diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /block/blk-iocost.c | |
parent | Initial commit. (diff) | |
download | linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip |
Adding upstream version 5.10.209.upstream/5.10.209
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'block/blk-iocost.c')
-rw-r--r-- | block/blk-iocost.c | 3456 |
1 files changed, 3456 insertions, 0 deletions
diff --git a/block/blk-iocost.c b/block/blk-iocost.c new file mode 100644 index 000000000..7ba7c4e4e --- /dev/null +++ b/block/blk-iocost.c @@ -0,0 +1,3456 @@ +/* SPDX-License-Identifier: GPL-2.0 + * + * IO cost model based controller. + * + * Copyright (C) 2019 Tejun Heo <tj@kernel.org> + * Copyright (C) 2019 Andy Newell <newella@fb.com> + * Copyright (C) 2019 Facebook + * + * One challenge of controlling IO resources is the lack of trivially + * observable cost metric. This is distinguished from CPU and memory where + * wallclock time and the number of bytes can serve as accurate enough + * approximations. + * + * Bandwidth and iops are the most commonly used metrics for IO devices but + * depending on the type and specifics of the device, different IO patterns + * easily lead to multiple orders of magnitude variations rendering them + * useless for the purpose of IO capacity distribution. While on-device + * time, with a lot of clutches, could serve as a useful approximation for + * non-queued rotational devices, this is no longer viable with modern + * devices, even the rotational ones. + * + * While there is no cost metric we can trivially observe, it isn't a + * complete mystery. For example, on a rotational device, seek cost + * dominates while a contiguous transfer contributes a smaller amount + * proportional to the size. If we can characterize at least the relative + * costs of these different types of IOs, it should be possible to + * implement a reasonable work-conserving proportional IO resource + * distribution. + * + * 1. IO Cost Model + * + * IO cost model estimates the cost of an IO given its basic parameters and + * history (e.g. the end sector of the last IO). The cost is measured in + * device time. If a given IO is estimated to cost 10ms, the device should + * be able to process ~100 of those IOs in a second. + * + * Currently, there's only one builtin cost model - linear. Each IO is + * classified as sequential or random and given a base cost accordingly. + * On top of that, a size cost proportional to the length of the IO is + * added. While simple, this model captures the operational + * characteristics of a wide varienty of devices well enough. Default + * paramters for several different classes of devices are provided and the + * parameters can be configured from userspace via + * /sys/fs/cgroup/io.cost.model. + * + * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate + * device-specific coefficients. + * + * 2. Control Strategy + * + * The device virtual time (vtime) is used as the primary control metric. + * The control strategy is composed of the following three parts. + * + * 2-1. Vtime Distribution + * + * When a cgroup becomes active in terms of IOs, its hierarchical share is + * calculated. Please consider the following hierarchy where the numbers + * inside parentheses denote the configured weights. + * + * root + * / \ + * A (w:100) B (w:300) + * / \ + * A0 (w:100) A1 (w:100) + * + * If B is idle and only A0 and A1 are actively issuing IOs, as the two are + * of equal weight, each gets 50% share. If then B starts issuing IOs, B + * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, + * 12.5% each. The distribution mechanism only cares about these flattened + * shares. They're called hweights (hierarchical weights) and always add + * upto 1 (WEIGHT_ONE). + * + * A given cgroup's vtime runs slower in inverse proportion to its hweight. + * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) + * against the device vtime - an IO which takes 10ms on the underlying + * device is considered to take 80ms on A0. + * + * This constitutes the basis of IO capacity distribution. Each cgroup's + * vtime is running at a rate determined by its hweight. A cgroup tracks + * the vtime consumed by past IOs and can issue a new IO iff doing so + * wouldn't outrun the current device vtime. Otherwise, the IO is + * suspended until the vtime has progressed enough to cover it. + * + * 2-2. Vrate Adjustment + * + * It's unrealistic to expect the cost model to be perfect. There are too + * many devices and even on the same device the overall performance + * fluctuates depending on numerous factors such as IO mixture and device + * internal garbage collection. The controller needs to adapt dynamically. + * + * This is achieved by adjusting the overall IO rate according to how busy + * the device is. If the device becomes overloaded, we're sending down too + * many IOs and should generally slow down. If there are waiting issuers + * but the device isn't saturated, we're issuing too few and should + * generally speed up. + * + * To slow down, we lower the vrate - the rate at which the device vtime + * passes compared to the wall clock. For example, if the vtime is running + * at the vrate of 75%, all cgroups added up would only be able to issue + * 750ms worth of IOs per second, and vice-versa for speeding up. + * + * Device business is determined using two criteria - rq wait and + * completion latencies. + * + * When a device gets saturated, the on-device and then the request queues + * fill up and a bio which is ready to be issued has to wait for a request + * to become available. When this delay becomes noticeable, it's a clear + * indication that the device is saturated and we lower the vrate. This + * saturation signal is fairly conservative as it only triggers when both + * hardware and software queues are filled up, and is used as the default + * busy signal. + * + * As devices can have deep queues and be unfair in how the queued commands + * are executed, soley depending on rq wait may not result in satisfactory + * control quality. For a better control quality, completion latency QoS + * parameters can be configured so that the device is considered saturated + * if N'th percentile completion latency rises above the set point. + * + * The completion latency requirements are a function of both the + * underlying device characteristics and the desired IO latency quality of + * service. There is an inherent trade-off - the tighter the latency QoS, + * the higher the bandwidth lossage. Latency QoS is disabled by default + * and can be set through /sys/fs/cgroup/io.cost.qos. + * + * 2-3. Work Conservation + * + * Imagine two cgroups A and B with equal weights. A is issuing a small IO + * periodically while B is sending out enough parallel IOs to saturate the + * device on its own. Let's say A's usage amounts to 100ms worth of IO + * cost per second, i.e., 10% of the device capacity. The naive + * distribution of half and half would lead to 60% utilization of the + * device, a significant reduction in the total amount of work done + * compared to free-for-all competition. This is too high a cost to pay + * for IO control. + * + * To conserve the total amount of work done, we keep track of how much + * each active cgroup is actually using and yield part of its weight if + * there are other cgroups which can make use of it. In the above case, + * A's weight will be lowered so that it hovers above the actual usage and + * B would be able to use the rest. + * + * As we don't want to penalize a cgroup for donating its weight, the + * surplus weight adjustment factors in a margin and has an immediate + * snapback mechanism in case the cgroup needs more IO vtime for itself. + * + * Note that adjusting down surplus weights has the same effects as + * accelerating vtime for other cgroups and work conservation can also be + * implemented by adjusting vrate dynamically. However, squaring who can + * donate and should take back how much requires hweight propagations + * anyway making it easier to implement and understand as a separate + * mechanism. + * + * 3. Monitoring + * + * Instead of debugfs or other clumsy monitoring mechanisms, this + * controller uses a drgn based monitoring script - + * tools/cgroup/iocost_monitor.py. For details on drgn, please see + * https://github.com/osandov/drgn. The ouput looks like the following. + * + * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% + * active weight hweight% inflt% dbt delay usages% + * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 + * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 + * + * - per : Timer period + * - cur_per : Internal wall and device vtime clock + * - vrate : Device virtual time rate against wall clock + * - weight : Surplus-adjusted and configured weights + * - hweight : Surplus-adjusted and configured hierarchical weights + * - inflt : The percentage of in-flight IO cost at the end of last period + * - del_ms : Deferred issuer delay induction level and duration + * - usages : Usage history + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/timer.h> +#include <linux/time64.h> +#include <linux/parser.h> +#include <linux/sched/signal.h> +#include <linux/blk-cgroup.h> +#include <asm/local.h> +#include <asm/local64.h> +#include "blk-rq-qos.h" +#include "blk-stat.h" +#include "blk-wbt.h" + +#ifdef CONFIG_TRACEPOINTS + +/* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ +#define TRACE_IOCG_PATH_LEN 1024 +static DEFINE_SPINLOCK(trace_iocg_path_lock); +static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; + +#define TRACE_IOCG_PATH(type, iocg, ...) \ + do { \ + unsigned long flags; \ + if (trace_iocost_##type##_enabled()) { \ + spin_lock_irqsave(&trace_iocg_path_lock, flags); \ + cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ + trace_iocg_path, TRACE_IOCG_PATH_LEN); \ + trace_iocost_##type(iocg, trace_iocg_path, \ + ##__VA_ARGS__); \ + spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ + } \ + } while (0) + +#else /* CONFIG_TRACE_POINTS */ +#define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) +#endif /* CONFIG_TRACE_POINTS */ + +enum { + MILLION = 1000000, + + /* timer period is calculated from latency requirements, bound it */ + MIN_PERIOD = USEC_PER_MSEC, + MAX_PERIOD = USEC_PER_SEC, + + /* + * iocg->vtime is targeted at 50% behind the device vtime, which + * serves as its IO credit buffer. Surplus weight adjustment is + * immediately canceled if the vtime margin runs below 10%. + */ + MARGIN_MIN_PCT = 10, + MARGIN_LOW_PCT = 20, + MARGIN_TARGET_PCT = 50, + + INUSE_ADJ_STEP_PCT = 25, + + /* Have some play in timer operations */ + TIMER_SLACK_PCT = 1, + + /* 1/64k is granular enough and can easily be handled w/ u32 */ + WEIGHT_ONE = 1 << 16, +}; + +enum { + /* + * As vtime is used to calculate the cost of each IO, it needs to + * be fairly high precision. For example, it should be able to + * represent the cost of a single page worth of discard with + * suffificient accuracy. At the same time, it should be able to + * represent reasonably long enough durations to be useful and + * convenient during operation. + * + * 1s worth of vtime is 2^37. This gives us both sub-nanosecond + * granularity and days of wrap-around time even at extreme vrates. + */ + VTIME_PER_SEC_SHIFT = 37, + VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, + VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, + VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC, + + /* bound vrate adjustments within two orders of magnitude */ + VRATE_MIN_PPM = 10000, /* 1% */ + VRATE_MAX_PPM = 100000000, /* 10000% */ + + VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, + VRATE_CLAMP_ADJ_PCT = 4, + + /* switch iff the conditions are met for longer than this */ + AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, +}; + +enum { + /* if IOs end up waiting for requests, issue less */ + RQ_WAIT_BUSY_PCT = 5, + + /* unbusy hysterisis */ + UNBUSY_THR_PCT = 75, + + /* + * The effect of delay is indirect and non-linear and a huge amount of + * future debt can accumulate abruptly while unthrottled. Linearly scale + * up delay as debt is going up and then let it decay exponentially. + * This gives us quick ramp ups while delay is accumulating and long + * tails which can help reducing the frequency of debt explosions on + * unthrottle. The parameters are experimentally determined. + * + * The delay