summaryrefslogtreecommitdiffstats
path: root/cppu/source/threadpool/threadpool.cxx
blob: d11268b8578490664374e08de10a9eb753289354 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 */

#include <sal/config.h>

#include <cassert>
#include <chrono>
#include <algorithm>
#include <unordered_map>

#include <osl/diagnose.h>
#include <osl/mutex.hxx>
#include <rtl/instance.hxx>
#include <sal/log.hxx>

#include <uno/threadpool.h>

#include "threadpool.hxx"
#include "thread.hxx"

using namespace ::std;
using namespace ::osl;
using namespace ::rtl;

namespace cppu_threadpool
{
    WaitingThread::WaitingThread(
        rtl::Reference<ORequestThread> const & theThread): thread(theThread)
    {}

    namespace {

    struct theDisposedCallerAdmin :
        public rtl::StaticWithInit< DisposedCallerAdminHolder, theDisposedCallerAdmin >
    {
        DisposedCallerAdminHolder operator () () {
            return std::make_shared<DisposedCallerAdmin>();
        }
    };

    }

    DisposedCallerAdminHolder const & DisposedCallerAdmin::getInstance()
    {
        return theDisposedCallerAdmin::get();
    }

    DisposedCallerAdmin::~DisposedCallerAdmin()
    {
        SAL_WARN_IF( !m_vector.empty(), "cppu.threadpool", "DisposedCallerList :  " << m_vector.size() << " left");
    }

    void DisposedCallerAdmin::dispose( sal_Int64 nDisposeId )
    {
        MutexGuard guard( m_mutex );
        m_vector.push_back( nDisposeId );
    }

    void DisposedCallerAdmin::destroy( sal_Int64 nDisposeId )
    {
        MutexGuard guard( m_mutex );
        m_vector.erase(std::remove(m_vector.begin(), m_vector.end(), nDisposeId), m_vector.end());
    }

    bool DisposedCallerAdmin::isDisposed( sal_Int64 nDisposeId )
    {
        MutexGuard guard( m_mutex );
        return (std::find(m_vector.begin(), m_vector.end(), nDisposeId) != m_vector.end());
    }


    ThreadPool::ThreadPool() :
        m_DisposedCallerAdmin( DisposedCallerAdmin::getInstance() )
    {
    }

    ThreadPool::~ThreadPool()
    {
        SAL_WARN_IF( m_mapQueue.size(), "cppu.threadpool", "ThreadIdHashMap:  " << m_mapQueue.size() << " left");
    }

    void ThreadPool::dispose( sal_Int64 nDisposeId )
    {
        m_DisposedCallerAdmin->dispose( nDisposeId );

        MutexGuard guard( m_mutex );
        for (auto const& item :  m_mapQueue)
        {
            if( item.second.first )
            {
                item.second.first->dispose( nDisposeId );
            }
            if( item.second.second )
            {
                item.second.second->dispose( nDisposeId );
            }
        }
    }

    void ThreadPool::destroy( sal_Int64 nDisposeId )
    {
        m_DisposedCallerAdmin->destroy( nDisposeId );
    }

    /******************
     * This methods lets the thread wait a certain amount of time. If within this timespan
     * a new request comes in, this thread is reused. This is done only to improve performance,
     * it is not required for threadpool functionality.
     ******************/
    void ThreadPool::waitInPool( rtl::Reference< ORequestThread > const & pThread )
    {
        WaitingThread waitingThread(pThread);
        {
            MutexGuard guard( m_mutexWaitingThreadList );
            m_dequeThreads.push_front( &waitingThread );
        }

        // let the thread wait 2 seconds
        waitingThread.condition.wait( std::chrono::seconds(2) );

        {
            MutexGuard guard ( m_mutexWaitingThreadList );
            if( waitingThread.thread.is() )
            {
                // thread wasn't reused, remove it from the list
                WaitingThreadDeque::iterator ii = find(
                    m_dequeThreads.begin(), m_dequeThreads.end(), &waitingThread );
                OSL_ASSERT( ii != m_dequeThreads.end() );
                m_dequeThreads.erase( ii );
            }
        }
    }

    void ThreadPool::joinWorkers()
    {
        {
            MutexGuard guard( m_mutexWaitingThreadList );
            for (auto const& thread : m_dequeThreads)
            {
                // wake the threads up
                thread->condition.set();
            }
        }
        m_aThreadAdmin.join();
    }

    bool ThreadPool::createThread( JobQueue *pQueue ,
                                   const ByteSequence &aThreadId,
                                   bool bAsynchron )
    {
        {
            // Can a thread be reused ?
            MutexGuard guard( m_mutexWaitingThreadList );
            if( ! m_dequeThreads.empty() )
            {
                // inform the thread and let it go
                struct WaitingThread *pWaitingThread = m_dequeThreads.back();
                pWaitingThread->thread->setTask( pQueue , aThreadId , bAsynchron );
                pWaitingThread->thread = nullptr;

