diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /arch/x86/kernel/nmi.c | |
parent | Initial commit. (diff) | |
download | linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip |
Adding upstream version 5.10.209.upstream/5.10.209
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/kernel/nmi.c')
-rw-r--r-- | arch/x86/kernel/nmi.c | 552 |
1 files changed, 552 insertions, 0 deletions
diff --git a/arch/x86/kernel/nmi.c b/arch/x86/kernel/nmi.c new file mode 100644 index 000000000..2ef961cf4 --- /dev/null +++ b/arch/x86/kernel/nmi.c @@ -0,0 +1,552 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 1991, 1992 Linus Torvalds + * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs + * Copyright (C) 2011 Don Zickus Red Hat, Inc. + * + * Pentium III FXSR, SSE support + * Gareth Hughes <gareth@valinux.com>, May 2000 + */ + +/* + * Handle hardware traps and faults. + */ +#include <linux/spinlock.h> +#include <linux/kprobes.h> +#include <linux/kdebug.h> +#include <linux/sched/debug.h> +#include <linux/nmi.h> +#include <linux/debugfs.h> +#include <linux/delay.h> +#include <linux/hardirq.h> +#include <linux/ratelimit.h> +#include <linux/slab.h> +#include <linux/export.h> +#include <linux/atomic.h> +#include <linux/sched/clock.h> + +#include <asm/cpu_entry_area.h> +#include <asm/traps.h> +#include <asm/mach_traps.h> +#include <asm/nmi.h> +#include <asm/x86_init.h> +#include <asm/reboot.h> +#include <asm/cache.h> +#include <asm/nospec-branch.h> +#include <asm/sev-es.h> + +#define CREATE_TRACE_POINTS +#include <trace/events/nmi.h> + +struct nmi_desc { + raw_spinlock_t lock; + struct list_head head; +}; + +static struct nmi_desc nmi_desc[NMI_MAX] = +{ + { + .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock), + .head = LIST_HEAD_INIT(nmi_desc[0].head), + }, + { + .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock), + .head = LIST_HEAD_INIT(nmi_desc[1].head), + }, + { + .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock), + .head = LIST_HEAD_INIT(nmi_desc[2].head), + }, + { + .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock), + .head = LIST_HEAD_INIT(nmi_desc[3].head), + }, + +}; + +struct nmi_stats { + unsigned int normal; + unsigned int unknown; + unsigned int external; + unsigned int swallow; +}; + +static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); + +static int ignore_nmis __read_mostly; + +int unknown_nmi_panic; +/* + * Prevent NMI reason port (0x61) being accessed simultaneously, can + * only be used in NMI handler. + */ +static DEFINE_RAW_SPINLOCK(nmi_reason_lock); + +static int __init setup_unknown_nmi_panic(char *str) +{ + unknown_nmi_panic = 1; + return 1; +} +__setup("unknown_nmi_panic", setup_unknown_nmi_panic); + +#define nmi_to_desc(type) (&nmi_desc[type]) + +static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC; + +static int __init nmi_warning_debugfs(void) +{ + debugfs_create_u64("nmi_longest_ns", 0644, + arch_debugfs_dir, &nmi_longest_ns); + return 0; +} +fs_initcall(nmi_warning_debugfs); + +static void nmi_check_duration(struct nmiaction *action, u64 duration) +{ + int remainder_ns, decimal_msecs; + + if (duration < nmi_longest_ns || duration < action->max_duration) + return; + + action->max_duration = duration; + + remainder_ns = do_div(duration, (1000 * 1000)); + decimal_msecs = remainder_ns / 1000; + + printk_ratelimited(KERN_INFO + "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n", + action->handler, duration, decimal_msecs); +} + +static int nmi_handle(unsigned int type, struct pt_regs *regs) +{ + struct nmi_desc *desc = nmi_to_desc(type); + struct nmiaction *a; + int handled=0; + + rcu_read_lock(); + + /* + * NMIs are edge-triggered, which means if you have enough + * of them concurrently, you can lose some because only one + * can be latched at any given time. Walk the whole list + * to handle those situations. + */ + list_for_each_entry_rcu(a, &desc->head, list) { + int thishandled; + u64 delta; + + delta = sched_clock(); + thishandled = a->handler(type, regs); + handled += thishandled; + delta = sched_clock() - delta; + trace_nmi_handler(a->handler, (int)delta, thishandled); + + nmi_check_duration(a, delta); + } + + rcu_read_unlock(); + + /* return total number of NMI events handled */ + return handled; +} +NOKPROBE_SYMBOL(nmi_handle); + +int __register_nmi_handler(unsigned int type, struct nmiaction *action) +{ + struct nmi_desc *desc = nmi_to_desc(type); + unsigned long flags; + + if (!action->handler) + return -EINVAL; + + raw_spin_lock_irqsave(&desc->lock, flags); + + /* + * Indicate if there are multiple registrations on the + * internal NMI handler call chains (SERR and IO_CHECK). + */ + WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head)); + WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head)); + + /* + * some handlers need to be executed first otherwise a fake + * event confuses some handlers (kdump uses this flag) + */ + if (action->flags & NMI_FLAG_FIRST) + list_add_rcu(&action->list, &desc->head); + else + list_add_tail_rcu(&action->list, &desc->head); + + raw_spin_unlock_irqrestore(&desc->lock, flags); + return 0; +} +EXPORT_SYMBOL(__register_nmi_handler); + +void unregister_nmi_handler(unsigned int type, const char *name) +{ + struct nmi_desc *desc = nmi_to_desc(type); + struct nmiaction *n; + unsigned long flags; + + raw_spin_lock_irqsave(&desc->lock, flags); + + list_for_each_entry_rcu(n, &desc->head, list) { + /* + * the name passed in to describe the nmi handler + * is used as the lookup key + */ + if (!strcmp(n->name, name)) { + WARN(in_nmi(), + "Trying to free NMI (%s) from NMI context!\n", n->name); + list_del_rcu(&n->list); + break; + } + } + + raw_spin_unlock_irqrestore(&desc->lock, flags); + synchronize_rcu(); +} +EXPORT_SYMBOL_GPL(unregister_nmi_handler); + +static void +pci_serr_error(unsigned char reason, struct pt_regs *regs) +{ + /* check to see if anyone registered against these types of errors */ + if (nmi_handle(NMI_SERR, regs)) + return; + + pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", + reason, smp_processor_id()); + + if (panic_on_unrecovered_nmi) + nmi_panic(regs, "NMI: Not continuing"); + + pr_emerg("Dazed and confused, but trying to continue\n"); + + /* Clear and disable the PCI SERR error line. */ + reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; + outb(reason, NMI_REASON_PORT); +} +NOKPROBE_SYMBOL(pci_serr_error); + +static void +io_check_error(unsigned char reason, struct pt_regs *regs) +{ + unsigned long i; + + /* check to see if anyone registered against these types of errors */ + if (nmi_handle(NMI_IO_CHECK, regs)) + return; + + pr_emerg( + "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", + reason, smp_processor_id()); + show_regs(regs); + + if (panic_on_io_nmi) { + nmi_panic(regs, "NMI IOCK error: Not continuing"); + + /* + * If we end up here, it means we have received an NMI while + * processing panic(). Simply return without delaying and + * re-enabling NMIs. + */ + return; + } + + /* Re-enable the IOCK line, wait for a few seconds */ + reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; + outb(reason, NMI_REASON_PORT); + + i = 20000; + while (--i) { + touch_nmi_watchdog(); + udelay(100); + } + + reason &= ~NMI_REASON_CLEAR_IOCHK; + outb(reason, NMI_REASON_PORT); +} +NOKPROBE_SYMBOL(io_check_error); + +static void +unknown_nmi_error(unsigned char reason, struct pt_regs *regs) +{ + int handled; + + /* + * Use 'false' as back-to-back NMIs are dealt with one level up. + * Of course this makes having multiple 'unknown' handlers useless + * as only the first one is ever run (unless it can actually determine + * if it caused the NMI) + */ + handled = nmi_handle(NMI_UNKNOWN, regs); + if (handled) { + __this_cpu_add(nmi_stats.unknown, handled); + return; + } + + __this_cpu_add(nmi_stats.unknown, 1); + + pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", + reason, smp_processor_id()); + + pr_emerg("Do you have a strange power saving mode enabled?