summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /drivers/gpu/drm/vmwgfx/device_include/svga_reg.h
parentInitial commit. (diff)
downloadlinux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz
linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip
Adding upstream version 5.10.209.upstream/5.10.209
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/gpu/drm/vmwgfx/device_include/svga_reg.h')
-rw-r--r--drivers/gpu/drm/vmwgfx/device_include/svga_reg.h2265
1 files changed, 2265 insertions, 0 deletions
diff --git a/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h b/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h
new file mode 100644
index 000000000..19fb9e329
--- /dev/null
+++ b/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h
@@ -0,0 +1,2265 @@
+/* SPDX-License-Identifier: GPL-2.0 OR MIT */
+/**********************************************************
+ * Copyright 1998-2015 VMware, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person
+ * obtaining a copy of this software and associated documentation
+ * files (the "Software"), to deal in the Software without
+ * restriction, including without limitation the rights to use, copy,
+ * modify, merge, publish, distribute, sublicense, and/or sell copies
+ * of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ *
+ **********************************************************/
+
+/*
+ * svga_reg.h --
+ *
+ * Virtual hardware definitions for the VMware SVGA II device.
+ */
+
+#ifndef _SVGA_REG_H_
+#define _SVGA_REG_H_
+#include <linux/pci_ids.h>
+
+#define INCLUDE_ALLOW_MODULE
+#define INCLUDE_ALLOW_USERLEVEL
+
+#define INCLUDE_ALLOW_VMCORE
+#include "includeCheck.h"
+
+#include "svga_types.h"
+
+/*
+ * SVGA_REG_ENABLE bit definitions.
+ */
+typedef enum {
+ SVGA_REG_ENABLE_DISABLE = 0,
+ SVGA_REG_ENABLE_ENABLE = (1 << 0),
+ SVGA_REG_ENABLE_HIDE = (1 << 1),
+} SvgaRegEnable;
+
+typedef uint32 SVGAMobId;
+
+/*
+ * Arbitrary and meaningless limits. Please ignore these when writing
+ * new drivers.
+ */
+#define SVGA_MAX_WIDTH 2560
+#define SVGA_MAX_HEIGHT 1600
+
+
+#define SVGA_MAX_BITS_PER_PIXEL 32
+#define SVGA_MAX_DEPTH 24
+#define SVGA_MAX_DISPLAYS 10
+#define SVGA_MAX_SCREEN_SIZE 8192
+#define SVGA_SCREEN_ROOT_LIMIT (SVGA_MAX_SCREEN_SIZE * SVGA_MAX_DISPLAYS)
+
+
+/*
+ * Legal values for the SVGA_REG_CURSOR_ON register in old-fashioned
+ * cursor bypass mode.
+ */
+#define SVGA_CURSOR_ON_HIDE 0x0
+#define SVGA_CURSOR_ON_SHOW 0x1
+
+/*
+ * Remove the cursor from the framebuffer
+ * because we need to see what's under it
+ */
+#define SVGA_CURSOR_ON_REMOVE_FROM_FB 0x2
+
+/* Put the cursor back in the framebuffer so the user can see it */
+#define SVGA_CURSOR_ON_RESTORE_TO_FB 0x3
+
+/*
+ * The maximum framebuffer size that can traced for guests unless the
+ * SVGA_CAP_GBOBJECTS is set in SVGA_REG_CAPABILITIES. In that case
+ * the full framebuffer can be traced independent of this limit.
+ */
+#define SVGA_FB_MAX_TRACEABLE_SIZE 0x1000000
+
+#define SVGA_MAX_PSEUDOCOLOR_DEPTH 8
+#define SVGA_MAX_PSEUDOCOLORS (1 << SVGA_MAX_PSEUDOCOLOR_DEPTH)
+#define SVGA_NUM_PALETTE_REGS (3 * SVGA_MAX_PSEUDOCOLORS)
+
+#define SVGA_MAGIC 0x900000UL
+#define SVGA_MAKE_ID(ver) (SVGA_MAGIC << 8 | (ver))
+
+/* Version 2 let the address of the frame buffer be unsigned on Win32 */
+#define SVGA_VERSION_2 2
+#define SVGA_ID_2 SVGA_MAKE_ID(SVGA_VERSION_2)
+
+/* Version 1 has new registers starting with SVGA_REG_CAPABILITIES so
+ PALETTE_BASE has moved */
+#define SVGA_VERSION_1 1
+#define SVGA_ID_1 SVGA_MAKE_ID(SVGA_VERSION_1)
+
+/* Version 0 is the initial version */
+#define SVGA_VERSION_0 0
+#define SVGA_ID_0 SVGA_MAKE_ID(SVGA_VERSION_0)
+
+/*
+ * "Invalid" value for all SVGA IDs.
+ * (Version ID, screen object ID, surface ID...)
+ */
+#define SVGA_ID_INVALID 0xFFFFFFFF
+
+/* Port offsets, relative to BAR0 */
+#define SVGA_INDEX_PORT 0x0
+#define SVGA_VALUE_PORT 0x1
+#define SVGA_BIOS_PORT 0x2
+#define SVGA_IRQSTATUS_PORT 0x8
+
+/*
+ * Interrupt source flags for IRQSTATUS_PORT and IRQMASK.
+ *
+ * Interrupts are only supported when the
+ * SVGA_CAP_IRQMASK capability is present.
+ */
+#define SVGA_IRQFLAG_ANY_FENCE 0x1 /* Any fence was passed */
+#define SVGA_IRQFLAG_FIFO_PROGRESS 0x2 /* Made forward progress in the FIFO */
+#define SVGA_IRQFLAG_FENCE_GOAL 0x4 /* SVGA_FIFO_FENCE_GOAL reached */
+#define SVGA_IRQFLAG_COMMAND_BUFFER 0x8 /* Command buffer completed */
+#define SVGA_IRQFLAG_ERROR 0x10 /* Error while processing commands */
+
+/*
+ * The byte-size is the size of the actual cursor data,
+ * possibly after expanding it to the current bit depth.
+ *
+ * 40K is sufficient memory for two 32-bit planes for a 64 x 64 cursor.
+ *
+ * The dimension limit is a bound on the maximum width or height.
+ */
+#define SVGA_MAX_CURSOR_CMD_BYTES (40 * 1024)
+#define SVGA_MAX_CURSOR_CMD_DIMENSION 1024
+
+/*
+ * Registers
+ */
+
+enum {
+ SVGA_REG_ID = 0,
+ SVGA_REG_ENABLE = 1,
+ SVGA_REG_WIDTH = 2,
+ SVGA_REG_HEIGHT = 3,
+ SVGA_REG_MAX_WIDTH = 4,
+ SVGA_REG_MAX_HEIGHT = 5,
+ SVGA_REG_DEPTH = 6,
+ SVGA_REG_BITS_PER_PIXEL = 7, /* Current bpp in the guest */
+ SVGA_REG_PSEUDOCOLOR = 8,
+ SVGA_REG_RED_MASK = 9,
+ SVGA_REG_GREEN_MASK = 10,
+ SVGA_REG_BLUE_MASK = 11,
+ SVGA_REG_BYTES_PER_LINE = 12,
+ SVGA_REG_FB_START = 13, /* (Deprecated) */
+ SVGA_REG_FB_OFFSET = 14,
+ SVGA_REG_VRAM_SIZE = 15,
+ SVGA_REG_FB_SIZE = 16,
+
+ /* ID 0 implementation only had the above registers, then the palette */
+ SVGA_REG_ID_0_TOP = 17,
+
+ SVGA_REG_CAPABILITIES = 17,
+ SVGA_REG_MEM_START = 18, /* (Deprecated) */
+ SVGA_REG_MEM_SIZE = 19,
+ SVGA_REG_CONFIG_DONE = 20, /* Set when memory area configured */
+ SVGA_REG_SYNC = 21, /* See "FIFO Synchronization Registers" */
+ SVGA_REG_BUSY = 22, /* See "FIFO Synchronization Registers" */
+ SVGA_REG_GUEST_ID = 23, /* (Deprecated) */
+ SVGA_REG_DEAD = 24, /* Drivers should never write this. */
+ SVGA_REG_CURSOR_X = 25, /* (Deprecated) */
+ SVGA_REG_CURSOR_Y = 26, /* (Deprecated) */
+ SVGA_REG_CURSOR_ON = 27, /* (Deprecated) */
+ SVGA_REG_HOST_BITS_PER_PIXEL = 28, /* (Deprecated) */
+ SVGA_REG_SCRATCH_SIZE = 29, /* Number of scratch registers */
+ SVGA_REG_MEM_REGS = 30, /* Number of FIFO registers */
+ SVGA_REG_NUM_DISPLAYS = 31, /* (Deprecated) */
+ SVGA_REG_PITCHLOCK = 32, /* Fixed pitch for all modes */
+ SVGA_REG_IRQMASK = 33, /* Interrupt mask */
+
+ /* Legacy multi-monitor support */
+ SVGA_REG_NUM_GUEST_DISPLAYS = 34,/* Number of guest displays in X/Y direction */
+ SVGA_REG_DISPLAY_ID = 35, /* Display ID for the following display attributes */
+ SVGA_REG_DISPLAY_IS_PRIMARY = 36,/* Whether this is a primary display */
+ SVGA_REG_DISPLAY_POSITION_X = 37,/* The display position x */
+ SVGA_REG_DISPLAY_POSITION_Y = 38,/* The display position y */
+ SVGA_REG_DISPLAY_WIDTH = 39, /* The display's width */
+ SVGA_REG_DISPLAY_HEIGHT = 40, /* The display's height */
+
+ /* See "Guest memory regions" below. */
+ SVGA_REG_GMR_ID = 41,
+ SVGA_REG_GMR_DESCRIPTOR = 42,
+ SVGA_REG_GMR_MAX_IDS = 43,
+ SVGA_REG_GMR_MAX_DESCRIPTOR_LENGTH = 44,
+
+ SVGA_REG_TRACES = 45, /* Enable trace-based updates even when FIFO is on */
+ SVGA_REG_GMRS_MAX_PAGES = 46, /* Maximum number of 4KB pages for all GMRs */
+ SVGA_REG_MEMORY_SIZE = 47, /* Total dedicated device memory excluding FIFO */
+ SVGA_REG_COMMAND_LOW = 48, /* Lower 32 bits and submits commands */
+ SVGA_REG_COMMAND_HIGH = 49, /* Upper 32 bits of command buffer PA */
+
+ /*
+ * Max primary memory.
+ * See SVGA_CAP_NO_BB_RESTRICTION.
+ */
+ SVGA_REG_MAX_PRIMARY_MEM = 50,
+ SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM = 50,
+
+ /*
+ * Legacy version of SVGA_REG_GBOBJECT_MEM_SIZE_KB for drivers that
+ * don't know how to convert to a 64-bit byte value without overflowing.
+ * (See SVGA_REG_GBOBJECT_MEM_SIZE_KB).