                // remove from list
                m_dequeThreads.pop_back();

                // let the thread go
                pWaitingThread->condition.set();
                return true;
            }
        }

        rtl::Reference pThread(
            new ORequestThread( this, pQueue , aThreadId, bAsynchron) );
        return pThread->launch();
    }

    bool ThreadPool::revokeQueue( const ByteSequence &aThreadId, bool bAsynchron )
    {
        MutexGuard guard( m_mutex );

        ThreadIdHashMap::iterator ii = m_mapQueue.find( aThreadId );
        OSL_ASSERT( ii != m_mapQueue.end() );

        if( bAsynchron )
        {
            if( ! (*ii).second.second->isEmpty() )
            {
                // another thread has put something into the queue
                return false;
            }

            (*ii).second.second = nullptr;
            if( (*ii).second.first )
            {
                // all oneway request have been processed, now
                // synchronous requests may go on
                (*ii).second.first->resume();
            }
        }
        else
        {
            if( ! (*ii).second.first->isEmpty() )
            {
                // another thread has put something into the queue
                return false;
            }
            (*ii).second.first = nullptr;
        }

        if( nullptr == (*ii).second.first && nullptr == (*ii).second.second )
        {
            m_mapQueue.erase( ii );
        }

        return true;
    }


    bool ThreadPool::addJob(
        const ByteSequence &aThreadId ,
        bool bAsynchron,
        void *pThreadSpecificData,
        RequestFun * doRequest )
    {
        bool bCreateThread = false;
        JobQueue *pQueue = nullptr;
        {
            MutexGuard guard( m_mutex );

            ThreadIdHashMap::iterator ii = m_mapQueue.find( aThreadId );

            if( ii == m_mapQueue.end() )
            {
                m_mapQueue[ aThreadId ] = pair < JobQueue * , JobQueue * > ( nullptr , nullptr );
                ii = m_mapQueue.find( aThreadId );
                OSL_ASSERT( ii != m_mapQueue.end() );
            }

            if( bAsynchron )
            {
                if( ! (*ii).second.second )
                {
                    (*ii).second.second = new JobQueue();
                    bCreateThread = true;
                }
                pQueue = (*ii).second.second;
            }
            else
            {
                if( ! (*ii).second.first )
                {
                    (*ii).second.first = new JobQueue();
                    bCreateThread = true;
                }
                pQueue = (*ii).second.first;

                if( (*ii).second.second && ( (*ii).second.second->isBusy() ) )
                {
                    pQueue->suspend();
                }
            }
            pQueue->add( pThreadSpecificData , doRequest );
        }

        return !bCreateThread || createThread( pQueue , aThreadId , bAsynchron);
    }

    void ThreadPool::prepare( const ByteSequence &aThreadId )
    {
        MutexGuard guard( m_mutex );

        ThreadIdHashMap::iterator ii = m_mapQueue.find( aThreadId );

        if( ii == m_mapQueue.end() )
        {
            JobQueue *p = new JobQueue();
            m_mapQueue[ aThreadId ] = pair< JobQueue * , JobQueue * > ( p , nullptr );
        }
        else if( nullptr == (*ii).second.first )
        {
            (*ii).second.first = new JobQueue();
        }
    }

    void * ThreadPool::enter( const ByteSequence & aThreadId , sal_Int64 nDisposeId )
    {
        JobQueue *pQueue = nullptr;
        {
            MutexGuard guard( m_mutex );

            ThreadIdHashMap::iterator ii = m_mapQueue.find( aThreadId );

            OSL_ASSERT( ii != m_mapQueue.end() );
            pQueue = (*ii).second.first;
        }

        OSL_ASSERT( pQueue );
        void *pReturn = pQueue->enter( nDisposeId );

        if( pQueue->isCallstackEmpty() )
        {
            if( revokeQueue( aThreadId , false) )
            {
                // remove queue
                delete pQueue;
            }
        }
        return pReturn;
    }
}

// All uno_ThreadPool handles in g_pThreadpoolHashSet with overlapping life
// spans share one ThreadPool instance.  When g_pThreadpoolHashSet becomes empty
// (within the last uno_threadpool_destroy) all worker threads spawned by that
// ThreadPool instance are joined (which implies that uno_threadpool_destroy
// must never be called from a worker thread); afterwards, the next call to
// uno_threadpool_create (if any) will lead to a new ThreadPool instance.

using namespace cppu_threadpool;

namespace {

struct uno_ThreadPool_Equal
{
    bool operator () ( const uno_ThreadPool &a , const uno_ThreadPool &b ) const
        {
            return a == b;
        }
};

struct uno_ThreadPool_Hash
{
    std::size_t operator () ( const uno_ThreadPool &a  )  const
        {
            return reinterpret_cast<std::size_t>( a );
        }
};

}

typedef std::unordered_map< uno_ThreadPool, ThreadPoolHolder, uno_ThreadPool_Hash, uno_ThreadPool_Equal > ThreadpoolHashSet;

static ThreadpoolHashSet *g_pThreadpoolHashSet;

struct _uno_ThreadPool
{
    sal_Int32 dummy;
};

namespace {

ThreadPoolHolder getThreadPool( uno_ThreadPool hPool )
{
    MutexGuard guard( Mutex::getGlobalMutex() );
    assert( g_pThreadpoolHashSet != nullptr );
    ThreadpoolHashSet::iterator i( g_pThreadpoolHashSet->find(hPool) );
    assert( i != g_pThreadpoolHashSet->end() );
    return i->second;
}

}

extern "C" uno_ThreadPool SAL_CALL
uno_threadpool_create() SAL_THROW_EXTERN_C()
{
    MutexGuard guard( Mutex::getGlobalMutex() );
    ThreadPoolHolder p;
    if( ! g_pThreadpoolHashSet )
    {
        g_pThreadpoolHashSet = new ThreadpoolHashSet;
        p = new ThreadPool;
    }
    else
    {
        assert( !g_pThreadpoolHashSet->empty() );
        p = g_pThreadpoolHashSet->begin()->second;
    }

    // Just ensure that the handle is unique in the process (via heap)
    uno_ThreadPool h = new struct _uno_ThreadPool;
    g_pThreadpoolHashSet->emplace( h, p );
    return h;
}

extern "C" void SAL_CALL
uno_threadpool_attach( uno_ThreadPool hPool ) SAL_THROW_EXTERN_C()
{
    sal_Sequence *pThreadId = nullptr;
    uno_getIdOfCurrentThread( &pThreadId );
    getThreadPool( hPool )->prepare( pThreadId );
    rtl_byte_sequence_release( pThreadId );
    uno_releaseIdFromCurrentThread();
}

extern "C" void SAL_CALL
uno_threadpool_enter( uno_ThreadPool hPool , void **ppJob )
    SAL_THROW_EXTERN_C()
{
    sal_Sequence *pThreadId = nullptr;
    uno_getIdOfCurrentThread( &pThreadId );
    *ppJob =
        getThreadPool( hPool )->enter(
            pThreadId,
            sal::static_int_cast< sal_Int64 >(
                reinterpret_cast< sal_IntPtr >(hPool)) );
    rtl_byte_sequence_release( pThreadId );
    uno_releaseIdFromCurrentThread();
}

extern "C" void SAL_CALL
uno_threadpool_detach(SAL_UNUSED_PARAMETER uno_ThreadPool) SAL_THROW_EXTERN_C()
{
    // we might do here some tidying up in case a thread called attach but never detach
}

extern "C" void SAL_CALL
uno_threadpool_putJob(
    uno_ThreadPool hPool,
    sal_Sequence *pThreadId,
    void *pJob,
    void ( SAL_CALL * doRequest ) ( void *pThreadSpecificData ),
    sal_Bool bIsOneway ) SAL_THROW_EXTERN_C()
{
    if (!getThreadPool(hPool)->addJob( pThreadId, bIsOneway, pJob ,doRequest ))
    {
        SAL_WARN(
            "cppu.threadpool",
            "uno_threadpool_putJob in parallel with uno_threadpool_destroy");
    }
}

extern "C" void SAL_CALL
uno_threadpool_dispose( uno_ThreadPool hPool ) SAL_THROW_EXTERN_C()
{
    getThreadPool(hPool)->dispose(
        sal::static_int_cast< sal_Int64 >(
            reinterpret_cast< sal_IntPtr >(hPool)) );
}

extern "C" void SAL_CALL
uno_threadpool_destroy( uno_ThreadPool hPool ) SAL_THROW_EXTERN_C()
{
    ThreadPoolHolder p( getThreadPool(hPool) );
    p->destroy(
        sal::static_int_cast< sal_Int64 >(
            reinterpret_cast< sal_IntPtr >(hPool)) );

    bool empty;
    {
        OSL_ASSERT( g_pThreadpoolHashSet );

        MutexGuard guard( Mutex::getGlobalMutex() );

        ThreadpoolHashSet::iterator ii = g_pThreadpoolHashSet->find( hPool );
        OSL_ASSERT( ii != g_pThreadpoolHashSet->end() );
        g_pThreadpoolHashSet->erase( ii );
        delete hPool;

        empty = g_pThreadpoolHashSet->empty();
        if( empty )
        {
            delete g_pThreadpoolHashSet;
            g_pThreadpoolHashSet = nullptr;
        }
    }

    if( empty )
    {
        p->joinWorkers();
    }
}

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */