diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /drivers/pci/endpoint | |
parent | Initial commit. (diff) | |
download | linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip |
Adding upstream version 5.10.209.upstream/5.10.209
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | drivers/pci/endpoint/Kconfig | 33 | ||||
-rw-r--r-- | drivers/pci/endpoint/Makefile | 8 | ||||
-rw-r--r-- | drivers/pci/endpoint/functions/Kconfig | 14 | ||||
-rw-r--r-- | drivers/pci/endpoint/functions/Makefile | 6 | ||||
-rw-r--r-- | drivers/pci/endpoint/functions/pci-epf-test.c | 953 | ||||
-rw-r--r-- | drivers/pci/endpoint/pci-ep-cfs.c | 549 | ||||
-rw-r--r-- | drivers/pci/endpoint/pci-epc-core.c | 735 | ||||
-rw-r--r-- | drivers/pci/endpoint/pci-epc-mem.c | 263 | ||||
-rw-r--r-- | drivers/pci/endpoint/pci-epf-core.c | 391 |
9 files changed, 2952 insertions, 0 deletions
diff --git a/drivers/pci/endpoint/Kconfig b/drivers/pci/endpoint/Kconfig new file mode 100644 index 000000000..17bbdc9bb --- /dev/null +++ b/drivers/pci/endpoint/Kconfig @@ -0,0 +1,33 @@ +# SPDX-License-Identifier: GPL-2.0 +# +# PCI Endpoint Support +# + +menu "PCI Endpoint" + +config PCI_ENDPOINT + bool "PCI Endpoint Support" + depends on HAVE_PCI + help + Enable this configuration option to support configurable PCI + endpoint. This should be enabled if the platform has a PCI + controller that can operate in endpoint mode. + + Enabling this option will build the endpoint library, which + includes endpoint controller library and endpoint function + library. + + If in doubt, say "N" to disable Endpoint support. + +config PCI_ENDPOINT_CONFIGFS + bool "PCI Endpoint Configfs Support" + depends on PCI_ENDPOINT + select CONFIGFS_FS + help + This will enable the configfs entry that can be used to + configure the endpoint function and used to bind the + function with a endpoint controller. + +source "drivers/pci/endpoint/functions/Kconfig" + +endmenu diff --git a/drivers/pci/endpoint/Makefile b/drivers/pci/endpoint/Makefile new file mode 100644 index 000000000..95b2fe47e --- /dev/null +++ b/drivers/pci/endpoint/Makefile @@ -0,0 +1,8 @@ +# SPDX-License-Identifier: GPL-2.0 +# +# Makefile for PCI Endpoint Support +# + +obj-$(CONFIG_PCI_ENDPOINT_CONFIGFS) += pci-ep-cfs.o +obj-$(CONFIG_PCI_ENDPOINT) += pci-epc-core.o pci-epf-core.o\ + pci-epc-mem.o functions/ diff --git a/drivers/pci/endpoint/functions/Kconfig b/drivers/pci/endpoint/functions/Kconfig new file mode 100644 index 000000000..8820d0f7e --- /dev/null +++ b/drivers/pci/endpoint/functions/Kconfig @@ -0,0 +1,14 @@ +# SPDX-License-Identifier: GPL-2.0 +# +# PCI Endpoint Functions +# + +config PCI_EPF_TEST + tristate "PCI Endpoint Test driver" + depends on PCI_ENDPOINT + select CRC32 + help + Enable this configuration option to enable the test driver + for PCI Endpoint. + + If in doubt, say "N" to disable Endpoint test driver. diff --git a/drivers/pci/endpoint/functions/Makefile b/drivers/pci/endpoint/functions/Makefile new file mode 100644 index 000000000..d6fafff08 --- /dev/null +++ b/drivers/pci/endpoint/functions/Makefile @@ -0,0 +1,6 @@ +# SPDX-License-Identifier: GPL-2.0 +# +# Makefile for PCI Endpoint Functions +# + +obj-$(CONFIG_PCI_EPF_TEST) += pci-epf-test.o diff --git a/drivers/pci/endpoint/functions/pci-epf-test.c b/drivers/pci/endpoint/functions/pci-epf-test.c new file mode 100644 index 000000000..ef52f5097 --- /dev/null +++ b/drivers/pci/endpoint/functions/pci-epf-test.c @@ -0,0 +1,953 @@ +// SPDX-License-Identifier: GPL-2.0 +/** + * Test driver to test endpoint functionality + * + * Copyright (C) 2017 Texas Instruments + * Author: Kishon Vijay Abraham I <kishon@ti.com> + */ + +#include <linux/crc32.h> +#include <linux/delay.h> +#include <linux/dmaengine.h> +#include <linux/io.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/pci_ids.h> +#include <linux/random.h> + +#include <linux/pci-epc.h> +#include <linux/pci-epf.h> +#include <linux/pci_regs.h> + +#define IRQ_TYPE_LEGACY 0 +#define IRQ_TYPE_MSI 1 +#define IRQ_TYPE_MSIX 2 + +#define COMMAND_RAISE_LEGACY_IRQ BIT(0) +#define COMMAND_RAISE_MSI_IRQ BIT(1) +#define COMMAND_RAISE_MSIX_IRQ BIT(2) +#define COMMAND_READ BIT(3) +#define COMMAND_WRITE BIT(4) +#define COMMAND_COPY BIT(5) + +#define STATUS_READ_SUCCESS BIT(0) +#define STATUS_READ_FAIL BIT(1) +#define STATUS_WRITE_SUCCESS BIT(2) +#define STATUS_WRITE_FAIL BIT(3) +#define STATUS_COPY_SUCCESS BIT(4) +#define STATUS_COPY_FAIL BIT(5) +#define STATUS_IRQ_RAISED BIT(6) +#define STATUS_SRC_ADDR_INVALID BIT(7) +#define STATUS_DST_ADDR_INVALID BIT(8) + +#define FLAG_USE_DMA BIT(0) + +#define TIMER_RESOLUTION 1 + +static struct workqueue_struct *kpcitest_workqueue; + +struct pci_epf_test { + void *reg[PCI_STD_NUM_BARS]; + struct pci_epf *epf; + enum pci_barno test_reg_bar; + size_t msix_table_offset; + struct delayed_work cmd_handler; + struct dma_chan *dma_chan; + struct completion transfer_complete; + bool dma_supported; + const struct pci_epc_features *epc_features; +}; + +struct pci_epf_test_reg { + u32 magic; + u32 command; + u32 status; + u64 src_addr; + u64 dst_addr; + u32 size; + u32 checksum; + u32 irq_type; + u32 irq_number; + u32 flags; +} __packed; + +static struct pci_epf_header test_header = { + .vendorid = PCI_ANY_ID, + .deviceid = PCI_ANY_ID, + .baseclass_code = PCI_CLASS_OTHERS, + .interrupt_pin = PCI_INTERRUPT_INTA, +}; + +static size_t bar_size[] = { 512, 512, 1024, 16384, 131072, 1048576 }; + +static void pci_epf_test_dma_callback(void *param) +{ + struct pci_epf_test *epf_test = param; + + complete(&epf_test->transfer_complete); +} + +/** + * pci_epf_test_data_transfer() - Function that uses dmaengine API to transfer + * data between PCIe EP and remote PCIe RC + * @epf_test: the EPF test device that performs the data transfer operation + * @dma_dst: The destination address of the data transfer. It can be a physical + * address given by pci_epc_mem_alloc_addr or DMA mapping APIs. + * @dma_src: The source address of the data transfer. It can be a physical + * address given by pci_epc_mem_alloc_addr or DMA mapping APIs. + * @len: The size of the data transfer + * + * Function that uses dmaengine API to transfer data between PCIe EP and remote + * PCIe RC. The source and destination address can be a physical address given + * by pci_epc_mem_alloc_addr or the one obtained using DMA mapping APIs. + * + * The function returns '0' on success and negative value on failure. + */ +static int pci_epf_test_data_transfer(struct pci_epf_test *epf_test, + dma_addr_t dma_dst, dma_addr_t dma_src, + size_t len) +{ + enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + struct dma_chan *chan = epf_test->dma_chan; + struct pci_epf *epf = epf_test->epf; + struct dma_async_tx_descriptor *tx; + struct device *dev = &epf->dev; + dma_cookie_t cookie; + int ret; + + if (IS_ERR_OR_NULL(chan)) { + dev_err(dev, "Invalid DMA memcpy channel\n"); + return -EINVAL; + } + + tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len, flags); + if (!tx) { + dev_err(dev, "Failed to prepare DMA memcpy\n"); + return -EIO; + } + + tx->callback = pci_epf_test_dma_callback; + tx->callback_param = epf_test; + cookie = tx->tx_submit(tx); + reinit_completion(&epf_test->transfer_complete); + + ret = dma_submit_error(cookie); + if (ret) { + dev_err(dev, "Failed to do DMA tx_submit %d\n", cookie); + return -EIO; + } + + dma_async_issue_pending(chan); + ret = wait_for_completion_interruptible(&epf_test->transfer_complete); + if (ret < 0) { + dmaengine_terminate_sync(chan); + dev_err(dev, "DMA wait_for_completion_timeout\n"); + return -ETIMEDOUT; + } + + return 0; +} + +/** + * pci_epf_test_init_dma_chan() - Function to initialize EPF test DMA channel + * @epf_test: the EPF test device that performs data transfer operation + * + * Function to initialize EPF test DMA channel. + */ +static int pci_epf_test_init_dma_chan(struct pci_epf_test *epf_test) +{ + struct pci_epf *epf = epf_test->epf; + struct device *dev = &epf->dev; + struct dma_chan *dma_chan; + dma_cap_mask_t mask; + int ret; + + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + + dma_chan = dma_request_chan_by_mask(&mask); + if (IS_ERR(dma_chan)) { + ret = PTR_ERR(dma_chan); + if (ret != -EPROBE_DEFER) + dev_err(dev, "Failed to get DMA channel\n"); + return ret; + } + init_completion(&epf_test->transfer_complete); + + epf_test->dma_chan = dma_chan; + + return 0; +} + +/** + * pci_epf_test_clean_dma_chan() - Function to cleanup EPF test DMA channel + * @epf_test: the EPF test device that performs data transfer operation + * + * Helper to cleanup EPF test DMA channel. + */ +static void pci_epf_test_clean_dma_chan(struct pci_epf_test *epf_test) +{ + if (!epf_test->dma_supported) + return; + + dma_release_channel(epf_test->dma_chan); + epf_test->dma_chan = NULL; +} + +static void pci_epf_test_print_rate(const char *ops, u64 size, + struct timespec64 *start, + struct timespec64 *end, bool dma) +{ + struct timespec64 ts; + u64 rate, ns; + + ts = timespec64_sub(*end, *start); + + /* convert both size (stored in 'rate') and time in terms of 'ns' */ + ns = timespec64_to_ns(&ts); + rate = size * NSEC_PER_SEC; + + /* Divide both size (stored in 'rate') and ns by a common factor */ + while (ns > UINT_MAX) { + rate >>= 1; + ns >>= 1; + } + + if (!ns) + return; + + /* calculate the rate */ + do_div(rate, (uint32_t)ns); + + pr_info("\n%s => Size: %llu bytes\t DMA: %s\t Time: %llu.%09u seconds\t" + "Rate: %llu KB/s\n", ops, size, dma ? "YES" : "NO", + (u64)ts.tv_sec, (u32)ts.tv_nsec, rate / 1024); +} + +static int pci_epf_test_copy(struct pci_epf_test *epf_test) +{ + int ret; + bool use_dma; + void __iomem *src_addr; + void __iomem *dst_addr; + phys_addr_t src_phys_addr; + phys_addr_t dst_phys_addr; + struct timespec64 start, end; + struct pci_epf *epf = epf_test->epf; + struct device *dev = &epf->dev; + struct pci_epc *epc = epf->epc; + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; + + src_addr = pci_epc_mem_alloc_addr(epc, &src_phys_addr, reg->size); + if (!src_addr) { + dev_err(dev, "Failed to allocate source address\n"); + reg->status = STATUS_SRC_ADDR_INVALID; + ret = -ENOMEM; + goto err; + } + + ret = pci_epc_map_addr(epc, epf->func_no, src_phys_addr, reg->src_addr, + reg->size); + if (ret) { + dev_err(dev, "Failed to map source address\n"); + reg->status = STATUS_SRC_ADDR_INVALID; + goto err_src_addr; + } + + dst_addr = pci_epc_mem_alloc_addr(epc, &dst_phys_addr, reg->size); + if (!dst_addr) { + dev_err(dev, "Failed to allocate destination address\n"); + reg->status = STATUS_DST_ADDR_INVALID; + ret = -ENOMEM; + goto err_src_map_addr; + } + + ret = pci_epc_map_addr(epc, epf->func_no, dst_phys_addr, reg->dst_addr, + reg->size); + if (ret) { + dev_err(dev, "Failed to map destination address\n"); + reg->status = STATUS_DST_ADDR_INVALID; + goto err_dst_addr; + } + + ktime_get_ts64(&start); + use_dma = !!(reg->flags & FLAG_USE_DMA); + if (use_dma) { + if (!epf_test->dma_supported) { + dev_err(dev, "Cannot transfer data using DMA\n"); + ret = -EINVAL; + goto err_map_addr; + } + + ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr, + src_phys_addr, reg->size); + if (ret) + dev_err(dev, "Data transfer failed\n"); + } else { + void *buf; + + buf = kzalloc(reg->size, GFP_KERNEL); + if (!buf) { + ret = -ENOMEM; + goto err_map_addr; + } + + memcpy_fromio(buf, src_addr, reg->size); + memcpy_toio(dst_addr, buf, reg->size); + kfree(buf); + } + ktime_get_ts64(&end); + pci_epf_test_print_rate("COPY", reg->size, &start, &end, use_dma); + +err_map_addr: + pci_epc_unmap_addr(epc, epf->func_no, dst_phys_addr); + +err_dst_addr: + pci_epc_mem_free_addr(epc, dst_phys_addr, dst_addr, reg->size); + +err_src_map_addr: + pci_epc_unmap_addr(epc, epf->func_no, src_phys_addr); + +err_src_addr: + pci_epc_mem_free_addr(epc, src_phys_addr, src_addr, reg->size); + +err: + return ret; +} + +static int pci_epf_test_read(struct pci_epf_test *epf_test) +{ + int ret; + void __iomem *src_addr; + void *buf; + u32 crc32; + bool use_dma; + phys_addr_t phys_addr; + phys_addr_t dst_phys_addr; + struct timespec64 start, end; + struct pci_epf *epf = epf_test->epf; + struct device *dev = &epf->dev; + struct pci_epc *epc = epf->epc; + struct device *dma_dev = epf->epc->dev.parent; + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; + + src_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size); + if (!src_addr) { + dev_err(dev, "Failed to allocate address\n"); + reg->status = STATUS_SRC_ADDR_INVALID; + ret = -ENOMEM; + goto err; + } + + ret = pci_epc_map_addr(epc, epf->func_no, phys_addr, reg->src_addr, + reg->size); + if (ret) { + dev_err(dev, "Failed to map address\n"); + reg->status = STATUS_SRC_ADDR_INVALID; + goto err_addr; + } + + buf = kzalloc(reg->size, GFP_KERNEL); + if (!buf) { + ret = -ENOMEM; + goto err_map_addr; + } + + use_dma = !!(reg->flags & FLAG_USE_DMA); + if (use_dma) { + if (!epf_test->dma_supported) { + dev_err(dev, "Cannot transfer data using DMA\n"); + ret = -EINVAL; + goto err_dma_map; + } + + dst_phys_addr = dma_map_single(dma_dev, buf, reg->size, + DMA_FROM_DEVICE); + if (dma_mapping_error(dma_dev, dst_phys_addr)) { + dev_err(dev, "Failed to map destination buffer addr\n"); + ret = -ENOMEM; + goto err_dma_map; + } + + ktime_get_ts64(&start); + ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr, + phys_addr, reg->size); + if (ret) + dev_err(dev, "Data transfer failed\n"); + ktime_get_ts64(&end); + + dma_unmap_single(dma_dev, dst_phys_addr, reg->size, + DMA_FROM_DEVICE); + } else { + ktime_get_ts64(&start); + memcpy_fromio(buf, src_addr, reg->size); + ktime_get_ts64(&end); + } + + pci_epf_test_print_rate("READ", reg->size, &start, &end, use_dma); + + crc32 = crc32_le(~0, buf, reg->size); + if (crc32 != reg->checksum) + ret = -EIO; + +err_dma_map: + kfree(buf); + +err_map_addr: + pci_epc_unmap_addr(epc, epf->func_no, phys_addr); + +err_addr: + pci_epc_mem_free_addr(epc, phys_addr, src_addr, reg->size); + +err: + return ret; +} + +static int pci_epf_test_write(struct pci_epf_test *epf_test) +{ + int ret; + void __iomem *dst_addr; + void *buf; + bool use_dma; + phys_addr_t phys_addr; + phys_addr_t src_phys_addr; + struct timespec64 start, end; + struct pci_epf *epf = epf_test->epf; + struct device *dev = &epf->dev; + struct pci_epc *epc = epf->epc; + struct device *dma_dev = epf->epc->dev.parent; + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; + + dst_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size); + if (!dst_addr) { + dev_err(dev, "Failed to allocate address\n"); + reg->status = STATUS_DST_ADDR_INVALID; + ret = -ENOMEM; + goto err; + } + + ret = pci_epc_map_addr(epc, epf->func_no, phys_addr, reg->dst_addr, + reg->size); + if (ret) { + dev_err(dev, "Failed to map address\n"); + reg->status = STATUS_DST_ADDR_INVALID; + goto err_addr; + } + + buf = kzalloc(reg->size, GFP_KERNEL); + if (!buf) { + ret = -ENOMEM; + goto err_map_addr; + } + + get_random_bytes(buf, reg->size); + reg->checksum = crc32_le(~0, buf, reg->size); + + use_dma = !!(reg->flags & FLAG_USE_DMA); + if (use_dma) { + if (!epf_test->dma_supported) { + dev_err(dev, "Cannot transfer data using DMA\n"); + ret = -EINVAL; + goto err_dma_map; + } + + src_phys_addr = dma_map_single(dma_dev, buf, reg->size, + DMA_TO_DEVICE); + if (dma_mapping_error(dma_dev, src_phys_addr)) { + dev_err(dev, "Failed to map source buffer addr\n"); + ret = -ENOMEM; + goto err_dma_map; + } + + ktime_get_ts64(&start); + ret = pci_epf_test_data_transfer(epf_test, phys_addr, + src_phys_addr, reg->size); + if (ret) + dev_err(dev, "Data transfer failed\n"); + ktime_get_ts64(&end); + + dma_unmap_single(dma_dev, src_phys_addr, reg->size, + DMA_TO_DEVICE); + } else { + ktime_get_ts64(&start); + memcpy_toio(dst_addr, buf, reg->size); + ktime_get_ts64(&end); + } + + pci_epf_test_print_rate("WRITE", reg->size, &start, &end, use_dma); + + /* + * wait 1ms inorder for the write to complete. Without this delay L3 + * error in observed in the host system. + */ + usleep_range(1000, 2000); + +err_dma_map: + kfree(buf); + +err_map_addr: + pci_epc_unmap_addr(epc, epf->func_no, phys_addr); + +err_addr: + pci_epc_mem_free_addr(epc, phys_addr, dst_addr, reg->size); + +err: + return ret; +} + +static void pci_epf_test_raise_irq(struct pci_epf_test *epf_test, u8 irq_type, + u16 irq) +{ + struct pci_epf *epf = epf_test->epf; + struct device *dev = &epf->dev; + struct pci_epc *epc = epf->epc; + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; + + reg->status |= STATUS_IRQ_RAISED; + + switch (irq_type) { + case IRQ_TYPE_LEGACY: + pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_LEGACY, 0); + break; + case IRQ_TYPE_MSI: + pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSI, irq); + break; + case IRQ_TYPE_MSIX: + pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSIX, irq); + break; + default: + dev_err(dev, "Failed to raise IRQ, unknown type\n"); + break; + } +} + +static void pci_epf_test_cmd_handler(struct work_struct *work) +{ + int ret; + int count; + u32 command; + struct pci_epf_test *epf_test = container_of(work, struct pci_epf_test, + cmd_handler.work); + struct pci_epf *epf = epf_test->epf; + struct device *dev = &epf->dev; + struct pci_epc *epc = epf->epc; + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; + + command = reg->command; + if (!command) + goto reset_handler; + + reg->command = 0; + reg->status = 0; + + if (reg->irq_type > IRQ_TYPE_MSIX) { + dev_err(dev, "Failed to detect IRQ type\n"); + goto reset_handler; + } + + if (command & COMMAND_RAISE_LEGACY_IRQ) { + reg->status = STATUS_IRQ_RAISED; + pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_LEGACY, 0); + goto reset_handler; + } + + if (command & COMMAND_WRITE) { + ret = pci_epf_test_write(epf_test); + if (ret) + reg->status |= STATUS_WRITE_FAIL; + else + reg->status |= STATUS_WRITE_SUCCESS; + pci_epf_test_raise_irq(epf_test, reg->irq_type, + reg->irq_number); + goto reset_handler; + } + + if (command & COMMAND_READ) { + ret = pci_epf_test_read(epf_test); + if (!ret) + reg->status |= STATUS_READ_SUCCESS; + else + reg->status |= STATUS_READ_FAIL; + pci_epf_test_raise_irq(epf_test, reg->irq_type, + reg->irq_number); + goto reset_handler; + } + + if (command & COMMAND_COPY) { + ret = pci_epf_test_copy(epf_test); + if (!ret) + reg->status |= STATUS_COPY_SUCCESS; + else + reg->status |= STATUS_COPY_FAIL; + pci_epf_test_raise_irq(epf_test, reg->irq_type, + reg->irq_number); + goto reset_handler; + } + + if (command & COMMAND_RAISE_MSI_IRQ) { + count = pci_epc_get_msi(epc, epf->func_no); + if (reg->irq_number > count || count <= 0) + goto reset_handler; + reg->status = STATUS_IRQ_RAISED; + pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSI, + reg->irq_number); + goto reset_handler; + } + + if (command & COMMAND_RAISE_MSIX_IRQ) { + count = pci_epc_get_msix(epc, epf->func_no); + if (reg->irq_number > count || count <= 0) + goto reset_handler; + reg->status = STATUS_IRQ_RAISED; + pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSIX, + reg->irq_number); + goto reset_handler; + } + +reset_handler: + queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler, + msecs_to_jiffies(1)); +} + +static void pci_epf_test_unbind(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + struct pci_epc *epc = epf->epc; + struct pci_epf_bar *epf_bar; + int bar; + + cancel_delayed_work(&epf_test->cmd_handler); + pci_epf_test_clean_dma_chan(epf_test); + for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { + epf_bar = &epf->bar[bar]; + + if (epf_test->reg[bar]) { + pci_epc_clear_bar(epc, epf->func_no, epf_bar); + pci_epf_free_space(epf, epf_test->reg[bar], bar); + } + } +} + +static int pci_epf_test_set_bar(struct pci_epf *epf) +{ + int bar, add; + int ret; + struct pci_epf_bar *epf_bar; + struct pci_epc *epc = epf->epc; + struct device *dev = &epf->dev; + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + const struct pci_epc_features *epc_features; + + epc_features = epf_test->epc_features; + + for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) { + epf_bar = &epf->bar[bar]; + /* + * pci_epc_set_bar() sets PCI_BASE_ADDRESS_MEM_TYPE_64 + * if the specific implementation required a 64-bit BAR, + * even if we only requested a 32-bit BAR. + */ + add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1; + + if (!!(epc_features->reserved_bar & (1 << bar))) + continue; + + ret = pci_epc_set_bar(epc, epf->func_no, epf_bar); + if (ret) { + pci_epf_free_space(epf, epf_test->reg[bar], bar); + dev_err(dev, "Failed to set BAR%d\n", bar); + if (bar == test_reg_bar) + return ret; + } + } + + return 0; +} + +static int pci_epf_test_core_init(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + struct pci_epf_header *header = epf->header; + const struct pci_epc_features *epc_features; + struct pci_epc *epc = epf->epc; + struct device *dev = &epf->dev; + bool msix_capable = false; + bool msi_capable = true; + int ret; + + epc_features = pci_epc_get_features(epc, epf->func_no); + if (epc_features) { + msix_capable = epc_features->msix_capable; + msi_capable = epc_features->msi_capable; + } + + ret = pci_epc_write_header(epc, epf->func_no, header); + if (ret) { + dev_err(dev, "Configuration header write failed\n"); + return ret; + } + + ret = pci_epf_test_set_bar(epf); + if (ret) + return ret; + + if (msi_capable) { + ret = pci_epc_set_msi(epc, epf->func_no, epf->msi_interrupts); + if (ret) { + dev_err(dev, "MSI configuration failed\n"); + return ret; + } + } + + if (msix_capable) { + ret = pci_epc_set_msix(epc, epf->func_no, epf->msix_interrupts, + epf_test->test_reg_bar, + epf_test->msix_table_offset); + if (ret) { + dev_err(dev, "MSI-X configuration failed\n"); + return ret; + } + } + + return 0; +} + +static int pci_epf_test_notifier(struct notifier_block *nb, unsigned long val, + void *data) +{ + struct pci_epf *epf = container_of(nb, struct pci_epf, nb); + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + int ret; + + switch (val) { + case CORE_INIT: + ret = pci_epf_test_core_init(epf); + if (ret) + return NOTIFY_BAD; + break; + + case LINK_UP: + queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler, + msecs_to_jiffies(1)); + break; + + default: + dev_err(&epf->dev, "Invalid EPF test notifier event\n"); + return NOTIFY_BAD; + } + + return NOTIFY_OK; +} + +static int pci_epf_test_alloc_space(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + struct device *dev = &epf->dev; + struct pci_epf_bar *epf_bar; + size_t msix_table_size = 0; + size_t test_reg_bar_size; + size_t pba_size = 0; + bool msix_capable; + void *base; + int bar, add; + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + const struct pci_epc_features *epc_features; + size_t test_reg_size; + + epc_features = epf_test->epc_features; + + test_reg_bar_size = ALIGN(sizeof(struct pci_epf_test_reg), 128); + + msix_capable = epc_features->msix_capable; + if (msix_capable) { + msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts; + epf_test->msix_table_offset = test_reg_bar_size; + /* Align to QWORD or 8 Bytes */ + pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8); + } + test_reg_size = test_reg_bar_size + msix_table_size + pba_size; + + if (epc_features->bar_fixed_size[test_reg_bar]) { + if (test_reg_size > bar_size[test_reg_bar]) + return -ENOMEM; + test_reg_size = bar_size[test_reg_bar]; + } + + base = pci_epf_alloc_space(epf, test_reg_size, test_reg_bar, + epc_features->align); + if (!base) { + dev_err(dev, "Failed to allocated register space\n"); + return -ENOMEM; + } + epf_test->reg[test_reg_bar] = base; + + for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) { + epf_bar = &epf->bar[bar]; + add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1; + + if (bar == test_reg_bar) + continue; + + if (!!(epc_features->reserved_bar & (1 << bar))) + continue; + + base = pci_epf_alloc_space(epf, bar_size[bar], bar, + epc_features->align); + if (!base) + dev_err(dev, "Failed to allocate space for BAR%d\n", + bar); + epf_test->reg[bar] = base; + } + + return 0; +} + +static void pci_epf_configure_bar(struct pci_epf *epf, + const struct pci_epc_features *epc_features) +{ + struct pci_epf_bar *epf_bar; + bool bar_fixed_64bit; + int i; + + for (i = 0; i < PCI_STD_NUM_BARS; i++) { + epf_bar = &epf->bar[i]; + bar_fixed_64bit = !!(epc_features->bar_fixed_64bit & (1 << i)); + if (bar_fixed_64bit) + epf_bar->flags |= PCI_BASE_ADDRESS_MEM_TYPE_64; + if (epc_features->bar_fixed_size[i]) + bar_size[i] = epc_features->bar_fixed_size[i]; + } +} + +static int pci_epf_test_bind(struct pci_epf *epf) +{ + int ret; + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + const struct pci_epc_features *epc_features; + enum pci_barno test_reg_bar = BAR_0; + struct pci_epc *epc = epf->epc; + bool linkup_notifier = false; + bool core_init_notifier = false; + + if (WARN_ON_ONCE(!epc)) + return -EINVAL; + + epc_features = pci_epc_get_features(epc, epf->func_no); + if (!epc_features) { + dev_err(&epf->dev, "epc_features not implemented\n"); + return -EOPNOTSUPP; + } + + linkup_notifier = epc_features->linkup_notifier; + core_init_notifier = epc_features->core_init_notifier; + test_reg_bar = pci_epc_get_first_free_bar(epc_features); + if (test_reg_bar < 0) + return -EINVAL; + pci_epf_configure_bar(epf, epc_features); + + epf_test->test_reg_bar = test_reg_bar; + epf_test->epc_features = epc_features; + + ret = pci_epf_test_alloc_space(epf); + if (ret) + return ret; + + if (!core_init_notifier) { + ret = pci_epf_test_core_init(epf); + if (ret) + return ret; + } + + epf_test->dma_supported = true; + + ret = pci_epf_test_init_dma_chan(epf_test); + if (ret) + epf_test->dma_supported = false; + + if (linkup_notifier || core_init_notifier) { + epf->nb.notifier_call = pci_epf_test_notifier; + pci_epc_register_notifier(epc, &epf->nb); + } else { + queue_work(kpcitest_workqueue, &epf_test->cmd_handler.work); + } + + return 0; +} + +static const struct pci_epf_device_id pci_epf_test_ids[] = { + { + .name = "pci_epf_test", + }, + {}, +}; + +static int pci_epf_test_probe(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test; + struct device *dev = &epf->dev; + + epf_test = devm_kzalloc(dev, sizeof(*epf_test), GFP_KERNEL); + if (!epf_test) + return -ENOMEM; + + epf->header = &test_header; + epf_test->epf = epf; + + INIT_DELAYED_WORK(&epf_test->cmd_handler, pci_epf_test_cmd_handler); + + epf_set_drvdata(epf, epf_test); + return 0; +} + +static struct pci_epf_ops ops = { + .unbind = pci_epf_test_unbind, + .bind = pci_epf_test_bind, +}; + +static struct pci_epf_driver test_driver = { + .driver.name = "pci_epf_test", + .probe = pci_epf_test_probe, + .id_table = pci_epf_test_ids, + .ops = &ops, + .owner = THIS_MODULE, +}; + +static int __init pci_epf_test_init(void) +{ + int ret; + + kpcitest_workqueue = alloc_workqueue("kpcitest", + WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); + if (!kpcitest_workqueue) { + pr_err("Failed to allocate the kpcitest work queue\n"); + return -ENOMEM; + } + + ret = pci_epf_register_driver(&test_driver); + if (ret) { + destroy_workqueue(kpcitest_workqueue); + pr_err("Failed to register pci epf test driver --> %d\n", ret); + return ret; + } + + return 0; +} +module_init(pci_epf_test_init); + +static void __exit pci_epf_test_exit(void) +{ + if (kpcitest_workqueue) + destroy_workqueue(kpcitest_workqueue); + pci_epf_unregister_driver(&test_driver); +} +module_exit(pci_epf_test_exit); + +MODULE_DESCRIPTION("PCI EPF TEST DRIVER"); +MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/pci/endpoint/pci-ep-cfs.c b/drivers/pci/endpoint/pci-ep-cfs.c new file mode 100644 index 000000000..3710adf51 --- /dev/null +++ b/drivers/pci/endpoint/pci-ep-cfs.c @@ -0,0 +1,549 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * configfs to configure the PCI endpoint + * + * Copyright (C) 2017 Texas Instruments + * Author: Kishon Vijay Abraham I <kishon@ti.com> + */ + +#include <linux/module.h> +#include <linux/idr.h> +#include <linux/slab.h> + +#include <linux/pci-epc.h> +#include <linux/pci-epf.h> +#include <linux/pci-ep-cfs.h> + +static DEFINE_IDR(functions_idr); +static DEFINE_MUTEX(functions_mutex); +static struct config_group *functions_group; +static struct config_group *controllers_group; + +struct pci_epf_group { + struct config_group group; + struct pci_epf *epf; + int index; +}; + +struct pci_epc_group { + struct config_group group; + struct pci_epc *epc; + bool start; +}; + +static inline struct pci_epf_group *to_pci_epf_group(struct config_item *item) +{ + return container_of(to_config_group(item), struct pci_epf_group, group); +} + +static inline struct pci_epc_group *to_pci_epc_group(struct config_item *item) +{ + return container_of(to_config_group(item), struct pci_epc_group, group); +} + +static ssize_t pci_epc_start_store(struct config_item *item, const char *page, + size_t len) +{ + int ret; + bool start; + struct pci_epc *epc; + struct pci_epc_group *epc_group = to_pci_epc_group(item); + + epc = epc_group->epc; + + ret = kstrtobool(page, &start); + if (ret) + return ret; + + if (!start) { + pci_epc_stop(epc); + epc_group->start = 0; + return len; + } + + ret = pci_epc_start(epc); + if (ret) { + dev_err(&epc->dev, "failed to start endpoint controller\n"); + return -EINVAL; + } + + epc_group->start = start; + + return len; +} + +static ssize_t pci_epc_start_show(struct config_item *item, char *page) +{ + return sprintf(page, "%d\n", + to_pci_epc_group(item)->start); +} + +CONFIGFS_ATTR(pci_epc_, start); + +static struct configfs_attribute *pci_epc_attrs[] = { + &pci_epc_attr_start, + NULL, +}; + +static int pci_epc_epf_link(struct config_item *epc_item, + struct config_item *epf_item) +{ + int ret; + struct pci_epf_group *epf_group = to_pci_epf_group(epf_item); + struct pci_epc_group *epc_group = to_pci_epc_group(epc_item); + struct pci_epc *epc = epc_group->epc; + struct pci_epf *epf = epf_group->epf; + + ret = pci_epc_add_epf(epc, epf); + if (ret) + return ret; + + ret = pci_epf_bind(epf); + if (ret) { + pci_epc_remove_epf(epc, epf); + return ret; + } + + return 0; +} + +static void pci_epc_epf_unlink(struct config_item *epc_item, + struct config_item *epf_item) +{ + struct pci_epc *epc; + struct pci_epf *epf; + struct pci_epf_group *epf_group = to_pci_epf_group(epf_item); + struct pci_epc_group *epc_group = to_pci_epc_group(epc_item); + + WARN_ON_ONCE(epc_group->start); + + epc = epc_group->epc; + epf = epf_group->epf; + pci_epf_unbind(epf); + pci_epc_remove_epf(epc, epf); +} + +static struct configfs_item_operations pci_epc_item_ops = { + .allow_link = pci_epc_epf_link, + .drop_link = pci_epc_epf_unlink, +}; + +static const struct config_item_type pci_epc_type = { + .ct_item_ops = &pci_epc_item_ops, + .ct_attrs = pci_epc_attrs, + .ct_owner = THIS_MODULE, +}; + +struct config_group *pci_ep_cfs_add_epc_group(const char *name) +{ + int ret; + struct pci_epc *epc; + struct config_group *group; + struct pci_epc_group *epc_group; + + epc_group = kzalloc(sizeof(*epc_group), GFP_KERNEL); + if (!epc_group) { + ret = -ENOMEM; + goto err; + } + + group = &epc_group->group; + + config_group_init_type_name(group, name, &pci_epc_type); + ret = configfs_register_group(controllers_group, group); + if (ret) { + pr_err("failed to register configfs group for %s\n", name); + goto err_register_group; + } + + epc = pci_epc_get(name); + if (IS_ERR(epc)) { + ret = PTR_ERR(epc); + goto err_epc_get; + } + + epc_group->epc = epc; + + return group; + +err_epc_get: + configfs_unregister_group(group); + +err_register_group: + kfree(epc_group); + +err: + return ERR_PTR(ret); +} +EXPORT_SYMBOL(pci_ep_cfs_add_epc_group); + +void pci_ep_cfs_remove_epc_group(struct config_group *group) +{ + struct pci_epc_group *epc_group; + + if (!group) + return; + + epc_group = container_of(group, struct pci_epc_group, group); + pci_epc_put(epc_group->epc); + configfs_unregister_group(&epc_group->group); + kfree(epc_group); +} +EXPORT_SYMBOL(pci_ep_cfs_remove_epc_group); + +#define PCI_EPF_HEADER_R(_name) \ +static ssize_t pci_epf_##_name##_show(struct config_item *item, char *page) \ +{ \ + struct pci_epf *epf = to_pci_epf_group(item)->epf; \ + if (WARN_ON_ONCE(!epf->header)) \ + return -EINVAL; \ + return sprintf(page, "0x%04x\n", epf->header->_name); \ +} + +#define PCI_EPF_HEADER_W_u32(_name) \ +static ssize_t pci_epf_##_name##_store(struct config_item *item, \ + const char *page, size_t len) \ +{ \ + u32 val; \ + int ret; \ + struct pci_epf *epf = to_pci_epf_group(item)->epf; \ + if (WARN_ON_ONCE(!epf->header)) \ + return -EINVAL; \ + ret = kstrtou32(page, 0, &val); \ + if (ret) \ + return ret; \ + epf->header->_name = val; \ + return len; \ +} + +#define PCI_EPF_HEADER_W_u16(_name) \ +static ssize_t pci_epf_##_name##_store(struct config_item *item, \ + const char *page, size_t len) \ +{ \ + u16 val; \ + int ret; \ + struct pci_epf *epf = to_pci_epf_group(item)->epf; \ + if (WARN_ON_ONCE(!epf->header)) \ + return -EINVAL; \ + ret = kstrtou16(page, 0, &val); \ + if (ret) \ + return ret; \ + epf->header->_name = val; \ + return len; \ +} + +#define PCI_EPF_HEADER_W_u8(_name) \ +static ssize_t pci_epf_##_name##_store(struct config_item *item, \ + const char *page, size_t len) \ +{ \ + u8 val; \ + int ret; \ + struct pci_epf *epf = to_pci_epf_group(item)->epf; \ + if (WARN_ON_ONCE(!epf->header)) \ + return -EINVAL; \ + ret = kstrtou8(page, 0, &val); \ + if (ret) \ + return ret; \ + epf->header->_name = val; \ + return len; \ +} + +static ssize_t pci_epf_msi_interrupts_store(struct config_item *item, + const char *page, size_t len) +{ + u8 val; + int ret; + + ret = kstrtou8(page, 0, &val); + if (ret) + return ret; + + to_pci_epf_group(item)->epf->msi_interrupts = val; + + return len; +} + +static ssize_t pci_epf_msi_interrupts_show(struct config_item *item, + char *page) +{ + return sprintf(page, "%d\n", + to_pci_epf_group(item)->epf->msi_interrupts); +} + +static ssize_t pci_epf_msix_interrupts_store(struct config_item *item, + const char *page, size_t len) +{ + u16 val; + int ret; + + ret = kstrtou16(page, 0, &val); + if (ret) + return ret; + + to_pci_epf_group(item)->epf->msix_interrupts = val; + + return len; +} + +static ssize_t pci_epf_msix_interrupts_show(struct config_item *item, + char *page) +{ + return