mechanism provides adequate protection and behavior in many + * cases. However, this is far from ideal and falls shorts on both + * fronts. The debtors are often throttled too harshly costing a + * significant level of fairness and possibly total work while the + * protection against their impacts on the system can be choppy and + * unreliable. + * + * The shortcoming primarily stems from the fact that, unlike for page + * cache, the kernel doesn't have well-defined back-pressure propagation + * mechanism and policies for anonymous memory. Fully addressing this + * issue will likely require substantial improvements in the area. + */ + MIN_DELAY_THR_PCT = 500, + MAX_DELAY_THR_PCT = 25000, + MIN_DELAY = 250, + MAX_DELAY = 250 * USEC_PER_MSEC, + + /* halve debts if avg usage over 100ms is under 50% */ + DFGV_USAGE_PCT = 50, + DFGV_PERIOD = 100 * USEC_PER_MSEC, + + /* don't let cmds which take a very long time pin lagging for too long */ + MAX_LAGGING_PERIODS = 10, + + /* + * Count IO size in 4k pages. The 12bit shift helps keeping + * size-proportional components of cost calculation in closer + * numbers of digits to per-IO cost components. + */ + IOC_PAGE_SHIFT = 12, + IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, + IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, + + /* if apart further than 16M, consider randio for linear model */ + LCOEF_RANDIO_PAGES = 4096, +}; + +enum ioc_running { + IOC_IDLE, + IOC_RUNNING, + IOC_STOP, +}; + +/* io.cost.qos controls including per-dev enable of the whole controller */ +enum { + QOS_ENABLE, + QOS_CTRL, + NR_QOS_CTRL_PARAMS, +}; + +/* io.cost.qos params */ +enum { + QOS_RPPM, + QOS_RLAT, + QOS_WPPM, + QOS_WLAT, + QOS_MIN, + QOS_MAX, + NR_QOS_PARAMS, +}; + +/* io.cost.model controls */ +enum { + COST_CTRL, + COST_MODEL, + NR_COST_CTRL_PARAMS, +}; + +/* builtin linear cost model coefficients */ +enum { + I_LCOEF_RBPS, + I_LCOEF_RSEQIOPS, + I_LCOEF_RRANDIOPS, + I_LCOEF_WBPS, + I_LCOEF_WSEQIOPS, + I_LCOEF_WRANDIOPS, + NR_I_LCOEFS, +}; + +enum { + LCOEF_RPAGE, + LCOEF_RSEQIO, + LCOEF_RRANDIO, + LCOEF_WPAGE, + LCOEF_WSEQIO, + LCOEF_WRANDIO, + NR_LCOEFS, +}; + +enum { + AUTOP_INVALID, + AUTOP_HDD, + AUTOP_SSD_QD1, + AUTOP_SSD_DFL, + AUTOP_SSD_FAST, +}; + +struct ioc_gq; + +struct ioc_params { + u32 qos[NR_QOS_PARAMS]; + u64 i_lcoefs[NR_I_LCOEFS]; + u64 lcoefs[NR_LCOEFS]; + u32 too_fast_vrate_pct; + u32 too_slow_vrate_pct; +}; + +struct ioc_margins { + s64 min; + s64 low; + s64 target; +}; + +struct ioc_missed { + local_t nr_met; + local_t nr_missed; + u32 last_met; + u32 last_missed; +}; + +struct ioc_pcpu_stat { + struct ioc_missed missed[2]; + + local64_t rq_wait_ns; + u64 last_rq_wait_ns; +}; + +/* per device */ +struct ioc { + struct rq_qos rqos; + + bool enabled; + + struct ioc_params params; + struct ioc_margins margins; + u32 period_us; + u32 timer_slack_ns; + u64 vrate_min; + u64 vrate_max; + + spinlock_t lock; + struct timer_list timer; + struct list_head active_iocgs; /* active cgroups */ + struct ioc_pcpu_stat __percpu *pcpu_stat; + + enum ioc_running running; + atomic64_t vtime_rate; + u64 vtime_base_rate; + s64 vtime_err; + + seqcount_spinlock_t period_seqcount; + u64 period_at; /* wallclock starttime */ + u64 period_at_vtime; /* vtime starttime */ + + atomic64_t cur_period; /* inc'd each period */ + int busy_level; /* saturation history */ + + bool weights_updated; + atomic_t hweight_gen; /* for lazy hweights */ + + /* debt forgivness */ + u64 dfgv_period_at; + u64 dfgv_period_rem; + u64 dfgv_usage_us_sum; + + u64 autop_too_fast_at; + u64 autop_too_slow_at; + int autop_idx; + bool user_qos_params:1; + bool user_cost_model:1; +}; + +struct iocg_pcpu_stat { + local64_t abs_vusage; +}; + +struct iocg_stat { + u64 usage_us; + u64 wait_us; + u64 indebt_us; + u64 indelay_us; +}; + +/* per device-cgroup pair */ +struct ioc_gq { + struct blkg_policy_data pd; + struct ioc *ioc; + + /* + * A iocg can get its weight from two sources - an explicit + * per-device-cgroup configuration or the default weight of the + * cgroup. `cfg_weight` is the explicit per-device-cgroup + * configuration. `weight` is the effective considering both + * sources. + * + * When an idle cgroup becomes active its `active` goes from 0 to + * `weight`. `inuse` is the surplus adjusted active weight. + * `active` and `inuse` are used to calculate `hweight_active` and + * `hweight_inuse`. + * + * `last_inuse` remembers `inuse` while an iocg is idle to persist + * surplus adjustments. + * + * `inuse` may be adjusted dynamically during period. `saved_*` are used + * to determine and track adjustments. + */ + u32 cfg_weight; + u32 weight; + u32 active; + u32 inuse; + + u32 last_inuse; + s64 saved_margin; + + sector_t cursor; /* to detect randio */ + + /* + * `vtime` is this iocg's vtime cursor which progresses as IOs are + * issued. If lagging behind device vtime, the delta represents + * the currently available IO budget. If runnning ahead, the + * overage. + * + * `vtime_done` is the same but progressed on completion rather + * than issue. The delta behind `vtime` represents the cost of + * currently in-flight IOs. + */ + atomic64_t vtime; + atomic64_t done_vtime; + u64 abs_vdebt; + + /* current delay in effect and when it started */ + u64 delay; + u64 delay_at; + + /* + * The period this iocg was last active in. Used for deactivation + * and invalidating `vtime`. + */ + atomic64_t active_period; + struct list_head active_list; + + /* see __propagate_weights() and current_hweight() for details */ + u64 child_active_sum; + u64 child_inuse_sum; + u64 child_adjusted_sum; + int hweight_gen; + u32 hweight_active; + u32 hweight_inuse; + u32 hweight_donating; + u32 hweight_after_donation; + + struct list_head walk_list; + struct list_head surplus_list; + + struct wait_queue_head waitq; + struct hrtimer waitq_timer; + + /* timestamp at the latest activation */ + u64 activated_at; + + /* statistics */ + struct iocg_pcpu_stat __percpu *pcpu_stat; + struct iocg_stat local_stat; + struct iocg_stat desc_stat; + struct iocg_stat last_stat; + u64 last_stat_abs_vusage; + u64 usage_delta_us; + u64 wait_since; + u64 indebt_since; + u64 indelay_since; + + /* this iocg's depth in the hierarchy and ancestors including self */ + int level; + struct ioc_gq *ancestors[]; +}; + +/* per cgroup */ +struct ioc_cgrp { + struct blkcg_policy_data cpd; + unsigned int dfl_weight; +}; + +struct ioc_now { + u64 now_ns; + u64 now; + u64 vnow; + u64 vrate; +}; + +struct iocg_wait { + struct wait_queue_entry wait; + struct bio *bio; + u64 abs_cost; + bool committed; +}; + +struct iocg_wake_ctx { + struct ioc_gq *iocg; + u32 hw_inuse; + s64 vbudget; +}; + +static const struct ioc_params autop[] = { + [AUTOP_HDD] = { + .qos = { + [QOS_RLAT] = 250000, /* 250ms */ + [QOS_WLAT] = 250000, + [QOS_MIN] = VRATE_MIN_PPM, + [QOS_MAX] = VRATE_MAX_PPM, + }, + .i_lcoefs = { + [I_LCOEF_RBPS] = 174019176, + [I_LCOEF_RSEQIOPS] = 41708, + [I_LCOEF_RRANDIOPS] = 370, + [I_LCOEF_WBPS] = 178075866, + [I_LCOEF_WSEQIOPS] = 42705, + [I_LCOEF_WRANDIOPS] = 378, + }, + }, + [AUTOP_SSD_QD1] = { + .qos = { + [QOS_RLAT] = 25000, /* 25ms */ + [QOS_WLAT] = 25000, + [QOS_MIN] = VRATE_MIN_PPM, + [QOS_MAX] = VRATE_MAX_PPM, + }, + .i_lcoefs = { + [I_LCOEF_RBPS] = 245855193, + [I_LCOEF_RSEQIOPS] = 61575, + [I_LCOEF_RRANDIOPS] = 6946, + [I_LCOEF_WBPS] = 141365009, + [I_LCOEF_WSEQIOPS] = 33716, + [I_LCOEF_WRANDIOPS] = 26796, + }, + }, + [AUTOP_SSD_DFL] = { + .qos = { + [QOS_RLAT] = 25000, /* 25ms */ + [QOS_WLAT] = 25000, + [QOS_MIN] = VRATE_MIN_PPM, + [QOS_MAX] = VRATE_MAX_PPM, + }, + .i_lcoefs = { + [I_LCOEF_RBPS] = 488636629, + [I_LCOEF_RSEQIOPS] = 8932, + [I_LCOEF_RRANDIOPS] = 8518, + [I_LCOEF_WBPS] = 427891549, + [I_LCOEF_WSEQIOPS] = 28755, + [I_LCOEF_WRANDIOPS] = 21940, + }, + .too_fast_vrate_pct = 500, + }, + [AUTOP_SSD_FAST] = { + .qos = { + [QOS_RLAT] = 5000, /* 5ms */ + [QOS_WLAT] = 5000, + [QOS_MIN] = VRATE_MIN_PPM, + [QOS_MAX] = VRATE_MAX_PPM, + }, + .i_lcoefs = { + [I_LCOEF_RBPS] = 3102524156LLU, + [I_LCOEF_RSEQIOPS] = 724816, + [I_LCOEF_RRANDIOPS] = 778122, + [I_LCOEF_WBPS] = 1742780862LLU, + [I_LCOEF_WSEQIOPS] = 425702, + [I_LCOEF_WRANDIOPS] = 443193, + }, + .too_slow_vrate_pct = 10, + }, +}; + +/* + * vrate adjust percentages indexed by ioc->busy_level. We adjust up on + * vtime credit shortage and down on device saturation. + */ +static u32 vrate_adj_pct[] = + { 0, 0, 0, 0, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; + +static struct blkcg_policy blkcg_policy_iocost; + +/* accessors and helpers */ +static struct ioc *rqos_to_ioc(struct rq_qos *rqos) +{ + return container_of(rqos, struct ioc, rqos); +} + +static struct ioc *q_to_ioc(struct request_queue *q) +{ + return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); +} + +static const char *q_name(struct request_queue *q) +{ + if (blk_queue_registered(q)) + return kobject_name(q->kobj.parent); + else + return "<unknown>"; +} + +static const char __maybe_unused *ioc_name(struct ioc *ioc) +{ + return q_name(ioc->rqos.q); +} + +static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) +{ + return pd ? container_of(pd, struct ioc_gq, pd) : NULL; +} + +static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) +{ + return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); +} + +static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) +{ + return pd_to_blkg(&iocg->pd); +} + +static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) +{ + return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), + struct ioc_cgrp, cpd); +} + +/* + * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical + * weight, the more expensive each IO. Must round up. + */ +static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) +{ + return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse); +} + +/* + * The inverse of abs_cost_to_cost(). Must round up. + */ +static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) +{ + return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE); +} + +static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, + u64 abs_cost, u64 cost) +{ + struct iocg_pcpu_stat *gcs; + + bio->bi_iocost_cost = cost; + atomic64_add(cost, &iocg->vtime); + + gcs = get_cpu_ptr(iocg->pcpu_stat); + local64_add(abs_cost, &gcs->abs_vusage); + put_cpu_ptr(gcs); +} + +static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags) +{ + if (lock_ioc) { + spin_lock_irqsave(&iocg->ioc->lock, *flags); + spin_lock(&iocg->waitq.lock); + } else { + spin_lock_irqsave(&iocg->waitq.lock, *flags); + } +} + +static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags) +{ + if (unlock_ioc) { + spin_unlock(&iocg->waitq.lock); + spin_unlock_irqrestore(&iocg->ioc->lock, *flags); + } else { + spin_unlock_irqrestore(&iocg->waitq.lock, *flags); + } +} + +#define CREATE_TRACE_POINTS +#include <trace/events/iocost.h> + +static void ioc_refresh_margins(struct ioc *ioc) +{ + struct ioc_margins *margins = &ioc->margins; + u32 period_us = ioc->period_us; + u64 vrate = ioc->vtime_base_rate; + + margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate; + margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate; + margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate; +} + +/* latency Qos params changed, update period_us and all the dependent params */ +static void ioc_refresh_period_us(struct ioc *ioc) +{ + u32 ppm, lat, multi, period_us; + + lockdep_assert_held(&ioc->lock); + + /* pick the higher latency target */ + if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { + ppm = ioc->params.qos[QOS_RPPM]; + lat = ioc->params.qos[QOS_RLAT]; + } else { + ppm = ioc->params.qos[QOS_WPPM]; + lat = ioc->params.qos[QOS_WLAT]; + } + + /* + * We want the period to be long enough to contain a healthy number + * of IOs while short enough for granular control. Define it as a + * multiple of the latency target. Ideally, the multiplier should + * be scaled according to the percentile so that it would nominally + * contain a certain number of requests. Let's be simpler and + * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). + */ + if (ppm) + multi = max_t(u32, (MILLION - ppm) / 50000, 2); + else + multi = 2; + period_us = multi * lat; + period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); + + /* calculate dependent params */ + ioc->period_us = period_us; + ioc->timer_slack_ns = div64_u64( + (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT, + 