+ */
+ SVGA_REG_SUGGESTED_GBOBJECT_MEM_SIZE_KB = 51,
+
+ SVGA_REG_DEV_CAP = 52, /* Write dev cap index, read value */
+ SVGA_REG_CMD_PREPEND_LOW = 53,
+ SVGA_REG_CMD_PREPEND_HIGH = 54,
+ SVGA_REG_SCREENTARGET_MAX_WIDTH = 55,
+ SVGA_REG_SCREENTARGET_MAX_HEIGHT = 56,
+ SVGA_REG_MOB_MAX_SIZE = 57,
+ SVGA_REG_BLANK_SCREEN_TARGETS = 58,
+ SVGA_REG_CAP2 = 59,
+ SVGA_REG_DEVEL_CAP = 60,
+
+ /*
+ * Allow the guest to hint to the device which driver is running.
+ *
+ * This should not generally change device behavior, but might be
+ * convenient to work-around specific bugs in guest drivers.
+ *
+ * Drivers should first write their id value into SVGA_REG_GUEST_DRIVER_ID,
+ * and then fill out all of the version registers that they have defined.
+ *
+ * After the driver has written all of the registers, they should
+ * then write the value SVGA_REG_GUEST_DRIVER_ID_SUBMIT to the
+ * SVGA_REG_GUEST_DRIVER_ID register, to signal that they have finished.
+ *
+ * The SVGA_REG_GUEST_DRIVER_ID values are defined below by the
+ * SVGARegGuestDriverId enum.
+ *
+ * The SVGA_REG_GUEST_DRIVER_VERSION fields are driver-specific,
+ * but ideally should encode a monotonically increasing number that allows
+ * the device to perform inequality checks against ranges of driver versions.
+ */
+ SVGA_REG_GUEST_DRIVER_ID = 61,
+ SVGA_REG_GUEST_DRIVER_VERSION1 = 62,
+ SVGA_REG_GUEST_DRIVER_VERSION2 = 63,
+ SVGA_REG_GUEST_DRIVER_VERSION3 = 64,
+ SVGA_REG_CURSOR_MOBID = 65,
+ SVGA_REG_CURSOR_MAX_BYTE_SIZE = 66,
+ SVGA_REG_CURSOR_MAX_DIMENSION = 67,
+
+ SVGA_REG_FIFO_CAPS = 68,
+ SVGA_REG_FENCE = 69,
+
+ SVGA_REG_RESERVED1 = 70,
+ SVGA_REG_RESERVED2 = 71,
+ SVGA_REG_RESERVED3 = 72,
+ SVGA_REG_RESERVED4 = 73,
+ SVGA_REG_RESERVED5 = 74,
+ SVGA_REG_SCREENDMA = 75,
+
+ /*
+ * The maximum amount of guest-backed objects that the device can have
+ * resident at a time. Guest-drivers should keep their working set size
+ * below this limit for best performance.
+ *
+ * Note that this value is in kilobytes, and not bytes, because the actual
+ * number of bytes might be larger than can fit in a 32-bit register.
+ *
+ * PLEASE USE A 64-BIT VALUE WHEN CONVERTING THIS INTO BYTES.
+ * (See SVGA_REG_SUGGESTED_GBOBJECT_MEM_SIZE_KB).
+ */
+ SVGA_REG_GBOBJECT_MEM_SIZE_KB = 76,
+
+ SVGA_REG_TOP = 77, /* Must be 1 more than the last register */
+
+ SVGA_PALETTE_BASE = 1024, /* Base of SVGA color map */
+ /* Next 768 (== 256*3) registers exist for colormap */
+ SVGA_SCRATCH_BASE = SVGA_PALETTE_BASE + SVGA_NUM_PALETTE_REGS
+ /* Base of scratch registers */
+ /* Next reg[SVGA_REG_SCRATCH_SIZE] registers exist for scratch usage:
+ First 4 are reserved for VESA BIOS Extension; any remaining are for
+ the use of the current SVGA driver. */
+};
+
+
+/*
+ * Values for SVGA_REG_GUEST_DRIVER_ID.
+ */
+typedef enum SVGARegGuestDriverId {
+ SVGA_REG_GUEST_DRIVER_ID_UNKNOWN = 0,
+ SVGA_REG_GUEST_DRIVER_ID_WDDM = 1,
+ SVGA_REG_GUEST_DRIVER_ID_LINUX = 2,
+ SVGA_REG_GUEST_DRIVER_ID_MAX,
+
+ SVGA_REG_GUEST_DRIVER_ID_SUBMIT = MAX_UINT32,
+} SVGARegGuestDriverId;
+
+
+/*
+ * Guest memory regions (GMRs):
+ *
+ * This is a new memory mapping feature available in SVGA devices
+ * which have the SVGA_CAP_GMR bit set. Previously, there were two
+ * fixed memory regions available with which to share data between the
+ * device and the driver: the FIFO ('MEM') and the framebuffer. GMRs
+ * are our name for an extensible way of providing arbitrary DMA
+ * buffers for use between the driver and the SVGA device. They are a
+ * new alternative to framebuffer memory, usable for both 2D and 3D
+ * graphics operations.
+ *
+ * Since GMR mapping must be done synchronously with guest CPU
+ * execution, we use a new pair of SVGA registers:
+ *
+ * SVGA_REG_GMR_ID --
+ *
+ * Read/write.
+ * This register holds the 32-bit ID (a small positive integer)
+ * of a GMR to create, delete, or redefine. Writing this register
+ * has no side-effects.
+ *
+ * SVGA_REG_GMR_DESCRIPTOR --
+ *
+ * Write-only.
+ * Writing this register will create, delete, or redefine the GMR
+ * specified by the above ID register. If this register is zero,
+ * the GMR is deleted. Any pointers into this GMR (including those
+ * currently being processed by FIFO commands) will be
+ * synchronously invalidated.
+ *
+ * If this register is nonzero, it must be the physical page
+ * number (PPN) of a data structure which describes the physical
+ * layout of the memory region this GMR should describe. The
+ * descriptor structure will be read synchronously by the SVGA
+ * device when this register is written. The descriptor need not
+ * remain allocated for the lifetime of the GMR.
+ *
+ * The guest driver should write SVGA_REG_GMR_ID first, then
+ * SVGA_REG_GMR_DESCRIPTOR.
+ *
+ * SVGA_REG_GMR_MAX_IDS --
+ *
+ * Read-only.
+ * The SVGA device may choose to support a maximum number of
+ * user-defined GMR IDs. This register holds the number of supported
+ * IDs. (The maximum supported ID plus 1)
+ *
+ * SVGA_REG_GMR_MAX_DESCRIPTOR_LENGTH --
+ *
+ * Read-only.
+ * The SVGA device may choose to put a limit on the total number
+ * of SVGAGuestMemDescriptor structures it will read when defining
+ * a single GMR.
+ *
+ * The descriptor structure is an array of SVGAGuestMemDescriptor
+ * structures. Each structure may do one of three things:
+ *
+ * - Terminate the GMR descriptor list.
+ * (ppn==0, numPages==0)
+ *
+ * - Add a PPN or range of PPNs to the GMR's virtual address space.
+ * (ppn != 0, numPages != 0)
+ *
+ * - Provide the PPN of the next SVGAGuestMemDescriptor, in order to
+ * support multi-page GMR descriptor tables without forcing the
+ * driver to allocate physically contiguous memory.
+ * (ppn != 0, numPages == 0)
+ *
+ * Note that each physical page of SVGAGuestMemDescriptor structures
+ * can describe at least 2MB of guest memory. If the driver needs to
+ * use more than one page of descriptor structures, it must use one of
+ * its SVGAGuestMemDescriptors to point to an additional page. The
+ * device will never automatically cross a page boundary.
+ *
+ * Once the driver has described a GMR, it is immediately available
+ * for use via any FIFO command that uses an SVGAGuestPtr structure.
+ * These pointers include a GMR identifier plus an offset into that
+ * GMR.
+ *
+ * The driver must check the SVGA_CAP_GMR bit before using the GMR
+ * registers.
+ */
+
+/*
+ * Special GMR IDs, allowing SVGAGuestPtrs to point to framebuffer
+ * memory as well. In the future, these IDs could even be used to
+ * allow legacy memory regions to be redefined by the guest as GMRs.
+ *
+ * Using the guest framebuffer (GFB) at BAR1 for general purpose DMA
+ * is being phased out. Please try to use user-defined GMRs whenever
+ * possible.
+ */
+#define SVGA_GMR_NULL ((uint32) -1)
+#define SVGA_GMR_FRAMEBUFFER ((uint32) -2) /* Guest Framebuffer (GFB) */
+
+typedef
+#include "vmware_pack_begin.h"
+struct SVGAGuestMemDescriptor {
+ uint32 ppn;
+ uint32 numPages;
+}
+#include "vmware_pack_end.h"
+SVGAGuestMemDescriptor;
+
+typedef
+#include "vmware_pack_begin.h"
+struct SVGAGuestPtr {
+ uint32 gmrId;
+ uint32 offset;
+}
+#include "vmware_pack_end.h"
+SVGAGuestPtr;
+
+/*
+ * Register based command buffers --
+ *
+ * Provide an SVGA device interface that allows the guest to submit
+ * command buffers to the SVGA device through an SVGA device register.
+ * The metadata for each command buffer is contained in the
+ * SVGACBHeader structure along with the return status codes.
+ *
+ * The SVGA device supports command buffers if
+ * SVGA_CAP_COMMAND_BUFFERS is set in the device caps register. The
+ * fifo must be enabled for command buffers to be submitted.
+ *
+ * Command buffers are submitted when the guest writing the 64 byte
+ * aligned physical address into the SVGA_REG_COMMAND_LOW and
+ * SVGA_REG_COMMAND_HIGH. SVGA_REG_COMMAND_HIGH contains the upper 32
+ * bits of the physical address. SVGA_REG_COMMAND_LOW contains the
+ * lower 32 bits of the physical address, since the command buffer
+ * headers are required to be 64 byte aligned the lower 6 bits are
+ * used for the SVGACBContext value. Writing to SVGA_REG_COMMAND_LOW
+ * submits the command buffer to the device and queues it for
+ * execution. The SVGA device supports at least
+ * SVGA_CB_MAX_QUEUED_PER_CONTEXT command buffers that can be queued
+ * per context and if that limit is reached the device will write the
+ * status SVGA_CB_STATUS_QUEUE_FULL to the status value of the command
+ * buffer header synchronously and not raise any IRQs.
+ *
+ * It is invalid to submit a command buffer without a valid physical
+ * address and results are undefined.
+ *
+ * The device guarantees that command buffers of size SVGA_CB_MAX_SIZE
+ * will be supported. If a larger command buffer is submitted results
+ * are unspecified and the device will either complete the command
+ * buffer or return an error.
+ *
+ * The device guarantees that any individual command in a command
+ * buffer can be up to SVGA_CB_MAX_COMMAND_SIZE in size which is
+ * enough to fit a 64x64 color-cursor definition. If the command is
+ * too large the device is allowed to process the command or return an
+ * error.
+ *
+ * The device context is a special SVGACBContext that allows for
+ * synchronous register like accesses with the flexibility of
+ * commands. There is a different command set defined by
+ * SVGADeviceContextCmdId. The commands in each command buffer is not
+ * allowed to straddle physical pages.
+ *
+ * The offset field which is available starting with the
+ * SVGA_CAP_CMD_BUFFERS_2 cap bit can be set by the guest to bias the
+ * start of command processing into the buffer. If an error is
+ * encountered the errorOffset will still be relative to the specific
+ * PA, not biased by the offset. When the command buffer is finished
+ * the guest should not read the offset field as there is no guarantee
+ * what it will set to.
