); y++ ) { const sal_uInt8* pScanline = pBMData + (nHeight-1-static_cast(y))*nScanlineSize; for( int x = 0; x < static_cast(nWidth); x++ ) { sal_uInt8 b = pScanline[3*x]; sal_uInt8 g = pScanline[3*x+1]; sal_uInt8 r = pScanline[3*x+2]; sal_uInt8 i = 36*(r/43) + 6*(g/43) + (b/43); XPutPixel( pImage, x, y, aPalette[ i ].pixel ); } } } void PixmapHolder::setBitmapDataTC( const sal_uInt8* pData, XImage* pImage ) { sal_uInt32 nWidth = readLE32( pData+4 ); sal_uInt32 nHeight = readLE32( pData+8 ); if (!nWidth || !nHeight) return; const sal_uInt8* pBMData = pData + readLE32( pData ); sal_uInt32 nScanlineSize = nWidth*3; // adjust scan lines to begin on %4 boundaries if( nScanlineSize & 3 ) { nScanlineSize &= 0xfffffffc; nScanlineSize += 4; } for( int y = 0; y < static_cast(nHeight); y++ ) { const sal_uInt8* pScanline = pBMData + (nHeight-1-static_cast(y))*nScanlineSize; for( int x = 0; x < static_cast(nWidth); x++ ) { unsigned long nPixel = getTCPixel( pScanline[3*x+2], pScanline[3*x+1], pScanline[3*x] ); XPutPixel( pImage, x, y, nPixel ); } } } bool PixmapHolder::needsConversion( const sal_uInt8* pData ) { if( pData[0] != 'B' || pData[1] != 'M' ) return true; pData = pData+14; sal_uInt32 nDepth = readLE32( pData+14 ); if( nDepth == 24 ) { if( m_aInfo.c_class != TrueColor ) return true; } else if( nDepth != static_cast(m_aInfo.depth) ) { if( m_aInfo.c_class != TrueColor ) return true; } return false; } Pixmap PixmapHolder::setBitmapData( const sal_uInt8* pData ) { if( pData[0] != 'B' || pData[1] != 'M' ) return None; pData = pData+14; // reject compressed data if( readLE32( pData + 16 ) != 0 ) return None; sal_uInt32 nWidth = readLE32( pData+4 ); sal_uInt32 nHeight = readLE32( pData+8 ); if( m_aPixmap != None ) { XFreePixmap( m_pDisplay, m_aPixmap ); m_aPixmap = None; } if( m_aBitmap != None ) { XFreePixmap( m_pDisplay, m_aBitmap ); m_aBitmap = None; } m_aPixmap = limitXCreatePixmap( m_pDisplay, RootWindow( m_pDisplay, m_aInfo.screen ), nWidth, nHeight, m_aInfo.depth ); if( m_aPixmap != None ) { XImage aImage; aImage.width = static_cast(nWidth); aImage.height = static_cast(nHeight); aImage.xoffset = 0; aImage.format = ZPixmap; aImage.data = nullptr; aImage.byte_order = ImageByteOrder( m_pDisplay ); aImage.bitmap_unit = BitmapUnit( m_pDisplay ); aImage.bitmap_bit_order = BitmapBitOrder( m_pDisplay ); aImage.bitmap_pad = BitmapPad( m_pDisplay ); aImage.depth = m_aInfo.depth; aImage.red_mask = m_aInfo.red_mask; aImage.green_mask = m_aInfo.green_mask; aImage.blue_mask = m_aInfo.blue_mask; aImage.bytes_per_line = 0; // filled in by XInitImage if( m_aInfo.depth <= 8 ) aImage.bits_per_pixel = m_aInfo.depth; else aImage.bits_per_pixel = 8*((m_aInfo.depth+7)/8); aImage.obdata = nullptr; XInitImage( &aImage ); aImage.data = static_cast(std::malloc( nHeight*aImage.bytes_per_line )); if( readLE32( pData+14 ) == 24 ) { if( m_aInfo.c_class == TrueColor ) setBitmapDataTC( pData, &aImage ); else setBitmapDataTCDither( pData, &aImage ); } else setBitmapDataPalette( pData, &aImage ); // put the image XPutImage( m_pDisplay, m_aPixmap, DefaultGC( m_pDisplay, m_aInfo.screen ), &aImage, 0, 0, 0, 0, nWidth, nHeight ); // clean up std::free( aImage.data ); // prepare bitmap (mask) m_aBitmap = limitXCreatePixmap( m_pDisplay, RootWindow( m_pDisplay, m_aInfo.screen ), nWidth, nHeight, 1 ); XGCValues aVal; aVal.function = GXcopy; aVal.foreground = 0xffffffff; GC aGC = XCreateGC( m_pDisplay, m_aBitmap, GCFunction | GCForeground, &aVal ); XFillRectangle( m_pDisplay, m_aBitmap, aGC, 0, 0, nWidth, nHeight ); XFreeGC( m_pDisplay, aGC ); } return m_aPixmap; } css::uno::Sequence x11::convertBitmapDepth( css::uno::Sequence const & data, int depth) { if (depth < 4) { depth = 1; } else if (depth < 8) { depth = 4; } else if (depth > 8 && depth < 24) { depth = 24; } SolarMutexGuard g; SvMemoryStream in( const_cast(data.getConstArray()), data.getLength(), StreamMode::READ); Bitmap bm; ReadDIB(bm, in, true); if (bm.GetBitCount() == 24 && depth <= 8) { bm.Dither(); } if (bm.GetBitCount() != depth) { switch (depth) { case 1: bm.Convert(BmpConversion::N1BitThreshold); break; case 4: { BitmapEx aBmpEx(bm); BitmapFilter::Filter(aBmpEx, BitmapSimpleColorQuantizationFilter(1<<4)); bm = aBmpEx.GetBitmap(); } break; case 8: { BitmapEx aBmpEx(bm); BitmapFilter::Filter(aBmpEx, BitmapSimpleColorQuantizationFilter(1<<8)); bm = aBmpEx.GetBitmap(); } break; case 24: bm.Convert(BmpConversion::N24Bit); break; } } SvMemoryStream out; WriteDIB(bm, out, false, true); return css::uno::Sequence( static_cast(out.GetData()), out.GetEndOfData()); } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */