summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/spi-nor/controllers
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /drivers/mtd/spi-nor/controllers
parentInitial commit. (diff)
downloadlinux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz
linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip
Adding upstream version 5.10.209.upstream/5.10.209
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--drivers/mtd/spi-nor/controllers/Kconfig64
-rw-r--r--drivers/mtd/spi-nor/controllers/Makefile7
-rw-r--r--drivers/mtd/spi-nor/controllers/aspeed-smc.c910
-rw-r--r--drivers/mtd/spi-nor/controllers/hisi-sfc.c500
-rw-r--r--drivers/mtd/spi-nor/controllers/intel-spi-pci.c106
-rw-r--r--drivers/mtd/spi-nor/controllers/intel-spi-platform.c54
-rw-r--r--drivers/mtd/spi-nor/controllers/intel-spi.c966
-rw-r--r--drivers/mtd/spi-nor/controllers/intel-spi.h21
-rw-r--r--drivers/mtd/spi-nor/controllers/nxp-spifi.c486
9 files changed, 3114 insertions, 0 deletions
diff --git a/drivers/mtd/spi-nor/controllers/Kconfig b/drivers/mtd/spi-nor/controllers/Kconfig
new file mode 100644
index 000000000..5c0e0ec2e
--- /dev/null
+++ b/drivers/mtd/spi-nor/controllers/Kconfig
@@ -0,0 +1,64 @@
+# SPDX-License-Identifier: GPL-2.0-only
+config SPI_ASPEED_SMC
+ tristate "Aspeed flash controllers in SPI mode"
+ depends on ARCH_ASPEED || COMPILE_TEST
+ depends on HAS_IOMEM && OF
+ help
+ This enables support for the Firmware Memory controller (FMC)
+ in the Aspeed AST2500/AST2400 SoCs when attached to SPI NOR chips,
+ and support for the SPI flash memory controller (SPI) for
+ the host firmware. The implementation only supports SPI NOR.
+
+config SPI_HISI_SFC
+ tristate "Hisilicon FMC SPI NOR Flash Controller(SFC)"
+ depends on ARCH_HISI || COMPILE_TEST
+ depends on HAS_IOMEM
+ help
+ This enables support for HiSilicon FMC SPI NOR flash controller.
+
+config SPI_NXP_SPIFI
+ tristate "NXP SPI Flash Interface (SPIFI)"
+ depends on OF && (ARCH_LPC18XX || COMPILE_TEST)
+ depends on HAS_IOMEM
+ help
+ Enable support for the NXP LPC SPI Flash Interface controller.
+
+ SPIFI is a specialized controller for connecting serial SPI
+ Flash. Enable this option if you have a device with a SPIFI
+ controller and want to access the Flash as a mtd device.
+
+config SPI_INTEL_SPI
+ tristate
+
+config SPI_INTEL_SPI_PCI
+ tristate "Intel PCH/PCU SPI flash PCI driver (DANGEROUS)"
+ depends on X86 && PCI
+ select SPI_INTEL_SPI
+ help
+ This enables PCI support for the Intel PCH/PCU SPI controller in
+ master mode. This controller is present in modern Intel hardware
+ and is used to hold BIOS and other persistent settings. Using
+ this driver it is possible to upgrade BIOS directly from Linux.
+
+ Say N here unless you know what you are doing. Overwriting the
+ SPI flash may render the system unbootable.
+
+ To compile this driver as a module, choose M here: the module
+ will be called intel-spi-pci.
+
+config SPI_INTEL_SPI_PLATFORM
+ tristate "Intel PCH/PCU SPI flash platform driver (DANGEROUS)"
+ depends on X86
+ select SPI_INTEL_SPI
+ help
+ This enables platform support for the Intel PCH/PCU SPI
+ controller in master mode. This controller is present in modern
+ Intel hardware and is used to hold BIOS and other persistent
+ settings. Using this driver it is possible to upgrade BIOS
+ directly from Linux.
+
+ Say N here unless you know what you are doing. Overwriting the
+ SPI flash may render the system unbootable.
+
+ To compile this driver as a module, choose M here: the module
+ will be called intel-spi-platform.
diff --git a/drivers/mtd/spi-nor/controllers/Makefile b/drivers/mtd/spi-nor/controllers/Makefile
new file mode 100644
index 000000000..e7abba491
--- /dev/null
+++ b/drivers/mtd/spi-nor/controllers/Makefile
@@ -0,0 +1,7 @@
+# SPDX-License-Identifier: GPL-2.0
+obj-$(CONFIG_SPI_ASPEED_SMC) += aspeed-smc.o
+obj-$(CONFIG_SPI_HISI_SFC) += hisi-sfc.o
+obj-$(CONFIG_SPI_NXP_SPIFI) += nxp-spifi.o
+obj-$(CONFIG_SPI_INTEL_SPI) += intel-spi.o
+obj-$(CONFIG_SPI_INTEL_SPI_PCI) += intel-spi-pci.o
+obj-$(CONFIG_SPI_INTEL_SPI_PLATFORM) += intel-spi-platform.o
diff --git a/drivers/mtd/spi-nor/controllers/aspeed-smc.c b/drivers/mtd/spi-nor/controllers/aspeed-smc.c
new file mode 100644
index 000000000..7225870e8
--- /dev/null
+++ b/drivers/mtd/spi-nor/controllers/aspeed-smc.c
@@ -0,0 +1,910 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * ASPEED Static Memory Controller driver
+ *
+ * Copyright (c) 2015-2016, IBM Corporation.
+ */
+
+#include <linux/bug.h>
+#include <linux/device.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/spi-nor.h>
+#include <linux/of.h>
+#include <linux/of_platform.h>
+#include <linux/sizes.h>
+#include <linux/sysfs.h>
+
+#define DEVICE_NAME "aspeed-smc"
+
+/*
+ * The driver only support SPI flash
+ */
+enum aspeed_smc_flash_type {
+ smc_type_nor = 0,
+ smc_type_nand = 1,
+ smc_type_spi = 2,
+};
+
+struct aspeed_smc_chip;
+
+struct aspeed_smc_info {
+ u32 maxsize; /* maximum size of chip window */
+ u8 nce; /* number of chip enables */
+ bool hastype; /* flash type field exists in config reg */
+ u8 we0; /* shift for write enable bit for CE0 */
+ u8 ctl0; /* offset in regs of ctl for CE0 */
+
+ void (*set_4b)(struct aspeed_smc_chip *chip);
+};
+
+static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip);
+static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip);
+
+static const struct aspeed_smc_info fmc_2400_info = {
+ .maxsize = 64 * 1024 * 1024,
+ .nce = 5,
+ .hastype = true,
+ .we0 = 16,
+ .ctl0 = 0x10,
+ .set_4b = aspeed_smc_chip_set_4b,
+};
+
+static const struct aspeed_smc_info spi_2400_info = {
+ .maxsize = 64 * 1024 * 1024,
+ .nce = 1,
+ .hastype = false,
+ .we0 = 0,
+ .ctl0 = 0x04,
+ .set_4b = aspeed_smc_chip_set_4b_spi_2400,
+};
+
+static const struct aspeed_smc_info fmc_2500_info = {
+ .maxsize = 256 * 1024 * 1024,
+ .nce = 3,
+ .hastype = true,
+ .we0 = 16,
+ .ctl0 = 0x10,
+ .set_4b = aspeed_smc_chip_set_4b,
+};
+
+static const struct aspeed_smc_info spi_2500_info = {
+ .maxsize = 128 * 1024 * 1024,
+ .nce = 2,
+ .hastype = false,
+ .we0 = 16,
+ .ctl0 = 0x10,
+ .set_4b = aspeed_smc_chip_set_4b,
+};
+
+enum aspeed_smc_ctl_reg_value {
+ smc_base, /* base value without mode for other commands */
+ smc_read, /* command reg for (maybe fast) reads */
+ smc_write, /* command reg for writes */
+ smc_max,
+};
+
+struct aspeed_smc_controller;
+
+struct aspeed_smc_chip {
+ int cs;
+ struct aspeed_smc_controller *controller;
+ void __iomem *ctl; /* control register */
+ void __iomem *ahb_base; /* base of chip window */
+ u32 ahb_window_size; /* chip mapping window size */
+ u32 ctl_val[smc_max]; /* control settings */
+ enum aspeed_smc_flash_type type; /* what type of flash */
+ struct spi_nor nor;
+};
+
+struct aspeed_smc_controller {
+ struct device *dev;
+
+ struct mutex mutex; /* controller access mutex */
+ const struct aspeed_smc_info *info; /* type info of controller */
+ void __iomem *regs; /* controller registers */
+ void __iomem *ahb_base; /* per-chip windows resource */
+ u32 ahb_window_size; /* full mapping window size */
+
+ struct aspeed_smc_chip *chips[]; /* pointers to attached chips */
+};
+
+/*
+ * SPI Flash Configuration Register (AST2500 SPI)
+ * or
+ * Type setting Register (AST2500 FMC).
+ * CE0 and CE1 can only be of type SPI. CE2 can be of type NOR but the
+ * driver does not support it.
+ */
+#define CONFIG_REG 0x0
+#define CONFIG_DISABLE_LEGACY BIT(31) /* 1 */
+
+#define CONFIG_CE2_WRITE BIT(18)
+#define CONFIG_CE1_WRITE BIT(17)
+#define CONFIG_CE0_WRITE BIT(16)
+
+#define CONFIG_CE2_TYPE BIT(4) /* AST2500 FMC only */
+#define CONFIG_CE1_TYPE BIT(2) /* AST2500 FMC only */
+#define CONFIG_CE0_TYPE BIT(0) /* AST2500 FMC only */
+
+/*
+ * CE Control Register
+ */
+#define CE_CONTROL_REG 0x4
+
+/*
+ * CEx Control Register
+ */
+#define CONTROL_AAF_MODE BIT(31)
+#define CONTROL_IO_MODE_MASK GENMASK(30, 28)
+#define CONTROL_IO_DUAL_DATA BIT(29)
+#define CONTROL_IO_DUAL_ADDR_DATA (BIT(29) | BIT(28))
+#define CONTROL_IO_QUAD_DATA BIT(30)
+#define CONTROL_IO_QUAD_ADDR_DATA (BIT(30) | BIT(28))
+#define CONTROL_CE_INACTIVE_SHIFT 24
+#define CONTROL_CE_INACTIVE_MASK GENMASK(27, \
+ CONTROL_CE_INACTIVE_SHIFT)
+/* 0 = 16T ... 15 = 1T T=HCLK */
+#define CONTROL_COMMAND_SHIFT 16
+#define CONTROL_DUMMY_COMMAND_OUT BIT(15)
+#define CONTROL_IO_DUMMY_HI BIT(14)
+#define CONTROL_IO_DUMMY_HI_SHIFT 14
+#define CONTROL_CLK_DIV4 BIT(13) /* others */
+#define CONTROL_IO_ADDRESS_4B BIT(13) /* AST2400 SPI */
+#define CONTROL_RW_MERGE BIT(12)
+#define CONTROL_IO_DUMMY_LO_SHIFT 6
+#define CONTROL_IO_DUMMY_LO GENMASK(7, \
+ CONTROL_IO_DUMMY_LO_SHIFT)
+#define CONTROL_IO_DUMMY_MASK (CONTROL_IO_DUMMY_HI | \
+ CONTROL_IO_DUMMY_LO)
+#define CONTROL_IO_DUMMY_SET(dummy) \
+ (((((dummy) >> 2) & 0x1) << CONTROL_IO_DUMMY_HI_SHIFT) | \
+ (((dummy) & 0x3) << CONTROL_IO_DUMMY_LO_SHIFT))
+
+#define CONTROL_CLOCK_FREQ_SEL_SHIFT 8
+#define CONTROL_CLOCK_FREQ_SEL_MASK GENMASK(11, \
+ CONTROL_CLOCK_FREQ_SEL_SHIFT)
+#define CONTROL_LSB_FIRST BIT(5)
+#define CONTROL_CLOCK_MODE_3 BIT(4)
+#define CONTROL_IN_DUAL_DATA BIT(3)
+#define CONTROL_CE_STOP_ACTIVE_CONTROL BIT(2)
+#define CONTROL_COMMAND_MODE_MASK GENMASK(1, 0)
+#define CONTROL_COMMAND_MODE_NORMAL 0
+#define CONTROL_COMMAND_MODE_FREAD 1
+#define CONTROL_COMMAND_MODE_WRITE 2
+#define CONTROL_COMMAND_MODE_USER 3
+
+#define CONTROL_KEEP_MASK \
+ (CONTROL_AAF_MODE | CONTROL_CE_INACTIVE_MASK | CONTROL_CLK_DIV4 | \
+ CONTROL_CLOCK_FREQ_SEL_MASK | CONTROL_LSB_FIRST | CONTROL_CLOCK_MODE_3)
+
+/*
+ * The Segment Register uses a 8MB unit to encode the start address
+ * and the end address of the mapping window of a flash SPI slave :
+ *
+ * | byte 1 | byte 2 | byte 3 | byte 4 |
+ * +--------+--------+--------+--------+
+ * | end | start | 0 | 0 |
+ */
+#define SEGMENT_ADDR_REG0 0x30
+#define SEGMENT_ADDR_START(_r) ((((_r) >> 16) & 0xFF) << 23)
+#define SEGMENT_ADDR_END(_r) ((((_r) >> 24) & 0xFF) << 23)
+#define SEGMENT_ADDR_VALUE(start, end) \
+ (((((start) >> 23) & 0xFF) << 16) | ((((end) >> 23) & 0xFF) << 24))
+#define SEGMENT_ADDR_REG(controller, cs) \
+ ((controller)->regs + SEGMENT_ADDR_REG0 + (cs) * 4)
+
+/*
+ * In user mode all data bytes read or written to the chip decode address
+ * range are transferred to or from the SPI bus. The range is treated as a
+ * fifo of arbitratry 1, 2, or 4 byte width but each write has to be aligned
+ * to its size. The address within the multiple 8kB range is ignored when
+ * sending bytes to the SPI bus.