+ *
+ * When the SVGA_CAP_HP_CMD_QUEUE cap bit is set a new command queue
+ * SVGA_CB_CONTEXT_1 is available. Commands submitted to this queue
+ * will be executed as quickly as possible by the SVGA device
+ * potentially before already queued commands on SVGA_CB_CONTEXT_0.
+ * The SVGA device guarantees that any command buffers submitted to
+ * SVGA_CB_CONTEXT_0 will be executed after any _already_ submitted
+ * command buffers to SVGA_CB_CONTEXT_1.
+ */
+
+#define SVGA_CB_MAX_SIZE (512 * 1024) /* 512 KB */
+#define SVGA_CB_MAX_QUEUED_PER_CONTEXT 32
+#define SVGA_CB_MAX_COMMAND_SIZE (32 * 1024) /* 32 KB */
+
+#define SVGA_CB_CONTEXT_MASK 0x3f
+typedef enum {
+ SVGA_CB_CONTEXT_DEVICE = 0x3f,
+ SVGA_CB_CONTEXT_0 = 0x0,
+ SVGA_CB_CONTEXT_1 = 0x1, /* Supported with SVGA_CAP_HP_CMD_QUEUE */
+ SVGA_CB_CONTEXT_MAX = 0x2,
+} SVGACBContext;
+
+
+typedef enum {
+ /*
+ * The guest is supposed to write SVGA_CB_STATUS_NONE to the status
+ * field before submitting the command buffer header, the host will
+ * change the value when it is done with the command buffer.
+ */
+ SVGA_CB_STATUS_NONE = 0,
+
+ /*
+ * Written by the host when a command buffer completes successfully.
+ * The device raises an IRQ with SVGA_IRQFLAG_COMMAND_BUFFER unless
+ * the SVGA_CB_FLAG_NO_IRQ flag is set.
+ */
+ SVGA_CB_STATUS_COMPLETED = 1,
+
+ /*
+ * Written by the host synchronously with the command buffer
+ * submission to indicate the command buffer was not submitted. No
+ * IRQ is raised.
+ */
+ SVGA_CB_STATUS_QUEUE_FULL = 2,
+
+ /*
+ * Written by the host when an error was detected parsing a command
+ * in the command buffer, errorOffset is written to contain the
+ * offset to the first byte of the failing command. The device
+ * raises the IRQ with both SVGA_IRQFLAG_ERROR and
+ * SVGA_IRQFLAG_COMMAND_BUFFER. Some of the commands may have been
+ * processed.
+ */
+ SVGA_CB_STATUS_COMMAND_ERROR = 3,
+
+ /*
+ * Written by the host if there is an error parsing the command
+ * buffer header. The device raises the IRQ with both
+ * SVGA_IRQFLAG_ERROR and SVGA_IRQFLAG_COMMAND_BUFFER. The device
+ * did not processes any of the command buffer.
+ */
+ SVGA_CB_STATUS_CB_HEADER_ERROR = 4,
+
+ /*
+ * Written by the host if the guest requested the host to preempt
+ * the command buffer. The device will not raise any IRQs and the
+ * command buffer was not processed.
+ */
+ SVGA_CB_STATUS_PREEMPTED = 5,
+
+ /*
+ * Written by the host synchronously with the command buffer
+ * submission to indicate the the command buffer was not submitted
+ * due to an error. No IRQ is raised.
+ */
+ SVGA_CB_STATUS_SUBMISSION_ERROR = 6,
+
+ /*
+ * Written by the host when the host finished a
+ * SVGA_DC_CMD_ASYNC_STOP_QUEUE request for this command buffer
+ * queue. The offset of the first byte not processed is stored in
+ * the errorOffset field of the command buffer header. All guest
+ * visible side effects of commands till that point are guaranteed
+ * to be finished before this is written. The
+ * SVGA_IRQFLAG_COMMAND_BUFFER IRQ is raised as long as the
+ * SVGA_CB_FLAG_NO_IRQ is not set.
+ */
+ SVGA_CB_STATUS_PARTIAL_COMPLETE = 7,
+} SVGACBStatus;
+
+typedef enum {
+ SVGA_CB_FLAG_NONE = 0,
+ SVGA_CB_FLAG_NO_IRQ = 1 << 0,
+ SVGA_CB_FLAG_DX_CONTEXT = 1 << 1,
+ SVGA_CB_FLAG_MOB = 1 << 2,
+} SVGACBFlags;
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ volatile SVGACBStatus status; /* Modified by device. */
+ volatile uint32 errorOffset; /* Modified by device. */
+ uint64 id;
+ SVGACBFlags flags;
+ uint32 length;
+ union {
+ PA pa;
+ struct {
+ SVGAMobId mobid;
+ uint32 mobOffset;
+ } mob;
+ } ptr;
+ uint32 offset; /* Valid if CMD_BUFFERS_2 cap set, must be zero otherwise,
+ * modified by device.
+ */
+ uint32 dxContext; /* Valid if DX_CONTEXT flag set, must be zero otherwise */
+ uint32 mustBeZero[6];
+}
+#include "vmware_pack_end.h"
+SVGACBHeader;
+
+typedef enum {
+ SVGA_DC_CMD_NOP = 0,
+ SVGA_DC_CMD_START_STOP_CONTEXT = 1,
+ SVGA_DC_CMD_PREEMPT = 2,
+ SVGA_DC_CMD_START_QUEUE = 3, /* Requires SVGA_CAP_HP_CMD_QUEUE */
+ SVGA_DC_CMD_ASYNC_STOP_QUEUE = 4, /* Requires SVGA_CAP_HP_CMD_QUEUE */
+ SVGA_DC_CMD_EMPTY_CONTEXT_QUEUE = 5, /* Requires SVGA_CAP_HP_CMD_QUEUE */
+ SVGA_DC_CMD_MAX = 6,
+} SVGADeviceContextCmdId;
+
+/*
+ * Starts or stops both SVGA_CB_CONTEXT_0 and SVGA_CB_CONTEXT_1.
+ */
+
+typedef struct SVGADCCmdStartStop {
+ uint32 enable;
+ SVGACBContext context; /* Must be zero */
+} SVGADCCmdStartStop;
+
+/*
+ * SVGADCCmdPreempt --
+ *
+ * This command allows the guest to request that all command buffers
+ * on SVGA_CB_CONTEXT_0 be preempted that can be. After execution
+ * of this command all command buffers that were preempted will
+ * already have SVGA_CB_STATUS_PREEMPTED written into the status
+ * field. The device might still be processing a command buffer,
+ * assuming execution of it started before the preemption request was
+ * received. Specifying the ignoreIDZero flag to TRUE will cause the
+ * device to not preempt command buffers with the id field in the
+ * command buffer header set to zero.
+ */
+
+typedef struct SVGADCCmdPreempt {
+ SVGACBContext context; /* Must be zero */
+ uint32 ignoreIDZero;
+} SVGADCCmdPreempt;
+
+/*
+ * Starts the requested command buffer processing queue. Valid only
+ * if the SVGA_CAP_HP_CMD_QUEUE cap is set.
+ *
+ * For a command queue to be considered runnable it must be enabled
+ * and any corresponding higher priority queues must also be enabled.
+ * For example in order for command buffers to be processed on
+ * SVGA_CB_CONTEXT_0 both SVGA_CB_CONTEXT_0 and SVGA_CB_CONTEXT_1 must
+ * be enabled. But for commands to be runnable on SVGA_CB_CONTEXT_1
+ * only that queue must be enabled.
+ */
+
+typedef struct SVGADCCmdStartQueue {
+ SVGACBContext context;
+} SVGADCCmdStartQueue;
+
+/*
+ * Requests the SVGA device to stop processing the requested command
+ * buffer queue as soon as possible. The guest knows the stop has
+ * completed when one of the following happens.
+ *
+ * 1) A command buffer status of SVGA_CB_STATUS_PARTIAL_COMPLETE is returned
+ * 2) A command buffer error is encountered with would stop the queue
+ * regardless of the async stop request.
+ * 3) All command buffers that have been submitted complete successfully.
+ * 4) The stop completes synchronously if no command buffers are
+ * active on the queue when it is issued.
+ *
+ * If the command queue is not in a runnable state there is no
+ * guarentee this async stop will finish. For instance if the high
+ * priority queue is not enabled and a stop is requested on the low
+ * priority queue, the high priority queue must be reenabled to
+ * guarantee that the async stop will finish.
+ *
+ * This command along with SVGA_DC_CMD_EMPTY_CONTEXT_QUEUE can be used
+ * to implement mid command buffer preemption.
+ *
+ * Valid only if the SVGA_CAP_HP_CMD_QUEUE cap is set.
+ */
+
+typedef struct SVGADCCmdAsyncStopQueue {
+ SVGACBContext context;
+} SVGADCCmdAsyncStopQueue;
+
+/*
+ * Requests the SVGA device to throw away any full command buffers on
+ * the requested command queue that have not been started. For a
+ * driver to know which command buffers were thrown away a driver
+ * should only issue this command when the queue is stopped, for
+ * whatever reason.
+ */
+
+typedef struct SVGADCCmdEmptyQueue {
+ SVGACBContext context;
+} SVGADCCmdEmptyQueue;
+
+
+/*
+ * SVGAGMRImageFormat --
+ *
+ * This is a packed representation of the source 2D image format
+ * for a GMR-to-screen blit. Currently it is defined as an encoding
+ * of the screen's color depth and bits-per-pixel, however, 16 bits
+ * are reserved for future use to identify other encodings (such as
+ * RGBA or higher-precision images).
+ *
+ * Currently supported formats:
+ *
+ * bpp depth Format Name
+ * --- ----- -----------
+ * 32 24 32-bit BGRX
+ * 24 24 24-bit BGR
+ * 16 16 RGB 5-6-5
+ * 16 15 RGB 5-5-5
+ *
+ */
+
+typedef struct SVGAGMRImageFormat {
+ union {
+ struct {
+ uint32 bitsPerPixel : 8;
+ uint32 colorDepth : 8;
+ uint32 reserved : 16; /* Must be zero */
+ };
+
+ uint32 value;
+ };
+} SVGAGMRImageFormat;
+
+typedef
+#include "vmware_pack_begin.h"
+struct SVGAGuestImage {
+ SVGAGuestPtr ptr;
+
+ /*
+ * A note on interpretation of pitch: This value of pitch is the
+ * number of bytes between vertically adjacent image
+ * blocks. Normally this is the number of bytes between the first
+ * pixel of two adjacent scanlines. With compressed textures,
+ * however, this may represent the number of bytes between
+ * compression blocks rather than between rows of pixels.
+ *
+ * XXX: Compressed textures currently must be tightly packed in guest memory.
+ *
+ * If the image is 1-dimensional, pitch is ignored.
+ *
+ * If 'pitch' is zero, the SVGA3D device calculates a pitch value
+ * assuming each row of blocks is tightly packed.
+ */
+ uint32 pitch;
+}
+#include "vmware_pack_end.h"
+SVGAGuestImage;
+
+/*
+ * SVGAColorBGRX --
+ *
+ * A 24-bit color format (BGRX), which does not depend on the
+ * format of the legacy guest framebuffer (GFB) or the current
+ * GMRFB state.