\n"); + if (unknown_nmi_panic || panic_on_unrecovered_nmi) + nmi_panic(regs, "NMI: Not continuing"); + + pr_emerg("Dazed and confused, but trying to continue\n"); +} +NOKPROBE_SYMBOL(unknown_nmi_error); + +static DEFINE_PER_CPU(bool, swallow_nmi); +static DEFINE_PER_CPU(unsigned long, last_nmi_rip); + +static noinstr void default_do_nmi(struct pt_regs *regs) +{ + unsigned char reason = 0; + int handled; + bool b2b = false; + + /* + * CPU-specific NMI must be processed before non-CPU-specific + * NMI, otherwise we may lose it, because the CPU-specific + * NMI can not be detected/processed on other CPUs. + */ + + /* + * Back-to-back NMIs are interesting because they can either + * be two NMI or more than two NMIs (any thing over two is dropped + * due to NMI being edge-triggered). If this is the second half + * of the back-to-back NMI, assume we dropped things and process + * more handlers. Otherwise reset the 'swallow' NMI behaviour + */ + if (regs->ip == __this_cpu_read(last_nmi_rip)) + b2b = true; + else + __this_cpu_write(swallow_nmi, false); + + __this_cpu_write(last_nmi_rip, regs->ip); + + instrumentation_begin(); + + handled = nmi_handle(NMI_LOCAL, regs); + __this_cpu_add(nmi_stats.normal, handled); + if (handled) { + /* + * There are cases when a NMI handler handles multiple + * events in the current NMI. One of these events may + * be queued for in the next NMI. Because the event is + * already handled, the next NMI will result in an unknown + * NMI. Instead lets flag this for a potential NMI to + * swallow. + */ + if (handled > 1) + __this_cpu_write(swallow_nmi, true); + goto out; + } + + /* + * Non-CPU-specific NMI: NMI sources can be processed on any CPU. + * + * Another CPU may be processing panic routines while holding + * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping, + * and if so, call its callback directly. If there is no CPU preparing + * crash dump, we simply loop here. + */ + while (!raw_spin_trylock(&nmi_reason_lock)) { + run_crash_ipi_callback(regs); + cpu_relax(); + } + + reason = x86_platform.get_nmi_reason(); + + if (reason & NMI_REASON_MASK) { + if (reason & NMI_REASON_SERR) + pci_serr_error(reason, regs); + else if (reason & NMI_REASON_IOCHK) + io_check_error(reason, regs); +#ifdef CONFIG_X86_32 + /* + * Reassert NMI in case it became active + * meanwhile as it's edge-triggered: + */ + reassert_nmi(); +#endif + __this_cpu_add(nmi_stats.external, 1); + raw_spin_unlock(&nmi_reason_lock); + goto out; + } + raw_spin_unlock(&nmi_reason_lock); + + /* + * Only one NMI can be latched at a time. To handle + * this we may process multiple nmi handlers at once to + * cover the case where an NMI is dropped. The downside + * to this approach is we may process an NMI prematurely, + * while its real NMI is sitting latched. This will cause + * an unknown NMI on the next run of the NMI processing. + * + * We tried to flag that condition above, by setting the + * swallow_nmi flag when we process more than one event. + * This condition is also only present on the second half + * of a back-to-back NMI, so we flag that condition too. + * + * If both are true, we assume we already processed this + * NMI previously and we swallow it. Otherwise we reset + * the logic. + * + * There are scenarios where we may accidentally swallow + * a 'real' unknown NMI. For example, while processing + * a perf NMI another perf NMI comes in along with a + * 'real' unknown NMI. These two NMIs get combined into + * one (as described above). When the next NMI gets + * processed, it will be flagged by perf as handled, but + * no one will know that there was a 'real' unknown NMI sent + * also. As a result it gets swallowed. Or if the first + * perf NMI returns two events handled then the second + * NMI will get eaten by the logic below, again losing a + * 'real' unknown NMI. But this is the best we can do + * for now. + */ + if (b2b && __this_cpu_read(swallow_nmi)) + __this_cpu_add(nmi_stats.swallow, 1); + else + unknown_nmi_error(reason, regs); + +out: + instrumentation_end(); +} + +/* + * NMIs can page fault or hit breakpoints which will cause it to lose + * its NMI context with the CPU when the breakpoint or page fault does an IRET. + * + * As a result, NMIs can nest if NMIs get unmasked due an IRET during + * NMI processing. On x86_64, the asm glue protects us from nested NMIs + * if the outer NMI came from kernel mode, but we can still nest if the + * outer NMI came from user mode. + * + * To handle these nested NMIs, we have three states: + * + * 1) not running + * 2) executing + * 3) latched + * + * When no NMI is in progress, it is in the "not running" state. + * When an NMI comes in, it goes into the "executing" state. + * Normally, if another NMI is triggered, it does not interrupt + * the running NMI and the HW will simply latch it so that when + * the first NMI finishes, it will restart the second NMI. + * (Note, the latch is binary, thus multiple NMIs triggering, + * when one is running, are ignored. Only one NMI is restarted.) + * + * If an NMI executes an iret, another NMI can preempt it. We do not + * want to allow this new NMI to run, but we want to execute it when the + * first one finishes. We set the state to "latched", and the exit of + * the first NMI will perform a dec_return, if the result is zero + * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the + * dec_return would have set the state to NMI_EXECUTING (what we want it + * to be when we are running). In this case, we simply jump back to + * rerun the NMI handler again, and restart the 'latched' NMI. + * + * No trap (breakpoint or page fault) should be hit before nmi_restart, + * thus there is no race between the first check of state for NOT_RUNNING + * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs + * at this point. + * + * In case the NMI takes a page fault, we need to save off the CR2 + * because the NMI could have preempted another page fault and corrupt + * the CR2 that is about to be read. As nested NMIs must be restarted + * and they can not take breakpoints or page faults, the update of the + * CR2 must be done before converting the nmi state back to NOT_RUNNING. + * Otherwise, there would be a race of another nested NMI coming in + * after setting state to NOT_RUNNING but before updating the nmi_cr2. + */ +enum nmi_states { + NMI_NOT_RUNNING = 0, + NMI_EXECUTING, + NMI_LATCHED, +}; +static DEFINE_PER_CPU(enum nmi_states, nmi_state); +static DEFINE_PER_CPU(unsigned long, nmi_cr2); +static DEFINE_PER_CPU(unsigned long, nmi_dr7); + +DEFINE_IDTENTRY_RAW(exc_nmi) +{ + irqentry_state_t irq_state; + + /* + * Re-enable NMIs right here when running as an SEV-ES guest. This might + * cause nested NMIs, but those can be handled safely. + */ + sev_es_nmi_complete(); + + if (IS_ENABLED(CONFIG_SMP) && arch_cpu_is_offline(smp_processor_id())) + return; + + if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { + this_cpu_write(nmi_state, NMI_LATCHED); + return; + } + this_cpu_write(nmi_state, NMI_EXECUTING); + this_cpu_write(nmi_cr2, read_cr2()); +nmi_restart: + + /* + * Needs to happen before DR7 is accessed, because the hypervisor can + * intercept DR7 reads/writes, turning those into #VC exceptions. + */ + sev_es_ist_enter(regs); + + this_cpu_write(nmi_dr7, local_db_save()); + + irq_state = irqentry_nmi_enter(regs); + + inc_irq_stat(__nmi_count); + + if (!ignore_nmis) + default_do_nmi(regs); + + irqentry_nmi_exit(regs, irq_state); + + local_db_restore(this_cpu_read(nmi_dr7)); + + sev_es_ist_exit(); + + if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) + write_cr2(this_cpu_read(nmi_cr2)); + if (this_cpu_dec_return(nmi_state)) + goto nmi_restart; + + if (user_mode(regs)) + mds_user_clear_cpu_buffers(); +} + +#if defined(CONFIG_X86_64) && IS_ENABLED(CONFIG_KVM_INTEL) +DEFINE_IDTENTRY_RAW(exc_nmi_noist) +{ + exc_nmi(regs); +} +#endif +#if IS_MODULE(CONFIG_KVM_INTEL) +EXPORT_SYMBOL_GPL(asm_exc_nmi_noist); +#endif + +void stop_nmi(void) +{ + ignore_nmis++; +} + +void restart_nmi(void) +{ + ignore_nmis--; +} + +/* reset the back-to-back NMI logic */ +void local_touch_nmi(void) +{ + __this_cpu_write(last_nmi_rip, 0); +} +EXPORT_SYMBOL_GPL(local_touch_nmi); |