sprintf(page, "%d\n", + to_pci_epf_group(item)->epf->msix_interrupts); +} + +PCI_EPF_HEADER_R(vendorid) +PCI_EPF_HEADER_W_u16(vendorid) + +PCI_EPF_HEADER_R(deviceid) +PCI_EPF_HEADER_W_u16(deviceid) + +PCI_EPF_HEADER_R(revid) +PCI_EPF_HEADER_W_u8(revid) + +PCI_EPF_HEADER_R(progif_code) +PCI_EPF_HEADER_W_u8(progif_code) + +PCI_EPF_HEADER_R(subclass_code) +PCI_EPF_HEADER_W_u8(subclass_code) + +PCI_EPF_HEADER_R(baseclass_code) +PCI_EPF_HEADER_W_u8(baseclass_code) + +PCI_EPF_HEADER_R(cache_line_size) +PCI_EPF_HEADER_W_u8(cache_line_size) + +PCI_EPF_HEADER_R(subsys_vendor_id) +PCI_EPF_HEADER_W_u16(subsys_vendor_id) + +PCI_EPF_HEADER_R(subsys_id) +PCI_EPF_HEADER_W_u16(subsys_id) + +PCI_EPF_HEADER_R(interrupt_pin) +PCI_EPF_HEADER_W_u8(interrupt_pin) + +CONFIGFS_ATTR(pci_epf_, vendorid); +CONFIGFS_ATTR(pci_epf_, deviceid); +CONFIGFS_ATTR(pci_epf_, revid); +CONFIGFS_ATTR(pci_epf_, progif_code); +CONFIGFS_ATTR(pci_epf_, subclass_code); +CONFIGFS_ATTR(pci_epf_, baseclass_code); +CONFIGFS_ATTR(pci_epf_, cache_line_size); +CONFIGFS_ATTR(pci_epf_, subsys_vendor_id); +CONFIGFS_ATTR(pci_epf_, subsys_id); +CONFIGFS_ATTR(pci_epf_, interrupt_pin); +CONFIGFS_ATTR(pci_epf_, msi_interrupts); +CONFIGFS_ATTR(pci_epf_, msix_interrupts); + +static struct configfs_attribute *pci_epf_attrs[] = { + &pci_epf_attr_vendorid, + &pci_epf_attr_deviceid, + &pci_epf_attr_revid, + &pci_epf_attr_progif_code, + &pci_epf_attr_subclass_code, + &pci_epf_attr_baseclass_code, + &pci_epf_attr_cache_line_size, + &pci_epf_attr_subsys_vendor_id, + &pci_epf_attr_subsys_id, + &pci_epf_attr_interrupt_pin, + &pci_epf_attr_msi_interrupts, + &pci_epf_attr_msix_interrupts, + NULL, +}; + +static void pci_epf_release(struct config_item *item) +{ + struct pci_epf_group *epf_group = to_pci_epf_group(item); + + mutex_lock(&functions_mutex); + idr_remove(&functions_idr, epf_group->index); + mutex_unlock(&functions_mutex); + pci_epf_destroy(epf_group->epf); + kfree(epf_group); +} + +static struct configfs_item_operations pci_epf_ops = { + .release = pci_epf_release, +}; + +static const struct config_item_type pci_epf_type = { + .ct_item_ops = &pci_epf_ops, + .ct_attrs = pci_epf_attrs, + .ct_owner = THIS_MODULE, +}; + +static struct config_group *pci_epf_make(struct config_group *group, + const char *name) +{ + struct pci_epf_group *epf_group; + struct pci_epf *epf; + char *epf_name; + int index, err; + + epf_group = kzalloc(sizeof(*epf_group), GFP_KERNEL); + if (!epf_group) + return ERR_PTR(-ENOMEM); + + mutex_lock(&functions_mutex); + index = idr_alloc(&functions_idr, epf_group, 0, 0, GFP_KERNEL); + mutex_unlock(&functions_mutex); + if (index < 0) { + err = index; + goto free_group; + } + + epf_group->index = index; + + config_group_init_type_name(&epf_group->group, name, &pci_epf_type); + + epf_name = kasprintf(GFP_KERNEL, "%s.%d", + group->cg_item.ci_name, epf_group->index); + if (!epf_name) { + err = -ENOMEM; + goto remove_idr; + } + + epf = pci_epf_create(epf_name); + if (IS_ERR(epf)) { + pr_err("failed to create endpoint function device\n"); + err = -EINVAL; + goto free_name; + } + + epf_group->epf = epf; + + kfree(epf_name); + + return &epf_group->group; + +free_name: + kfree(epf_name); + +remove_idr: + mutex_lock(&functions_mutex); + idr_remove(&functions_idr, epf_group->index); + mutex_unlock(&functions_mutex); + +free_group: + kfree(epf_group); + + return ERR_PTR(err); +} + +static void pci_epf_drop(struct config_group *group, struct config_item *item) +{ + config_item_put(item); +} + +static struct configfs_group_operations pci_epf_group_ops = { + .make_group = &pci_epf_make, + .drop_item = &pci_epf_drop, +}; + +static const struct config_item_type pci_epf_group_type = { + .ct_group_ops = &pci_epf_group_ops, + .ct_owner = THIS_MODULE, +}; + +struct config_group *pci_ep_cfs_add_epf_group(const char *name) +{ + struct config_group *group; + + group = configfs_register_default_group(functions_group, name, + &pci_epf_group_type); + if (IS_ERR(group)) + pr_err("failed to register configfs group for %s function\n", + name); + + return group; +} +EXPORT_SYMBOL(pci_ep_cfs_add_epf_group); + +void pci_ep_cfs_remove_epf_group(struct config_group *group) +{ + if (IS_ERR_OR_NULL(group)) + return; + + configfs_unregister_default_group(group); +} +EXPORT_SYMBOL(pci_ep_cfs_remove_epf_group); + +static const struct config_item_type pci_functions_type = { + .ct_owner = THIS_MODULE, +}; + +static const struct config_item_type pci_controllers_type = { + .ct_owner = THIS_MODULE, +}; + +static const struct config_item_type pci_ep_type = { + .ct_owner = THIS_MODULE, +}; + +static struct configfs_subsystem pci_ep_cfs_subsys = { + .su_group = { + .cg_item = { + .ci_namebuf = "pci_ep", + .ci_type = &pci_ep_type, + }, + }, + .su_mutex = __MUTEX_INITIALIZER(pci_ep_cfs_subsys.su_mutex), +}; + +static int __init pci_ep_cfs_init(void) +{ + int ret; + struct config_group *root = &pci_ep_cfs_subsys.su_group; + + config_group_init(root); + + ret = configfs_register_subsystem(&pci_ep_cfs_subsys); + if (ret) { + pr_err("Error %d while registering subsystem %s\n", + ret, root->cg_item.ci_namebuf); + goto err; + } + + functions_group = configfs_register_default_group(root, "functions", + &pci_functions_type); + if (IS_ERR(functions_group)) { + ret = PTR_ERR(functions_group); + pr_err("Error %d while registering functions group\n", + ret); + goto err_functions_group; + } + + controllers_group = + configfs_register_default_group(root, "controllers", + &pci_controllers_type); + if (IS_ERR(controllers_group)) { + ret = PTR_ERR(controllers_group); + pr_err("Error %d while registering controllers group\n", + ret); + goto err_controllers_group; + } + + return 0; + +err_controllers_group: + configfs_unregister_default_group(functions_group); + +err_functions_group: + configfs_unregister_subsystem(&pci_ep_cfs_subsys); + +err: + return ret; +} +module_init(pci_ep_cfs_init); + +static void __exit pci_ep_cfs_exit(void) +{ + configfs_unregister_default_group(controllers_group); + configfs_unregister_default_group(functions_group); + configfs_unregister_subsystem(&pci_ep_cfs_subsys); +} +module_exit(pci_ep_cfs_exit); + +MODULE_DESCRIPTION("PCI EP CONFIGFS"); +MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/pci/endpoint/pci-epc-core.c b/drivers/pci/endpoint/pci-epc-core.c new file mode 100644 index 000000000..ea7e7465c --- /dev/null +++ b/drivers/pci/endpoint/pci-epc-core.c @@ -0,0 +1,735 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * PCI Endpoint *Controller* (EPC) library + * + * Copyright (C) 2017 Texas Instruments + * Author: Kishon Vijay Abraham I <kishon@ti.com> + */ + +#include <linux/device.