+ *
+ * On the arm architecture, as of Linux version 4.3, memcpy_fromio and
+ * memcpy_toio on little endian targets use the optimized memcpy routines
+ * that were designed for well behavied memory storage. These routines
+ * have a stutter if the source and destination are not both word aligned,
+ * once with a duplicate access to the source after aligning to the
+ * destination to a word boundary, and again with a duplicate access to
+ * the source when the final byte count is not word aligned.
+ *
+ * When writing or reading the fifo this stutter discards data or sends
+ * too much data to the fifo and can not be used by this driver.
+ *
+ * While the low level io string routines that implement the insl family do
+ * the desired accesses and memory increments, the cross architecture io
+ * macros make them essentially impossible to use on a memory mapped address
+ * instead of a a token from the call to iomap of an io port.
+ *
+ * These fifo routines use readl and friends to a constant io port and update
+ * the memory buffer pointer and count via explicit code. The final updates
+ * to len are optimistically suppressed.
+ */
+static int aspeed_smc_read_from_ahb(void *buf, void __iomem *src, size_t len)
+{
+ size_t offset = 0;
+
+ if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
+ IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
+ ioread32_rep(src, buf, len >> 2);
+ offset = len & ~0x3;
+ len -= offset;
+ }
+ ioread8_rep(src, (u8 *)buf + offset, len);
+ return 0;
+}
+
+static int aspeed_smc_write_to_ahb(void __iomem *dst, const void *buf,
+ size_t len)
+{
+ size_t offset = 0;
+
+ if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
+ IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
+ iowrite32_rep(dst, buf, len >> 2);
+ offset = len & ~0x3;
+ len -= offset;
+ }
+ iowrite8_rep(dst, (const u8 *)buf + offset, len);
+ return 0;
+}
+
+static inline u32 aspeed_smc_chip_write_bit(struct aspeed_smc_chip *chip)
+{
+ return BIT(chip->controller->info->we0 + chip->cs);
+}
+
+static void aspeed_smc_chip_check_config(struct aspeed_smc_chip *chip)
+{
+ struct aspeed_smc_controller *controller = chip->controller;
+ u32 reg;
+
+ reg = readl(controller->regs + CONFIG_REG);
+
+ if (reg & aspeed_smc_chip_write_bit(chip))
+ return;
+
+ dev_dbg(controller->dev, "config write is not set ! @%p: 0x%08x\n",
+ controller->regs + CONFIG_REG, reg);
+ reg |= aspeed_smc_chip_write_bit(chip);
+ writel(reg, controller->regs + CONFIG_REG);
+}
+
+static void aspeed_smc_start_user(struct spi_nor *nor)
+{
+ struct aspeed_smc_chip *chip = nor->priv;
+ u32 ctl = chip->ctl_val[smc_base];
+
+ /*
+ * When the chip is controlled in user mode, we need write
+ * access to send the opcodes to it. So check the config.
+ */
+ aspeed_smc_chip_check_config(chip);
+
+ ctl |= CONTROL_COMMAND_MODE_USER |
+ CONTROL_CE_STOP_ACTIVE_CONTROL;
+ writel(ctl, chip->ctl);
+
+ ctl &= ~CONTROL_CE_STOP_ACTIVE_CONTROL;
+ writel(ctl, chip->ctl);
+}
+
+static void aspeed_smc_stop_user(struct spi_nor *nor)
+{
+ struct aspeed_smc_chip *chip = nor->priv;
+
+ u32 ctl = chip->ctl_val[smc_read];
+ u32 ctl2 = ctl | CONTROL_COMMAND_MODE_USER |
+ CONTROL_CE_STOP_ACTIVE_CONTROL;
+
+ writel(ctl2, chip->ctl); /* stop user CE control */
+ writel(ctl, chip->ctl); /* default to fread or read mode */
+}
+
+static int aspeed_smc_prep(struct spi_nor *nor)
+{
+ struct aspeed_smc_chip *chip = nor->priv;
+
+ mutex_lock(&chip->controller->mutex);
+ return 0;
+}
+
+static void aspeed_smc_unprep(struct spi_nor *nor)
+{
+ struct aspeed_smc_chip *chip = nor->priv;
+
+ mutex_unlock(&chip->controller->mutex);
+}
+
+static int aspeed_smc_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
+ size_t len)
+{
+ struct aspeed_smc_chip *chip = nor->priv;
+
+ aspeed_smc_start_user(nor);
+ aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
+ aspeed_smc_read_from_ahb(buf, chip->ahb_base, len);
+ aspeed_smc_stop_user(nor);
+ return 0;
+}
+
+static int aspeed_smc_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf,
+ size_t len)
+{
+ struct aspeed_smc_chip *chip = nor->priv;
+
+ aspeed_smc_start_user(nor);
+ aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
+ aspeed_smc_write_to_ahb(chip->ahb_base, buf, len);
+ aspeed_smc_stop_user(nor);
+ return 0;
+}
+
+static void aspeed_smc_send_cmd_addr(struct spi_nor *nor, u8 cmd, u32 addr)
+{
+ struct aspeed_smc_chip *chip = nor->priv;
+ __be32 temp;
+ u32 cmdaddr;
+
+ switch (nor->addr_width) {
+ default:
+ WARN_ONCE(1, "Unexpected address width %u, defaulting to 3\n",
+ nor->addr_width);
+ fallthrough;
+ case 3:
+ cmdaddr = addr & 0xFFFFFF;
+ cmdaddr |= cmd << 24;
+
+ temp = cpu_to_be32(cmdaddr);
+ aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
+ break;
+ case 4:
+ temp = cpu_to_be32(addr);
+ aspeed_smc_write_to_ahb(chip->ahb_base, &cmd, 1);
+ aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
+ break;
+ }
+}
+
+static ssize_t aspeed_smc_read_user(struct spi_nor *nor, loff_t from,
+ size_t len, u_char *read_buf)
+{
+ struct aspeed_smc_chip *chip = nor->priv;
+ int i;
+ u8 dummy = 0xFF;
+
+ aspeed_smc_start_user(nor);
+ aspeed_smc_send_cmd_addr(nor, nor->read_opcode, from);
+ for (i = 0; i < chip->nor.read_dummy / 8; i++)
+ aspeed_smc_write_to_ahb(chip->ahb_base, &dummy, sizeof(dummy));
+
+ aspeed_smc_read_from_ahb(read_buf, chip->ahb_base, len);
+ aspeed_smc_stop_user(nor);
+ return len;
+}
+
+static ssize_t aspeed_smc_write_user(struct spi_nor *nor, loff_t to,
+ size_t len, const u_char *write_buf)
+{
+ struct aspeed_smc_chip *chip = nor->priv;
+
+ aspeed_smc_start_user(nor);
+ aspeed_smc_send_cmd_addr(nor, nor->program_opcode, to);
+ aspeed_smc_write_to_ahb(chip->ahb_base, write_buf, len);
+ aspeed_smc_stop_user(nor);
+ return len;
+}
+
+static int aspeed_smc_unregister(struct aspeed_smc_controller *controller)
+{
+ struct aspeed_smc_chip *chip;
+ int n;
+
+ for (n = 0; n < controller->info->nce; n++) {
+ chip = controller->chips[n];
+ if (chip)
+ mtd_device_unregister(&chip->nor.mtd);
+ }
+
+ return 0;
+}
+
+static int aspeed_smc_remove(struct platform_device *dev)
+{
+ return aspeed_smc_unregister(platform_get_drvdata(dev));
+}
+
+static const struct of_device_id aspeed_smc_matches[] = {
+ { .compatible = "aspeed,ast2400-fmc", .data = &fmc_2400_info },
+ { .compatible = "aspeed,ast2400-spi", .data = &spi_2400_info },
+ { .compatible = "aspeed,ast2500-fmc", .data = &fmc_2500_info },
+ { .compatible = "aspeed,ast2500-spi", .data = &spi_2500_info },
+ { }
+};
+MODULE_DEVICE_TABLE(of, aspeed_smc_matches);
+
+/*
+ * Each chip has a mapping window defined by a segment address
+ * register defining a start and an end address on the AHB bus. These
+ * addresses can be configured to fit the chip size and offer a
+ * contiguous memory region across chips. For the moment, we only
+ * check that each chip segment is valid.
+ */
+static void __iomem *aspeed_smc_chip_base(struct aspeed_smc_chip *chip,
+ struct resource *res)
+{
+ struct aspeed_smc_controller *controller = chip->controller;
+ u32 offset = 0;
+ u32 reg;
+
+ if (controller->info->nce > 1) {
+ reg = readl(SEGMENT_ADDR_REG(controller, chip->cs));
+
+ if (SEGMENT_ADDR_START(reg) >= SEGMENT_ADDR_END(reg))
+ return NULL;
+
+ offset = SEGMENT_ADDR_START(reg) - res->start;
+ }
+
+ return controller->ahb_base + offset;
+}
+
+static u32 aspeed_smc_ahb_base_phy(struct aspeed_smc_controller *controller)
+{
+ u32 seg0_val = readl(SEGMENT_ADDR_REG(controller, 0));
+
+ return SEGMENT_ADDR_START(seg0_val);
+}
+
+static u32 chip_set_segment(struct aspeed_smc_chip *chip, u32 cs, u32 start,
+ u32 size)
+{
+ struct aspeed_smc_controller *controller = chip->controller;
+ void __iomem *seg_reg;
+ u32 seg_oldval, seg_newval, ahb_base_phy, end;
+
+ ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
+
+ seg_reg = SEGMENT_ADDR_REG(controller, cs);
+ seg_oldval = readl(seg_reg);
+
+ /*
+ * If the chip size is not specified, use the default segment
+ * size, but take into account the possible overlap with the
+ * previous segment
+ */
+ if (!size)
+ size = SEGMENT_ADDR_END(seg_oldval) - start;
+
+ /*
+ * The segment cannot exceed the maximum window size of the
+ * controller.
+ */
+ if (start + size > ahb_base_phy + controller->ahb_window_size) {
+ size = ahb_base_phy + controller->ahb_window_size - start;
+ dev_warn(chip->nor.dev, "CE%d window resized to %dMB",
+ cs, size >> 20);
+ }
+
+ end = start + size;
+ seg_newval = SEGMENT_ADDR_VALUE(start, end);
+ writel(seg_newval, seg_reg);
+
+ /*
+ * Restore default value if something goes wrong. The chip
+ * might have set some bogus value and we would loose access
+ * to the chip.
+ */
+ if (seg_newval != readl(seg_reg)) {
+ dev_err(chip->nor.dev, "CE%d window invalid", cs);
+ writel(seg_oldval, seg_reg);
+ start = SEGMENT_ADDR_START(seg_oldval);
+ end = SEGMENT_ADDR_END(seg_oldval);
+ size = end - start;
+ }
+
+ dev_info(chip->nor.dev, "CE%d window [ 0x%.8x - 0x%.8x ] %dMB",
+ cs, start, end, size >> 20);
+
+ return size;
+}
+
+/*
+ * The segment register defines the mapping window on the AHB bus and
+ * it needs to be configured depending on the chip size. The segment
+ * register of the following CE also needs to be tuned in order to
+ * provide a contiguous window across multiple chips.
+ *
+ * This is expected to be called in increasing CE order
+ */
+static u32 aspeed_smc_chip_set_segment(struct aspeed_smc_chip *chip)
+{
+ struct aspeed_smc_controller *controller = chip->controller;
+ u32 ahb_base_phy, start;
+ u32 size = chip->nor.mtd.size;
+
+ /*
+ * Each controller has a chip size limit for direct memory
+ * access
+ */
+ if (size > controller->info->maxsize)
+ size = controller->info->maxsize;
+
+ /*
+ * The AST2400 SPI controller only handles one chip and does
+ * not have segment registers. Let's use the chip size for the
+ * AHB window.
+ */
+ if (controller->info == &spi_2400_info)
+ goto out;
+
+ /*
+ * The AST2500 SPI controller has a HW bug when the CE0 chip
+ * size reaches 128MB. Enforce a size limit of 120MB to
+ * prevent the controller from using bogus settings in the
+ * segment register.
+ */
+ if (chip->cs == 0 && controller->info == &spi_2500_info &&
+ size == SZ_128M) {
+ size = 120 << 20;
+ dev_info(chip->nor.dev,
+ "CE%d window resized to %dMB (AST2500 HW quirk)",
+ chip->cs, size >> 20);
+ }
+
+ ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
+
+ /*
+ * As a start address for the current segment, use the default
+ * start address if we are handling CE0 or use the previous
+ * segment ending address
+ */
+ if (chip->cs) {
+ u32 prev = readl(SEGMENT_ADDR_REG(controller, chip->cs - 1));
+
+ start = SEGMENT_ADDR_END(prev);
+ } else {
+ start = ahb_base_phy;
+ }
+
+ size = chip_set_segment(chip, chip->cs, start, size);
+
+ /* Update chip base address on the AHB bus */
+ chip->ahb_base = controller->ahb_base + (start - ahb_base_phy);
+
+ /*
+ * Now, make sure the next segment does not overlap with the
+ * current one we just configured, even if there is no
+ * available chip. That could break access in Command Mode.
+ */
+ if (chip->cs < controller->info->nce - 1)
+ chip_set_segment(chip, chip->cs + 1, start + size, 0);
+
+out:
+ if (size < chip->nor.mtd.size)
+ dev_warn(chip->nor.dev,
+ "CE%d window too small for chip %dMB",
+ chip->cs, (u32)chip->nor.mtd.size >> 20);
+
+ return size;
+}
+
+static void aspeed_smc_chip_enable_write(struct aspeed_smc_chip *chip)
+{
+ struct aspeed_smc_controller *controller = chip->controller;
+ u32 reg;
+
+ reg = readl(controller->regs + CONFIG_REG);
+
+ reg |= aspeed_smc_chip_write_bit(chip);
+ writel(reg, controller->regs + CONFIG_REG);
+}
+
+static void aspeed_smc_chip_set_type(struct aspeed_smc_chip *chip, int type)
+{
+ struct aspeed_smc_controller *controller = chip->controller;
+ u32 reg;
+
+ chip->type = type;
+
+ reg = readl(controller->regs + CONFIG_REG);
+ reg &= ~(3 << (chip->cs * 2));
+ reg |= chip->type << (chip->cs * 2);
+ writel(reg, controller->regs + CONFIG_REG);
+}
+
+/*
+ * The first chip of the AST2500 FMC flash controller is strapped by
+ * hardware, or autodetected, but other chips need to be set. Enforce
+ * the 4B setting for all chips.
+ */
+static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip)
+{
+ struct aspeed_smc_controller *controller = chip->controller;
+ u32 reg;
+
+ reg = readl(controller->regs + CE_CONTROL_REG);
+ reg |= 1 << chip->cs;
+ writel(reg, controller->regs + CE_CONTROL_REG);
+}
+
+/*
+ * The AST2400 SPI flash controller does not have a CE Control
+ * register. It uses the CE0 control register to set 4Byte mode at the
+ * controller level.
+ */
+static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip)
+{
+ chip->ctl_val[smc_base] |= CONTROL_IO_ADDRESS_4B;
+ chip->ctl_val[smc_read] |= CONTROL_IO_ADDRESS_4B;
+}
+
+static int aspeed_smc_chip_setup_init(struct aspeed_smc_chip *chip,
+ struct resource *res)
+{
+ struct aspeed_smc_controller *controller = chip->controller;
+ const struct aspeed_smc_info *info = controller->info;
+ u32 reg, base_reg;
+
+ /*
+ * Always turn on the write enable bit to allow opcodes to be
+ * sent in user mode.
+ */
+ aspeed_smc_chip_enable_write(chip);
+
+ /* The driver only supports SPI type flash */
+ if (info->hastype)
+ aspeed_smc_chip_set_type(chip, smc_type_spi);
+
+ /*
+ * Configure chip base address in memory
+ */
+ chip->ahb_base = aspeed_smc_chip_base(chip, res);
+ if (!chip->ahb_base) {
+ dev_warn(chip->nor.dev, "CE%d window closed", chip->cs);
+ return -EINVAL;
+ }
+
+ /*
+ * Get value of the inherited control register. U-Boot usually
+ * does some timing calibration on the FMC chip, so it's good
+ * to keep them. In the future, we should handle calibration
+ * from Linux.
+ */
+ reg = readl(chip->ctl);
+ dev_dbg(controller->dev, "control register: %08x\n", reg);
+
+ base_reg = reg & CONTROL_KEEP_MASK;
+ if (base_reg != reg) {
+ dev_dbg(controller->dev,
+ "control register changed to: %08x\n",
+ base_reg);
+ }
+ chip->ctl_val[smc_base] = base_reg;
+
+ /*
+ * Retain the prior value of the control register as the
+ * default if it was normal access mode. Otherwise start with
+ * the sanitized base value set to read mode.
+ */
+ if ((reg & CONTROL_COMMAND_MODE_MASK) ==
+ CONTROL_COMMAND_MODE_NORMAL)
+ chip->ctl_val[smc_read] = reg;
+ else
+ chip->ctl_val[smc_read] = chip->ctl_val[smc_base] |
+ CONTROL_COMMAND_MODE_NORMAL;
+
+ dev_dbg(controller->dev, "default control register: %08x\n",
+ chip->ctl_val[smc_read]);
+ return 0;
+}
+
+static int aspeed_smc_chip_setup_finish(struct aspeed_smc_chip *chip)
+{
+ struct aspeed_smc_controller *controller = chip->controller;
+ const struct aspeed_smc_info *info = controller->info;
+ u32 cmd;
+
+ if (chip->nor.addr_width == 4 && info->set_4b)
+ info->set_4b(chip);
+
+ /* This is for direct AHB access when using Command Mode. */
+ chip->ahb_window_size = aspeed_smc_chip_set_segment(chip);
+
+ /*
+ * base mode has not been optimized yet. use it for writes.
+ */
+ chip->ctl_val[smc_write] = chip->ctl_val[smc_base] |
+ chip->nor.program_opcode << CONTROL_COMMAND_SHIFT |
+ CONTROL_COMMAND_MODE_WRITE;
+
+ dev_dbg(controller->dev, "write control register: %08x\n",
+ chip->ctl_val[smc_write]);
+
+ /*
+ * TODO: Adjust clocks if fast read is supported and interpret
+ * SPI NOR flags to adjust controller settings.
+ */
+ if (chip->nor.read_proto == SNOR_PROTO_1_1_1) {
+ if (chip->nor.read_dummy == 0)
+ cmd = CONTROL_COMMAND_MODE_NORMAL;
+ else
+ cmd = CONTROL_COMMAND_MODE_FREAD;
+ } else {
+ dev_err(chip->nor.dev, "unsupported SPI read mode\n");
+ return -EINVAL;
+ }
+
+ chip->ctl_val[smc_read] |= cmd |
+ CONTROL_IO_DUMMY_SET(chip->nor.read_dummy / 8);
+
+ dev_dbg(controller->dev, "base control register: %08x\n",
+ chip->ctl_val[smc_read]);
+ return 0;
+}
+
+static const struct spi_nor_controller_ops aspeed_smc_controller_ops = {
+ .prepare = aspeed_smc_prep,
+ .unprepare = aspeed_smc_unprep,
+ .read_reg = aspeed_smc_read_reg,
+ .write_reg = aspeed_smc_write_reg,
+ .read = aspeed_smc_read_user,
+ .write = aspeed_smc_write_user,
+};
+
+static int aspeed_smc_setup_flash(struct aspeed_smc_controller *controller,
+ struct device_node *np, struct resource *r)
+{
+ const struct spi_nor_hwcaps hwcaps = {
+ .mask = SNOR_HWCAPS_READ |
+ SNOR_HWCAPS_READ_FAST |
+ SNOR_HWCAPS_PP,
+ };
+ const struct aspeed_smc_info *info = controller->info;
+ struct device *dev = controller->dev;
+ struct device_node *child;
+ unsigned int cs;
+ int ret = -ENODEV;
+
+ for_each_available_child_of_node(np, child) {
+ struct aspeed_smc_chip *chip;
+ struct spi_nor *nor;
+ struct mtd_info *mtd;
+
+ /* This driver does not support NAND or NOR flash devices. */
+ if (!of_device_is_compatible(child, "jedec,spi-nor"))
+ continue;
+
+ ret = of_property_read_u32(child, "reg", &cs);
+ if (ret) {
+ dev_err(dev, "Couldn't not read chip select.\n");
+ break;
+ }
+
+ if (cs >= info->nce) {
+ dev_err(dev, "Chip select %d out of range.\n",
+ cs);
+ ret = -ERANGE;
+ break;
+ }
+
+ if (controller->chips[cs]) {
+ dev_err(dev, "Chip select %d already in use by %s\n",
+ cs, dev_name(controller->chips[cs]->nor.dev));
+ ret = -EBUSY;
+ break;
+ }
+
+ chip = devm_kzalloc(controller->dev, sizeof(*chip), GFP_KERNEL);
+ if (!chip) {
+ ret = -ENOMEM;
+ break;
+ }
+
+ chip->controller = controller;
+ chip->ctl = controller->regs + info->ctl0 + cs * 4;
+ chip->cs = cs;
+
+ nor = &chip->nor;
+ mtd = &nor->mtd;
+
+ nor->dev = dev;
+ nor->priv = chip;
+ spi_nor_set_flash_node(nor, child);
+ nor->controller_ops = &aspeed_smc_controller_ops;
+
+ ret = aspeed_smc_chip_setup_init(chip, r);
+ if (ret)
+ break;
+
+ /*
+ * TODO: Add support for Dual and Quad SPI protocols
+ * attach when board support is present as determined
+ * by of property.
+ */
+ ret = spi_nor_scan(nor, NULL, &hwcaps);
+ if (ret)
+ break;
+
+ ret = aspeed_smc_chip_setup_finish(chip);
+ if (ret)
+ break;
+
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret)
+ break;
+
+ controller->chips[cs] = chip;
+ }
+
+ if (ret) {
+ of_node_put(child);
+ aspeed_smc_unregister(controller);
+ }
+
+ return ret;
+}
+
+static int aspeed_smc_probe(struct platform_device *pdev)
+{
+ struct device_node *np = pdev->dev.of_node;
+ struct device *dev = &pdev->dev;
+ struct aspeed_smc_controller *controller;
+ const struct of_device_id *match;
+ const struct aspeed_smc_info *info;
+ struct resource *res;
+ int ret;
+
+ match = of_match_device(aspeed_smc_matches, &pdev->dev);
+ if (!match || !match->data)
+ return -ENODEV;
+ info = match->data;
+
+ controller = devm_kzalloc(&pdev->dev,
+ struct_size(controller, chips, info->nce),
+ GFP_KERNEL);
+ if (!controller)
+ return -ENOMEM;
+ controller->info = info;
+ controller->dev = dev;
+
+ mutex_init(&controller->mutex);
+ platform_set_drvdata(pdev, controller);
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ controller->regs = devm_ioremap_resource(dev, res);
+ if (IS_ERR(controller->regs))
+ return PTR_ERR(controller->regs);
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+ controller->ahb_base = devm_ioremap_resource(dev, res);
+ if (IS_ERR(controller->ahb_base))
+ return PTR_ERR(controller->ahb_base);
+
+ controller->ahb_window_size = resource_size(res);
+
+ ret = aspeed_smc_setup_flash(controller, np, res);
+ if (ret)
+ dev_err(dev, "Aspeed SMC probe failed %d\n", ret);
+
+ return ret;
+}
+
+static struct platform_driver aspeed_smc_driver = {
+ .probe = aspeed_smc_probe,
+ .remove = aspeed_smc_remove,
+ .driver = {
+ .name = DEVICE_NAME,
+ .of_match_table = aspeed_smc_matches,
+ }
+};
+
+module_platform_driver(aspeed_smc_driver);
+
+MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
+MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/spi-nor/controllers/hisi-sfc.c b/drivers/mtd/spi-nor/controllers/hisi-sfc.c
new file mode 100644
index 000000000..fd2c19a04
--- /dev/null
+++ b/drivers/mtd/spi-nor/controllers/hisi-sfc.c
@@ -0,0 +1,500 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * HiSilicon FMC SPI NOR flash controller driver
+ *
+ * Copyright (c) 2015-2016 HiSilicon Technologies Co., Ltd.
+ */
+#include <linux/bitops.h>
+#include <linux/clk.h>
+#include <linux/dma-mapping.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/spi-nor.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+/* Hardware register offsets and field definitions */
+#define FMC_CFG 0x00
+#define FMC_CFG_OP_MODE_MASK BIT_MASK(0)
+#define FMC_CFG_OP_MODE_BOOT 0
+#define FMC_CFG_OP_MODE_NORMAL 1
+#define FMC_CFG_FLASH_SEL(type) (((type) & 0x3) << 1)
+#define FMC_CFG_FLASH_SEL_MASK 0x6
+#define FMC_ECC_TYPE(type) (((type) & 0x7) << 5)
+#define FMC_ECC_TYPE_MASK GENMASK(7, 5)
+#define SPI_NOR_ADDR_MODE_MASK BIT_MASK(10)
+#define SPI_NOR_ADDR_MODE_3BYTES (0x0 << 10)
+#define SPI_NOR_ADDR_MODE_4BYTES (0x1 << 10)
+#define FMC_GLOBAL_CFG 0x04
+#define FMC_GLOBAL_CFG_WP_ENABLE BIT(6)
+#define FMC_SPI_TIMING_CFG 0x08
+#define TIMING_CFG_TCSH(nr) (((nr) & 0xf) << 8)
+#define TIMING_CFG_TCSS(nr) (((nr) & 0xf) << 4)
+#define TIMING_CFG_TSHSL(nr) ((nr) & 0xf)
+#define CS_HOLD_TIME 0x6
+#define CS_SETUP_TIME 0x6
+#define CS_DESELECT_TIME 0xf
+#define FMC_INT 0x18
+#define FMC_INT_OP_DONE BIT(0)
+#define FMC_INT_CLR 0x20
+#define FMC_CMD 0x24
+#define FMC_CMD_CMD1(cmd) ((cmd) & 0xff)
+#define FMC_ADDRL 0x2c
+#define FMC_OP_CFG 0x30
+#define OP_CFG_FM_CS(cs) ((cs) << 11)
+#define OP_CFG_MEM_IF_TYPE(type) (((type) & 0x7) << 7)
+#define OP_CFG_ADDR_NUM(addr) (((addr) & 0x7) << 4)
+#define OP_CFG_DUMMY_NUM(dummy) ((dummy) & 0xf)
+#define FMC_DATA_NUM 0x38
+#define FMC_DATA_NUM_CNT(cnt) ((cnt) & GENMASK(13, 0))
+#define FMC_OP 0x3c
+#define FMC_OP_DUMMY_EN BIT(8)
+#define FMC_OP_CMD1_EN BIT(7)
+#define FMC_OP_ADDR_EN BIT(6)
+#define FMC_OP_WRITE_DATA_EN BIT(5)
+#define FMC_OP_READ_DATA_EN BIT(2)
+#define FMC_OP_READ_STATUS_EN BIT(1)
+#define FMC_OP_REG_OP_START BIT(0)
+#define FMC_DMA_LEN 0x40
+#define FMC_DMA_LEN_SET(len) ((len) & GENMASK(27, 0))
+#define FMC_DMA_SADDR_D0 0x4c
+#define HIFMC_DMA_MAX_LEN (4096)
+#define HIFMC_DMA_MASK (HIFMC_DMA_MAX_LEN - 1)
+#define FMC_OP_DMA 0x68
+#define OP_CTRL_RD_OPCODE(code) (((code) & 0xff) << 16)
+#define OP_CTRL_WR_OPCODE(code) (((code) & 0xff) << 8)
+#define OP_CTRL_RW_OP(op) ((op) << 1)
+#define OP_CTRL_DMA_OP_READY BIT(0)
+#define FMC_OP_READ 0x0
+#define FMC_OP_WRITE 0x1
+#define FMC_WAIT_TIMEOUT 1000000
+
+enum hifmc_iftype {
+ IF_TYPE_STD,
+ IF_TYPE_DUAL,
+ IF_TYPE_DIO,
+ IF_TYPE_QUAD,
+ IF_TYPE_QIO,
+};
+
+struct hifmc_priv {
+ u32 chipselect;
+ u32 clkrate;
+ struct hifmc_host *host;
+};
+
+#define HIFMC_MAX_CHIP_NUM 2
+struct hifmc_host {
+ struct device *dev;
+ struct mutex lock;
+
+ void __iomem *regbase;
+ void __iomem *iobase;
+ struct clk *clk;
+ void *buffer;
+ dma_addr_t dma_buffer;
+
+ struct spi_nor *nor[HIFMC_MAX_CHIP_NUM];
+ u32 num_chip;
+};
+
+static inline int hisi_spi_nor_wait_op_finish(struct hifmc_host *host)
+{
+ u32 reg;
+
+ return readl_poll_timeout(host->regbase + FMC_INT, reg,
+ (reg & FMC_INT_OP_DONE), 0, FMC_WAIT_TIMEOUT);
+}
+
+static int hisi_spi_nor_get_if_type(enum spi_nor_protocol proto)
+{
+ enum hifmc_iftype if_type;
+
+ switch (proto) {
+ case SNOR_PROTO_1_1_2:
+ if_type = IF_TYPE_DUAL;
+ break;
+ case SNOR_PROTO_1_2_2:
+ if_type = IF_TYPE_DIO;
+ break;
+ case SNOR_PROTO_1_1_4:
+ if_type = IF_TYPE_QUAD;
+ break;
+ case SNOR_PROTO_1_4_4:
+ if_type = IF_TYPE_QIO;
+ break;
+ case SNOR_PROTO_1_1_1:
+ default:
+ if_type = IF_TYPE_STD;
+ break;
+ }
+
+ return if_type;
+}
+
+static void hisi_spi_nor_init(struct hifmc_host *host)
+{
+ u32 reg;
+
+ reg = TIMING_CFG_TCSH(CS_HOLD_TIME)
+ | TIMING_CFG_TCSS(CS_SETUP_TIME)
+ | TIMING_CFG_TSHSL(CS_DESELECT_TIME);
+ writel(reg, host->regbase + FMC_SPI_TIMING_CFG);
+}
+
+static int hisi_spi_nor_prep(struct spi_nor *nor)
+{
+ struct hifmc_priv *priv = nor->priv;
+ struct hifmc_host *host = priv->host;
+ int ret;
+
+ mutex_lock(&host->lock);
+
+ ret = clk_set_rate(host->clk, priv->clkrate);
+ if (ret)
+ goto out;
+
+ ret = clk_prepare_enable(host->clk);
+ if (ret)
+ goto out;
+
+ return 0;
+
+out:
+ mutex_unlock(&host->lock);
+ return ret;
+}
+
+static void hisi_spi_nor_unprep(struct spi_nor *nor)
+{
+ struct hifmc_priv *priv = nor->priv;
+ struct hifmc_host *host = priv->host;
+
+ clk_disable_unprepare(host->clk);
+ mutex_unlock(&host->lock);
+}
+
+static int hisi_spi_nor_op_reg(struct spi_nor *nor,
+ u8 opcode, size_t len, u8 optype)
+{
+ struct hifmc_priv *priv = nor->priv;
+ struct hifmc_host *host = priv->host;
+ u32 reg;
+
+ reg = FMC_CMD_CMD1(opcode);
+ writel(reg, host->regbase + FMC_CMD);
+
+ reg = FMC_DATA_NUM_CNT(len);
+ writel(reg, host->regbase + FMC_DATA_NUM);
+
+ reg = OP_CFG_FM_CS(priv->chipselect);
+ writel(reg, host->regbase + FMC_OP_CFG);
+
+ writel(0xff, host->regbase + FMC_INT_CLR);
+ reg = FMC_OP_CMD1_EN | FMC_OP_REG_OP_START | optype;
+ writel(reg, host->regbase + FMC_OP);
+
+ return hisi_spi_nor_wait_op_finish(host);
+}
+
+static int hisi_spi_nor_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
+ size_t len)
+{
+ struct hifmc_priv *priv = nor->priv;
+ struct hifmc_host *host = priv->host;
+ int ret;
+
+ ret = hisi_spi_nor_op_reg(nor, opcode, len, FMC_OP_READ_DATA_EN);
+ if (ret)
+ return ret;
+
+ memcpy_fromio(buf, host->iobase, len);
+ return 0;
+}
+
+static int hisi_spi_nor_write_reg(struct spi_nor *nor, u8 opcode,
+ const u8 *buf, size_t len)
+{
+ struct hifmc_priv *priv = nor->priv;
+ struct hifmc_host *host = priv->host;
+
+ if (len)
+ memcpy_toio(host->iobase, buf, len);
+
+ return hisi_spi_nor_op_reg(nor, opcode, len, FMC_OP_WRITE_DATA_EN);
+}
+
+static int hisi_spi_nor_dma_transfer(struct spi_nor *nor, loff_t start_off,
+ dma_addr_t dma_buf, size_t len, u8 op_type)
+{
+ struct hifmc_priv *priv = nor->priv;
+ struct hifmc_host *host = priv->host;
+ u8 if_type = 0;
+ u32 reg;
+
+ reg = readl(host->regbase + FMC_CFG);
+ reg &= ~(FMC_CFG_OP_MODE_MASK | SPI_NOR_ADDR_MODE_MASK);
+ reg |= FMC_CFG_OP_MODE_NORMAL;
+ reg |= (nor->addr_width == 4) ? SPI_NOR_ADDR_MODE_4BYTES
+ : SPI_NOR_ADDR_MODE_3BYTES;
+ writel(reg, host->regbase + FMC_CFG);
+
+ writel(start_off, host->regbase + FMC_ADDRL);
+ writel(dma_buf, host->regbase + FMC_DMA_SADDR_D0);
+ writel(FMC_DMA_LEN_SET(len), host->regbase + FMC_DMA_LEN);
+
+ reg = OP_CFG_FM_CS(priv->chipselect);
+ if (op_type == FMC_OP_READ)
+ if_type = hisi_spi_nor_get_if_type(nor->read_proto);
+ else
+ if_type = hisi_spi_nor_get_if_type(nor->write_proto);
+ reg |= OP_CFG_MEM_IF_TYPE(if_type);
+ if (op_type == FMC_OP_READ)
+ reg |= OP_CFG_DUMMY_NUM(nor->read_dummy >> 3);
+ writel(reg, host->regbase + FMC_OP_CFG);
+
+ writel(0xff, host->regbase + FMC_INT_CLR);
+ reg = OP_CTRL_RW_OP(op_type) | OP_CTRL_DMA_OP_READY;
+ reg |= (op_type == FMC_OP_READ)
+ ? OP_CTRL_RD_OPCODE(nor->read_opcode)
+ : OP_CTRL_WR_OPCODE(nor->program_opcode);
+ writel(reg, host->regbase + FMC_OP_DMA);
+
+ return hisi_spi_nor_wait_op_finish(host);
+}
+
+static ssize_t hisi_spi_nor_read(struct spi_nor *nor, loff_t from, size_t len,
+ u_char *read_buf)
+{
+ struct hifmc_priv *priv = nor->priv;
+ struct hifmc_host *host = priv->host;
+ size_t offset;
+ int ret;
+
+ for (offset = 0; offset < len; offset += HIFMC_DMA_MAX_LEN) {
+ size_t trans = min_t(size_t, HIFMC_DMA_MAX_LEN, len - offset);
+
+ ret = hisi_spi_nor_dma_transfer(nor,
+ from + offset, host->dma_buffer, trans, FMC_OP_READ);
+ if (ret) {
+ dev_warn(nor->dev, "DMA read timeout\n");
+ return ret;
+ }
+ memcpy(read_buf + offset, host->buffer, trans);
+ }
+
+ return len;
+}
+
+static ssize_t hisi_spi_nor_write(struct spi_nor *nor, loff_t to,
+ size_t len, const u_char *write_buf)
+{
+ struct hifmc_priv *priv = nor->priv;
+ struct hifmc_host *host = priv->host;
+ size_t offset;
+ int ret;
+
+ for (offset = 0; offset < len; offset += HIFMC_DMA_MAX_LEN) {
+ size_t trans = min_t(size_t, HIFMC_DMA_MAX_LEN, len - offset);
+
+ memcpy(host->buffer, write_buf + offset, trans);
+ ret = hisi_spi_nor_dma_transfer(nor,
+ to + offset, host->dma_buffer, trans, FMC_OP_WRITE);
+ if (ret) {
+ dev_warn(nor->dev, "DMA write timeout\n");
+ return ret;
+ }
+ }
+
+ return len;
+}
+
+static const struct spi_nor_controller_ops hisi_controller_ops = {
+ .prepare = hisi_spi_nor_prep,
+ .unprepare = hisi_spi_nor_unprep,
+ .read_reg = hisi_spi_nor_read_reg,
+ .write_reg = hisi_spi_nor_write_reg,
+ .read = hisi_spi_nor_read,
+ .write = hisi_spi_nor_write,
+};
+
+/**
+ * Get spi flash device information and register it as a mtd device.
+ */
+static int hisi_spi_nor_register(struct device_node *np,
+ struct hifmc_host *host)
+{
+ const struct spi_nor_hwcaps hwcaps = {
+ .mask = SNOR_HWCAPS_READ |
+ SNOR_HWCAPS_READ_FAST |
+ SNOR_HWCAPS_READ_1_1_2 |
+ SNOR_HWCAPS_READ_1_1_4 |
+ SNOR_HWCAPS_PP,
+ };
+ struct device *dev = host->dev;
+ struct spi_nor *nor;
+ struct hifmc_priv *priv;
+ struct mtd_info *mtd;
+ int ret;
+
+ nor = devm_kzalloc(dev, sizeof(*nor), GFP_KERNEL);
+ if (!nor)
+ return -ENOMEM;
+
+ nor->dev = dev;
+ spi_nor_set_flash_node(nor, np);
+
+ priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ ret = of_property_read_u32(np, "reg", &priv->chipselect);
+ if (ret) {
+ dev_err(dev, "There's no reg property for %pOF\n",
+ np);
+ return ret;
+ }
+
+ ret = of_property_read_u32(np, "spi-max-frequency",
+ &priv->clkrate);
+ if (ret) {
+ dev_err(dev, "There's no spi-max-frequency property for %pOF\n",
+ np);
+ return ret;
+ }
+ priv->host = host;
+ nor->priv = priv;
+ nor->controller_ops = &hisi_controller_ops;
+
+ ret = spi_nor_scan(nor, NULL, &hwcaps);
+ if (ret)
+ return ret;
+
+ mtd = &nor->mtd;
+ mtd->name = np->name;
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret)
+ return ret;
+
+ host->nor[host->num_chip] = nor;
+ host->num_chip++;
+ return 0;
+}
+
+static void hisi_spi_nor_unregister_all(struct hifmc_host *host)
+{
+ int i;
+
+ for (i = 0; i < host->num_chip; i++)
+ mtd_device_unregister(&host->nor[i]->mtd);
+}
+
+static int hisi_spi_nor_register_all(struct hifmc_host *host)
+{
+ struct device *dev = host->dev;
+ struct device_node *np;
+ int ret;
+
+ for_each_available_child_of_node(dev->of_node, np) {
+ ret = hisi_spi_nor_register(np, host);
+ if (ret) {
+ of_node_put(np);
+ goto fail;
+ }
+
+ if (host->num_chip == HIFMC_MAX_CHIP_NUM) {
+ dev_warn(dev, "Flash device number exceeds the maximum chipselect number\n");
+ of_node_put(np);
+ break;
+ }
+ }
+
+ return 0;
+
+fail:
+ hisi_spi_nor_unregister_all(host);
+ return ret;
+}
+
+static int hisi_spi_nor_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct resource *res;
+ struct hifmc_host *host;
+ int ret;
+
+ host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
+ if (!host)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, host);
+ host->dev = dev;
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "control");
+ host->regbase = devm_ioremap_resource(dev, res);
+ if (IS_ERR(host->regbase))
+ return PTR_ERR(host->regbase);
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "memory");
+ host->iobase = devm_ioremap_resource(dev, res);
+ if (IS_ERR(host->iobase))
+ return PTR_ERR(host->iobase);
+
+ host->clk = devm_clk_get(dev, NULL);
+ if (IS_ERR(host->clk))
+ return PTR_ERR(host->clk);
+
+ ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
+ if (ret) {
+ dev_warn(dev, "Unable to set dma mask\n");
+ return ret;
+ }
+
+ host->buffer = dmam_alloc_coherent(dev, HIFMC_DMA_MAX_LEN,
+ &host->dma_buffer, GFP_KERNEL);
+ if (!host->buffer)
+ return -ENOMEM;
+
+ ret = clk_prepare_enable(host->clk);
+ if (ret)
+ return ret;
+
+ mutex_init(&host->lock);
+ hisi_spi_nor_init(host);
+ ret = hisi_spi_nor_register_all(host);
+ if (ret)
+ mutex_destroy(&host->lock);
+
+ clk_disable_unprepare(host->clk);
+ return ret;
+}
+
+static int hisi_spi_nor_remove(struct platform_device *pdev)
+{
+ struct hifmc_host *host = platform_get_drvdata(pdev);
+
+ hisi_spi_nor_unregister_all(host);
+ mutex_destroy(&host->lock);
+ return 0;
+}
+
+static const struct of_device_id hisi_spi_nor_dt_ids[] = {
+ { .compatible = "hisilicon,fmc-spi-nor"},
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, hisi_spi_nor_dt_ids);
+
+static struct platform_driver hisi_spi_nor_driver = {
+ .driver = {
+ .name = "hisi-sfc",
+ .of_match_table = hisi_spi_nor_dt_ids,
+ },
+ .probe = hisi_spi_nor_probe,
+ .remove = hisi_spi_nor_remove,
+};
+module_platform_driver(hisi_spi_nor_driver);
+
+MODULE_LICENSE("GPL v2");
+MODULE_DESCRIPTION("HiSilicon SPI Nor Flash Controller Driver");
diff --git a/drivers/mtd/spi-nor/controllers/intel-spi-pci.c b/drivers/mtd/spi-nor/controllers/intel-spi-pci.c
new file mode 100644
index 000000000..8a3c1f3c2
--- /dev/null
+++ b/drivers/mtd/spi-nor/controllers/intel-spi-pci.c
@@ -0,0 +1,106 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Intel PCH/PCU SPI flash PCI driver.
+ *
+ * Copyright (C) 2016, Intel Corporation
+ * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
+ */
+
+#include <linux/ioport.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/pci.h>
+
+#include "intel-spi.h"
+
+#define BCR 0xdc
+#define BCR_WPD BIT(0)
+
+static bool intel_spi_pci_set_writeable(void __iomem *base, void *data)
+{
+ struct pci_dev *pdev = data;
+ u32 bcr;
+
+ /* Try to make the chip read/write */
+ pci_read_config_dword(pdev, BCR, &bcr);
+ if (!(bcr & BCR_WPD)) {
+ bcr |= BCR_WPD;
+ pci_write_config_dword(pdev, BCR, bcr);
+ pci_read_config_dword(pdev, BCR, &bcr);
+ }
+
+ return bcr & BCR_WPD;
+}
+
+static const struct intel_spi_boardinfo bxt_info = {
+ .type = INTEL_SPI_BXT,
+ .set_writeable = intel_spi_pci_set_writeable,
+};
+
+static const struct intel_spi_boardinfo cnl_info = {
+ .type = INTEL_SPI_CNL,
+ .set_writeable = intel_spi_pci_set_writeable,
+};
+
+static int intel_spi_pci_probe(struct pci_dev *pdev,
+ const struct pci_device_id *id)
+{
+ struct intel_spi_boardinfo *info;
+ struct intel_spi *ispi;
+ int ret;
+
+ ret = pcim_enable_device(pdev);
+ if (ret)
+ return ret;
+
+ info = devm_kmemdup(&pdev->dev, (void *)id->driver_data, sizeof(*info),
+ GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ info->data = pdev;
+ ispi = intel_spi_probe(&pdev->dev, &pdev->resource[0], info);
+ if (IS_ERR(ispi))
+ return PTR_ERR(ispi);
+
+ pci_set_drvdata(pdev, ispi);
+ return 0;
+}
+
+static void intel_spi_pci_remove(struct pci_dev *pdev)
+{
+ intel_spi_remove(pci_get_drvdata(pdev));
+}
+
+static const struct pci_device_id intel_spi_pci_ids[] = {
+ { PCI_VDEVICE(INTEL, 0x02a4), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x06a4), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x18e0), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x19e0), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x1bca), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x34a4), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x43a4), (unsigned long)&cnl_info },
+ { PCI_VDEVICE(INTEL, 0x4b24), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x4da4), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x7aa4), (unsigned long)&cnl_info },
+ { PCI_VDEVICE(INTEL, 0xa0a4), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0xa1a4), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0xa224), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0xa324), (unsigned long)&cnl_info },
+ { PCI_VDEVICE(INTEL, 0xa3a4), (unsigned long)&bxt_info },
+ { },
+};
+MODULE_DEVICE_TABLE(pci, intel_spi_pci_ids);
+
+static struct pci_driver intel_spi_pci_driver = {
+ .name = "intel-spi",
+ .id_table = intel_spi_pci_ids,
+ .probe = intel_spi_pci_probe,
+ .remove = intel_spi_pci_remove,
+};
+
+module_pci_driver(intel_spi_pci_driver);
+
+MODULE_DESCRIPTION("Intel PCH/PCU SPI flash PCI driver");
+MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/spi-nor/controllers/intel-spi-platform.c b/drivers/mtd/spi-nor/controllers/intel-spi-platform.c
new file mode 100644
index 000000000..f80f1086f
--- /dev/null
+++ b/drivers/mtd/spi-nor/controllers/intel-spi-platform.c
@@ -0,0 +1,54 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Intel PCH/PCU SPI flash platform driver.
+ *
+ * Copyright (C) 2016, Intel Corporation
+ * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
+ */
+
+#include <linux/ioport.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+
+#include "intel-spi.h"
+
+static int intel_spi_platform_probe(struct platform_device *pdev)
+{
+ struct intel_spi_boardinfo *info;
+ struct intel_spi *ispi;
+ struct resource *mem;
+
+ info = dev_get_platdata(&pdev->dev);
+ if (!info)
+ return -EINVAL;
+
+ mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ ispi = intel_spi_probe(&pdev->dev, mem, info);
+ if (IS_ERR(ispi))
+ return PTR_ERR(ispi);
+
+ platform_set_drvdata(pdev, ispi);
+ return 0;
+}
+
+static int intel_spi_platform_remove(struct platform_device *pdev)
+{
+ struct intel_spi *ispi = platform_get_drvdata(pdev);
+
+ return intel_spi_remove(ispi);
+}
+
+static struct platform_driver intel_spi_platform_driver = {
+ .probe = intel_spi_platform_probe,
+ .remove = intel_spi_platform_remove,
+ .driver = {
+ .name = "intel-spi",
+ },
+};
+
+module_platform_driver(intel_spi_platform_driver);
+
+MODULE_DESCRIPTION("Intel PCH/PCU SPI flash platform driver");
+MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
+MODULE_LICENSE("GPL v2");
+MODULE_ALIAS("platform:intel-spi");
diff --git a/drivers/mtd/spi-nor/controllers/intel-spi.c b/drivers/mtd/spi-nor/controllers/intel-spi.c
new file mode 100644
index 000000000..6c802db6b
--- /dev/null
+++ b/drivers/mtd/spi-nor/controllers/intel-spi.c
@@ -0,0 +1,966 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Intel PCH/PCU SPI flash driver.
+ *
+ * Copyright (C) 2016, Intel Corporation
+ * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
+ */
+
+#include <linux/err.h>
+#include <linux/io.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/sched.h>
+#include <linux/sizes.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/spi-nor.h>
+#include <linux/platform_data/intel-spi.h>
+
+#include "intel-spi.h"
+
+/* Offsets are from @ispi->base */
+#define BFPREG 0x00
+
+#define HSFSTS_CTL 0x04
+#define HSFSTS_CTL_FSMIE BIT(31)
+#define HSFSTS_CTL_FDBC_SHIFT 24
+#define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT)
+
+#define HSFSTS_CTL_FCYCLE_SHIFT 17
+#define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
+/* HW sequencer opcodes */
+#define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
+#define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
+
+#define HSFSTS_CTL_FGO BIT(16)
+#define HSFSTS_CTL_FLOCKDN BIT(15)
+#define HSFSTS_CTL_FDV BIT(14)
+#define HSFSTS_CTL_SCIP BIT(5)
+#define HSFSTS_CTL_AEL BIT(2)
+#define HSFSTS_CTL_FCERR BIT(1)
+#define HSFSTS_CTL_FDONE BIT(0)
+
+#define FADDR 0x08
+#define DLOCK 0x0c
+#define FDATA(n) (0x10 + ((n) * 4))
+
+#define FRACC 0x50
+
+#define FREG(n) (0x54 + ((n) * 4))
+#define FREG_BASE_MASK GENMASK(14, 0)
+#define FREG_LIMIT_SHIFT 16
+#define FREG_LIMIT_MASK GENMASK(30, 16)
+
+/* Offset is from @ispi->pregs */
+#define PR(n) ((n) * 4)
+#define PR_WPE BIT(31)
+#define PR_LIMIT_SHIFT 16
+#define PR_LIMIT_MASK GENMASK(30, 16)
+#define PR_RPE BIT(15)
+#define PR_BASE_MASK GENMASK(14, 0)
+
+/* Offsets are from @ispi->sregs */
+#define SSFSTS_CTL 0x00
+#define SSFSTS_CTL_FSMIE BIT(23)
+#define SSFSTS_CTL_DS BIT(22)
+#define SSFSTS_CTL_DBC_SHIFT 16
+#define SSFSTS_CTL_SPOP BIT(11)
+#define SSFSTS_CTL_ACS BIT(10)
+#define SSFSTS_CTL_SCGO BIT(9)
+#define SSFSTS_CTL_COP_SHIFT 12
+#define SSFSTS_CTL_FRS BIT(7)
+#define SSFSTS_CTL_DOFRS BIT(6)
+#define SSFSTS_CTL_AEL BIT(4)
+#define SSFSTS_CTL_FCERR BIT(3)
+#define SSFSTS_CTL_FDONE BIT(2)
+#define SSFSTS_CTL_SCIP BIT(0)
+
+#define PREOP_OPTYPE 0x04
+#define OPMENU0 0x08
+#define OPMENU1 0x0c
+
+#define OPTYPE_READ_NO_ADDR 0
+#define OPTYPE_WRITE_NO_ADDR 1
+#define OPTYPE_READ_WITH_ADDR 2
+#define OPTYPE_WRITE_WITH_ADDR 3
+
+/* CPU specifics */
+#define BYT_PR 0x74
+#define BYT_SSFSTS_CTL 0x90
+#define BYT_BCR 0xfc
+#define BYT_BCR_WPD BIT(0)
+#define BYT_FREG_NUM 5
+#define BYT_PR_NUM 5
+
+#define LPT_PR 0x74
+#define LPT_SSFSTS_CTL 0x90
+#define LPT_FREG_NUM 5
+#define LPT_PR_NUM 5
+
+#define BXT_PR 0x84
+#define BXT_SSFSTS_CTL 0xa0
+#define BXT_FREG_NUM 12
+#define BXT_PR_NUM 6
+
+#define CNL_PR 0x84
+#define CNL_FREG_NUM 6
+#define CNL_PR_NUM 5
+
+#define LVSCC 0xc4
+#define UVSCC 0xc8
+#define ERASE_OPCODE_SHIFT 8
+#define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
+#define ERASE_64K_OPCODE_SHIFT 16
+#define ERASE_64K_OPCODE_MASK (0xff << ERASE_64K_OPCODE_SHIFT)
+
+#define INTEL_SPI_TIMEOUT 5000 /* ms */
+#define INTEL_SPI_FIFO_SZ 64
+
+/**
+ * struct intel_spi - Driver private data
+ * @dev: Device pointer
+ * @info: Pointer to board specific info
+ * @nor: SPI NOR layer structure
+ * @base: Beginning of MMIO space
+ * @pregs: Start of protection registers
+ * @sregs: Start of software sequencer registers
+ * @nregions: Maximum number of regions
+ * @pr_num: Maximum number of protected range registers
+ * @locked: Is SPI setting locked
+ * @swseq_reg: Use SW sequencer in register reads/writes
+ * @swseq_erase: Use SW sequencer in erase operation
+ * @erase_64k: 64k erase supported
+ * @atomic_preopcode: Holds preopcode when atomic sequence is requested
+ * @opcodes: Opcodes which are supported. This are programmed by BIOS
+ * before it locks down the controller.
+ */
+struct intel_spi {
+ struct device *dev;
+ const struct intel_spi_boardinfo *info;
+ struct spi_nor nor;
+ void __iomem *base;
+ void __iomem *pregs;
+ void __iomem *sregs;
+ size_t nregions;
+ size_t pr_num;
+ bool locked;
+ bool swseq_reg;
+ bool swseq_erase;
+ bool erase_64k;
+ u8 atomic_preopcode;
+ u8 opcodes[8];
+};
+
+static bool writeable;
+module_param(writeable, bool, 0);
+MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
+
+static void intel_spi_dump_regs(struct intel_spi *ispi)
+{
+ u32 value;
+ int i;
+
+ dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
+
+ value = readl(ispi->base + HSFSTS_CTL);
+ dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
+ if (value & HSFSTS_CTL_FLOCKDN)
+ dev_dbg(ispi->dev, "-> Locked\n");
+
+ dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
+ dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
+
+ for (i = 0; i < 16; i++)
+ dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
+ i, readl(ispi->base + FDATA(i)));
+
+ dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
+
+ for (i = 0; i < ispi->nregions; i++)
+ dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
+ readl(ispi->base + FREG(i)));
+ for (i = 0; i < ispi->pr_num; i++)
+ dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
+ readl(ispi->pregs + PR(i)));
+
+ if (ispi->sregs) {
+ value = readl(ispi->sregs + SSFSTS_CTL);
+ dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
+ dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
+ readl(ispi->sregs + PREOP_OPTYPE));
+ dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
+ readl(ispi->sregs + OPMENU0));
+ dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
+ readl(ispi->sregs + OPMENU1));
+ }
+
+ if (ispi->info->type == INTEL_SPI_BYT)
+ dev_dbg(ispi->dev, "BCR=0x%08x\n", readl(ispi->base + BYT_BCR));
+
+ dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
+ dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
+
+ dev_dbg(ispi->dev, "Protected regions:\n");
+ for (i = 0; i < ispi->pr_num; i++) {
+ u32 base, limit;
+
+ value = readl(ispi->pregs + PR(i));
+ if (!(value & (PR_WPE | PR_RPE)))
+ continue;
+
+ limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
+ base = value & PR_BASE_MASK;
+
+ dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
+ i, base << 12, (limit << 12) | 0xfff,
+ value & PR_WPE ? 'W' : '.',
+ value & PR_RPE ? 'R' : '.');
+ }
+
+ dev_dbg(ispi->dev, "Flash regions:\n");
+ for (i = 0; i < ispi->nregions; i++) {
+ u32 region, base, limit;
+
+ region = readl(ispi->base + FREG(i));
+ base = region & FREG_BASE_MASK;
+ limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
+
+ if (base >= limit || (i > 0 && limit == 0))
+ dev_dbg(ispi->dev, " %02d disabled\n", i);
+ else
+ dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
+ i, base << 12, (limit << 12) | 0xfff);
+ }
+
+ dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
+ ispi->swseq_reg ? 'S' : 'H');
+ dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
+ ispi->swseq_erase ? 'S' : 'H');
+}
+
+/* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
+static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
+{
+ size_t bytes;
+ int i = 0;
+
+ if (size > INTEL_SPI_FIFO_SZ)
+ return -EINVAL;
+
+ while (size > 0) {
+ bytes = min_t(size_t, size, 4);
+ memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
+ size -= bytes;
+ buf += bytes;
+ i++;
+ }
+
+ return 0;
+}
+
+/* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
+static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
+ size_t size)
+{
+ size_t bytes;
+ int i = 0;
+
+ if (size > INTEL_SPI_FIFO_SZ)
+ return -EINVAL;
+
+ while (size > 0) {
+ bytes = min_t(size_t, size, 4);
+ memcpy_toio(ispi->base + FDATA(i), buf, bytes);
+ size -= bytes;
+ buf += bytes;
+ i++;
+ }
+
+ return 0;
+}
+
+static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
+{
+ u32 val;
+
+ return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
+ !(val & HSFSTS_CTL_SCIP), 0,
+ INTEL_SPI_TIMEOUT * 1000);
+}
+
+static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
+{
+ u32 val;
+
+ return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
+ !(val & SSFSTS_CTL_SCIP), 0,
+ INTEL_SPI_TIMEOUT * 1000);
+}
+
+static bool intel_spi_set_writeable(struct intel_spi *ispi)
+{
+ if (!ispi->info->set_writeable)
+ return false;
+
+ return ispi->info->set_writeable(ispi->base, ispi->info->data);
+}
+
+static int intel_spi_init(struct intel_spi *ispi)
+{
+ u32 opmenu0, opmenu1, lvscc, uvscc, val;
+ int i;
+
+ switch (ispi->info->type) {
+ case INTEL_SPI_BYT:
+ ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
+ ispi->pregs = ispi->base + BYT_PR;
+ ispi->nregions = BYT_FREG_NUM;
+ ispi->pr_num = BYT_PR_NUM;
+ ispi->swseq_reg = true;
+ break;
+
+ case INTEL_SPI_LPT:
+ ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
+ ispi->pregs = ispi->base + LPT_PR;
+ ispi->nregions = LPT_FREG_NUM;
+ ispi->pr_num = LPT_PR_NUM;
+ ispi->swseq_reg = true;
+ break;
+
+ case INTEL_SPI_BXT:
+ ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
+ ispi->pregs = ispi->base + BXT_PR;
+ ispi->nregions = BXT_FREG_NUM;
+ ispi->pr_num = BXT_PR_NUM;
+ ispi->erase_64k = true;
+ break;
+
+ case INTEL_SPI_CNL:
+ ispi->sregs = NULL;
+ ispi->pregs = ispi->base + CNL_PR;
+ ispi->nregions = CNL_FREG_NUM;
+ ispi->pr_num = CNL_PR_NUM;
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ /* Try to disable write protection if user asked to do so */
+ if (writeable && !intel_spi_set_writeable(ispi)) {
+ dev_warn(ispi->dev, "can't disable chip write protection\n");
+ writeable = false;
+ }
+
+ /* Disable #SMI generation from HW sequencer */
+ val = readl(ispi->base + HSFSTS_CTL);
+ val &= ~HSFSTS_CTL_FSMIE;
+ writel(val, ispi->base + HSFSTS_CTL);
+
+ /*
+ * Determine whether erase operation should use HW or SW sequencer.
+ *
+ * The HW sequencer has a predefined list of opcodes, with only the
+ * erase opcode being programmable in LVSCC and UVSCC registers.
+ * If these registers don't contain a valid erase opcode, erase
+ * cannot be done using HW sequencer.
+ */
+ lvscc = readl(ispi->base + LVSCC);
+ uvscc = readl(ispi->base + UVSCC);
+ if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
+ ispi->swseq_erase = true;
+ /* SPI controller on Intel BXT supports 64K erase opcode */
+ if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
+ if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
+ !(uvscc & ERASE_64K_OPCODE_MASK))
+ ispi->erase_64k = false;
+
+ if (ispi->sregs == NULL && (ispi->swseq_reg || ispi->swseq_erase)) {
+ dev_err(ispi->dev, "software sequencer not supported, but required\n");
+ return -EINVAL;
+ }
+
+ /*
+ * Some controllers can only do basic operations using hardware
+ * sequencer. All other operations are supposed to be carried out
+ * using software sequencer.
+ */
+ if (ispi->swseq_reg) {
+ /* Disable #SMI generation from SW sequencer */
+ val = readl(ispi->sregs + SSFSTS_CTL);
+ val &= ~SSFSTS_CTL_FSMIE;
+ writel(val, ispi->sregs + SSFSTS_CTL);
+ }
+
+ /* Check controller's lock status */
+ val = readl(ispi->base + HSFSTS_CTL);
+ ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
+
+ if (ispi->locked && ispi->sregs) {
+ /*
+ * BIOS programs allowed opcodes and then locks down the
+ * register. So read back what opcodes it decided to support.
+ * That's the set we are going to support as well.
+ */
+ opmenu0 = readl(ispi->sregs + OPMENU0);
+ opmenu1 = readl(ispi->sregs + OPMENU1);
+
+ if (opmenu0 && opmenu1) {
+ for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
+ ispi->opcodes[i] = opmenu0 >> i * 8;
+ ispi->opcodes[i + 4] = opmenu1 >> i * 8;
+ }
+ }
+ }
+
+ intel_spi_dump_regs(ispi);
+
+ return 0;
+}
+
+static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
+{
+ int i;
+ int preop;
+
+ if (ispi->locked) {
+ for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
+ if (ispi->opcodes[i] == opcode)
+ return i;
+
+ return -EINVAL;
+ }
+
+ /* The lock is off, so just use index 0 */
+ writel(opcode, ispi->sregs + OPMENU0);
+ preop = readw(ispi->sregs + PREOP_OPTYPE);
+ writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
+
+ return 0;
+}
+
+static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, size_t len)
+{
+ u32 val, status;
+ int ret;
+
+ val = readl(ispi->base + HSFSTS_CTL);
+ val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
+
+ switch (opcode) {
+ case SPINOR_OP_RDID:
+ val |= HSFSTS_CTL_FCYCLE_RDID;
+ break;
+ case SPINOR_OP_WRSR:
+ val |= HSFSTS_CTL_FCYCLE_WRSR;
+ break;
+ case SPINOR_OP_RDSR:
+ val |= HSFSTS_CTL_FCYCLE_RDSR;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ if (len > INTEL_SPI_FIFO_SZ)
+ return -EINVAL;
+
+ val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
+ val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
+ val |= HSFSTS_CTL_FGO;
+ writel(val, ispi->base + HSFSTS_CTL);
+
+ ret = intel_spi_wait_hw_busy(ispi);
+ if (ret)
+ return ret;
+
+ status = readl(ispi->base + HSFSTS_CTL);
+ if (status & HSFSTS_CTL_FCERR)
+ return -EIO;
+ else if (status & HSFSTS_CTL_AEL)
+ return -EACCES;
+
+ return 0;
+}
+
+static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
+ int optype)
+{
+ u32 val = 0, status;
+ u8 atomic_preopcode;
+ int ret;
+
+ ret = intel_spi_opcode_index(ispi, opcode, optype);
+ if (ret < 0)
+ return ret;
+
+ if (len > INTEL_SPI_FIFO_SZ)
+ return -EINVAL;
+
+ /*
+ * Always clear it after each SW sequencer operation regardless
+ * of whether it is successful or not.
+ */
+ atomic_preopcode = ispi->atomic_preopcode;
+ ispi->atomic_preopcode = 0;
+
+ /* Only mark 'Data Cycle' bit when there is data to be transferred */
+ if (len > 0)
+ val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
+ val |= ret << SSFSTS_CTL_COP_SHIFT;
+ val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
+ val |= SSFSTS_CTL_SCGO;
+ if (atomic_preopcode) {
+ u16 preop;
+
+ switch (optype) {
+ case OPTYPE_WRITE_NO_ADDR:
+ case OPTYPE_WRITE_WITH_ADDR:
+ /* Pick matching preopcode for the atomic sequence */
+ preop = readw(ispi->sregs + PREOP_OPTYPE);
+ if ((preop & 0xff) == atomic_preopcode)
+ ; /* Do nothing */
+ else if ((preop >> 8) == atomic_preopcode)
+ val |= SSFSTS_CTL_SPOP;
+ else
+ return -EINVAL;
+
+ /* Enable atomic sequence */
+ val |= SSFSTS_CTL_ACS;
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ }
+ writel(val, ispi->sregs + SSFSTS_CTL);
+
+ ret = intel_spi_wait_sw_busy(ispi);
+ if (ret)
+ return ret;
+
+ status = readl(ispi->sregs + SSFSTS_CTL);
+ if (status & SSFSTS_CTL_FCERR)
+ return -EIO;
+ else if (status & SSFSTS_CTL_AEL)
+ return -EACCES;
+
+ return 0;
+}
+
+static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
+ size_t len)
+{
+ struct intel_spi *ispi = nor->priv;
+ int ret;
+
+ /* Address of the first chip */
+ writel(0, ispi->base + FADDR);
+
+ if (ispi->swseq_reg)
+ ret = intel_spi_sw_cycle(ispi, opcode, len,
+ OPTYPE_READ_NO_ADDR);
+ else
+ ret = intel_spi_hw_cycle(ispi, opcode, len);
+
+ if (ret)
+ return ret;
+
+ return intel_spi_read_block(ispi, buf, len);
+}
+
+static int intel_spi_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf,
+ size_t len)
+{
+ struct intel_spi *ispi = nor->priv;
+ int ret;
+
+ /*
+ * This is handled with atomic operation and preop code in Intel
+ * controller so we only verify that it is available. If the
+ * controller is not locked, program the opcode to the PREOP
+ * register for later use.
+ *
+ * When hardware sequencer is used there is no need to program
+ * any opcodes (it handles them automatically as part of a command).
+ */
+ if (opcode == SPINOR_OP_WREN) {
+ u16 preop;
+
+ if (!ispi->swseq_reg)
+ return 0;
+
+ preop = readw(ispi->sregs + PREOP_OPTYPE);
+ if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
+ if (ispi->locked)
+ return -EINVAL;
+ writel(opcode, ispi->sregs + PREOP_OPTYPE);
+ }
+
+ /*
+ * This enables atomic sequence on next SW sycle. Will
+ * be cleared after next operation.
+ */
+ ispi->atomic_preopcode = opcode;
+ return 0;
+ }
+
+ /*
+ * We hope that HW sequencer will do the right thing automatically and
+ * with the SW sequencer we cannot use preopcode anyway, so just ignore
+ * the Write Disable operation and pretend it was completed
+ * successfully.
+ */
+ if (opcode == SPINOR_OP_WRDI)
+ return 0;
+
+ writel(0, ispi->base + FADDR);
+
+ /* Write the value beforehand */
+ ret = intel_spi_write_block(ispi, buf, len);
+ if (ret)
+ return ret;
+
+ if (ispi->swseq_reg)
+ return intel_spi_sw_cycle(ispi, opcode, len,
+ OPTYPE_WRITE_NO_ADDR);
+ return intel_spi_hw_cycle(ispi, opcode, len);
+}
+
+static ssize_t intel_spi_read(struct spi_nor *nor, loff_t from, size_t len,
+ u_char *read_buf)
+{
+ struct intel_spi *ispi = nor->priv;
+ size_t block_size, retlen = 0;
+ u32 val, status;
+ ssize_t ret;
+
+ /*
+ * Atomic sequence is not expected with HW sequencer reads. Make
+ * sure it is cleared regardless.
+ */
+ if (WARN_ON_ONCE(ispi->atomic_preopcode))
+ ispi->atomic_preopcode = 0;
+
+ switch (nor->read_opcode) {
+ case SPINOR_OP_READ:
+ case SPINOR_OP_READ_FAST:
+ case SPINOR_OP_READ_4B:
+ case SPINOR_OP_READ_FAST_4B:
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ while (len > 0) {
+ block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
+
+ /* Read cannot cross 4K boundary */
+ block_size = min_t(loff_t, from + block_size,
+ round_up(from + 1, SZ_4K)) - from;
+
+ writel(from, ispi->base + FADDR);
+
+ val = readl(ispi->base + HSFSTS_CTL);
+ val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
+ val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
+ val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
+ val |= HSFSTS_CTL_FCYCLE_READ;
+ val |= HSFSTS_CTL_FGO;
+ writel(val, ispi->base + HSFSTS_CTL);
+
+ ret = intel_spi_wait_hw_busy(ispi);
+ if (ret)
+ return ret;
+
+ status = readl(ispi->base + HSFSTS_CTL);
+ if (status & HSFSTS_CTL_FCERR)
+ ret = -EIO;
+ else if (status & HSFSTS_CTL_AEL)
+ ret = -EACCES;
+
+ if (ret < 0) {
+ dev_err(ispi->dev, "read error: %llx: %#x\n", from,
+ status);
+ return ret;
+ }
+
+ ret = intel_spi_read_block(ispi, read_buf, block_size);
+ if (ret)
+ return ret;
+
+ len -= block_size;
+ from += block_size;
+ retlen += block_size;
+ read_buf += block_size;
+ }
+
+ return retlen;
+}
+
+static ssize_t intel_spi_write(struct spi_nor *nor, loff_t to, size_t len,
+ const u_char *write_buf)
+{
+ struct intel_spi *ispi = nor->priv;
+ size_t block_size, retlen = 0;
+ u32 val, status;
+ ssize_t ret;
+
+ /* Not needed with HW sequencer write, make sure it is cleared */
+ ispi->atomic_preopcode = 0;
+
+ while (len > 0) {
+ block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
+
+ /* Write cannot cross 4K boundary */
+ block_size = min_t(loff_t, to + block_size,
+ round_up(to + 1, SZ_4K)) - to;
+
+ writel(to, ispi->base + FADDR);
+
+ val = readl(ispi->base + HSFSTS_CTL);
+ val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
+ val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
+ val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
+ val |= HSFSTS_CTL_FCYCLE_WRITE;
+
+ ret = intel_spi_write_block(ispi, write_buf, block_size);
+ if (ret) {
+ dev_err(ispi->dev, "failed to write block\n");
+ return ret;
+ }
+
+ /* Start the write now */
+ val |= HSFSTS_CTL_FGO;
+ writel(val, ispi->base + HSFSTS_CTL);
+
+ ret = intel_spi_wait_hw_busy(ispi);
+ if (ret) {
+ dev_err(ispi->dev, "timeout\n");
+ return ret;
+ }
+
+ status = readl(ispi->base + HSFSTS_CTL);
+ if (status & HSFSTS_CTL_FCERR)
+ ret = -EIO;
+ else if (status & HSFSTS_CTL_AEL)
+ ret = -EACCES;
+
+ if (ret < 0) {
+ dev_err(ispi->dev, "write error: %llx: %#x\n", to,
+ status);
+ return ret;
+ }
+
+ len -= block_size;
+ to += block_size;
+ retlen += block_size;
+ write_buf += block_size;
+ }
+
+ return retlen;
+}
+
+static int intel_spi_erase(struct spi_nor *nor, loff_t offs)
+{
+ size_t erase_size, len = nor->mtd.erasesize;
+ struct intel_spi *ispi = nor->priv;
+ u32 val, status, cmd;
+ int ret;
+
+ /* If the hardware can do 64k erase use that when possible */
+ if (len >= SZ_64K && ispi->erase_64k) {
+ cmd = HSFSTS_CTL_FCYCLE_ERASE_64K;
+ erase_size = SZ_64K;
+ } else {
+ cmd = HSFSTS_CTL_FCYCLE_ERASE;
+ erase_size = SZ_4K;
+ }
+
+ if (ispi->swseq_erase) {
+ while (len > 0) {
+ writel(offs, ispi->base + FADDR);
+
+ ret = intel_spi_sw_cycle(ispi, nor->erase_opcode,
+ 0, OPTYPE_WRITE_WITH_ADDR);
+ if (ret)
+ return ret;
+
+ offs += erase_size;
+ len -= erase_size;
+ }
+
+ return 0;
+ }
+
+ /* Not needed with HW sequencer erase, make sure it is cleared */
+ ispi->atomic_preopcode = 0;
+
+ while (len > 0) {
+ writel(offs, ispi->base + FADDR);
+
+ val = readl(ispi->base + HSFSTS_CTL);
+ val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
+ val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
+ val |= cmd;
+ val |= HSFSTS_CTL_FGO;
+ writel(val, ispi->base + HSFSTS_CTL);
+
+ ret = intel_spi_wait_hw_busy(ispi);
+ if (ret)
+ return ret;
+
+ status = readl(ispi->base + HSFSTS_CTL);
+ if (status & HSFSTS_CTL_FCERR)
+ return -EIO;
+ else if (status & HSFSTS_CTL_AEL)
+ return -EACCES;
+
+ offs += erase_size;
+ len -= erase_size;
+ }
+
+ return 0;
+}
+
+static bool intel_spi_is_protected(const struct intel_spi *ispi,
+ unsigned int base, unsigned int limit)
+{
+ int i;
+
+ for (i = 0; i < ispi->pr_num; i++) {
+ u32 pr_base, pr_limit, pr_value;
+
+ pr_value = readl(ispi->pregs + PR(i));
+ if (!(pr_value & (PR_WPE | PR_RPE)))
+ continue;
+
+ pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
+ pr_base = pr_value & PR_BASE_MASK;
+
+ if (pr_base >= base && pr_limit <= limit)
+ return true;
+ }
+
+ return false;
+}
+
+/*
+ * There will be a single partition holding all enabled flash regions. We
+ * call this "BIOS".
+ */
+static void intel_spi_fill_partition(struct intel_spi *ispi,
+ struct mtd_partition *part)
+{
+ u64 end;
+ int i;
+
+ memset(part, 0, sizeof(*part));
+
+ /* Start from the mandatory descriptor region */
+ part->size = 4096;
+ part->name = "BIOS";
+
+ /*
+ * Now try to find where this partition ends based on the flash
+ * region registers.
+ */
+ for (i = 1; i < ispi->nregions; i++) {
+ u32 region, base, limit;
+
+ region = readl(ispi->base + FREG(i));
+ base = region & FREG_BASE_MASK;
+ limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
+
+ if (base >= limit || limit == 0)
+ continue;
+
+ /*
+ * If any of the regions have protection bits set, make the
+ * whole partition read-only to be on the safe side.
+ *
+ * Also if the user did not ask the chip to be writeable
+ * mask the bit too.
+ */
+ if (!writeable || intel_spi_is_protected(ispi, base, limit))
+ part->mask_flags |= MTD_WRITEABLE;
+
+ end = (limit << 12) + 4096;
+ if (end > part->size)
+ part->size = end;
+ }
+}
+
+static const struct spi_nor_controller_ops intel_spi_controller_ops = {
+ .read_reg = intel_spi_read_reg,
+ .write_reg = intel_spi_write_reg,
+ .read = intel_spi_read,
+ .write = intel_spi_write,
+ .erase = intel_spi_erase,
+};
+
+struct intel_spi *intel_spi_probe(struct device *dev,
+ struct resource *mem, const struct intel_spi_boardinfo *info)
+{
+ const struct spi_nor_hwcaps hwcaps = {
+ .mask = SNOR_HWCAPS_READ |
+ SNOR_HWCAPS_READ_FAST |
+ SNOR_HWCAPS_PP,
+ };
+ struct mtd_partition part;
+ struct intel_spi *ispi;
+ int ret;
+
+ if (!info || !mem)
+ return ERR_PTR(-EINVAL);
+
+ ispi = devm_kzalloc(dev, sizeof(*ispi), GFP_KERNEL);
+ if (!ispi)
+ return ERR_PTR(-ENOMEM);
+
+ ispi->base = devm_ioremap_resource(dev, mem);
+ if (IS_ERR(ispi->base))
+ return ERR_CAST(ispi->base);
+
+ ispi->dev = dev;
+ ispi->info = info;
+
+ ret = intel_spi_init(ispi);
+ if (ret)
+ return ERR_PTR(ret);
+
+ ispi->nor.dev = ispi->dev;
+ ispi->nor.priv = ispi;
+ ispi->nor.controller_ops = &intel_spi_controller_ops;
+
+ ret = spi_nor_scan(&ispi->nor, NULL, &hwcaps);
+ if (ret) {
+ dev_info(dev, "failed to locate the chip\n");
+ return ERR_PTR(ret);
+ }
+
+ intel_spi_fill_partition(ispi, &part);
+
+ ret = mtd_device_register(&ispi->nor.mtd, &part, 1);
+ if (ret)
+ return ERR_PTR(ret);
+
+ return ispi;
+}
+EXPORT_SYMBOL_GPL(intel_spi_probe);
+
+int intel_spi_remove(struct intel_spi *ispi)
+{
+ return mtd_device_unregister(&ispi->nor.mtd);
+}
+EXPORT_SYMBOL_GPL(intel_spi_remove);
+
+MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
+MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/spi-nor/controllers/intel-spi.h b/drivers/mtd/spi-nor/controllers/intel-spi.h
new file mode 100644
index 000000000..e2f41b882
--- /dev/null
+++ b/drivers/mtd/spi-nor/controllers/intel-spi.h
@@ -0,0 +1,21 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Intel PCH/PCU SPI flash driver.
+ *
+ * Copyright (C) 2016, Intel Corporation
+ * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
+ */
+
+#ifndef INTEL_SPI_H
+#define INTEL_SPI_H
+
+#include <linux/platform_data/intel-spi.h>
+
+struct intel_spi;
+struct resource;
+
+struct intel_spi *intel_spi_probe(struct device *dev,
+ struct resource *mem, const struct intel_spi_boardinfo *info);
+int intel_spi_remove(struct intel_spi *ispi);
+
+#endif /* INTEL_SPI_H */
diff --git a/drivers/mtd/spi-nor/controllers/nxp-spifi.c b/drivers/mtd/spi-nor/controllers/nxp-spifi.c
new file mode 100644
index 000000000..5703e8313
--- /dev/null
+++ b/drivers/mtd/spi-nor/controllers/nxp-spifi.c
@@ -0,0 +1,486 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * SPI NOR driver for NXP SPI Flash Interface (SPIFI)
+ *
+ * Copyright (C) 2015 Joachim Eastwood <manabian@gmail.com>
+ *
+ * Based on Freescale QuadSPI driver:
+ * Copyright (C) 2013 Freescale Semiconductor, Inc.
+ */
+
+#include <linux/clk.h>
+#include <linux/err.h>
+#include <linux/io.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/spi-nor.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/spi/spi.h>
+
+/* NXP SPIFI registers, bits and macros */
+#define SPIFI_CTRL 0x000
+#define SPIFI_CTRL_TIMEOUT(timeout) (timeout)
+#define SPIFI_CTRL_CSHIGH(cshigh) ((cshigh) << 16)
+#define SPIFI_CTRL_MODE3 BIT(23)
+#define SPIFI_CTRL_DUAL BIT(28)
+#define SPIFI_CTRL_FBCLK BIT(30)
+#define SPIFI_CMD 0x004
+#define SPIFI_CMD_DATALEN(dlen) ((dlen) & 0x3fff)
+#define SPIFI_CMD_DOUT BIT(15)
+#define SPIFI_CMD_INTLEN(ilen) ((ilen) << 16)
+#define SPIFI_CMD_FIELDFORM(field) ((field) << 19)
+#define SPIFI_CMD_FIELDFORM_ALL_SERIAL SPIFI_CMD_FIELDFORM(0x0)
+#define SPIFI_CMD_FIELDFORM_QUAD_DUAL_DATA SPIFI_CMD_FIELDFORM(0x1)
+#define SPIFI_CMD_FRAMEFORM(frame) ((frame) << 21)
+#define SPIFI_CMD_FRAMEFORM_OPCODE_ONLY SPIFI_CMD_FRAMEFORM(0x1)
+#define SPIFI_CMD_OPCODE(op) ((op) << 24)
+#define SPIFI_ADDR 0x008
+#define SPIFI_IDATA 0x00c
+#define SPIFI_CLIMIT 0x010
+#define SPIFI_DATA 0x014
+#define SPIFI_MCMD 0x018
+#define SPIFI_STAT 0x01c
+#define SPIFI_STAT_MCINIT BIT(0)
+#define SPIFI_STAT_CMD BIT(1)
+#define SPIFI_STAT_RESET BIT(4)
+
+#define SPI_NOR_MAX_ID_LEN 6
+
+struct nxp_spifi {
+ struct device *dev;
+ struct clk *clk_spifi;
+ struct clk *clk_reg;
+ void __iomem *io_base;
+ void __iomem *flash_base;
+ struct spi_nor nor;
+ bool memory_mode;
+ u32 mcmd;
+};
+
+static int nxp_spifi_wait_for_cmd(struct nxp_spifi *spifi)
+{
+ u8 stat;
+ int ret;
+
+ ret = readb_poll_timeout(spifi->io_base + SPIFI_STAT, stat,
+ !(stat & SPIFI_STAT_CMD), 10, 30);
+ if (ret)
+ dev_warn(spifi->dev, "command timed out\n");
+
+ return ret;
+}
+
+static int nxp_spifi_reset(struct nxp_spifi *spifi)
+{
+ u8 stat;
+ int ret;
+
+ writel(SPIFI_STAT_RESET, spifi->io_base + SPIFI_STAT);
+ ret = readb_poll_timeout(spifi->io_base + SPIFI_STAT, stat,
+ !(stat & SPIFI_STAT_RESET), 10, 30);
+ if (ret)
+ dev_warn(spifi->dev, "state reset timed out\n");
+
+ return ret;
+}
+
+static int nxp_spifi_set_memory_mode_off(struct nxp_spifi *spifi)
+{
+ int ret;
+
+ if (!spifi->memory_mode)
+ return 0;
+
+ ret = nxp_spifi_reset(spifi);
+ if (ret)
+ dev_err(spifi->dev, "unable to enter command mode\n");
+ else
+ spifi->memory_mode = false;
+
+ return ret;
+}
+
+static int nxp_spifi_set_memory_mode_on(struct nxp_spifi *spifi)
+{
+ u8 stat;
+ int ret;
+
+ if (spifi->memory_mode)
+ return 0;
+
+ writel(spifi->mcmd, spifi->io_base + SPIFI_MCMD);
+ ret = readb_poll_timeout(spifi->io_base + SPIFI_STAT, stat,
+ stat & SPIFI_STAT_MCINIT, 10, 30);
+ if (ret)
+ dev_err(spifi->dev, "unable to enter memory mode\n");
+ else
+ spifi->memory_mode = true;
+
+ return ret;
+}
+
+static int nxp_spifi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
+ size_t len)
+{
+ struct nxp_spifi *spifi = nor->priv;
+ u32 cmd;
+ int ret;
+
+ ret = nxp_spifi_set_memory_mode_off(spifi);
+ if (ret)
+ return ret;
+
+ cmd = SPIFI_CMD_DATALEN(len) |
+ SPIFI_CMD_OPCODE(opcode) |
+ SPIFI_CMD_FIELDFORM_ALL_SERIAL |
+ SPIFI_CMD_FRAMEFORM_OPCODE_ONLY;
+ writel(cmd, spifi->io_base + SPIFI_CMD);
+
+ while (len--)
+ *buf++ = readb(spifi->io_base + SPIFI_DATA);
+
+ return nxp_spifi_wait_for_cmd(spifi);
+}
+
+static int nxp_spifi_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf,
+ size_t len)
+{
+ struct nxp_spifi *spifi = nor->priv;
+ u32 cmd;
+ int ret;
+
+ ret = nxp_spifi_set_memory_mode_off(spifi);
+ if (ret)
+ return ret;
+
+ cmd = SPIFI_CMD_DOUT |
+ SPIFI_CMD_DATALEN(len) |
+ SPIFI_CMD_OPCODE(opcode) |
+ SPIFI_CMD_FIELDFORM_ALL_SERIAL |
+ SPIFI_CMD_FRAMEFORM_OPCODE_ONLY;
+ writel(cmd, spifi->io_base + SPIFI_CMD);
+
+ while (len--)
+ writeb(*buf++, spifi->io_base + SPIFI_DATA);
+
+ return nxp_spifi_wait_for_cmd(spifi);
+}
+
+static ssize_t nxp_spifi_read(struct spi_nor *nor, loff_t from, size_t len,
+ u_char *buf)
+{
+ struct nxp_spifi *spifi = nor->priv;
+ int ret;
+
+ ret = nxp_spifi_set_memory_mode_on(spifi);
+ if (ret)
+ return ret;
+
+ memcpy_fromio(buf, spifi->flash_base + from, len);
+
+ return len;
+}
+
+static ssize_t nxp_spifi_write(struct spi_nor *nor, loff_t to, size_t len,
+ const u_char *buf)
+{
+ struct nxp_spifi *spifi = nor->priv;
+ u32 cmd;
+ int ret;
+ size_t i;
+
+ ret = nxp_spifi_set_memory_mode_off(spifi);
+ if (ret)
+ return ret;
+
+ writel(to, spifi->io_base + SPIFI_ADDR);
+
+ cmd = SPIFI_CMD_DOUT |
+ SPIFI_CMD_DATALEN(len) |
+ SPIFI_CMD_FIELDFORM_ALL_SERIAL |
+ SPIFI_CMD_OPCODE(nor->program_opcode) |
+ SPIFI_CMD_FRAMEFORM(spifi->nor.addr_width + 1);
+ writel(cmd, spifi->io_base + SPIFI_CMD);
+
+ for (i = 0; i < len; i++)
+ writeb(buf[i], spifi->io_base + SPIFI_DATA);
+
+ ret = nxp_spifi_wait_for_cmd(spifi);
+ if (ret)
+ return ret;
+
+ return len;
+}
+
+static int nxp_spifi_erase(struct spi_nor *nor, loff_t offs)
+{
+ struct nxp_spifi *spifi = nor->priv;
+ u32 cmd;
+ int ret;
+
+ ret = nxp_spifi_set_memory_mode_off(spifi);
+ if (ret)
+ return ret;
+
+ writel(offs, spifi->io_base + SPIFI_ADDR);
+
+ cmd = SPIFI_CMD_FIELDFORM_ALL_SERIAL |
+ SPIFI_CMD_OPCODE(nor->erase_opcode) |
+ SPIFI_CMD_FRAMEFORM(spifi->nor.addr_width + 1);
+ writel(cmd, spifi->io_base + SPIFI_CMD);
+
+ return nxp_spifi_wait_for_cmd(spifi);
+}
+
+static int nxp_spifi_setup_memory_cmd(struct nxp_spifi *spifi)
+{
+ switch (spifi->nor.read_proto) {
+ case SNOR_PROTO_1_1_1:
+ spifi->mcmd = SPIFI_CMD_FIELDFORM_ALL_SERIAL;
+ break;
+ case SNOR_PROTO_1_1_2:
+ case SNOR_PROTO_1_1_4:
+ spifi->mcmd = SPIFI_CMD_FIELDFORM_QUAD_DUAL_DATA;
+ break;
+ default:
+ dev_err(spifi->dev, "unsupported SPI read mode\n");
+ return -EINVAL;
+ }
+
+ /* Memory mode supports address length between 1 and 4 */
+ if (spifi->nor.addr_width < 1 || spifi->nor.addr_width > 4)
+ return -EINVAL;
+
+ spifi->mcmd |= SPIFI_CMD_OPCODE(spifi->nor.read_opcode) |
+ SPIFI_CMD_INTLEN(spifi->nor.read_dummy / 8) |
+ SPIFI_CMD_FRAMEFORM(spifi->nor.addr_width + 1);
+
+ return 0;
+}
+
+static void nxp_spifi_dummy_id_read(struct spi_nor *nor)
+{
+ u8 id[SPI_NOR_MAX_ID_LEN];
+ nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
+ SPI_NOR_MAX_ID_LEN);
+}
+
+static const struct spi_nor_controller_ops nxp_spifi_controller_ops = {
+ .read_reg = nxp_spifi_read_reg,
+ .write_reg = nxp_spifi_write_reg,
+ .read = nxp_spifi_read,
+ .write = nxp_spifi_write,
+ .erase = nxp_spifi_erase,
+};
+
+static int nxp_spifi_setup_flash(struct nxp_spifi *spifi,
+ struct device_node *np)
+{
+ struct spi_nor_hwcaps hwcaps = {
+ .mask = SNOR_HWCAPS_READ |
+ SNOR_HWCAPS_READ_FAST |
+ SNOR_HWCAPS_PP,
+ };
+ u32 ctrl, property;
+ u16 mode = 0;
+ int ret;
+
+ if (!of_property_read_u32(np, "spi-rx-bus-width", &property)) {
+ switch (property) {
+ case 1:
+ break;
+ case 2:
+ mode |= SPI_RX_DUAL;
+ break;
+ case 4:
+ mode |= SPI_RX_QUAD;
+ break;
+ default:
+ dev_err(spifi->dev, "unsupported rx-bus-width\n");
+ return -EINVAL;
+ }
+ }
+
+ if (of_find_property(np, "spi-cpha", NULL))
+ mode |= SPI_CPHA;
+
+ if (of_find_property(np, "spi-cpol", NULL))
+ mode |= SPI_CPOL;
+
+ /* Setup control register defaults */
+ ctrl = SPIFI_CTRL_TIMEOUT(1000) |
+ SPIFI_CTRL_CSHIGH(15) |
+ SPIFI_CTRL_FBCLK;
+
+ if (mode & SPI_RX_DUAL) {
+ ctrl |= SPIFI_CTRL_DUAL;
+ hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
+ } else if (mode & SPI_RX_QUAD) {
+ ctrl &= ~SPIFI_CTRL_DUAL;
+ hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
+ } else {
+ ctrl |= SPIFI_CTRL_DUAL;
+ }
+
+ switch (mode & (SPI_CPHA | SPI_CPOL)) {
+ case SPI_MODE_0:
+ ctrl &= ~SPIFI_CTRL_MODE3;
+ break;
+ case SPI_MODE_3:
+ ctrl |= SPIFI_CTRL_MODE3;
+ break;
+ default:
+ dev_err(spifi->dev, "only mode 0 and 3 supported\n");
+ return -EINVAL;
+ }
+
+ writel(ctrl, spifi->io_base + SPIFI_CTRL);
+
+ spifi->nor.dev = spifi->dev;
+ spi_nor_set_flash_node(&spifi->nor, np);
+ spifi->nor.priv = spifi;
+ spifi->nor.controller_ops = &nxp_spifi_controller_ops;
+
+ /*
+ * The first read on a hard reset isn't reliable so do a
+ * dummy read of the id before calling spi_nor_scan().
+ * The reason for this problem is unknown.
+ *
+ * The official NXP spifilib uses more or less the same
+ * workaround that is applied here by reading the device
+ * id multiple times.
+ */
+ nxp_spifi_dummy_id_read(&spifi->nor);
+
+ ret = spi_nor_scan(&spifi->nor, NULL, &hwcaps);
+ if (ret) {
+ dev_err(spifi->dev, "device scan failed\n");
+ return ret;
+ }
+
+ ret = nxp_spifi_setup_memory_cmd(spifi);
+ if (ret) {
+ dev_err(spifi->dev, "memory command setup failed\n");
+ return ret;
+ }
+
+ ret = mtd_device_register(&spifi->nor.mtd, NULL, 0);
+ if (ret) {
+ dev_err(spifi->dev, "mtd device parse failed\n");
+ return ret;
+ }
+
+ return 0;
+}
+
+static int nxp_spifi_probe(struct platform_device *pdev)
+{
+ struct device_node *flash_np;
+ struct nxp_spifi *spifi;
+ struct resource *res;
+ int ret;
+
+ spifi = devm_kzalloc(&pdev->dev, sizeof(*spifi), GFP_KERNEL);
+ if (!spifi)
+ return -ENOMEM;
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "spifi");
+ spifi->io_base = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(spifi->io_base))
+ return PTR_ERR(spifi->io_base);
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash");
+ spifi->flash_base = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(spifi->flash_base))
+ return PTR_ERR(spifi->flash_base);
+
+ spifi->clk_spifi = devm_clk_get(&pdev->dev, "spifi");
+ if (IS_ERR(spifi->clk_spifi)) {
+ dev_err(&pdev->dev, "spifi clock not found\n");
+ return PTR_ERR(spifi->clk_spifi);
+ }
+
+ spifi->clk_reg = devm_clk_get(&pdev->dev, "reg");
+ if (IS_ERR(spifi->clk_reg)) {
+ dev_err(&pdev->dev, "reg clock not found\n");
+ return PTR_ERR(spifi->clk_reg);
+ }
+
+ ret = clk_prepare_enable(spifi->clk_reg);
+ if (ret) {
+ dev_err(&pdev->dev, "unable to enable reg clock\n");
+ return ret;
+ }
+
+ ret = clk_prepare_enable(spifi->clk_spifi);
+ if (ret) {
+ dev_err(&pdev->dev, "unable to enable spifi clock\n");
+ goto dis_clk_reg;
+ }
+
+ spifi->dev = &pdev->dev;
+ platform_set_drvdata(pdev, spifi);
+
+ /* Initialize and reset device */
+ nxp_spifi_reset(spifi);
+ writel(0, spifi->io_base + SPIFI_IDATA);
+ writel(0, spifi->io_base + SPIFI_MCMD);
+ nxp_spifi_reset(spifi);
+
+ flash_np = of_get_next_available_child(pdev->dev.of_node, NULL);
+ if (!flash_np) {
+ dev_err(&pdev->dev, "no SPI flash device to configure\n");
+ ret = -ENODEV;
+ goto dis_clks;
+ }
+
+ ret = nxp_spifi_setup_flash(spifi, flash_np);
+ of_node_put(flash_np);
+ if (ret) {
+ dev_err(&pdev->dev, "unable to setup flash chip\n");
+ goto dis_clks;
+ }
+
+ return 0;
+
+dis_clks:
+ clk_disable_unprepare(spifi->clk_spifi);
+dis_clk_reg:
+ clk_disable_unprepare(spifi->clk_reg);
+ return ret;
+}
+
+static int nxp_spifi_remove(struct platform_device *pdev)
+{
+ struct nxp_spifi *spifi = platform_get_drvdata(pdev);
+
+ mtd_device_unregister(&spifi->nor.mtd);
+ clk_disable_unprepare(spifi->clk_spifi);
+ clk_disable_unprepare(spifi->clk_reg);
+
+ return 0;
+}
+
+static const struct of_device_id nxp_spifi_match[] = {
+ {.compatible = "nxp,lpc1773-spifi"},
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, nxp_spifi_match);
+
+static struct platform_driver nxp_spifi_driver = {
+ .probe = nxp_spifi_probe,
+ .remove = nxp_spifi_remove,
+ .driver = {
+ .name = "nxp-spifi",
+ .of_match_table = nxp_spifi_match,
+ },
+};
+module_platform_driver(nxp_spifi_driver);
+
+MODULE_DESCRIPTION("NXP SPI Flash Interface driver");
+MODULE_AUTHOR("Joachim Eastwood <manabian@gmail.com>");
+MODULE_LICENSE("GPL v2");