100); + ioc_refresh_margins(ioc); +} + +static int ioc_autop_idx(struct ioc *ioc) +{ + int idx = ioc->autop_idx; + const struct ioc_params *p = &autop[idx]; + u32 vrate_pct; + u64 now_ns; + + /* rotational? */ + if (!blk_queue_nonrot(ioc->rqos.q)) + return AUTOP_HDD; + + /* handle SATA SSDs w/ broken NCQ */ + if (blk_queue_depth(ioc->rqos.q) == 1) + return AUTOP_SSD_QD1; + + /* use one of the normal ssd sets */ + if (idx < AUTOP_SSD_DFL) + return AUTOP_SSD_DFL; + + /* if user is overriding anything, maintain what was there */ + if (ioc->user_qos_params || ioc->user_cost_model) + return idx; + + /* step up/down based on the vrate */ + vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC); + now_ns = ktime_get_ns(); + + if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { + if (!ioc->autop_too_fast_at) + ioc->autop_too_fast_at = now_ns; + if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) + return idx + 1; + } else { + ioc->autop_too_fast_at = 0; + } + + if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { + if (!ioc->autop_too_slow_at) + ioc->autop_too_slow_at = now_ns; + if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) + return idx - 1; + } else { + ioc->autop_too_slow_at = 0; + } + + return idx; +} + +/* + * Take the followings as input + * + * @bps maximum sequential throughput + * @seqiops maximum sequential 4k iops + * @randiops maximum random 4k iops + * + * and calculate the linear model cost coefficients. + * + * *@page per-page cost 1s / (@bps / 4096) + * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) + * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) + */ +static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, + u64 *page, u64 *seqio, u64 *randio) +{ + u64 v; + + *page = *seqio = *randio = 0; + + if (bps) { + u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE); + + if (bps_pages) + *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages); + else + *page = 1; + } + + if (seqiops) { + v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); + if (v > *page) + *seqio = v - *page; + } + + if (randiops) { + v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); + if (v > *page) + *randio = v - *page; + } +} + +static void ioc_refresh_lcoefs(struct ioc *ioc) +{ + u64 *u = ioc->params.i_lcoefs; + u64 *c = ioc->params.lcoefs; + + calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], + &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); + calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], + &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); +} + +static bool ioc_refresh_params(struct ioc *ioc, bool force) +{ + const struct ioc_params *p; + int idx; + + lockdep_assert_held(&ioc->lock); + + idx = ioc_autop_idx(ioc); + p = &autop[idx]; + + if (idx == ioc->autop_idx && !force) + return false; + + if (idx != ioc->autop_idx) + atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); + + ioc->autop_idx = idx; + ioc->autop_too_fast_at = 0; + ioc->autop_too_slow_at = 0; + + if (!ioc->user_qos_params) + memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); + if (!ioc->user_cost_model) + memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); + + ioc_refresh_period_us(ioc); + ioc_refresh_lcoefs(ioc); + + ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * + VTIME_PER_USEC, MILLION); + ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] * + VTIME_PER_USEC, MILLION); + + return true; +} + +/* + * When an iocg accumulates too much vtime or gets deactivated, we throw away + * some vtime, which lowers the overall device utilization. As the exact amount + * which is being thrown away is known, we can compensate by accelerating the + * vrate accordingly so that the extra vtime generated in the current period + * matches what got lost. + */ +static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now) +{ + s64 pleft = ioc->period_at + ioc->period_us - now->now; + s64 vperiod = ioc->period_us * ioc->vtime_base_rate; + s64 vcomp, vcomp_min, vcomp_max; + + lockdep_assert_held(&ioc->lock); + + /* we need some time left in this period */ + if (pleft <= 0) + goto done; + + /* + * Calculate how much vrate should be adjusted to offset the error. + * Limit the amount of adjustment and deduct the adjusted amount from + * the error. + */ + vcomp = -div64_s64(ioc->vtime_err, pleft); + vcomp_min = -(ioc->vtime_base_rate >> 1); + vcomp_max = ioc->vtime_base_rate; + vcomp = clamp(vcomp, vcomp_min, vcomp_max); + + ioc->vtime_err += vcomp * pleft; + + atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp); +done: + /* bound how much error can accumulate */ + ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod); +} + +/* take a snapshot of the current [v]time and vrate */ +static void ioc_now(struct ioc *ioc, struct ioc_now *now) +{ + unsigned seq; + + now->now_ns = ktime_get(); + now->now = ktime_to_us(now->now_ns); + now->vrate = atomic64_read(&ioc->vtime_rate); + + /* + * The current vtime is + * + * vtime at period start + (wallclock time since the start) * vrate + * + * As a consistent snapshot of `period_at_vtime` and `period_at` is + * needed, they're seqcount protected. + */ + do { + seq = read_seqcount_begin(&ioc->period_seqcount); + now->vnow = ioc->period_at_vtime + + (now->now - ioc->period_at) * now->vrate; + } while (read_seqcount_retry(&ioc->period_seqcount, seq)); +} + +static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) +{ + WARN_ON_ONCE(ioc->running != IOC_RUNNING); + + write_seqcount_begin(&ioc->period_seqcount); + ioc->period_at = now->now; + ioc->period_at_vtime = now->vnow; + write_seqcount_end(&ioc->period_seqcount); + + ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); + add_timer(&ioc->timer); +} + +/* + * Update @iocg's `active` and `inuse` to @active and @inuse, update level + * weight sums and propagate upwards accordingly. If @save, the current margin + * is saved to be used as reference for later inuse in-period adjustments. + */ +static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, + bool save, struct ioc_now *now) +{ + struct ioc *ioc = iocg->ioc; + int lvl; + + lockdep_assert_held(&ioc->lock); + + /* + * For an active leaf node, its inuse shouldn't be zero or exceed + * @active. An active internal node's inuse is solely determined by the + * inuse to active ratio of its children regardless of @inuse. + */ + if (list_empty(&iocg->active_list) && iocg->child_active_sum) { + inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum, + iocg->child_active_sum); + } else { + inuse = clamp_t(u32, inuse, 1, active); + } + + iocg->last_inuse = iocg->inuse; + if (save) + iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime); + + if (active == iocg->active && inuse == iocg->inuse) + return; + + for (lvl = iocg->level - 1; lvl >= 0; lvl--) { + struct ioc_gq *parent = iocg->ancestors[lvl]; + struct ioc_gq *child = iocg->ancestors[lvl + 1]; + u32 parent_active = 0, parent_inuse = 0; + + /* update the level sums */ + parent->child_active_sum += (s32)(active - child->active); + parent->child_inuse_sum += (s32)(inuse - child->inuse); + /* apply the updates */ + child->active = active; + child->inuse = inuse; + + /* + * The delta between inuse and active sums indicates that + * that much of weight is being given away. Parent's inuse + * and active should reflect the ratio. + */ + if (parent->child_active_sum) { + parent_active = parent->weight; + parent_inuse = DIV64_U64_ROUND_UP( + parent_active * parent->child_inuse_sum, + parent->child_active_sum); + } + + /* do we need to keep walking up? */ + if (parent_active == parent->active && + parent_inuse == parent->inuse) + break; + + active = parent_active; + inuse = parent_inuse; + } + + ioc->weights_updated = true; +} + +static void commit_weights(struct ioc *ioc) +{ + lockdep_assert_held(&ioc->lock); + + if (ioc->weights_updated) { + /* paired with rmb in current_hweight(), see there */ + smp_wmb(); + atomic_inc(&ioc->hweight_gen); + ioc->weights_updated = false; + } +} + +static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, + bool save, struct ioc_now *now) +{ + __propagate_weights(iocg, active, inuse, save, now); + commit_weights(iocg->ioc); +} + +static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) +{ + struct ioc *ioc = iocg->ioc; + int lvl; + u32 hwa, hwi; + int ioc_gen; + + /* hot path - if uptodate, use cached */ + ioc_gen = atomic_read(&ioc->hweight_gen); + if (ioc_gen == iocg->hweight_gen) + goto out; + + /* + * Paired with wmb in commit_weights(). If we saw the updated + * hweight_gen, all the weight updates from __propagate_weights() are + * visible too. + * + * We can race with weight updates during calculation and get it + * wrong. However, hweight_gen would have changed and a future + * reader will recalculate and we're guaranteed to discard the + * wrong result soon. + */ + smp_rmb(); + + hwa = hwi = WEIGHT_ONE; + for (lvl = 0; lvl <= iocg->level - 1; lvl++) { + struct ioc_gq *parent = iocg->ancestors[lvl]; + struct ioc_gq *child = iocg->ancestors[lvl + 1]; + u64 active_sum = READ_ONCE(parent->child_active_sum); + u64 inuse_sum = READ_ONCE(parent->child_inuse_sum); + u32 active = READ_ONCE(child->active); + u32 inuse = READ_ONCE(child->inuse); + + /* we can race with deactivations and either may read as zero */ + if (!active_sum || !inuse_sum) + continue; + + active_sum = max_t(u64, active, active_sum); + hwa = div64_u64((u64)hwa * active, active_sum); + + inuse_sum = max_t(u64, inuse, inuse_sum); + hwi = div64_u64((u64)hwi * inuse, inuse_sum); + } + + iocg->hweight_active = max_t(u32, hwa, 1); + iocg->hweight_inuse = max_t(u32, hwi, 1); + iocg->hweight_gen = ioc_gen; +out: + if (hw_activep) + *hw_activep = iocg->hweight_active; + if (hw_inusep) + *hw_inusep = iocg->hweight_inuse; +} + +/* + * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the + * other weights stay unchanged. + */ +static u32 current_hweight_max(struct ioc_gq *iocg) +{ + u32 hwm = WEIGHT_ONE; + u32 inuse = iocg->active; + u64 child_inuse_sum; + int lvl; + + lockdep_assert_held(&iocg->ioc->lock); + + for (lvl = iocg->level - 1; lvl >= 0; lvl--) { + struct ioc_gq *parent = iocg->ancestors[lvl]; + struct ioc_gq *child = iocg->ancestors[lvl + 1]; + + child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse; + hwm = div64_u64((u64)hwm * inuse, child_inuse_sum); + inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum, + parent->child_active_sum); + } + + return max_t(u32, hwm, 1); +} + +static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now) +{ + struct ioc *ioc = iocg->ioc; + struct blkcg_gq *blkg = iocg_to_blkg(iocg); + struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); + u32 weight; + + lockdep_assert_held(&ioc->lock); + + weight = iocg->cfg_weight ?: iocc->dfl_weight; + if (weight != iocg->weight && iocg->active) + propagate_weights(iocg, weight, iocg->inuse, true, now); + iocg->weight = weight; +} + +static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) +{ + struct ioc *ioc = iocg->ioc; + u64 last_period, cur_period; + u64 vtime, vtarget; + int i; + + /* + * If seem to be already active, just update the stamp to tell the + * timer that we're still active. We don't mind occassional races. + */ + if (!list_empty(&iocg->active_list)) { + ioc_now(ioc, now); + cur_period = atomic64_read(&ioc->cur_period); + if (atomic64_read(&iocg->active_period) != cur_period) + atomic64_set(&iocg->active_period, cur_period); + return true; + } + + /* racy check on internal node IOs, treat as root level IOs */ + if (iocg->child_active_sum) + return false; + + spin_lock_irq(&ioc->lock); + + ioc_now(ioc, now); + + /* update period */ + cur_period = atomic64_read(&ioc->cur_period); + last_period = atomic64_read(&iocg->active_period); + atomic64_set(&iocg->active_period, cur_period); + + /* already activated or breaking leaf-only constraint? */ + if (!list_empty(&iocg->active_list)) + goto succeed_unlock; + for (i = iocg->level - 1; i > 0; i--) + if (!list_empty(&iocg->ancestors[i]->active_list)) + goto fail_unlock; + + if (iocg->child_active_sum) + goto fail_unlock; + + /* + * Always start with the target budget. On deactivation, we throw away + * anything above it. + */ + vtarget = now->vnow - ioc->margins.target; + vtime = atomic64_read(&iocg->vtime); + + atomic64_add(vtarget - vtime, &iocg->vtime); + atomic64_add(vtarget - vtime, &iocg->done_vtime); + vtime = vtarget; + + /* + * Activate, propagate weight and start period timer if not + * running. Reset hweight_gen to avoid accidental match from + * wrapping. + */ + iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; + list_add(&iocg->active_list, &ioc->active_iocgs); + + propagate_weights(iocg, iocg->weight, + iocg->last_inuse ?: iocg->weight, true, now); + + TRACE_IOCG_PATH(iocg_activate, iocg, now, + last_period, cur_period, vtime); + + iocg->activated_at = now->now; + + if (ioc->running == IOC_IDLE) { + ioc->running = IOC_RUNNING; + ioc->dfgv_period_at = now->now; + ioc->dfgv_period_rem = 0; + ioc_start_period(ioc, now); + } + +succeed_unlock: + spin_unlock_irq(&ioc->lock); + return true; + +fail_unlock: + spin_unlock_irq(&ioc->lock); + return false; +} + +static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) +{ + struct ioc *ioc = iocg->ioc; + struct blkcg_gq *blkg = iocg_to_blkg(iocg); + u64 tdelta, delay, new_delay; + s64 vover, vover_pct; + u32 hwa; + + lockdep_assert_held(&iocg->waitq.lock); + + /* calculate the current delay in effect - 1/2 every second */ + tdelta = now->now - iocg->delay_at; + if (iocg->delay) + delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC); + else + delay = 0; + + /* calculate the new delay from the debt amount */ + current_hweight(iocg, &hwa, NULL); + vover = atomic64_read(&iocg->vtime) + + abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow; + vover_pct = div64_s64(100 * vover, + ioc->period_us * ioc->vtime_base_rate); + + if (vover_pct <= MIN_DELAY_THR_PCT) + new_delay = 0; + else if (vover_pct >= MAX_DELAY_THR_PCT) + new_delay = MAX_DELAY; + else + new_delay = MIN_DELAY + + div_u64((MAX_DELAY - MIN_DELAY) * + (vover_pct - MIN_DELAY_THR_PCT), + MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT); + + /* pick the higher one and apply */ + if (new_delay > delay) { + iocg->delay = new_delay; + iocg->delay_at = now->now; + delay = new_delay; + } + + if (delay >= MIN_DELAY) { + if (!iocg->indelay_since) + iocg->indelay_since = now->now; + blkcg_set_delay(blkg, delay * NSEC_PER_USEC); + return true; + } else { + if (iocg->indelay_since) { + iocg->local_stat.indelay_us += now->now - iocg->indelay_since; + iocg->indelay_since = 0; + } + iocg->delay = 0; + blkcg_clear_delay(blkg); + return false; + } +} + +static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost, + struct ioc_now *now) +{ + struct iocg_pcpu_stat *gcs; + + lockdep_assert_held(&iocg->ioc->lock); + lockdep_assert_held(&iocg->waitq.lock); + WARN_ON_ONCE(list_empty(&iocg->active_list)); + + /* + * Once in debt, debt handling owns inuse. @iocg stays at the minimum + * inuse donating all of it share to others until its debt is paid off. + */ + if (!iocg->abs_vdebt && abs_cost) { + iocg->indebt_since = now->now; + propagate_weights(iocg, iocg->active, 0, false, now); + } + + iocg->abs_vdebt += abs_cost; + + gcs = get_cpu_ptr(iocg->pcpu_stat); + local64_add(abs_cost, &gcs->abs_vusage); + put_cpu_ptr(gcs); +} + +static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay, + struct ioc_now *now) +{ + lockdep_assert_held(&iocg->ioc->lock); + lockdep_assert_held(&iocg->waitq.lock); + + /* make sure that nobody messed with @iocg */ + WARN_ON_ONCE(list_empty(&iocg->active_list)); + WARN_ON_ONCE(iocg->inuse > 1); + + iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt); + + /* if debt is paid in full, restore inuse */ + if (!iocg->abs_vdebt) { + iocg->local_stat.indebt_us += now->now - iocg->indebt_since; + iocg->indebt_since = 0; + + propagate_weights(iocg, iocg->active, iocg->last_inuse, + false, now); + } +} + +static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, + int flags, void *key) +{ + struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); + struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key; + u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); + + ctx->vbudget -= cost; + + if (ctx->vbudget < 0) + return -1; + + iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost); + wait->committed = true; + + /* + * autoremove_wake_function() removes the wait entry only when it + * actually changed the task state. We want the wait always removed. + * Remove explicitly and use default_wake_function(). Note that the + * order of operations is important as finish_wait() tests whether + * @wq_entry is removed without grabbing the lock. + */ + default_wake_function(wq_entry, mode, flags, key); + list_del_init_careful(&wq_entry->entry); + return 0; +} + +/* + * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters + * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in + * addition to iocg->waitq.lock. + */ +static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt, + struct ioc_now *now) +{ + struct ioc *ioc = iocg->ioc; + struct iocg_wake_ctx ctx = { .iocg = iocg }; + u64 vshortage, expires, oexpires; + s64 vbudget; + u32 hwa; + + lockdep_assert_held(&iocg->waitq.lock); + + current_hweight(iocg, &hwa, NULL); + vbudget = now->vnow - atomic64_read(&iocg->vtime); + + /* pay off debt */ + if (pay_debt && iocg->abs_vdebt && vbudget > 0) { + u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa); + u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt); + u64 vpay = abs_cost_to_cost(abs_vpay, hwa); + + lockdep_assert_held(&ioc->lock); + + atomic64_add(vpay, &iocg->vtime); + atomic64_add(vpay, &iocg->done_vtime); + iocg_pay_debt(iocg, abs_vpay, now); + vbudget -= vpay; + } + + if (iocg->abs_vdebt || iocg->delay) + iocg_kick_delay(iocg, now); + + /* + * Debt can still be outstanding if we haven't paid all yet or the + * caller raced and called without @pay_debt. Shouldn't wake up waiters + * under debt. Make sure @vbudget reflects the outstanding amount and is + * not positive. + */ + if (iocg->abs_vdebt) { + s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa); + vbudget = min_t(s64, 0, vbudget - vdebt); + } + + /* + * Wake up the ones which are due and see how much vtime we'll need for + * the next one. As paying off debt restores hw_inuse, it must be read + * after the above debt payment. + */ + ctx.vbudget = vbudget; + current_hweight(iocg, NULL, &ctx.hw_inuse); + + __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); + + if (!waitqueue_active(&iocg->waitq)) { + if (iocg->wait_since) { + iocg->local_stat.wait_us += now->now - iocg->wait_since; + iocg->wait_since = 0; + } + return; + } + + if (!iocg->wait_since) + iocg->wait_since = now->now; + + if (WARN_ON_ONCE(ctx.vbudget >= 0)) + return; + + /* determine next wakeup, add a timer margin to guarantee chunking */ + vshortage = -ctx.vbudget; + expires = now->now_ns + + DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) * + NSEC_PER_USEC; + expires += ioc->timer_slack_ns; + + /* if already active and close enough, don't bother */ + oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); + if (hrtimer_is_queued(&iocg->waitq_timer) && + abs(oexpires - expires) <= ioc->timer_slack_ns) + return; + + hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), + ioc->timer_slack_ns, HRTIMER_MODE_ABS); +} + +static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) +{ + struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); + bool pay_debt = READ_ONCE(iocg->abs_vdebt); + struct ioc_now now; + unsigned long flags; + + ioc_now(iocg->ioc, &now); + + iocg_lock(iocg, pay_debt, &flags); + iocg_kick_waitq(iocg, pay_debt, &now); + iocg_unlock(iocg, pay_debt, &flags); + + return HRTIMER_NORESTART; +} + +static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) +{ + u32 nr_met[2] = { }; + u32 nr_missed[2] = { }; + u64 rq_wait_ns = 0; + int cpu, rw; + + for_each_online_cpu(cpu) { + struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); + u64 this_rq_wait_ns; + + for (rw = READ; rw <= WRITE; rw++) { + u32 this_met = local_read(&stat->missed[rw].nr_met); + u32 this_missed = local_read(&stat->missed[rw].nr_missed); + + nr_met[rw] += this_met - stat->missed[rw].last_met; + nr_missed[rw] += this_missed - stat->missed[rw].last_missed; + stat->missed[rw].last_met = this_met; + stat->missed[rw].last_missed = this_missed; + } + + this_rq_wait_ns = local64_read(&stat->rq_wait_ns); + rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; + stat->last_rq_wait_ns = this_rq_wait_ns; + } + + for (rw = READ; rw <= WRITE; rw++) { + if (nr_met[rw] + nr_missed[rw]) + missed_ppm_ar[rw] = + DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, + nr_met[rw] + nr_missed[rw]); + else + missed_ppm_ar[rw] = 0; + } + + *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, + ioc->period_us * NSEC_PER_USEC); +} + +/* was iocg idle this period? */ +static bool iocg_is_idle(struct ioc_gq *iocg) +{ + struct ioc *ioc = iocg->ioc; + + /* did something get issued this period? */ + if (atomic64_read(&iocg->active_period) == + atomic64_read(&ioc->cur_period)) + return false; + + /* is something in flight? */ + if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) + return false; + + return true; +} + +/* + * Call this function on the target leaf @iocg's to build pre-order traversal + * list of all the ancestors in @inner_walk. The inner nodes are linked through + * ->walk_list and the caller is responsible for dissolving the list after use. + */ +static void iocg_build_inner_walk(struct ioc_gq *iocg, + struct list_head *inner_walk) +{ + int lvl; + + WARN_ON_ONCE(!list_empty(&iocg->walk_list)); + + /* find the first ancestor which hasn't been visited yet */ + for (lvl = iocg->level - 1; lvl >= 0; lvl--) { + if (!list_empty(&iocg->ancestors[lvl]->walk_list)) + break; + } + + /* walk down and visit the inner nodes to get pre-order traversal */ + while (++lvl <= iocg->level - 1) { + struct ioc_gq *inner = iocg->ancestors[lvl]; + + /* record traversal order */ + list_add_tail(&inner->walk_list, inner_walk); + } +} + +/* collect per-cpu counters and propagate the deltas to the parent */ +static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now) +{ + struct ioc *ioc = iocg->ioc; + struct iocg_stat new_stat; + u64 abs_vusage = 0; + u64 vusage_delta; + int cpu; + + lockdep_assert_held(&iocg->ioc->lock); + + /* collect per-cpu counters */ + for_each_possible_cpu(cpu) { + abs_vusage += local64_read( + per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu)); + } + vusage_delta = abs_vusage - iocg->last_stat_abs_vusage; + iocg->last_stat_abs_vusage = abs_vusage; + + iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate); + iocg->local_stat.usage_us += iocg->usage_delta_us; + + /* propagate upwards */ + new_stat.usage_us = + iocg->local_stat.usage_us + iocg->desc_stat.usage_us; + new_stat.wait_us = + iocg->local_stat.wait_us + iocg->desc_stat.wait_us; + new_stat.indebt_us = + iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us; + new_stat.indelay_us = + iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us; + + /* propagate the deltas to the parent */ + if (iocg->level > 0) { + struct iocg_stat *parent_stat = + &iocg->ancestors[iocg->level - 1]->desc_stat; + + parent_stat->usage_us += + new_stat.usage_us - iocg->last_stat.usage_us; + parent_stat->wait_us += + new_stat.wait_us - iocg->last_stat.wait_us; + parent_stat->indebt_us += + new_stat.indebt_us - iocg->last_stat.indebt_us; + parent_stat->indelay_us += + new_stat.indelay_us - iocg->last_stat.indelay_us; + } + + iocg->last_stat = new_stat; +} + +/* get stat counters ready for reading on all active iocgs */ +static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now) +{ + LIST_HEAD(inner_walk); + struct ioc_gq *iocg, *tiocg; + + /* flush leaves and build inner node walk list */ + list_for_each_entry(iocg, target_iocgs, active_list) { + iocg_flush_stat_one(iocg, now); + iocg_build_inner_walk(iocg, &inner_walk); + } + + /* keep flushing upwards by walking the inner list backwards */ + list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) { + iocg_flush_stat_one(iocg, now); + list_del_init(&iocg->walk_list); + } +} + +/* + * Determine what @iocg's hweight_inuse should be after donating unused + * capacity. @hwm is the upper bound and used to signal no donation. This + * function also throws away @iocg's excess budget. + */ +static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm, + u32 usage, struct ioc_now *now) +{ + struct ioc *ioc = iocg->ioc; + u64 vtime = atomic64_read(&iocg->vtime); + s64 excess, delta, target, new_hwi; + + /* debt handling owns inuse for debtors */ + if (iocg->abs_vdebt) + return 1; + + /* see whether minimum margin requirement is met */ + if (waitqueue_active(&iocg->waitq) || + time_after64(vtime, now->vnow - ioc->margins.min)) + return hwm; + + /* throw away excess above target */ + excess = now->vnow - vtime - ioc->margins.target; + if (excess > 0) { + atomic64_add(excess, &iocg->vtime); + atomic64_add(excess, &iocg->done_vtime); + vtime += excess; + ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE); + } + + /* + * Let's say the distance between iocg's and device's vtimes as a + * fraction of period duration is delta. Assuming that the iocg will + * consume the usage determined above, we want to determine new_hwi so + * that delta equals MARGIN_TARGET at the end of the next period. + * + * We need to execute usage worth of IOs while spending the sum of the + * new budget (1 - MARGIN_TARGET) and the leftover from the last period + * (delta): + * + * usage = (1 - MARGIN_TARGET + delta) * new_hwi + * + * Therefore, the new_hwi is: + * + * new_hwi = usage / (1 - MARGIN_TARGET + delta) + */ + delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime), + now->vnow - ioc->period_at_vtime); + target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100; + new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta); + + return clamp_t(s64, new_hwi, 1, hwm); +} + +/* + * For work-conservation, an iocg which isn't using all of its share should + * donate the leftover to other iocgs. There are two ways to achieve this - 1. + * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight. + * + * #1 is mathematically simpler but has the drawback of requiring synchronous + * global hweight_inuse updates when idle iocg's get activated or inuse weights + * change due to donation snapbacks as it has the possibility of grossly + * overshooting what's allowed by the model and vrate. + * + * #2 is inherently safe with local operations. The donating iocg can easily + * snap back to higher weights when needed without worrying about impacts on + * other nodes as the impacts will be inherently correct. This also makes idle + * iocg activations safe. The only effect activations have is decreasing + * hweight_inuse of others, the right solution to which is for those iocgs to + * snap back to higher weights. + * + * So, we go with #2. The challenge is calculating how each donating iocg's + * inuse should be adjusted to achieve the target donation amounts. This is done + * using Andy's method described in the following pdf. + * + * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo + * + * Given the weights and target after-donation hweight_inuse values, Andy's + * method determines how the proportional distribution should look like at each + * sibling level to maintain the relative relationship between all non-donating + * pairs. To roughly summarize, it divides the tree into donating and + * non-donating parts, calculates global donation rate which is used to + * determine the target hweight_inuse for each node, and then derives per-level + * proportions. + * + * The following pdf shows that global distribution calculated this way can be + * achieved by scaling inuse weights of donating leaves and propagating the + * adjustments upwards proportionally. + * + * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE + * + * Combining the above two, we can determine how each leaf iocg's inuse should + * be adjusted to achieve the target donation. + * + * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN + * + * The inline comments use symbols from the last pdf. + * + * b is the sum of the absolute budgets in the subtree. 1 for the root node. + * f is the sum of the absolute budgets of non-donating nodes in the subtree. + * t is the sum of the absolute budgets of donating nodes in the subtree. + * w is the weight of the node. w = w_f + w_t + * w_f is the non-donating portion of w. w_f = w * f / b + * w_b is the donating portion of w. w_t = w * t / b + * s is the sum of all sibling weights. s = Sum(w) for siblings + * s_f and s_t are the non-donating and donating portions of s. + * + * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g. + * w_pt is the donating portion of the parent's weight and w'_pt the same value + * after adjustments. Subscript r denotes the root node's values. + */ +static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now) +{ + LIST_HEAD(over_hwa); + LIST_HEAD(inner_walk); + struct ioc_gq *iocg, *tiocg, *root_iocg; + u32 after_sum, over_sum, over_target, gamma; + + /* + * It's pretty unlikely but possible for the total sum of + * hweight_after_donation's to be higher than WEIGHT_ONE, which will + * confuse the following calculations. If such condition is detected, + * scale down everyone over its full share equally to keep the sum below + * WEIGHT_ONE. + */ + after_sum = 0; + over_sum = 0; + list_for_each_entry(iocg, surpluses, surplus_list) { + u32 hwa; + + current_hweight(iocg, &hwa, NULL); + after_sum += iocg->hweight_after_donation; + + if (iocg->hweight_after_donation > hwa) { + over_sum += iocg->hweight_after_donation; + list_add(&iocg->walk_list, &over_hwa); + } + } + + if (after_sum >= WEIGHT_ONE) { + /* + * The delta should be deducted from the over_sum, calculate + * target over_sum value. + */ + u32 over_delta = after_sum - (WEIGHT_ONE - 1); + WARN_ON_ONCE(over_sum <= over_delta); + over_target = over_sum - over_delta; + } else { + over_target = 0; + } + + list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) { + if (over_target) + iocg->hweight_after_donation = + div_u64((u64)iocg->hweight_after_donation * + over_target, over_sum); + list_del_init(&iocg->walk_list); + } + + /* + * Build pre-order inner node walk list and prepare for donation + * adjustment calculations. + */ + list_for_each_entry(iocg, surpluses, surplus_list) { + iocg_build_inner_walk(iocg, &inner_walk); + } + + root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list); + WARN_ON_ONCE(root_iocg->level > 0); + + list_for_each_entry(iocg, &inner_walk, walk_list) { + iocg->child_adjusted_sum = 0; + iocg->hweight_donating = 0; + iocg->hweight_after_donation = 0; + } + + /* + * Propagate the donating budget (b_t) and after donation budget (b'_t) + * up the hierarchy. + */ + list_for_each_entry(iocg, surpluses, surplus_list) { + struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; + + parent->hweight_donating += iocg->hweight_donating; + parent->hweight_after_donation += iocg->hweight_after_donation; + } + + list_for_each_entry_reverse(iocg, &inner_walk, walk_list) { + if (iocg->level > 0) { + struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; + + parent->hweight_donating += iocg->hweight_donating; + parent->hweight_after_donation += iocg->hweight_after_donation; + } + } + + /* + * Calculate inner hwa's (b) and make sure the donation values are + * within the accepted ranges as we're doing low res calculations with + * roundups. + */ + list_for_each_entry(iocg, &inner_walk, walk_list) { + if (iocg->level) { + struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; + + iocg->hweight_active = DIV64_U64_ROUND_UP( + (u64)parent->hweight_active * iocg->active, + parent->child_active_sum); + + } + + iocg->hweight_donating = min(iocg->hweight_donating, + iocg->hweight_active); + iocg->hweight_after_donation = min(iocg->hweight_after_donation, + iocg->hweight_donating - 1); + if (WARN_ON_ONCE(iocg->hweight_active <= 1 || + iocg->hweight_donating <= 1 || + iocg->hweight_after_donation == 0)) { + pr_warn("iocg: invalid donation weights in "); + pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup); + pr_cont(": active=%u donating=%u after=%u\n", + iocg->hweight_active, iocg->hweight_donating, + iocg->hweight_after_donation); + } + } + + /* + * Calculate the global donation rate (gamma) - the rate to adjust + * non-donating budgets by. + * + * No need to use 64bit multiplication here as the first operand is + * guaranteed to be smaller than WEIGHT_ONE (1<<16). + * + * We know that there are beneficiary nodes and the sum of the donating + * hweights can't be whole; however, due to the round-ups during hweight + * calculations, root_iocg->hweight_donating might still end up equal to + * or greater than whole. Limit the range when calculating the divider. + * + * gamma = (1 - t_r') / (1 - t_r) + */ + gamma = DIV_ROUND_UP( + (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE, + WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1)); + + /* + * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner + * nodes. + */ + list_for_each_entry(iocg, &inner_walk, walk_list) { + struct ioc_gq *parent; + u32 inuse, wpt, wptp; + u64 st, sf; + + if (iocg->level == 0) { + /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */ + iocg->child_adjusted_sum = DIV64_U64_ROUND_UP( + iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating), + WEIGHT_ONE - iocg->hweight_after_donation); + continue; + } + + parent = iocg->ancestors[iocg->level - 1]; + + /* b' = gamma * b_f + b_t' */ + iocg->hweight_inuse = DIV64_U64_ROUND_UP( + (u64)gamma * (iocg->hweight_active - iocg->hweight_donating), + WEIGHT_ONE) + iocg->hweight_after_donation; + + /* w' = s' * b' / b'_p */ + inuse = DIV64_U64_ROUND_UP( + (u64)parent->child_adjusted_sum * iocg->hweight_inuse, + parent->hweight_inuse); + + /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */ + st = DIV64_U64_ROUND_UP( + iocg->child_active_sum * iocg->hweight_donating, + iocg->hweight_active); + sf = iocg->child_active_sum - st; + wpt = DIV64_U64_ROUND_UP( + (u64)iocg->active * iocg->hweight_donating, + iocg->hweight_active); + wptp = DIV64_U64_ROUND_UP( + (u64)inuse * iocg->hweight_after_donation, + iocg->hweight_inuse); + + iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt); + } + + /* + * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and + * we can finally determine leaf adjustments. + */ + list_for_each_entry(iocg, surpluses, surplus_list) { + struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; + u32 inuse; + + /* + * In-debt iocgs participated in the donation calculation with + * the minimum target hweight_inuse. Configuring inuse + * accordingly would work fine but debt handling expects + * @iocg->inuse stay at the minimum and we don't wanna + * interfere. + */ + if (iocg->abs_vdebt) { + WARN_ON_ONCE(iocg->inuse > 1); + continue; + } + + /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */ + inuse = DIV64_U64_ROUND_UP( + parent->child_adjusted_sum * iocg->hweight_after_donation, + parent->hweight_inuse); + + TRACE_IOCG_PATH(inuse_transfer, iocg, now, + iocg->inuse, inuse, + iocg->hweight_inuse, + iocg->hweight_after_donation); + + __propagate_weights(iocg, iocg->active, inuse, true, now); + } + + /* walk list should be dissolved after use */ + list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list) + list_del_init(&iocg->walk_list); +} + +/* + * A low weight iocg can amass a large amount of debt, for example, when + * anonymous memory gets reclaimed aggressively. If the system has a lot of + * memory paired with a slow IO device, the debt can span multiple seconds or + * more. If there are no other subsequent IO issuers, the in-debt iocg may end + * up blocked paying its debt while the IO device is idle. + * + * The following protects against such cases. If the device has been + * sufficiently idle for a while, the debts are halved and delays are + * recalculated. + */ +static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors, + struct ioc_now *now) +{ + struct ioc_gq *iocg; + u64 dur, usage_pct, nr_cycles; + + /* if no debtor, reset the cycle */ + if (!nr_debtors) { + ioc->dfgv_period_at = now->now; + ioc->dfgv_period_rem = 0; + ioc->dfgv_usage_us_sum = 0; + return; + } + + /* + * Debtors can pass through a lot of writes choking the device and we + * don't want to be forgiving debts while the device is struggling from + * write bursts. If we're missing latency targets, consider the device + * fully utilized. + */ + if (ioc->busy_level > 0) + usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us); + + ioc->dfgv_usage_us_sum += usage_us_sum; + if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD)) + return; + + /* + * At least DFGV_PERIOD has passed since the last period. Calculate the + * average usage and reset the period counters. + */ + dur = now->now - ioc->dfgv_period_at; + usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur); + + ioc->dfgv_period_at = now->now; + ioc->dfgv_usage_us_sum = 0; + + /* if was too busy, reset everything */ + if (usage_pct > DFGV_USAGE_PCT) { + ioc->dfgv_period_rem = 0; + return; + } + + /* + * Usage is lower than threshold. Let's forgive some debts. Debt + * forgiveness runs off of the usual ioc timer but its period usually + * doesn't match ioc's. Compensate the difference by performing the + * reduction as many times as would fit in the duration since the last + * run and carrying over the left-over duration in @ioc->dfgv_period_rem + * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive + * reductions is doubled. + */ + nr_cycles = dur + ioc->dfgv_period_rem; + ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD); + + list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { + u64 __maybe_unused old_debt, __maybe_unused old_delay; + + if (!iocg->abs_vdebt && !iocg->delay) + continue; + + spin_lock(&iocg->waitq.lock); + + old_debt = iocg->abs_vdebt; + old_delay = iocg->delay; + + if (iocg->abs_vdebt) + iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1; + if (iocg->delay) + iocg->delay = iocg->delay >> nr_cycles ?: 1; + + iocg_kick_waitq(iocg, true, now); + + TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct, + old_debt, iocg->abs_vdebt, + old_delay, iocg->delay); + + spin_unlock(&iocg->waitq.lock); + } +} + +static void ioc_timer_fn(struct timer_list *timer) +{ + struct ioc *ioc = container_of(timer, struct ioc, timer); + struct ioc_gq *iocg, *tiocg; + struct ioc_now now; + LIST_HEAD(surpluses); + int nr_debtors = 0, nr_shortages = 0, nr_lagging = 0; + u64 usage_us_sum = 0; + u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; + u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; + u32 missed_ppm[2], rq_wait_pct; + u64 period_vtime; + int prev_busy_level; + + /* how were the latencies during the period? */ + ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); + + /* take care of active iocgs */ + spin_lock_irq(&ioc->lock); + + ioc_now(ioc, &now); + + period_vtime = now.vnow - ioc->period_at_vtime; + if (WARN_ON_ONCE(!period_vtime)) { + spin_unlock_irq(&ioc->lock); + return; + } + + /* + * Waiters determine the sleep durations based on the vrate they + * saw at the time of sleep. If vrate has increased, some waiters + * could be sleeping for too long. Wake up tardy waiters which + * should have woken up in the last period and expire idle iocgs. + */ + list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { + if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && + !iocg->delay && !iocg_is_idle(iocg)) + continue; + + spin_lock(&iocg->waitq.lock); + + /* flush wait and indebt stat deltas */ + if (iocg->wait_since) { + iocg->local_stat.wait_us += now.now - iocg->wait_since; + iocg->wait_since = now.now; + } + if (iocg->indebt_since) { + iocg->local_stat.indebt_us += + now.now - iocg->indebt_since; + iocg->indebt_since = now.now; + } + if (iocg->indelay_since) { + iocg->local_stat.indelay_us += + now.now - iocg->indelay_since; + iocg->indelay_since = now.now; + } + + if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt || + iocg->delay) { + /* might be oversleeping vtime / hweight changes, kick */ + iocg_kick_waitq(iocg, true, &now); + if (iocg->abs_vdebt || iocg->delay) + nr_debtors++; + } else if (iocg_is_idle(iocg)) { + /* no waiter and idle, deactivate */ + u64 vtime = atomic64_read(&iocg->vtime); + s64 excess; + + /* + * @iocg has been inactive for a full duration and will + * have a high budget. Account anything above target as + * error and throw away. On reactivation, it'll start + * with the target budget. + */ + excess = now.vnow - vtime - ioc->margins.target; + if (excess > 0) { + u32 old_hwi; + + current_hweight(iocg, NULL, &old_hwi); + ioc->vtime_err -= div64_u64(excess * old_hwi, + WEIGHT_ONE); + } + + __propagate_weights(iocg, 0, 0, false, &now); + list_del_init(&iocg->active_list); + } + + spin_unlock(&iocg->waitq.lock); + } + commit_weights(ioc); + + /* + * Wait and indebt stat are flushed above and the donation calculation + * below needs updated usage stat. Let's bring stat up-to-date. + */ + iocg_flush_stat(&ioc->active_iocgs, &now); + + /* calc usage and see whether some weights need to be moved around */ + list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { + u64 vdone, vtime, usage_us, usage_dur; + u32 usage, hw_active, hw_inuse; + + /* + * Collect unused and wind vtime closer to vnow to prevent + * iocgs from accumulating a large amount of budget. + */ + vdone = atomic64_read(&iocg->done_vtime); + vtime = atomic64_read(&iocg->vtime); + current_hweight(iocg, &hw_active, &hw_inuse); + + /* + * Latency QoS detection doesn't account for IOs which are + * in-flight for longer than a period. Detect them by + * comparing vdone against period start. If lagging behind + * IOs from past periods, don't increase vrate. + */ + if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && + !atomic_read(&iocg_to_blkg(iocg)->use_delay) && + time_after64(vtime, vdone) && + time_after64(vtime, now.vnow - + MAX_LAGGING_PERIODS * period_vtime) && + time_before64(vdone, now.vnow - period_vtime)) + nr_lagging++; + + /* + * Determine absolute usage factoring in in-flight IOs to avoid + * high-latency completions appearing as idle. + */ + usage_us = iocg->usage_delta_us; + usage_us_sum += usage_us; + + if (vdone != vtime) { + u64 inflight_us = DIV64_U64_ROUND_UP( + cost_to_abs_cost(vtime - vdone, hw_inuse), + ioc->vtime_base_rate); + usage_us = max(usage_us, inflight_us); + } + + /* convert to hweight based usage ratio */ + if (time_after64(iocg->activated_at, ioc->period_at)) + usage_dur = max_t(u64, now.now - iocg->activated_at, 1); + else + usage_dur = max_t(u64, now.now - ioc->period_at, 1); + + usage = clamp_t(u32, + DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, + usage_dur), + 1, WEIGHT_ONE); + + /* see whether there's surplus vtime */ + WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); + if (hw_inuse < hw_active || + (!waitqueue_active(&iocg->waitq) && + time_before64(vtime, now.vnow - ioc->margins.low))) { + u32 hwa, old_hwi, hwm, new_hwi; + + /* + * Already donating or accumulated enough to start. + * Determine the donation amount. + */ + current_hweight(iocg, &hwa, &old_hwi); + hwm = current_hweight_max(iocg); + new_hwi = hweight_after_donation(iocg, old_hwi, hwm, + usage, &now); + /* + * Donation calculation assumes hweight_after_donation + * to be positive, a condition that a donor w/ hwa < 2 + * can't meet. Don't bother with donation if hwa is + * below 2. It's not gonna make a meaningful difference + * anyway. + */ + if (new_hwi < hwm && hwa >= 2) { + iocg->hweight_donating = hwa; + iocg->hweight_after_donation = new_hwi; + list_add(&iocg->surplus_list, &surpluses); + } else if (!iocg->abs_vdebt) { + /* + * @iocg doesn't have enough to donate. Reset + * its inuse to active. + * + * Don't reset debtors as their inuse's are + * owned by debt handling. This shouldn't affect + * donation calculuation in any meaningful way + * as @iocg doesn't have a meaningful amount of + * share anyway. + */ + TRACE_IOCG_PATH(inuse_shortage, iocg, &now, + iocg->inuse, iocg->active, + iocg->hweight_inuse, new_hwi); + + __propagate_weights(iocg, iocg->active, + iocg->active, true, &now); + nr_shortages++; + } + } else { + /* genuinely short on vtime */ + nr_shortages++; + } + } + + if (!list_empty(&surpluses) && nr_shortages) + transfer_surpluses(&surpluses, &now); + + commit_weights(ioc); + + /* surplus list should be dissolved after use */ + list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list) + list_del_init(&iocg->surplus_list); + + /* + * If q is getting clogged or we're missing too much, we're issuing + * too much IO and should lower vtime rate. If we're not missing + * and experiencing shortages but not surpluses, we're too stingy + * and should increase vtime rate. + */ + prev_busy_level = ioc->busy_level; + if (rq_wait_pct > RQ_WAIT_BUSY_PCT || + missed_ppm[READ] > ppm_rthr || + missed_ppm[WRITE] > ppm_wthr) { + /* clearly missing QoS targets, slow down vrate */ + ioc->busy_level = max(ioc->busy_level, 0); + ioc->busy_level++; + } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && + missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && + missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { + /* QoS targets are being met with >25% margin */ + if (nr_shortages) { + /* + * We're throttling while the device has spare + * capacity. If vrate was being slowed down, stop. + */ + ioc->busy_level = min(ioc->busy_level, 0); + + /* + * If there are IOs spanning multiple periods, wait + * them out before pushing the device harder. + */ + if (!nr_lagging) + ioc->busy_level--; + } else { + /* + * Nobody is being throttled and the users aren't + * issuing enough IOs to saturate the device. We + * simply don't know how close the device is to + * saturation. Coast. + */ + ioc->busy_level = 0; + } + } else { + /* inside the hysterisis margin, we're good */ + ioc->busy_level = 0; + } + + ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); + + if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) { + u64 vrate = ioc->vtime_base_rate; + u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; + + /* rq_wait signal is always reliable, ignore user vrate_min */ + if (rq_wait_pct > RQ_WAIT_BUSY_PCT) + vrate_min = VRATE_MIN; + + /* + * If vrate is out of bounds, apply clamp gradually as the + * bounds can change abruptly. Otherwise, apply busy_level + * based adjustment. + */ + if (vrate < vrate_min) { + vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), + 100); + vrate = min(vrate, vrate_min); + } else if (vrate > vrate_max) { + vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), + 100); + vrate = max(vrate, vrate_max); + } else { + int idx = min_t(int, abs(ioc->busy_level), + ARRAY_SIZE(vrate_adj_pct) - 1); + u32 adj_pct = vrate_adj_pct[idx]; + + if (ioc->busy_level > 0) + adj_pct = 100 - adj_pct; + else + adj_pct = 100 + adj_pct; + + vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), + vrate_min, vrate_max); + } + + trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, + nr_lagging, nr_shortages); + + ioc->vtime_base_rate = vrate; + ioc_refresh_margins(ioc); + } else if (ioc->busy_level != prev_busy_level || nr_lagging) { + trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate), + missed_ppm, rq_wait_pct, nr_lagging, + nr_shortages); + } + + ioc_refresh_params(ioc, false); + + ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now); + + /* + * This period is done. Move onto the next one. If nothing's + * going on with the device, stop the timer. + */ + atomic64_inc(&ioc->cur_period); + + if (ioc->running != IOC_STOP) { + if (!list_empty(&ioc->active_iocgs)) { + ioc_start_period(ioc, &now); + } else { + ioc->busy_level = 0; + ioc->vtime_err = 0; + ioc->running = IOC_IDLE; + } + + ioc_refresh_vrate(ioc, &now); + } + + spin_unlock_irq(&ioc->lock); +} + +static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime, + u64 abs_cost, struct ioc_now *now) +{ + struct ioc *ioc = iocg->ioc; + struct ioc_margins *margins = &ioc->margins; + u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi; + u32 hwi, adj_step; + s64 margin; + u64 cost, new_inuse; + unsigned long flags; + + current_hweight(iocg, NULL, &hwi); + old_hwi = hwi; + cost = abs_cost_to_cost(abs_cost, hwi); + margin = now->vnow - vtime - cost; + + /* debt handling owns inuse for debtors */ + if (iocg->abs_vdebt) + return cost; + + /* + * We only increase inuse during period and do so iff the margin has + * deteriorated since the previous adjustment. + */ + if (margin >= iocg->saved_margin || margin >= margins->low || + iocg->inuse == iocg->active) + return cost; + + spin_lock_irqsave(&ioc->lock, flags); + + /* we own inuse only when @iocg is in the normal active state */ + if (iocg->abs_vdebt || list_empty(&iocg->active_list)) { + spin_unlock_irqrestore(&ioc->lock, flags); + return cost; + } + + /* + * Bump up inuse till @abs_cost fits in the existing budget. + * adj_step must be determined after acquiring ioc->lock - we might + * have raced and lost to another thread for activation and could + * be reading 0 iocg->active before ioc->lock which will lead to + * infinite loop. + */ + new_inuse = iocg->inuse; + adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100); + do { + new_inuse = new_inuse + adj_step; + propagate_weights(iocg, iocg->active, new_inuse, true, now); + current_hweight(iocg, NULL, &hwi); + cost = abs_cost_to_cost(abs_cost, hwi); + } while (time_after64(vtime + cost, now->vnow) && + iocg->inuse != iocg->active); + + spin_unlock_irqrestore(&ioc->lock, flags); + + TRACE_IOCG_PATH(inuse_adjust, iocg, now, + old_inuse, iocg->inuse, old_hwi, hwi); + + return cost; +} + +static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, + bool is_merge, u64 *costp) +{ + struct ioc *ioc = iocg->ioc; + u64 coef_seqio, coef_randio, coef_page; + u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); + u64 seek_pages = 0; + u64 cost = 0; + + switch (bio_op(bio)) { + case REQ_OP_READ: + coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; + coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; + coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; + break; + case REQ_OP_WRITE: + coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; + coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; + coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; + break; + default: + goto out; + } + + if (iocg->cursor) { + seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); + seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; + } + + if (!is_merge) { + if (seek_pages > LCOEF_RANDIO_PAGES) { + cost += coef_randio; + } else { + cost += coef_seqio; + } + } + cost += pages * coef_page; +out: + *costp = cost; +} + +static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) +{ + u64 cost; + + calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); + return cost; +} + +static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, + u64 *costp) +{ + unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; + + switch (req_op(rq)) { + case REQ_OP_READ: + *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; + break; + case REQ_OP_WRITE: + *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; + break; + default: + *costp = 0; + } +} + +static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) +{ + u64 cost; + + calc_size_vtime_cost_builtin(rq, ioc, &cost); + return cost; +} + +static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) +{ + struct blkcg_gq *blkg = bio->bi_blkg; + struct ioc *ioc = rqos_to_ioc(rqos); + struct ioc_gq *iocg = blkg_to_iocg(blkg); + struct ioc_now now; + struct iocg_wait wait; + u64 abs_cost, cost, vtime; + bool use_debt, ioc_locked; + unsigned long flags; + + /* bypass IOs if disabled, still initializing, or for root cgroup */ + if (!ioc->enabled || !iocg || !iocg->level) + return; + + /* calculate the absolute vtime cost */ + abs_cost = calc_vtime_cost(bio, iocg, false); + if (!abs_cost) + return; + + if (!iocg_activate(iocg, &now)) + return; + + iocg->cursor = bio_end_sector(bio); + vtime = atomic64_read(&iocg->vtime); + cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); + + /* + * If no one's waiting and within budget, issue right away. The + * tests are racy but the races aren't systemic - we only miss once + * in a while which is fine. + */ + if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && + time_before_eq64(vtime + cost, now.vnow)) { + iocg_commit_bio(iocg, bio, abs_cost, cost); + return; + } + + /* + * We're over budget. This can be handled in two ways. IOs which may + * cause priority inversions are punted to @ioc->aux_iocg and charged as + * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling + * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine + * whether debt handling is needed and acquire locks accordingly. + */ + use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current); + ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt); +retry_lock: + iocg_lock(iocg, ioc_locked, &flags); + + /* + * @iocg must stay activated for debt and waitq handling. Deactivation + * is synchronized against both ioc->lock and waitq.lock and we won't + * get deactivated as long as we're waiting or has debt, so we're good + * if we're activated here. In the unlikely cases that we aren't, just + * issue the IO. + */ + if (unlikely(list_empty(&iocg->active_list))) { + iocg_unlock(iocg, ioc_locked, &flags); + iocg_commit_bio(iocg, bio, abs_cost, cost); + return; + } + + /* + * We're over budget. If @bio has to be issued regardless, remember + * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay + * off the debt before waking more IOs. + * + * This way, the debt is continuously paid off each period with the + * actual budget available to the cgroup. If we just wound vtime, we + * would incorrectly use the current hw_inuse for the entire amount + * which, for example, can lead to the cgroup staying blocked for a + * long time even with substantially raised hw_inuse. + * + * An iocg with vdebt should stay online so that the timer can keep + * deducting its vdebt and [de]activate use_delay mechanism + * accordingly. We don't want to race against the timer trying to + * clear them and leave @iocg inactive w/ dangling use_delay heavily + * penalizing the cgroup and its descendants. + */ + if (use_debt) { + iocg_incur_debt(iocg, abs_cost, &now); + if (iocg_kick_delay(iocg, &now)) + blkcg_schedule_throttle(rqos->q, + (bio->bi_opf & REQ_SWAP) == REQ_SWAP); + iocg_unlock(iocg, ioc_locked, &flags); + return; + } + + /* guarantee that iocgs w/ waiters have maximum inuse */ + if (!iocg->abs_vdebt && iocg->inuse != iocg->active) { + if (!ioc_locked) { + iocg_unlock(iocg, false, &flags); + ioc_locked = true; + goto retry_lock; + } + propagate_weights(iocg, iocg->active, iocg->active, true, + &now); + } + + /* + * Append self to the waitq and schedule the wakeup timer if we're + * the first waiter. The timer duration is calculated based on the + * current vrate. vtime and hweight changes can make it too short + * or too long. Each wait entry records the absolute cost it's + * waiting for to allow re-evaluation using a custom wait entry. + * + * If too short, the timer simply reschedules itself. If too long, + * the period timer will notice and trigger wakeups. + * + * All waiters are on iocg->waitq and the wait states are + * synchronized using waitq.lock. + */ + init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); + wait.wait.private = current; + wait.bio = bio; + wait.abs_cost = abs_cost; + wait.committed = false; /* will be set true by waker */ + + __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); + iocg_kick_waitq(iocg, ioc_locked, &now); + + iocg_unlock(iocg, ioc_locked, &flags); + + while (true) { + set_current_state(TASK_UNINTERRUPTIBLE); + if (wait.committed) + break; + io_schedule(); + } + + /* waker already committed us, proceed */ + finish_wait(&iocg->waitq, &wait.wait); +} + +static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, + struct bio *bio) +{ + struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); + struct ioc *ioc = rqos_to_ioc(rqos); + sector_t bio_end = bio_end_sector(bio); + struct ioc_now now; + u64 vtime, abs_cost, cost; + unsigned long flags; + + /* bypass if disabled, still initializing, or for root cgroup */ + if (!ioc->enabled || !iocg || !iocg->level) + return; + + abs_cost = calc_vtime_cost(bio, iocg, true); + if (!abs_cost) + return; + + ioc_now(ioc, &now); + + vtime = atomic64_read(&iocg->vtime); + cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); + + /* update cursor if backmerging into the request at the cursor */ + if (blk_rq_pos(rq) < bio_end && + blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) + iocg->cursor = bio_end; + + /* + * Charge if there's enough vtime budget and the existing request has + * cost assigned. + */ + if (rq->bio && rq->bio->bi_iocost_cost && + time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { + iocg_commit_bio(iocg, bio, abs_cost, cost); + return; + } + + /* + * Otherwise, account it as debt if @iocg is online, which it should + * be for the vast majority of cases. See debt handling in + * ioc_rqos_throttle() for details. + */ + spin_lock_irqsave(&ioc->lock, flags); + spin_lock(&iocg->waitq.lock); + + if (likely(!list_empty(&iocg->active_list))) { + iocg_incur_debt(iocg, abs_cost, &now); + if (iocg_kick_delay(iocg, &now)) + blkcg_schedule_throttle(rqos->q, + (bio->bi_opf & REQ_SWAP) == REQ_SWAP); + } else { + iocg_commit_bio(iocg, bio, abs_cost, cost); + } + + spin_unlock(&iocg->waitq.lock); + spin_unlock_irqrestore(&ioc->lock, flags); +} + +static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) +{ + struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); + + if (iocg && bio->bi_iocost_cost) + atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); +} + +static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) +{ + struct ioc *ioc = rqos_to_ioc(rqos); + struct ioc_pcpu_stat *ccs; + u64 on_q_ns, rq_wait_ns, size_nsec; + int pidx, rw; + + if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) + return; + + switch (req_op(rq) & REQ_OP_MASK) { + case REQ_OP_READ: + pidx = QOS_RLAT; + rw = READ; + break; + case REQ_OP_WRITE: + pidx = QOS_WLAT; + rw = WRITE; + break; + default: + return; + } + + on_q_ns = ktime_get_ns() - rq->alloc_time_ns; + rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; + size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC); + + ccs = get_cpu_ptr(ioc->pcpu_stat); + + if (on_q_ns <= size_nsec || + on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) + local_inc(&ccs->missed[rw].nr_met); + else + local_inc(&ccs->missed[rw].nr_missed); + + local64_add(rq_wait_ns, &ccs->rq_wait_ns); + + put_cpu_ptr(ccs); +} + +static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) +{ + struct ioc *ioc = rqos_to_ioc(rqos); + + spin_lock_irq(&ioc->lock); + ioc_refresh_params(ioc, false); + spin_unlock_irq(&ioc->lock); +} + +static void ioc_rqos_exit(struct rq_qos *rqos) +{ + struct ioc *ioc = rqos_to_ioc(rqos); + + blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost); + + spin_lock_irq(&ioc->lock); + ioc->running = IOC_STOP; + spin_unlock_irq(&ioc->lock); + + del_timer_sync(&ioc->timer); + free_percpu(ioc->pcpu_stat); + kfree(ioc); +} + +static struct rq_qos_ops ioc_rqos_ops = { + .throttle = ioc_rqos_throttle, + .merge = ioc_rqos_merge, + .done_bio = ioc_rqos_done_bio, + .done = ioc_rqos_done, + .queue_depth_changed = ioc_rqos_queue_depth_changed, + .exit = ioc_rqos_exit, +}; + +static int blk_iocost_init(struct request_queue *q) +{ + struct ioc *ioc; + struct rq_qos *rqos; + int i, cpu, ret; + + ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); + if (!ioc) + return -ENOMEM; + + ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); + if (!ioc->pcpu_stat) { + kfree(ioc); + return -ENOMEM; + } + + for_each_possible_cpu(cpu) { + struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu); + + for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) { + local_set(&ccs->missed[i].nr_met, 0); + local_set(&ccs->missed[i].nr_missed, 0); + } + local64_set(&ccs->rq_wait_ns, 0); + } + + rqos = &ioc->rqos; + rqos->id = RQ_QOS_COST; + rqos->ops = &ioc_rqos_ops; + rqos->q = q; + + spin_lock_init(&ioc->lock); + timer_setup(&ioc->timer, ioc_timer_fn, 0); + INIT_LIST_HEAD(&ioc->active_iocgs); + + ioc->running = IOC_IDLE; + ioc->vtime_base_rate = VTIME_PER_USEC; + atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); + seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock); + ioc->period_at = ktime_to_us(ktime_get()); + atomic64_set(&ioc->cur_period, 0); + atomic_set(&ioc->hweight_gen, 0); + + spin_lock_irq(&ioc->lock); + ioc->autop_idx = AUTOP_INVALID; + ioc_refresh_params(ioc, true); + spin_unlock_irq(&ioc->lock); + + /* + * rqos must be added before activation to allow iocg_pd_init() to + * lookup the ioc from q. This means that the rqos methods may get + * called before policy activation completion, can't assume that the + * target bio has an iocg associated and need to test for NULL iocg. + */ + rq_qos_add(q, rqos); + ret = blkcg_activate_policy(q, &blkcg_policy_iocost); + if (ret) { + rq_qos_del(q, rqos); + free_percpu(ioc->pcpu_stat); + kfree(ioc); + return ret; + } + return 0; +} + +static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) +{ + struct ioc_cgrp *iocc; + + iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); + if (!iocc) + return NULL; + + iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE; + return &iocc->cpd; +} + +static void ioc_cpd_free(struct blkcg_policy_data *cpd) +{ + kfree(container_of(cpd, struct ioc_cgrp, cpd)); +} + +static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q, + struct blkcg *blkcg) +{ + int levels = blkcg->css.cgroup->level + 1; + struct ioc_gq *iocg; + + iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node); + if (!iocg) + return NULL; + + iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp); + if (!iocg->pcpu_stat) { + kfree(iocg); + return NULL; + } + + return &iocg->pd; +} + +static void ioc_pd_init(struct blkg_policy_data *pd) +{ + struct ioc_gq *iocg = pd_to_iocg(pd); + struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); + struct ioc *ioc = q_to_ioc(blkg->q); + struct ioc_now now; + struct blkcg_gq *tblkg; + unsigned long flags; + + ioc_now(ioc, &now); + + iocg->ioc = ioc; + atomic64_set(&iocg->vtime, now.vnow); + atomic64_set(&iocg->done_vtime, now.vnow); + atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); + INIT_LIST_HEAD(&iocg->active_list); + INIT_LIST_HEAD(&iocg->walk_list); + INIT_LIST_HEAD(&iocg->surplus_list); + iocg->hweight_active = WEIGHT_ONE; + iocg->hweight_inuse = WEIGHT_ONE; + + init_waitqueue_head(&iocg->waitq); + hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); + iocg->waitq_timer.function = iocg_waitq_timer_fn; + + iocg->level = blkg->blkcg->css.cgroup->level; + + for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { + struct ioc_gq *tiocg = blkg_to_iocg(tblkg); + iocg->ancestors[tiocg->level] = tiocg; + } + + spin_lock_irqsave(&ioc->lock, flags); + weight_updated(iocg, &now); + spin_unlock_irqrestore(&ioc->lock, flags); +} + +static void ioc_pd_free(struct blkg_policy_data *pd) +{ + struct ioc_gq *iocg = pd_to_iocg(pd); + struct ioc *ioc = iocg->ioc; + unsigned long flags; + + if (ioc) { + spin_lock_irqsave(&ioc->lock, flags); + + if (!list_empty(&iocg->active_list)) { + struct ioc_now now; + + ioc_now(ioc, &now); + propagate_weights(iocg, 0, 0, false, &now); + list_del_init(&iocg->active_list); + } + + WARN_ON_ONCE(!list_empty(&iocg->walk_list)); + WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); + + spin_unlock_irqrestore(&ioc->lock, flags); + + hrtimer_cancel(&iocg->waitq_timer); + } + free_percpu(iocg->pcpu_stat); + kfree(iocg); +} + +static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size) +{ + struct ioc_gq *iocg = pd_to_iocg(pd); + struct ioc *ioc = iocg->ioc; + size_t pos = 0; + + if (!ioc->enabled) + return 0; + + if (iocg->level == 0) { + unsigned vp10k = DIV64_U64_ROUND_CLOSEST( + ioc->vtime_base_rate * 10000, + VTIME_PER_USEC); + pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u", + vp10k / 100, vp10k % 100); + } + + pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu", + iocg->last_stat.usage_us); + + if (blkcg_debug_stats) + pos += scnprintf(buf + pos, size - pos, + " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu", + iocg->last_stat.wait_us, + iocg->last_stat.indebt_us, + iocg->last_stat.indelay_us); + + return pos; +} + +static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, + int off) +{ + const char *dname = blkg_dev_name(pd->blkg); + struct ioc_gq *iocg = pd_to_iocg(pd); + + if (dname && iocg->cfg_weight) + seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE); + return 0; +} + + +static int ioc_weight_show(struct seq_file *sf, void *v) +{ + struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); + struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); + + seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE); + blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, + &blkcg_policy_iocost, seq_cft(sf)->private, false); + return 0; +} + +static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off) +{ + struct blkcg *blkcg = css_to_blkcg(of_css(of)); + struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); + struct blkg_conf_ctx ctx; + struct ioc_now now; + struct ioc_gq *iocg; + u32 v; + int ret; + + if (!strchr(buf, ':')) { + struct blkcg_gq *blkg; + + if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) + return -EINVAL; + + if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) + return -EINVAL; + + spin_lock_irq(&blkcg->lock); + iocc->dfl_weight = v * WEIGHT_ONE; + hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { + struct ioc_gq *iocg = blkg_to_iocg(blkg); + + if (iocg) { + spin_lock(&iocg->ioc->lock); + ioc_now(iocg->ioc, &now); + weight_updated(iocg, &now); + spin_unlock(&iocg->ioc->lock); + } + } + spin_unlock_irq(&blkcg->lock); + + return nbytes; + } + + ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx); + if (ret) + return ret; + + iocg = blkg_to_iocg(ctx.blkg); + + if (!strncmp(ctx.body, "default", 7)) { + v = 0; + } else { + if (!sscanf(ctx.body, "%u", &v)) + goto einval; + if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) + goto einval; + } + + spin_lock(&iocg->ioc->lock); + iocg->cfg_weight = v * WEIGHT_ONE; + ioc_now(iocg->ioc, &now); + weight_updated(iocg, &now); + spin_unlock(&iocg->ioc->lock); + + blkg_conf_finish(&ctx); + return nbytes; + +einval: + blkg_conf_finish(&ctx); + return -EINVAL; +} + +static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, + int off) +{ + const char *dname = blkg_dev_name(pd->blkg); + struct ioc *ioc = pd_to_iocg(pd)->ioc; + + if (!dname) + return 0; + + seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", + dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", + ioc->params.qos[QOS_RPPM] / 10000, + ioc->params.qos[QOS_RPPM] % 10000 / 100, + ioc->params.qos[QOS_RLAT], + ioc->params.qos[QOS_WPPM] / 10000, + ioc->params.qos[QOS_WPPM] % 10000 / 100, + ioc->params.qos[QOS_WLAT], + ioc->params.qos[QOS_MIN] / 10000, + ioc->params.qos[QOS_MIN] % 10000 / 100, + ioc->params.qos[QOS_MAX] / 10000, + ioc->params.qos[QOS_MAX] % 10000 / 100); + return 0; +} + +static int ioc_qos_show(struct seq_file *sf, void *v) +{ + struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); + + blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, + &blkcg_policy_iocost, seq_cft(sf)->private, false); + return 0; +} + +static const match_table_t qos_ctrl_tokens = { + { QOS_ENABLE, "enable=%u" }, + { QOS_CTRL, "ctrl=%s" }, + { NR_QOS_CTRL_PARAMS, NULL }, +}; + +static const match_table_t qos_tokens = { + { QOS_RPPM, "rpct=%s" }, + { QOS_RLAT, "rlat=%u" }, + { QOS_WPPM, "wpct=%s" }, + { QOS_WLAT, "wlat=%u" }, + { QOS_MIN, "min=%s" }, + { QOS_MAX, "max=%s" }, + { NR_QOS_PARAMS, NULL }, +}; + +static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, + size_t nbytes, loff_t off) +{ + struct gendisk *disk; + struct ioc *ioc; + u32 qos[NR_QOS_PARAMS]; + bool enable, user; + char *p; + int ret; + + disk = blkcg_conf_get_disk(&input); + if (IS_ERR(disk)) + return PTR_ERR(disk); + + ioc = q_to_ioc(disk->queue); + if (!ioc) { + ret = blk_iocost_init(disk->queue); + if (ret) + goto err; + ioc = q_to_ioc(disk->queue); + } + + spin_lock_irq(&ioc->lock); + memcpy(qos, ioc->params.qos, sizeof(qos)); + enable = ioc->enabled; + user = ioc->user_qos_params; + spin_unlock_irq(&ioc->lock); + + while ((p = strsep(&input, " \t\n"))) { + substring_t args[MAX_OPT_ARGS]; + char buf[32]; + int tok; + s64 v; + + if (!*p) + continue; + + switch (match_token(p, qos_ctrl_tokens, args)) { + case QOS_ENABLE: + match_u64(&args[0], &v); + enable = v; + continue; + case QOS_CTRL: + match_strlcpy(buf, &args[0], sizeof(buf)); + if (!strcmp(buf, "auto")) + user = false; + else if (!strcmp(buf, "user")) + user = true; + else + goto einval; + continue; + } + + tok = match_token(p, qos_tokens, args); + switch (tok) { + case QOS_RPPM: + case QOS_WPPM: + if (match_strlcpy(buf, &args[0], sizeof(buf)) >= + sizeof(buf)) + goto einval; + if (cgroup_parse_float(buf, 2, &v)) + goto einval; + if (v < 0 || v > 10000) + goto einval; + qos[tok] = v * 100; + break; + case QOS_RLAT: + case QOS_WLAT: + if (match_u64(&args[0], &v)) + goto einval; + qos[tok] = v; + break; + case QOS_MIN: + case QOS_MAX: + if (match_strlcpy(buf, &args[0], sizeof(buf)) >= + sizeof(buf)) + goto einval; + if (cgroup_parse_float(buf, 2, &v)) + goto einval; + if (v < 0) + goto einval; + qos[tok] = clamp_t(s64, v * 100, + VRATE_MIN_PPM, VRATE_MAX_PPM); + break; + default: + goto einval; + } + user = true; + } + + if (qos[QOS_MIN] > qos[QOS_MAX]) + goto einval; + + spin_lock_irq(&ioc->lock); + + if (enable) { + blk_stat_enable_accounting(ioc->rqos.q); + blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); + ioc->enabled = true; + } else { + blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); + ioc->enabled = false; + } + + if (user) { + memcpy(ioc->params.qos, qos, sizeof(qos)); + ioc->user_qos_params = true; + } else { + ioc->user_qos_params = false; + } + + ioc_refresh_params(ioc, true); + spin_unlock_irq(&ioc->lock); + + put_disk_and_module(disk); + return nbytes; +einval: + ret = -EINVAL; +err: + put_disk_and_module(disk); + return ret; +} + +static u64 ioc_cost_model_prfill(struct seq_file *sf, + struct blkg_policy_data *pd, int off) +{ + const char *dname = blkg_dev_name(pd->blkg); + struct ioc *ioc = pd_to_iocg(pd)->ioc; + u64 *u = ioc->params.i_lcoefs; + + if (!dname) + return 0; + + seq_printf(sf, "%s ctrl=%s model=linear " + "rbps=%llu rseqiops=%llu rrandiops=%llu " + "wbps=%llu wseqiops=%llu wrandiops=%llu\n", + dname, ioc->user_cost_model ? "user" : "auto", + u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], + u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); + return 0; +} + +static int ioc_cost_model_show(struct seq_file *sf, void *v) +{ + struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); + + blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, + &blkcg_policy_iocost, seq_cft(sf)->private, false); + return 0; +} + +static const match_table_t cost_ctrl_tokens = { + { COST_CTRL, "ctrl=%s" }, + { COST_MODEL, "model=%s" }, + { NR_COST_CTRL_PARAMS, NULL }, +}; + +static const match_table_t i_lcoef_tokens = { + { I_LCOEF_RBPS, "rbps=%u" }, + { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, + { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, + { I_LCOEF_WBPS, "wbps=%u" }, + { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, + { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, + { NR_I_LCOEFS, NULL }, +}; + +static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, + size_t nbytes, loff_t off) +{ + struct gendisk *disk; + struct ioc *ioc; + u64 u[NR_I_LCOEFS]; + bool user; + char *p; + int ret; + + disk = blkcg_conf_get_disk(&input); + if (IS_ERR(disk)) + return PTR_ERR(disk); + + ioc = q_to_ioc(disk->queue); + if (!ioc) { + ret = blk_iocost_init(disk->queue); + if (ret) + goto err; + ioc = q_to_ioc(disk->queue); + } + + spin_lock_irq(&ioc->lock); + memcpy(u, ioc->params.i_lcoefs, sizeof(u)); + user = ioc->user_cost_model; + spin_unlock_irq(&ioc->lock); + + while ((p = strsep(&input, " \t\n"))) { + substring_t args[MAX_OPT_ARGS]; + char buf[32]; + int tok; + u64 v; + + if (!*p) + continue; + + switch (match_token(p, cost_ctrl_tokens, args)) { + case COST_CTRL: + match_strlcpy(buf, &args[0], sizeof(buf)); + if (!strcmp(buf, "auto")) + user = false; + else if (!strcmp(buf, "user")) + user = true; + else + goto einval; + continue; + case COST_MODEL: + match_strlcpy(buf, &args[0], sizeof(buf)); + if (strcmp(buf, "linear")) + goto einval; + continue; + } + + tok = match_token(p, i_lcoef_tokens, args); + if (tok == NR_I_LCOEFS) + goto einval; + if (match_u64(&args[0], &v)) + goto einval; + u[tok] = v; + user = true; + } + + spin_lock_irq(&ioc->lock); + if (user) { + memcpy(ioc->params.i_lcoefs, u, sizeof(u)); + ioc->user_cost_model = true; + } else { + ioc->user_cost_model = false; + } + ioc_refresh_params(ioc, true); + spin_unlock_irq(&ioc->lock); + + put_disk_and_module(disk); + return nbytes; + +einval: + ret = -EINVAL; +err: + put_disk_and_module(disk); + return ret; +} + +static struct cftype ioc_files[] = { + { + .name = "weight", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = ioc_weight_show, + .write = ioc_weight_write, + }, + { + .name = "cost.qos", + .flags = CFTYPE_ONLY_ON_ROOT, + .seq_show = ioc_qos_show, + .write = ioc_qos_write, + }, + { + .name = "cost.model", + .flags = CFTYPE_ONLY_ON_ROOT, + .seq_show = ioc_cost_model_show, + .write = ioc_cost_model_write, + }, + {} +}; + +static struct blkcg_policy blkcg_policy_iocost = { + .dfl_cftypes = ioc_files, + .cpd_alloc_fn = ioc_cpd_alloc, + .cpd_free_fn = ioc_cpd_free, + .pd_alloc_fn = ioc_pd_alloc, + .pd_init_fn = ioc_pd_init, + .pd_free_fn = ioc_pd_free, + .pd_stat_fn = ioc_pd_stat, +}; + +static int __init ioc_init(void) +{ + return blkcg_policy_register(&blkcg_policy_iocost); +} + +static void __exit ioc_exit(void) +{ + blkcg_policy_unregister(&blkcg_policy_iocost); +} + +module_init(ioc_init); +module_exit(ioc_exit); |