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/of_device.h> + +#include <linux/pci-epc.h> +#include <linux/pci-epf.h> +#include <linux/pci-ep-cfs.h> + +static struct class *pci_epc_class; + +static void devm_pci_epc_release(struct device *dev, void *res) +{ + struct pci_epc *epc = *(struct pci_epc **)res; + + pci_epc_destroy(epc); +} + +static int devm_pci_epc_match(struct device *dev, void *res, void *match_data) +{ + struct pci_epc **epc = res; + + return *epc == match_data; +} + +/** + * pci_epc_put() - release the PCI endpoint controller + * @epc: epc returned by pci_epc_get() + * + * release the refcount the caller obtained by invoking pci_epc_get() + */ +void pci_epc_put(struct pci_epc *epc) +{ + if (!epc || IS_ERR(epc)) + return; + + module_put(epc->ops->owner); + put_device(&epc->dev); +} +EXPORT_SYMBOL_GPL(pci_epc_put); + +/** + * pci_epc_get() - get the PCI endpoint controller + * @epc_name: device name of the endpoint controller + * + * Invoke to get struct pci_epc * corresponding to the device name of the + * endpoint controller + */ +struct pci_epc *pci_epc_get(const char *epc_name) +{ + int ret = -EINVAL; + struct pci_epc *epc; + struct device *dev; + struct class_dev_iter iter; + + class_dev_iter_init(&iter, pci_epc_class, NULL, NULL); + while ((dev = class_dev_iter_next(&iter))) { + if (strcmp(epc_name, dev_name(dev))) + continue; + + epc = to_pci_epc(dev); + if (!try_module_get(epc->ops->owner)) { + ret = -EINVAL; + goto err; + } + + class_dev_iter_exit(&iter); + get_device(&epc->dev); + return epc; + } + +err: + class_dev_iter_exit(&iter); + return ERR_PTR(ret); +} +EXPORT_SYMBOL_GPL(pci_epc_get); + +/** + * pci_epc_get_first_free_bar() - helper to get first unreserved BAR + * @epc_features: pci_epc_features structure that holds the reserved bar bitmap + * + * Invoke to get the first unreserved BAR that can be used by the endpoint + * function. For any incorrect value in reserved_bar return '0'. + */ +enum pci_barno +pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features) +{ + return pci_epc_get_next_free_bar(epc_features, BAR_0); +} +EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar); + +/** + * pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar + * @epc_features: pci_epc_features structure that holds the reserved bar bitmap + * @bar: the starting BAR number from where unreserved BAR should be searched + * + * Invoke to get the next unreserved BAR starting from @bar that can be used + * for endpoint function. For any incorrect value in reserved_bar return '0'. + */ +enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features + *epc_features, enum pci_barno bar) +{ + unsigned long free_bar; + + if (!epc_features) + return BAR_0; + + /* If 'bar - 1' is a 64-bit BAR, move to the next BAR */ + if ((epc_features->bar_fixed_64bit << 1) & 1 << bar) + bar++; + + /* Find if the reserved BAR is also a 64-bit BAR */ + free_bar = epc_features->reserved_bar & epc_features->bar_fixed_64bit; + + /* Set the adjacent bit if the reserved BAR is also a 64-bit BAR */ + free_bar <<= 1; + free_bar |= epc_features->reserved_bar; + + free_bar = find_next_zero_bit(&free_bar, 6, bar); + if (free_bar > 5) + return NO_BAR; + + return free_bar; +} +EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar); + +/** + * pci_epc_get_features() - get the features supported by EPC + * @epc: the features supported by *this* EPC device will be returned + * @func_no: the features supported by the EPC device specific to the + * endpoint function with func_no will be returned + * + * Invoke to get the features provided by the EPC which may be + * specific to an endpoint function. Returns pci_epc_features on success + * and NULL for any failures. + */ +const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc, + u8 func_no) +{ + const struct pci_epc_features *epc_features; + + if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) + return NULL; + + if (!epc->ops->get_features) + return NULL; + + mutex_lock(&epc->lock); + epc_features = epc->ops->get_features(epc, func_no); + mutex_unlock(&epc->lock); + + return epc_features; +} +EXPORT_SYMBOL_GPL(pci_epc_get_features); + +/** + * pci_epc_stop() - stop the PCI link + * @epc: the link of the EPC device that has to be stopped + * + * Invoke to stop the PCI link + */ +void pci_epc_stop(struct pci_epc *epc) +{ + if (IS_ERR(epc) || !epc->ops->stop) + return; + + mutex_lock(&epc->lock); + epc->ops->stop(epc); + mutex_unlock(&epc->lock); +} +EXPORT_SYMBOL_GPL(pci_epc_stop); + +/** + * pci_epc_start() - start the PCI link + * @epc: the link of *this* EPC device has to be started + * + * Invoke to start the PCI link + */ +int pci_epc_start(struct pci_epc *epc) +{ + int ret; + + if (IS_ERR(epc)) + return -EINVAL; + + if (!epc->ops->start) + return 0; + + mutex_lock(&epc->lock); + ret = epc->ops->start(epc); + mutex_unlock(&epc->lock); + + return ret; +} +EXPORT_SYMBOL_GPL(pci_epc_start); + +/** + * pci_epc_raise_irq() - interrupt the host system + * @epc: the EPC device which has to interrupt the host + * @func_no: the endpoint function number in the EPC device + * @type: specify the type of interrupt; legacy, MSI or MSI-X + * @interrupt_num: the MSI or MSI-X interrupt number + * + * Invoke to raise an legacy, MSI or MSI-X interrupt + */ +int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, + enum pci_epc_irq_type type, u16 interrupt_num) +{ + int ret; + + if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) + return -EINVAL; + + if (!epc->ops->raise_irq) + return 0; + + mutex_lock(&epc->lock); + ret = epc->ops->raise_irq(epc, func_no, type, interrupt_num); + mutex_unlock(&epc->lock); + + return ret; +} +EXPORT_SYMBOL_GPL(pci_epc_raise_irq); + +/** + * pci_epc_get_msi() - get the number of MSI interrupt numbers allocated + * @epc: the EPC device to which MSI interrupts was requested + * @func_no: the endpoint function number in the EPC device + * + * Invoke to get the number of MSI interrupts allocated by the RC + */ +int pci_epc_get_msi(struct pci_epc *epc, u8 func_no) +{ + int interrupt; + + if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) + return 0; + + if (!epc->ops->get_msi) + return 0; + + mutex_lock(&epc->lock); + interrupt = epc->ops->get_msi(epc, func_no); + mutex_unlock(&epc->lock); + + if (interrupt < 0) + return 0; + + interrupt = 1 << interrupt; + + return interrupt; +} +EXPORT_SYMBOL_GPL(pci_epc_get_msi); + +/** + * pci_epc_set_msi() - set the number of MSI interrupt numbers required + * @epc: the EPC device on which MSI has to be configured + * @func_no: the endpoint function number in the EPC device + * @interrupts: number of MSI interrupts required by the EPF + * + * Invoke to set the required number of MSI interrupts. + */ +int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 interrupts) +{ + int ret; + u8 encode_int; + + if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions || + interrupts > 32) + return -EINVAL; + + if (!epc->ops->set_msi) + return 0; + + encode_int = order_base_2(interrupts); + + mutex_lock(&epc->lock); + ret = epc->ops->set_msi(epc, func_no, encode_int); + mutex_unlock(&epc->lock); + + return ret; +} +EXPORT_SYMBOL_GPL(pci_epc_set_msi); + +/** + * pci_epc_get_msix() - get the number of MSI-X interrupt numbers allocated + * @epc: the EPC device to which MSI-X interrupts was requested + * @func_no: the endpoint function number in the EPC device + * + * Invoke to get