+ */
+
+typedef struct SVGAColorBGRX {
+ union {
+ struct {
+ uint32 b : 8;
+ uint32 g : 8;
+ uint32 r : 8;
+ uint32 x : 8; /* Unused */
+ };
+
+ uint32 value;
+ };
+} SVGAColorBGRX;
+
+
+/*
+ * SVGASignedRect --
+ * SVGASignedPoint --
+ *
+ * Signed rectangle and point primitives. These are used by the new
+ * 2D primitives for drawing to Screen Objects, which can occupy a
+ * signed virtual coordinate space.
+ *
+ * SVGASignedRect specifies a half-open interval: the (left, top)
+ * pixel is part of the rectangle, but the (right, bottom) pixel is
+ * not.
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ int32 left;
+ int32 top;
+ int32 right;
+ int32 bottom;
+}
+#include "vmware_pack_end.h"
+SVGASignedRect;
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ int32 x;
+ int32 y;
+}
+#include "vmware_pack_end.h"
+SVGASignedPoint;
+
+
+/*
+ * SVGA Device Capabilities
+ *
+ * Note the holes in the bitfield. Missing bits have been deprecated,
+ * and must not be reused. Those capabilities will never be reported
+ * by new versions of the SVGA device.
+ *
+ * SVGA_CAP_IRQMASK --
+ * Provides device interrupts. Adds device register SVGA_REG_IRQMASK
+ * to set interrupt mask and direct I/O port SVGA_IRQSTATUS_PORT to
+ * set/clear pending interrupts.
+ *
+ * SVGA_CAP_GMR --
+ * Provides synchronous mapping of guest memory regions (GMR).
+ * Adds device registers SVGA_REG_GMR_ID, SVGA_REG_GMR_DESCRIPTOR,
+ * SVGA_REG_GMR_MAX_IDS, and SVGA_REG_GMR_MAX_DESCRIPTOR_LENGTH.
+ *
+ * SVGA_CAP_TRACES --
+ * Allows framebuffer trace-based updates even when FIFO is enabled.
+ * Adds device register SVGA_REG_TRACES.
+ *
+ * SVGA_CAP_GMR2 --
+ * Provides asynchronous commands to define and remap guest memory
+ * regions. Adds device registers SVGA_REG_GMRS_MAX_PAGES and
+ * SVGA_REG_MEMORY_SIZE.
+ *
+ * SVGA_CAP_SCREEN_OBJECT_2 --
+ * Allow screen object support, and require backing stores from the
+ * guest for each screen object.
+ *
+ * SVGA_CAP_COMMAND_BUFFERS --
+ * Enable register based command buffer submission.
+ *
+ * SVGA_CAP_DEAD1 --
+ * This cap was incorrectly used by old drivers and should not be
+ * reused.
+ *
+ * SVGA_CAP_CMD_BUFFERS_2 --
+ * Enable support for the prepend command buffer submision
+ * registers. SVGA_REG_CMD_PREPEND_LOW and
+ * SVGA_REG_CMD_PREPEND_HIGH.
+ *
+ * SVGA_CAP_GBOBJECTS --
+ * Enable guest-backed objects and surfaces.
+ *
+ * SVGA_CAP_DX --
+ * Enable support for DX commands, and command buffers in a mob.
+ *
+ * SVGA_CAP_HP_CMD_QUEUE --
+ * Enable support for the high priority command queue, and the
+ * ScreenCopy command.
+ *
+ * SVGA_CAP_NO_BB_RESTRICTION --
+ * Allow ScreenTargets to be defined without regard to the 32-bpp
+ * bounding-box memory restrictions. ie:
+ *
+ * The summed memory usage of all screens (assuming they were defined as
+ * 32-bpp) must always be less than the value of the
+ * SVGA_REG_MAX_PRIMARY_MEM register.
+ *
+ * If this cap is not present, the 32-bpp bounding box around all screens
+ * must additionally be under the value of the SVGA_REG_MAX_PRIMARY_MEM
+ * register.
+ *
+ * If the cap is present, the bounding box restriction is lifted (and only
+ * the screen-sum limit applies).
+ *
+ * (Note that this is a slight lie... there is still a sanity limit on any
+ * dimension of the topology to be less than SVGA_SCREEN_ROOT_LIMIT, even
+ * when SVGA_CAP_NO_BB_RESTRICTION is present, but that should be
+ * large enough to express any possible topology without holes between
+ * monitors.)
+ *
+ * SVGA_CAP_CAP2_REGISTER --
+ * If this cap is present, the SVGA_REG_CAP2 register is supported.
+ */
+
+#define SVGA_CAP_NONE 0x00000000
+#define SVGA_CAP_RECT_COPY 0x00000002
+#define SVGA_CAP_CURSOR 0x00000020
+#define SVGA_CAP_CURSOR_BYPASS 0x00000040
+#define SVGA_CAP_CURSOR_BYPASS_2 0x00000080
+#define SVGA_CAP_8BIT_EMULATION 0x00000100
+#define SVGA_CAP_ALPHA_CURSOR 0x00000200
+#define SVGA_CAP_3D 0x00004000
+#define SVGA_CAP_EXTENDED_FIFO 0x00008000
+#define SVGA_CAP_MULTIMON 0x00010000
+#define SVGA_CAP_PITCHLOCK 0x00020000
+#define SVGA_CAP_IRQMASK 0x00040000
+#define SVGA_CAP_DISPLAY_TOPOLOGY 0x00080000
+#define SVGA_CAP_GMR 0x00100000
+#define SVGA_CAP_TRACES 0x00200000
+#define SVGA_CAP_GMR2 0x00400000
+#define SVGA_CAP_SCREEN_OBJECT_2 0x00800000
+#define SVGA_CAP_COMMAND_BUFFERS 0x01000000
+#define SVGA_CAP_DEAD1 0x02000000
+#define SVGA_CAP_CMD_BUFFERS_2 0x04000000
+#define SVGA_CAP_GBOBJECTS 0x08000000
+#define SVGA_CAP_DX 0x10000000
+#define SVGA_CAP_HP_CMD_QUEUE 0x20000000
+#define SVGA_CAP_NO_BB_RESTRICTION 0x40000000
+#define SVGA_CAP_CAP2_REGISTER 0x80000000
+
+/*
+ * The SVGA_REG_CAP2 register is an additional set of SVGA capability bits.
+ *
+ * SVGA_CAP2_GROW_OTABLE --
+ * Allow the GrowOTable/DXGrowCOTable commands.
+ *
+ * SVGA_CAP2_INTRA_SURFACE_COPY --
+ * Allow the IntraSurfaceCopy command.
+ *
+ * SVGA_CAP2_DX2 --
+ * Allow the DefineGBSurface_v3, WholeSurfaceCopy, WriteZeroSurface, and
+ * HintZeroSurface commands, and the SVGA_REG_GUEST_DRIVER_ID register.
+ *
+ * SVGA_CAP2_GB_MEMSIZE_2 --
+ * Allow the SVGA_REG_GBOBJECT_MEM_SIZE_KB register.
+ *
+ * SVGA_CAP2_SCREENDMA_REG --
+ * Allow the SVGA_REG_SCREENDMA register.
+ *
+ * SVGA_CAP2_OTABLE_PTDEPTH_2 --
+ * Allow 2 level page tables for OTable commands.
+ *
+ * SVGA_CAP2_NON_MS_TO_MS_STRETCHBLT --
+ * Allow a stretch blt from a non-multisampled surface to a multisampled
+ * surface.
+ *
+ * SVGA_CAP2_CURSOR_MOB --
+ * Allow the SVGA_REG_CURSOR_MOBID register.
+ *
+ * SVGA_CAP2_MSHINT --
+ * Allow the SVGA_REG_MSHINT register.
+ *
+ * SVGA_CAP2_DX3 --
+ * Allows the DefineGBSurface_v4 command.
+ * Allows the DXDefineDepthStencilView_v2, DXDefineStreamOutputWithMob,
+ * and DXBindStreamOutput commands if 3D is also available.
+ * Allows the DXPredStagingCopy and DXStagingCopy commands if SM41
+ * is also available.
+ *
+ * SVGA_CAP2_RESERVED --
+ * Reserve the last bit for extending the SVGA capabilities to some
+ * future mechanisms.
+ */
+#define SVGA_CAP2_NONE 0x00000000
+#define SVGA_CAP2_GROW_OTABLE 0x00000001
+#define SVGA_CAP2_INTRA_SURFACE_COPY 0x00000002
+#define SVGA_CAP2_DX2 0x00000004
+#define SVGA_CAP2_GB_MEMSIZE_2 0x00000008
+#define SVGA_CAP2_SCREENDMA_REG 0x00000010
+#define SVGA_CAP2_OTABLE_PTDEPTH_2 0x00000020
+#define SVGA_CAP2_NON_MS_TO_MS_STRETCHBLT 0x00000040
+#define SVGA_CAP2_CURSOR_MOB 0x00000080
+#define SVGA_CAP2_MSHINT 0x00000100
+#define SVGA_CAP2_DX3 0x00000400
+#define SVGA_CAP2_RESERVED 0x80000000
+
+
+/*
+ * The Guest can optionally read some SVGA device capabilities through
+ * the backdoor with command BDOOR_CMD_GET_SVGA_CAPABILITIES before
+ * the SVGA device is initialized. The type of capability the guest
+ * is requesting from the SVGABackdoorCapType enum should be placed in
+ * the upper 16 bits of the backdoor command id (ECX). On success the
+ * the value of EBX will be set to BDOOR_MAGIC and EAX will be set to
+ * the requested capability. If the command is not supported then EBX
+ * will be left unchanged and EAX will be set to -1. Because it is
+ * possible that -1 is the value of the requested cap the correct way
+ * to check if the command was successful is to check if EBX was changed
+ * to BDOOR_MAGIC making sure to initialize the register to something
+ * else first.
+ */
+
+typedef enum {
+ SVGABackdoorCapDeviceCaps = 0,
+ SVGABackdoorCapFifoCaps = 1,
+ SVGABackdoorCap3dHWVersion = 2,
+ SVGABackdoorCapDeviceCaps2 = 3,
+ SVGABackdoorCapDevelCaps = 4,
+ SVGABackdoorDevelRenderer = 5,
+ SVGABackdoorCapMax = 6,
+} SVGABackdoorCapType;
+
+
+/*
+ * FIFO register indices.
+ *
+ * The FIFO is a chunk of device memory mapped into guest physmem. It
+ * is always treated as 32-bit words.
+ *
+ * The guest driver gets to decide how to partition it between
+ * - FIFO registers (there are always at least 4, specifying where the
+ * following data area is and how much data it contains; there may be
+ * more registers following these, depending on the FIFO protocol
+ * version in use)
+ * - FIFO data, written by the guest and slurped out by the VMX.
+ * These indices are 32-bit word offsets into the FIFO.
+ */
+
+enum {
+ /*
+ * Block 1 (basic registers): The originally defined FIFO registers.
+ * These exist and are valid for all versions of the FIFO protocol.
+ */
+
+ SVGA_FIFO_MIN = 0,
+ SVGA_FIFO_MAX, /* The distance from MIN to MAX must be at least 10K */
+ SVGA_FIFO_NEXT_CMD,
+ SVGA_FIFO_STOP,
+
+ /*
+ * Block 2 (extended registers): Mandatory registers for the extended
+ * FIFO. These exist if the SVGA caps register includes
+ * SVGA_CAP_EXTENDED_FIFO; some of them are valid only if their
+ * associated capability bit is enabled.
+ *
+ * Note that when originally defined, SVGA_CAP_EXTENDED_FIFO implied
+ * support only for (FIFO registers) CAPABILITIES, FLAGS, and FENCE.
+ * This means that the guest has to test individually (in most cases
+ * using FIFO caps) for the presence of registers after this; the VMX
+ * can define "extended FIFO" to mean whatever it wants, and currently
+ * won't enable it unless there's room for that set and much more.
+ */
+
+ SVGA_FIFO_CAPABILITIES = 4,
+ SVGA_FIFO_FLAGS,
+ /* Valid with SVGA_FIFO_CAP_FENCE: */
+ SVGA_FIFO_FENCE,
+
+ /*
+ * Block 3a (optional extended registers): Additional registers for the
+ * extended FIFO, whose presence isn't actually implied by
+ * SVGA_CAP_EXTENDED_FIFO; these exist if SVGA_FIFO_MIN is high enough to
+ * leave room for them.
+ *
+ * These in block 3a, the VMX currently considers mandatory for the
+ * extended FIFO.
+ */
+
+ /* Valid if exists (i.e. if extended FIFO enabled): */
+ SVGA_FIFO_3D_HWVERSION, /* See SVGA3dHardwareVersion in svga3d_reg.h */
+ /* Valid with SVGA_FIFO_CAP_PITCHLOCK: */
+ SVGA_FIFO_PITCHLOCK,
+
+ /* Valid with SVGA_FIFO_CAP_CURSOR_BYPASS_3: */
+ SVGA_FIFO_CURSOR_ON, /* Cursor bypass 3 show/hide register */
+ SVGA_FIFO_CURSOR_X, /* Cursor bypass 3 x register */
+ SVGA_FIFO_CURSOR_Y, /* Cursor bypass 3 y register */
+ SVGA_FIFO_CURSOR_COUNT, /* Incremented when any of the other 3 change */
+ SVGA_FIFO_CURSOR_LAST_UPDATED,/* Last time the host updated the cursor */
+
+ /* Valid with SVGA_FIFO_CAP_RESERVE: */
+ SVGA_FIFO_RESERVED, /* Bytes past NEXT_CMD with real contents */
+
+ /*
+ * Valid with SVGA_FIFO_CAP_SCREEN_OBJECT or SVGA_FIFO_CAP_SCREEN_OBJECT_2:
+ *
+ * By default this is SVGA_ID_INVALID, to indicate that the cursor
+ * coordinates are specified relative to the virtual root. If this
+ * is set to a specific screen ID, cursor position is reinterpreted
+ * as a signed offset relative to that screen's origin.
+ */
+ SVGA_FIFO_CURSOR_SCREEN_ID,
+
+ /*
+ * Valid with SVGA_FIFO_CAP_DEAD
+ *
+ * An arbitrary value written by the host, drivers should not use it.
+ */
+ SVGA_FIFO_DEAD,
+
+ /*
+ * Valid with SVGA_FIFO_CAP_3D_HWVERSION_REVISED:
+ *
+ * Contains 3D HWVERSION (see SVGA3dHardwareVersion in svga3d_reg.h)
+ * on platforms that can enforce graphics resource limits.
+ */
+ SVGA_FIFO_3D_HWVERSION_REVISED,
+
+ /*
+ * XXX: The gap here, up until SVGA_FIFO_3D_CAPS, can be used for new
+ * registers, but this must be done carefully and with judicious use of
+ * capability bits, since comparisons based on SVGA_FIFO_MIN aren't
+ * enough to tell you whether the register exists: we've shipped drivers
+ * and products that used SVGA_FIFO_3D_CAPS but didn't know about some of
+ * the earlier ones. The actual order of introduction was:
+ * - PITCHLOCK
+ * - 3D_CAPS
+ * - CURSOR_* (cursor bypass 3)
+ * - RESERVED
+ * So, code that wants to know whether it can use any of the
+ * aforementioned registers, or anything else added after PITCHLOCK and
+ * before 3D_CAPS, needs to reason about something other than
+ * SVGA_FIFO_MIN.
+ */
+
+ /*
+ * 3D caps block space; valid with 3D hardware version >=
+ * SVGA3D_HWVERSION_WS6_B1.
+ */
+ SVGA_FIFO_3D_CAPS = 32,
+ SVGA_FIFO_3D_CAPS_LAST = 32 + 255,
+
+ /*
+ * End of VMX's current definition of "extended-FIFO registers".
+ * Registers before here are always enabled/disabled as a block; either
+ * the extended FIFO is enabled and includes all preceding registers, or
+ * it's disabled entirely.
+ *
+ * Block 3b (truly optional extended registers): Additional registers for
+ * the extended FIFO, which the VMX already knows how to enable and
+ * disable with correct granularity.
+ *
+ * Registers after here exist if and only if the guest SVGA driver
+ * sets SVGA_FIFO_MIN high enough to leave room for them.
+ */
+
+ /* Valid if register exists: */
+ SVGA_FIFO_GUEST_3D_HWVERSION, /* Guest driver's 3D version */
+ SVGA_FIFO_FENCE_GOAL, /* Matching target for SVGA_IRQFLAG_FENCE_GOAL */
+ SVGA_FIFO_BUSY, /* See "FIFO Synchronization Registers" */
+
+ /*
+ * Always keep this last. This defines the maximum number of
+ * registers we know about. At power-on, this value is placed in
+ * the SVGA_REG_MEM_REGS register, and we expect the guest driver
+ * to allocate this much space in FIFO memory for registers.
+ */
+ SVGA_FIFO_NUM_REGS
+};
+
+
+/*
+ * Definition of registers included in extended FIFO support.
+ *
+ * The guest SVGA driver gets to allocate the FIFO between registers
+ * and data. It must always allocate at least 4 registers, but old
+ * drivers stopped there.
+ *
+ * The VMX will enable extended FIFO support if and only if the guest
+ * left enough room for all registers defined as part of the mandatory
+ * set for the extended FIFO.
+ *
+ * Note that the guest drivers typically allocate the FIFO only at
+ * initialization time, not at mode switches, so it's likely that the
+ * number of FIFO registers won't change without a reboot.
+ *
+ * All registers less than this value are guaranteed to be present if
+ * svgaUser->fifo.extended is set. Any later registers must be tested
+ * individually for compatibility at each use (in the VMX).
+ *
+ * This value is used only by the VMX, so it can change without
+ * affecting driver compatibility; keep it that way?
+ */
+#define SVGA_FIFO_EXTENDED_MANDATORY_REGS (SVGA_FIFO_3D_CAPS_LAST + 1)
+
+
+/*
+ * FIFO Synchronization Registers
+ *
+ * SVGA_REG_SYNC --
+ *
+ * The SYNC register can be used by the guest driver to signal to the
+ * device that the guest driver is waiting for previously submitted
+ * commands to complete.
+ *
+ * When the guest driver writes to the SYNC register, the device sets
+ * the BUSY register to TRUE, and starts processing the submitted commands
+ * (if it was not already doing so). When all previously submitted
+ * commands are finished and the device is idle again, it sets the BUSY
+ * register back to FALSE. (If the guest driver submits new commands
+ * after writing the SYNC register, the new commands are not guaranteed
+ * to have been procesesd.)
+ *
+ * When guest drivers are submitting commands using the FIFO, the device
+ * periodically polls to check for new FIFO commands when idle, which may
+ * introduce a delay in command processing. If the guest-driver wants
+ * the commands to be processed quickly (which it typically does), it
+ * should write SYNC after each batch of commands is committed to the
+ * FIFO to immediately wake up the device. For even better performance,
+ * the guest can use the SVGA_FIFO_BUSY register to avoid these extra
+ * SYNC writes if the device is already active, using the technique known
+ * as "Ringing the Doorbell" (described below). (Note that command
+ * buffer submission implicitly wakes up the device, and so doesn't
+ * suffer from this problem.)
+ *
+ * The SYNC register can also be used in combination with BUSY to
+ * synchronously ensure that all SVGA commands are processed (with both
+ * the FIFO and command-buffers). To do this, the guest driver should
+ * write to SYNC, and then loop reading BUSY until BUSY returns FALSE.
+ * This technique is known as a "Legacy Sync".
+ *
+ * SVGA_REG_BUSY --
+ *
+ * This register is set to TRUE when SVGA_REG_SYNC is written,
+ * and is set back to FALSE when the device has finished processing
+ * all commands and is idle again.
+ *
+ * Every read from the BUSY reigster will block for an undefined
+ * amount of time (normally until the device finishes some interesting
+ * work unit), or the device is idle.
+ *
+ * Guest drivers can also do a partial Legacy Sync to check for some
+ * particular condition, for instance by stopping early when a fence
+ * passes before BUSY has been set back to FALSE. This is particularly
+ * useful if the guest-driver knows that it is blocked waiting on the
+ * device, because it will yield CPU time back to the host.
+ *
+ * SVGA_FIFO_BUSY --
+ *
+ * The SVGA_FIFO_BUSY register is a fast way for the guest driver to check
+ * whether the device is actively processing FIFO commands before writing
+ * the more expensive SYNC register.
+ *
+ * If this register reads as TRUE, the device is actively processing
+ * FIFO commands.
+ *
+ * If this register reads as FALSE, the device may not be actively
+ * processing commands, and the guest driver should try
+ * "Ringing the Doorbell".
+ *
+ * To Ring the Doorbell, the guest should:
+ *
+ * 1. Have already written their batch of commands into the FIFO.
+ * 2. Check if the SVGA_FIFO_BUSY register is available by reading
+ * SVGA_FIFO_MIN.
+ * 3. Read SVGA_FIFO_BUSY. If it reads as TRUE, the device is actively
+ * processing FIFO commands, and no further action is necessary.
+ * 4. If SVGA_FIFO_BUSY was FALSE, write TRUE to SVGA_REG_SYNC.
+ *
+ * For maximum performance, this procedure should be followed after
+ * every meaningful batch of commands has been written into the FIFO.
+ * (Normally when the underlying application signals it's finished a
+ * meaningful work unit by calling Flush.)
+ */
+
+
+/*
+ * FIFO Capabilities
+ *
+ * Fence -- Fence register and command are supported
+ * Accel Front -- Front buffer only commands are supported
+ * Pitch Lock -- Pitch lock register is supported
+ * Video -- SVGA Video overlay units are supported
+ * Escape -- Escape command is supported
+ *
+ * SVGA_FIFO_CAP_SCREEN_OBJECT --
+ *
+ * Provides dynamic multi-screen rendering, for improved Unity and
+ * multi-monitor modes. With Screen Object, the guest can
+ * dynamically create and destroy 'screens', which can represent
+ * Unity windows or virtual monitors. Screen Object also provides
+ * strong guarantees that DMA operations happen only when
+ * guest-initiated. Screen Object deprecates the BAR1 guest
+ * framebuffer (GFB) and all commands that work only with the GFB.
+ *
+ * New registers:
+ * FIFO_CURSOR_SCREEN_ID, VIDEO_DATA_GMRID, VIDEO_DST_SCREEN_ID
+ *
+ * New 2D commands:
+ * DEFINE_SCREEN, DESTROY_SCREEN, DEFINE_GMRFB, BLIT_GMRFB_TO_SCREEN,
+ * BLIT_SCREEN_TO_GMRFB, ANNOTATION_FILL, ANNOTATION_COPY
+ *
+ * New 3D commands:
+ * BLIT_SURFACE_TO_SCREEN
+ *
+ * New guarantees:
+ *
+ * - The host will not read or write guest memory, including the GFB,
+ * except when explicitly initiated by a DMA command.
+ *
+ * - All DMA, including legacy DMA like UPDATE and PRESENT_READBACK,
+ * is guaranteed to complete before any subsequent FENCEs.
+ *
+ * - All legacy commands which affect a Screen (UPDATE, PRESENT,
+ * PRESENT_READBACK) as well as new Screen blit commands will
+ * all behave consistently as blits, and memory will be read
+ * or written in FIFO order.
+ *
+ * For example, if you PRESENT from one SVGA3D surface to multiple
+ * places on the screen, the data copied will always be from the
+ * SVGA3D surface at the time the PRESENT was issued in the FIFO.
+ * This was not necessarily true on devices without Screen Object.
+ *
+ * This means that on devices that support Screen Object, the
+ * PRESENT_READBACK command should not be necessary unless you
+ * actually want to read back the results of 3D rendering into
+ * system memory. (And for that, the BLIT_SCREEN_TO_GMRFB
+ * command provides a strict superset of functionality.)
+ *
+ * - When a screen is resized, either using Screen Object commands or
+ * legacy multimon registers, its contents are preserved.
+ *
+ * SVGA_FIFO_CAP_GMR2 --
+ *
+ * Provides new commands to define and remap guest memory regions (GMR).
+ *
+ * New 2D commands:
+ * DEFINE_GMR2, REMAP_GMR2.
+ *
+ * SVGA_FIFO_CAP_3D_HWVERSION_REVISED --
+ *
+ * Indicates new register SVGA_FIFO_3D_HWVERSION_REVISED exists.
+ * This register may replace SVGA_FIFO_3D_HWVERSION on platforms
+ * that enforce graphics resource limits. This allows the platform
+ * to clear SVGA_FIFO_3D_HWVERSION and disable 3D in legacy guest
+ * drivers that do not limit their resources.
+ *
+ * Note this is an alias to SVGA_FIFO_CAP_GMR2 because these indicators
+ * are codependent (and thus we use a single capability bit).
+ *
+ * SVGA_FIFO_CAP_SCREEN_OBJECT_2 --
+ *
+ * Modifies the DEFINE_SCREEN command to include a guest provided
+ * backing store in GMR memory and the bytesPerLine for the backing
+ * store. This capability requires the use of a backing store when
+ * creating screen objects. However if SVGA_FIFO_CAP_SCREEN_OBJECT
+ * is present then backing stores are optional.
+ *
+ * SVGA_FIFO_CAP_DEAD --
+ *
+ * Drivers should not use this cap bit. This cap bit can not be
+ * reused since some hosts already expose it.
+ */
+
+#define SVGA_FIFO_CAP_NONE 0
+#define SVGA_FIFO_CAP_FENCE (1<<0)
+#define SVGA_FIFO_CAP_ACCELFRONT (1<<1)
+#define SVGA_FIFO_CAP_PITCHLOCK (1<<2)
+#define SVGA_FIFO_CAP_VIDEO (1<<3)
+#define SVGA_FIFO_CAP_CURSOR_BYPASS_3 (1<<4)
+#define SVGA_FIFO_CAP_ESCAPE (1<<5)
+#define SVGA_FIFO_CAP_RESERVE (1<<6)
+#define SVGA_FIFO_CAP_SCREEN_OBJECT (1<<7)
+#define SVGA_FIFO_CAP_GMR2 (1<<8)
+#define SVGA_FIFO_CAP_3D_HWVERSION_REVISED SVGA_FIFO_CAP_GMR2
+#define SVGA_FIFO_CAP_SCREEN_OBJECT_2 (1<<9)
+#define SVGA_FIFO_CAP_DEAD (1<<10)
+
+
+/*
+ * FIFO Flags
+ *
+ * Accel Front -- Driver should use front buffer only commands
+ */
+
+#define SVGA_FIFO_FLAG_NONE 0
+#define SVGA_FIFO_FLAG_ACCELFRONT (1<<0)
+#define SVGA_FIFO_FLAG_RESERVED (1<<31) /* Internal use only */
+
+/*
+ * FIFO reservation sentinel value
+ */
+
+#define SVGA_FIFO_RESERVED_UNKNOWN 0xffffffff
+
+
+/*
+ * ScreenDMA Register Values
+ */
+
+#define SVGA_SCREENDMA_REG_UNDEFINED 0
+#define SVGA_SCREENDMA_REG_NOT_PRESENT 1
+#define SVGA_SCREENDMA_REG_PRESENT 2
+#define SVGA_SCREENDMA_REG_MAX 3
+
+/*
+ * Video overlay support
+ */
+
+#define SVGA_NUM_OVERLAY_UNITS 32
+
+
+/*
+ * Video capabilities that the guest is currently using
+ */
+
+#define SVGA_VIDEO_FLAG_COLORKEY 0x0001
+
+
+/*
+ * Offsets for the video overlay registers
+ */
+
+enum {
+ SVGA_VIDEO_ENABLED = 0,
+ SVGA_VIDEO_FLAGS,
+ SVGA_VIDEO_DATA_OFFSET,
+ SVGA_VIDEO_FORMAT,
+ SVGA_VIDEO_COLORKEY,
+ SVGA_VIDEO_SIZE, /* Deprecated */
+ SVGA_VIDEO_WIDTH,
+ SVGA_VIDEO_HEIGHT,
+ SVGA_VIDEO_SRC_X,
+ SVGA_VIDEO_SRC_Y,
+ SVGA_VIDEO_SRC_WIDTH,
+ SVGA_VIDEO_SRC_HEIGHT,
+ SVGA_VIDEO_DST_X, /* Signed int32 */
+ SVGA_VIDEO_DST_Y, /* Signed int32 */
+ SVGA_VIDEO_DST_WIDTH,
+ SVGA_VIDEO_DST_HEIGHT,
+ SVGA_VIDEO_PITCH_1,
+ SVGA_VIDEO_PITCH_2,
+ SVGA_VIDEO_PITCH_3,
+ SVGA_VIDEO_DATA_GMRID, /* Optional, defaults to SVGA_GMR_FRAMEBUFFER */
+ SVGA_VIDEO_DST_SCREEN_ID, /* Optional, defaults to virtual coords */
+ /* (SVGA_ID_INVALID) */
+ SVGA_VIDEO_NUM_REGS
+};
+
+
+/*
+ * SVGA Overlay Units
+ *
+ * width and height relate to the entire source video frame.
+ * srcX, srcY, srcWidth and srcHeight represent subset of the source
+ * video frame to be displayed.
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct SVGAOverlayUnit {
+ uint32 enabled;
+ uint32 flags;
+ uint32 dataOffset;
+ uint32 format;
+ uint32 colorKey;
+ uint32 size;
+ uint32 width;
+ uint32 height;
+ uint32 srcX;
+ uint32 srcY;
+ uint32 srcWidth;
+ uint32 srcHeight;
+ int32 dstX;
+ int32 dstY;
+ uint32 dstWidth;
+ uint32 dstHeight;
+ uint32 pitches[3];
+ uint32 dataGMRId;
+ uint32 dstScreenId;
+}
+#include "vmware_pack_end.h"
+SVGAOverlayUnit;
+
+
+/*
+ * Guest display topology
+ *
+ * XXX: This structure is not part of the SVGA device's interface, and
+ * doesn't really belong here.
+ */
+#define SVGA_INVALID_DISPLAY_ID ((uint32)-1)
+
+typedef struct SVGADisplayTopology {
+ uint16 displayId;
+ uint16 isPrimary;
+ uint32 width;
+ uint32 height;
+ uint32 positionX;
+ uint32 positionY;
+} SVGADisplayTopology;
+
+
+/*
+ * SVGAScreenObject --
+ *
+ * This is a new way to represent a guest's multi-monitor screen or
+ * Unity window. Screen objects are only supported if the
+ * SVGA_FIFO_CAP_SCREEN_OBJECT capability bit is set.
+ *
+ * If Screen Objects are supported, they can be used to fully
+ * replace the functionality provided by the framebuffer registers
+ * (SVGA_REG_WIDTH, HEIGHT, etc.) and by SVGA_CAP_DISPLAY_TOPOLOGY.
+ *
+ * The screen object is a struct with guaranteed binary
+ * compatibility. New flags can be added, and the struct may grow,
+ * but existing fields must retain their meaning.
+ *
+ * Added with SVGA_FIFO_CAP_SCREEN_OBJECT_2 are required fields of
+ * a SVGAGuestPtr that is used to back the screen contents. This
+ * memory must come from the GFB. The guest is not allowed to
+ * access the memory and doing so will have undefined results. The
+ * backing store is required to be page aligned and the size is
+ * padded to the next page boundry. The number of pages is:
+ * (bytesPerLine * size.width * 4 + PAGE_SIZE - 1) / PAGE_SIZE
+ *
+ * The pitch in the backingStore is required to be at least large
+ * enough to hold a 32bbp scanline. It is recommended that the
+ * driver pad bytesPerLine for a potential performance win.
+ *
+ * The cloneCount field is treated as a hint from the guest that
+ * the user wants this display to be cloned, countCount times. A
+ * value of zero means no cloning should happen.
+ */
+
+#define SVGA_SCREEN_MUST_BE_SET (1 << 0)
+#define SVGA_SCREEN_HAS_ROOT SVGA_SCREEN_MUST_BE_SET /* Deprecated */
+#define SVGA_SCREEN_IS_PRIMARY (1 << 1)
+#define SVGA_SCREEN_FULLSCREEN_HINT (1 << 2)
+
+/*
+ * Added with SVGA_FIFO_CAP_SCREEN_OBJECT_2. When the screen is
+ * deactivated the base layer is defined to lose all contents and
+ * become black. When a screen is deactivated the backing store is
+ * optional. When set backingPtr and bytesPerLine will be ignored.
+ */
+#define SVGA_SCREEN_DEACTIVATE (1 << 3)
+
+/*
+ * Added with SVGA_FIFO_CAP_SCREEN_OBJECT_2. When this flag is set
+ * the screen contents will be outputted as all black to the user
+ * though the base layer contents is preserved. The screen base layer
+ * can still be read and written to like normal though the no visible
+ * effect will be seen by the user. When the flag is changed the
+ * screen will be blanked or redrawn to the current contents as needed
+ * without any extra commands from the driver. This flag only has an
+ * effect when the screen is not deactivated.
+ */
+#define SVGA_SCREEN_BLANKING (1 << 4)
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ uint32 structSize; /* sizeof(SVGAScreenObject) */
+ uint32 id;
+ uint32 flags;
+ struct {
+ uint32 width;
+ uint32 height;
+ } size;
+ struct {
+ int32 x;
+ int32 y;
+ } root;
+
+ /*
+ * Added and required by SVGA_FIFO_CAP_SCREEN_OBJECT_2, optional
+ * with SVGA_FIFO_CAP_SCREEN_OBJECT.
+ */
+ SVGAGuestImage backingStore;
+
+ /*
+ * The cloneCount field is treated as a hint from the guest that
+ * the user wants this display to be cloned, cloneCount times.
+ *
+ * A value of zero means no cloning should happen.
+ */
+ uint32 cloneCount;
+}
+#include "vmware_pack_end.h"
+SVGAScreenObject;
+
+
+/*
+ * Commands in the command FIFO:
+ *
+ * Command IDs defined below are used for the traditional 2D FIFO
+ * communication (not all commands are available for all versions of the
+ * SVGA FIFO protocol).
+ *
+ * Note the holes in the command ID numbers: These commands have been
+ * deprecated, and the old IDs must not be reused.
+ *
+ * Command IDs from 1000 to 2999 are reserved for use by the SVGA3D
+ * protocol.
+ *
+ * Each command's parameters are described by the comments and
+ * structs below.
+ */
+
+typedef enum {
+ SVGA_CMD_INVALID_CMD = 0,
+ SVGA_CMD_UPDATE = 1,
+ SVGA_CMD_RECT_COPY = 3,
+ SVGA_CMD_RECT_ROP_COPY = 14,
+ SVGA_CMD_DEFINE_CURSOR = 19,
+ SVGA_CMD_DEFINE_ALPHA_CURSOR = 22,
+ SVGA_CMD_UPDATE_VERBOSE = 25,
+ SVGA_CMD_FRONT_ROP_FILL = 29,
+ SVGA_CMD_FENCE = 30,
+ SVGA_CMD_ESCAPE = 33,
+ SVGA_CMD_DEFINE_SCREEN = 34,
+ SVGA_CMD_DESTROY_SCREEN = 35,
+ SVGA_CMD_DEFINE_GMRFB = 36,
+ SVGA_CMD_BLIT_GMRFB_TO_SCREEN = 37,
+ SVGA_CMD_BLIT_SCREEN_TO_GMRFB = 38,
+ SVGA_CMD_ANNOTATION_FILL = 39,
+ SVGA_CMD_ANNOTATION_COPY = 40,
+ SVGA_CMD_DEFINE_GMR2 = 41,
+ SVGA_CMD_REMAP_GMR2 = 42,
+ SVGA_CMD_DEAD = 43,
+ SVGA_CMD_DEAD_2 = 44,
+ SVGA_CMD_NOP = 45,
+ SVGA_CMD_NOP_ERROR = 46,
+ SVGA_CMD_MAX
+} SVGAFifoCmdId;
+
+#define SVGA_CMD_MAX_DATASIZE (256 * 1024)
+#define SVGA_CMD_MAX_ARGS 64
+
+
+/*
+ * SVGA_CMD_UPDATE --
+ *
+ * This is a DMA transfer which copies from the Guest Framebuffer
+ * (GFB) at BAR1 + SVGA_REG_FB_OFFSET to any screens which
+ * intersect with the provided virtual rectangle.
+ *
+ * This command does not support using arbitrary guest memory as a
+ * data source- it only works with the pre-defined GFB memory.
+ * This command also does not support signed virtual coordinates.
+ * If you have defined screens (using SVGA_CMD_DEFINE_SCREEN) with
+ * negative root x/y coordinates, the negative portion of those
+ * screens will not be reachable by this command.
+ *
+ * This command is not necessary when using framebuffer
+ * traces. Traces are automatically enabled if the SVGA FIFO is
+ * disabled, and you may explicitly enable/disable traces using
+ * SVGA_REG_TRACES. With traces enabled, any write to the GFB will
+ * automatically act as if a subsequent SVGA_CMD_UPDATE was issued.
+ *
+ * Traces and SVGA_CMD_UPDATE are the only supported ways to render
+ * pseudocolor screen updates. The newer Screen Object commands
+ * only support true color formats.
+ *
+ * Availability:
+ * Always available.
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ uint32 x;
+ uint32 y;
+ uint32 width;
+ uint32 height;
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdUpdate;
+
+
+/*
+ * SVGA_CMD_RECT_COPY --
+ *
+ * Perform a rectangular DMA transfer from one area of the GFB to
+ * another, and copy the result to any screens which intersect it.
+ *
+ * Availability:
+ * SVGA_CAP_RECT_COPY
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ uint32 srcX;
+ uint32 srcY;
+ uint32 destX;
+ uint32 destY;
+ uint32 width;
+ uint32 height;
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdRectCopy;
+
+
+/*
+ * SVGA_CMD_RECT_ROP_COPY --
+ *
+ * Perform a rectangular DMA transfer from one area of the GFB to
+ * another, and copy the result to any screens which intersect it.
+ * The value of ROP may only be SVGA_ROP_COPY, and this command is
+ * only supported for backwards compatibility reasons.
+ *
+ * Availability:
+ * SVGA_CAP_RECT_COPY
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ uint32 srcX;
+ uint32 srcY;
+ uint32 destX;
+ uint32 destY;
+ uint32 width;
+ uint32 height;
+ uint32 rop;
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdRectRopCopy;
+
+
+/*
+ * SVGA_CMD_DEFINE_CURSOR --
+ *
+ * Provide a new cursor image, as an AND/XOR mask.
+ *
+ * The recommended way to position the cursor overlay is by using
+ * the SVGA_FIFO_CURSOR_* registers, supported by the
+ * SVGA_FIFO_CAP_CURSOR_BYPASS_3 capability.
+ *
+ * Availability:
+ * SVGA_CAP_CURSOR
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ uint32 id; /* Reserved, must be zero. */
+ uint32 hotspotX;
+ uint32 hotspotY;
+ uint32 width;
+ uint32 height;
+ uint32 andMaskDepth; /* Value must be 1 or equal to BITS_PER_PIXEL */
+ uint32 xorMaskDepth; /* Value must be 1 or equal to BITS_PER_PIXEL */
+ /*
+ * Followed by scanline data for AND mask, then XOR mask.
+ * Each scanline is padded to a 32-bit boundary.
+ */
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdDefineCursor;
+
+
+/*
+ * SVGA_CMD_DEFINE_ALPHA_CURSOR --
+ *
+ * Provide a new cursor image, in 32-bit BGRA format.
+ *
+ * The recommended way to position the cursor overlay is by using
+ * the SVGA_FIFO_CURSOR_* registers, supported by the
+ * SVGA_FIFO_CAP_CURSOR_BYPASS_3 capability.
+ *
+ * Availability:
+ * SVGA_CAP_ALPHA_CURSOR
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ uint32 id; /* Reserved, must be zero. */
+ uint32 hotspotX;
+ uint32 hotspotY;
+ uint32 width;
+ uint32 height;
+ /* Followed by scanline data */
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdDefineAlphaCursor;
+
+
+/*
+ * Provide a new large cursor image, as an AND/XOR mask.
+ *
+ * Should only be used for CursorMob functionality
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ uint32 hotspotX;
+ uint32 hotspotY;
+ uint32 width;
+ uint32 height;
+ uint32 andMaskDepth;
+ uint32 xorMaskDepth;
+ /*
+ * Followed by scanline data for AND mask, then XOR mask.
+ * Each scanline is padded to a 32-bit boundary.
+ */
+}
+#include "vmware_pack_end.h"
+SVGAGBColorCursorHeader;
+
+
+/*
+ * Provide a new large cursor image, in 32-bit BGRA format.
+ *
+ * Should only be used for CursorMob functionality
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ uint32 hotspotX;
+ uint32 hotspotY;
+ uint32 width;
+ uint32 height;
+ /* Followed by scanline data */
+}
+#include "vmware_pack_end.h"
+SVGAGBAlphaCursorHeader;
+
+ /*
+ * Define the SVGA guest backed cursor types
+ */
+
+typedef enum {
+ SVGA_COLOR_CURSOR = 0,
+ SVGA_ALPHA_CURSOR = 1,
+} SVGAGBCursorType;
+
+/*
+ * Provide a new large cursor image.
+ *
+ * Should only be used for CursorMob functionality
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ SVGAGBCursorType type;
+ union {
+ SVGAGBColorCursorHeader colorHeader;
+ SVGAGBAlphaCursorHeader alphaHeader;
+ } header;
+ uint32 sizeInBytes;
+ /*
+ * Followed by the cursor data
+ */
+}
+#include "vmware_pack_end.h"
+SVGAGBCursorHeader;
+
+
+/*
+ * SVGA_CMD_UPDATE_VERBOSE --
+ *
+ * Just like SVGA_CMD_UPDATE, but also provide a per-rectangle
+ * 'reason' value, an opaque cookie which is used by internal
+ * debugging tools. Third party drivers should not use this
+ * command.
+ *
+ * Availability:
+ * SVGA_CAP_EXTENDED_FIFO
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ uint32 x;
+ uint32 y;
+ uint32 width;
+ uint32 height;
+ uint32 reason;
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdUpdateVerbose;
+
+
+/*
+ * SVGA_CMD_FRONT_ROP_FILL --
+ *
+ * This is a hint which tells the SVGA device that the driver has
+ * just filled a rectangular region of the GFB with a solid
+ * color. Instead of reading these pixels from the GFB, the device
+ * can assume that they all equal 'color'. This is primarily used
+ * for remote desktop protocols.
+ *
+ * Availability:
+ * SVGA_FIFO_CAP_ACCELFRONT
+ */
+
+#define SVGA_ROP_COPY 0x03
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ uint32 color; /* In the same format as the GFB */
+ uint32 x;
+ uint32 y;
+ uint32 width;
+ uint32 height;
+ uint32 rop; /* Must be SVGA_ROP_COPY */
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdFrontRopFill;
+
+
+/*
+ * SVGA_CMD_FENCE --
+ *
+ * Insert a synchronization fence. When the SVGA device reaches
+ * this command, it will copy the 'fence' value into the
+ * SVGA_FIFO_FENCE register. It will also compare the fence against
+ * SVGA_FIFO_FENCE_GOAL. If the fence matches the goal and the
+ * SVGA_IRQFLAG_FENCE_GOAL interrupt is enabled, the device will
+ * raise this interrupt.
+ *
+ * Availability:
+ * SVGA_FIFO_FENCE for this command,
+ * SVGA_CAP_IRQMASK for SVGA_FIFO_FENCE_GOAL.
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ uint32 fence;
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdFence;
+
+
+/*
+ * SVGA_CMD_ESCAPE --
+ *
+ * Send an extended or vendor-specific variable length command.
+ * This is used for video overlay, third party plugins, and
+ * internal debugging tools. See svga_escape.h
+ *
+ * Availability:
+ * SVGA_FIFO_CAP_ESCAPE
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ uint32 nsid;
+ uint32 size;
+ /* followed by 'size' bytes of data */
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdEscape;
+
+
+/*
+ * SVGA_CMD_DEFINE_SCREEN --
+ *
+ * Define or redefine an SVGAScreenObject. See the description of
+ * SVGAScreenObject above. The video driver is responsible for
+ * generating new screen IDs. They should be small positive
+ * integers. The virtual device will have an implementation
+ * specific upper limit on the number of screen IDs
+ * supported. Drivers are responsible for recycling IDs. The first
+ * valid ID is zero.
+ *
+ * - Interaction with other registers:
+ *
+ * For backwards compatibility, when the GFB mode registers (WIDTH,
+ * HEIGHT, PITCHLOCK, BITS_PER_PIXEL) are modified, the SVGA device
+ * deletes all screens other than screen #0, and redefines screen
+ * #0 according to the specified mode. Drivers that use
+ * SVGA_CMD_DEFINE_SCREEN should destroy or redefine screen #0.
+ *
+ * If you use screen objects, do not use the legacy multi-mon
+ * registers (SVGA_REG_NUM_GUEST_DISPLAYS, SVGA_REG_DISPLAY_*).
+ *
+ * Availability:
+ * SVGA_FIFO_CAP_SCREEN_OBJECT or SVGA_FIFO_CAP_SCREEN_OBJECT_2
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ SVGAScreenObject screen; /* Variable-length according to version */
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdDefineScreen;
+
+
+/*
+ * SVGA_CMD_DESTROY_SCREEN --
+ *
+ * Destroy an SVGAScreenObject. Its ID is immediately available for
+ * re-use.
+ *
+ * Availability:
+ * SVGA_FIFO_CAP_SCREEN_OBJECT or SVGA_FIFO_CAP_SCREEN_OBJECT_2
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ uint32 screenId;
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdDestroyScreen;
+
+
+/*
+ * SVGA_CMD_DEFINE_GMRFB --
+ *
+ * This command sets a piece of SVGA device state called the
+ * Guest Memory Region Framebuffer, or GMRFB. The GMRFB is a
+ * piece of light-weight state which identifies the location and
+ * format of an image in guest memory or in BAR1. The GMRFB has
+ * an arbitrary size, and it doesn't need to match the geometry
+ * of the GFB or any screen object.
+ *
+ * The GMRFB can be redefined as often as you like. You could
+ * always use the same GMRFB, you could redefine it before
+ * rendering from a different guest screen, or you could even
+ * redefine it before every blit.
+ *
+ * There are multiple ways to use this command. The simplest way is
+ * to use it to move the framebuffer either to elsewhere in the GFB
+ * (BAR1) memory region, or to a user-defined GMR. This lets a
+ * driver use a framebuffer allocated entirely out of normal system
+ * memory, which we encourage.
+ *
+ * Another way to use this command is to set up a ring buffer of
+ * updates in GFB memory. If a driver wants to ensure that no
+ * frames are skipped by the SVGA device, it is important that the
+ * driver not modify the source data for a blit until the device is
+ * done processing the command. One efficient way to accomplish
+ * this is to use a ring of small DMA buffers. Each buffer is used
+ * for one blit, then we move on to the next buffer in the
+ * ring. The FENCE mechanism is used to protect each buffer from
+ * re-use until the device is finished with that buffer's
+ * corresponding blit.
+ *
+ * This command does not affect the meaning of SVGA_CMD_UPDATE.
+ * UPDATEs always occur from the legacy GFB memory area. This
+ * command has no support for pseudocolor GMRFBs. Currently only
+ * true-color 15, 16, and 24-bit depths are supported. Future
+ * devices may expose capabilities for additional framebuffer
+ * formats.
+ *
+ * The default GMRFB value is undefined. Drivers must always send
+ * this command at least once before performing any blit from the
+ * GMRFB.
+ *
+ * Availability:
+ * SVGA_FIFO_CAP_SCREEN_OBJECT or SVGA_FIFO_CAP_SCREEN_OBJECT_2
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ SVGAGuestPtr ptr;
+ uint32 bytesPerLine;
+ SVGAGMRImageFormat format;
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdDefineGMRFB;
+
+
+/*
+ * SVGA_CMD_BLIT_GMRFB_TO_SCREEN --
+ *
+ * This is a guest-to-host blit. It performs a DMA operation to
+ * copy a rectangular region of pixels from the current GMRFB to
+ * a ScreenObject.
+ *
+ * The destination coordinate may be specified relative to a
+ * screen's origin. The provided screen ID must be valid.
+ *
+ * The SVGA device is guaranteed to finish reading from the GMRFB
+ * by the time any subsequent FENCE commands are reached.
+ *
+ * This command consumes an annotation. See the
+ * SVGA_CMD_ANNOTATION_* commands for details.
+ *
+ * Availability:
+ * SVGA_FIFO_CAP_SCREEN_OBJECT or SVGA_FIFO_CAP_SCREEN_OBJECT_2
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ SVGASignedPoint srcOrigin;
+ SVGASignedRect destRect;
+ uint32 destScreenId;
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdBlitGMRFBToScreen;
+
+
+/*
+ * SVGA_CMD_BLIT_SCREEN_TO_GMRFB --
+ *
+ * This is a host-to-guest blit. It performs a DMA operation to
+ * copy a rectangular region of pixels from a single ScreenObject
+ * back to the current GMRFB.
+ *
+ * The source coordinate is specified relative to a screen's
+ * origin. The provided screen ID must be valid. If any parameters
+ * are invalid, the resulting pixel values are undefined.
+ *
+ * The SVGA device is guaranteed to finish writing to the GMRFB by
+ * the time any subsequent FENCE commands are reached.
+ *
+ * Availability:
+ * SVGA_FIFO_CAP_SCREEN_OBJECT or SVGA_FIFO_CAP_SCREEN_OBJECT_2
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ SVGASignedPoint destOrigin;
+ SVGASignedRect srcRect;
+ uint32 srcScreenId;
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdBlitScreenToGMRFB;
+
+
+/*
+ * SVGA_CMD_ANNOTATION_FILL --
+ *
+ * The annotation commands have been deprecated, should not be used
+ * by new drivers. They used to provide performance hints to the SVGA
+ * device about the content of screen updates, but newer SVGA devices
+ * ignore these.
+ *
+ * Availability:
+ * SVGA_FIFO_CAP_SCREEN_OBJECT or SVGA_FIFO_CAP_SCREEN_OBJECT_2
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ SVGAColorBGRX color;
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdAnnotationFill;
+
+
+/*
+ * SVGA_CMD_ANNOTATION_COPY --
+ *
+ * The annotation commands have been deprecated, should not be used
+ * by new drivers. They used to provide performance hints to the SVGA
+ * device about the content of screen updates, but newer SVGA devices
+ * ignore these.
+ *
+ * Availability:
+ * SVGA_FIFO_CAP_SCREEN_OBJECT or SVGA_FIFO_CAP_SCREEN_OBJECT_2
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ SVGASignedPoint srcOrigin;
+ uint32 srcScreenId;
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdAnnotationCopy;
+
+
+/*
+ * SVGA_CMD_DEFINE_GMR2 --
+ *
+ * Define guest memory region v2. See the description of GMRs above.
+ *
+ * Availability:
+ * SVGA_CAP_GMR2
+ */
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ uint32 gmrId;
+ uint32 numPages;
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdDefineGMR2;
+
+
+/*
+ * SVGA_CMD_REMAP_GMR2 --
+ *
+ * Remap guest memory region v2. See the description of GMRs above.
+ *
+ * This command allows guest to modify a portion of an existing GMR by
+ * invalidating it or reassigning it to different guest physical pages.
+ * The pages are identified by physical page number (PPN). The pages
+ * are assumed to be pinned and valid for DMA operations.
+ *
+ * Description of command flags:
+ *
+ * SVGA_REMAP_GMR2_VIA_GMR: If enabled, references a PPN list in a GMR.
+ * The PPN list must not overlap with the remap region (this can be
+ * handled trivially by referencing a separate GMR). If flag is
+ * disabled, PPN list is appended to SVGARemapGMR command.
+ *
+ * SVGA_REMAP_GMR2_PPN64: If set, PPN list is in PPN64 format, otherwise
+ * it is in PPN32 format.
+ *
+ * SVGA_REMAP_GMR2_SINGLE_PPN: If set, PPN list contains a single entry.
+ * A single PPN can be used to invalidate a portion of a GMR or
+ * map it to to a single guest scratch page.
+ *
+ * Availability:
+ * SVGA_CAP_GMR2
+ */
+
+typedef enum {
+ SVGA_REMAP_GMR2_PPN32 = 0,
+ SVGA_REMAP_GMR2_VIA_GMR = (1 << 0),
+ SVGA_REMAP_GMR2_PPN64 = (1 << 1),
+ SVGA_REMAP_GMR2_SINGLE_PPN = (1 << 2),
+} SVGARemapGMR2Flags;
+
+typedef
+#include "vmware_pack_begin.h"
+struct {
+ uint32 gmrId;
+ SVGARemapGMR2Flags flags;
+ uint32 offsetPages; /* offset in pages to begin remap */
+ uint32 numPages; /* number of pages to remap */
+ /*
+ * Followed by additional data depending on SVGARemapGMR2Flags.
+ *
+ * If flag SVGA_REMAP_GMR2_VIA_GMR is set, single SVGAGuestPtr follows.
+ * Otherwise an array of page descriptors in PPN32 or PPN64 format
+ * (according to flag SVGA_REMAP_GMR2_PPN64) follows. If flag
+ * SVGA_REMAP_GMR2_SINGLE_PPN is set, array contains a single entry.
+ */
+}
+#include "vmware_pack_end.h"
+SVGAFifoCmdRemapGMR2;
+
+
+/*
+ * Size of SVGA device memory such as frame buffer and FIFO.
+ */
+#define SVGA_VRAM_MIN_SIZE (4 * 640 * 480) /* bytes */
+#define SVGA_VRAM_MIN_SIZE_3D (16 * 1024 * 1024)
+#define SVGA_VRAM_MAX_SIZE (128 * 1024 * 1024)
+#define SVGA_MEMORY_SIZE_MAX (1024 * 1024 * 1024)
+#define SVGA_FIFO_SIZE_MAX (2 * 1024 * 1024)
+#define SVGA_GRAPHICS_MEMORY_KB_MIN (32 * 1024)
+#define SVGA_GRAPHICS_MEMORY_KB_MAX_2GB (2 * 1024 * 1024)
+#define SVGA_GRAPHICS_MEMORY_KB_MAX_3GB (3 * 1024 * 1024)
+#define SVGA_GRAPHICS_MEMORY_KB_MAX_4GB (4 * 1024 * 1024)
+#define SVGA_GRAPHICS_MEMORY_KB_MAX_8GB (8 * 1024 * 1024)
+#define SVGA_GRAPHICS_MEMORY_KB_DEFAULT (256 * 1024)
+
+#define SVGA_VRAM_SIZE_W2K (64 * 1024 * 1024) /* 64 MB */
+
+#if defined(VMX86_SERVER)
+#define SVGA_VRAM_SIZE (4 * 1024 * 1024)
+#define SVGA_VRAM_SIZE_3D (64 * 1024 * 1024)
+#define SVGA_FIFO_SIZE (256 * 1024)
+#define SVGA_FIFO_SIZE_3D (516 * 1024)
+#define SVGA_MEMORY_SIZE_DEFAULT (160 * 1024 * 1024)
+#define SVGA_AUTODETECT_DEFAULT FALSE
+#else
+#define SVGA_VRAM_SIZE (16 * 1024 * 1024)
+#define SVGA_VRAM_SIZE_3D SVGA_VRAM_MAX_SIZE
+#define SVGA_FIFO_SIZE (2 * 1024 * 1024)
+#define SVGA_FIFO_SIZE_3D SVGA_FIFO_SIZE
+#define SVGA_MEMORY_SIZE_DEFAULT (768 * 1024 * 1024)
+#define SVGA_AUTODETECT_DEFAULT TRUE
+#endif
+
+#define SVGA_FIFO_SIZE_GBOBJECTS (256 * 1024)
+#define SVGA_VRAM_SIZE_GBOBJECTS (4 * 1024 * 1024)
+
+#define SVGA_PCI_REGS_PAGES (1)
+
+#endif