the number of MSI-X interrupts allocated by the RC + */ +int pci_epc_get_msix(struct pci_epc *epc, u8 func_no) +{ + int interrupt; + + if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) + return 0; + + if (!epc->ops->get_msix) + return 0; + + mutex_lock(&epc->lock); + interrupt = epc->ops->get_msix(epc, func_no); + mutex_unlock(&epc->lock); + + if (interrupt < 0) + return 0; + + return interrupt + 1; +} +EXPORT_SYMBOL_GPL(pci_epc_get_msix); + +/** + * pci_epc_set_msix() - set the number of MSI-X interrupt numbers required + * @epc: the EPC device on which MSI-X has to be configured + * @func_no: the endpoint function number in the EPC device + * @interrupts: number of MSI-X interrupts required by the EPF + * @bir: BAR where the MSI-X table resides + * @offset: Offset pointing to the start of MSI-X table + * + * Invoke to set the required number of MSI-X interrupts. + */ +int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u16 interrupts, + enum pci_barno bir, u32 offset) +{ + int ret; + + if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions || + interrupts < 1 || interrupts > 2048) + return -EINVAL; + + if (!epc->ops->set_msix) + return 0; + + mutex_lock(&epc->lock); + ret = epc->ops->set_msix(epc, func_no, interrupts - 1, bir, offset); + mutex_unlock(&epc->lock); + + return ret; +} +EXPORT_SYMBOL_GPL(pci_epc_set_msix); + +/** + * pci_epc_unmap_addr() - unmap CPU address from PCI address + * @epc: the EPC device on which address is allocated + * @func_no: the endpoint function number in the EPC device + * @phys_addr: physical address of the local system + * + * Invoke to unmap the CPU address from PCI address. + */ +void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no, + phys_addr_t phys_addr) +{ + if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) + return; + + if (!epc->ops->unmap_addr) + return; + + mutex_lock(&epc->lock); + epc->ops->unmap_addr(epc, func_no, phys_addr); + mutex_unlock(&epc->lock); +} +EXPORT_SYMBOL_GPL(pci_epc_unmap_addr); + +/** + * pci_epc_map_addr() - map CPU address to PCI address + * @epc: the EPC device on which address is allocated + * @func_no: the endpoint function number in the EPC device + * @phys_addr: physical address of the local system + * @pci_addr: PCI address to which the physical address should be mapped + * @size: the size of the allocation + * + * Invoke to map CPU address with PCI address. + */ +int pci_epc_map_addr(struct pci_epc *epc, u8 func_no, + phys_addr_t phys_addr, u64 pci_addr, size_t size) +{ + int ret; + + if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) + return -EINVAL; + + if (!epc->ops->map_addr) + return 0; + + mutex_lock(&epc->lock); + ret = epc->ops->map_addr(epc, func_no, phys_addr, pci_addr, size); + mutex_unlock(&epc->lock); + + return ret; +} +EXPORT_SYMBOL_GPL(pci_epc_map_addr); + +/** + * pci_epc_clear_bar() - reset the BAR + * @epc: the EPC device for which the BAR has to be cleared + * @func_no: the endpoint function number in the EPC device + * @epf_bar: the struct epf_bar that contains the BAR information + * + * Invoke to reset the BAR of the endpoint device. + */ +void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no, + struct pci_epf_bar *epf_bar) +{ + if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions || + (epf_bar->barno == BAR_5 && + epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64)) + return; + + if (!epc->ops->clear_bar) + return; + + mutex_lock(&epc->lock); + epc->ops->clear_bar(epc, func_no, epf_bar); + mutex_unlock(&epc->lock); +} +EXPORT_SYMBOL_GPL(pci_epc_clear_bar); + +/** + * pci_epc_set_bar() - configure BAR in order for host to assign PCI addr space + * @epc: the EPC device on which BAR has to be configured + * @func_no: the endpoint function number in the EPC device + * @epf_bar: the struct epf_bar that contains the BAR information + * + * Invoke to configure the BAR of the endpoint device. + */ +int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, + struct pci_epf_bar *epf_bar) +{ + int ret; + int flags = epf_bar->flags; + + if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions || + (epf_bar->barno == BAR_5 && + flags & PCI_BASE_ADDRESS_MEM_TYPE_64) || + (flags & PCI_BASE_ADDRESS_SPACE_IO && + flags & PCI_BASE_ADDRESS_IO_MASK) || + (upper_32_bits(epf_bar->size) && + !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64))) + return -EINVAL; + + if (!epc->ops->set_bar) + return 0; + + mutex_lock(&epc->lock); + ret = epc->ops->set_bar(epc, func_no, epf_bar); + mutex_unlock(&epc->lock); + + return ret; +} +EXPORT_SYMBOL_GPL(pci_epc_set_bar); + +/** + * pci_epc_write_header() - write standard configuration header + * @epc: the EPC device to which the configuration header should be written + * @func_no: the endpoint function number in the EPC device + * @header: standard configuration header fields + * + * Invoke to write the configuration header to the endpoint controller. Every + * endpoint controller will have a dedicated location to which the standard + * configuration header would be written. The callback function should write + * the header fields to this dedicated location. + */ +int pci_epc_write_header(struct pci_epc *epc, u8 func_no, + struct pci_epf_header *header) +{ + int ret; + + if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) + return -EINVAL; + + if (!epc->ops->write_header) + return 0; + + mutex_lock(&epc->lock); + ret = epc->ops->write_header(epc, func_no, header); + mutex_unlock(&epc->lock); + + return ret; +} +EXPORT_SYMBOL_GPL(pci_epc_write_header); + +/** + * pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller + * @epc: the EPC device to which the endpoint function should be added + * @epf: the endpoint function to be added + * + * A PCI endpoint device can have one or more functions. In the case of PCIe, + * the specification allows up to 8 PCIe endpoint functions. Invoke + * pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller. + */ +int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf) +{ + u32 func_no; + int ret = 0; + + if (epf->epc) + return -EBUSY; + + if (IS_ERR(epc)) + return -EINVAL; + + mutex_lock(&epc->lock); + func_no = find_first_zero_bit(&epc->function_num_map, + BITS_PER_LONG); + if (func_no >= BITS_PER_LONG) { + ret = -EINVAL; + goto ret; + } + + if (func_no > epc->max_functions - 1) { + dev_err(&epc->dev, "Exceeding max supported Function Number\n"); + ret = -EINVAL; + goto ret; + } + + set_bit(func_no, &epc->function_num_map); + epf->func_no = func_no; + epf->epc = epc; + + list_add_tail(&epf->list, &epc->pci_epf); + +ret: + mutex_unlock(&epc->lock); + + return ret; +} +EXPORT_SYMBOL_GPL(pci_epc_add_epf); + +/** + * pci_epc_remove_epf() - remove PCI endpoint function from endpoint controller + * @epc: the EPC device from which the endpoint function should be removed + * @epf: the endpoint function to be removed + * + * Invoke to remove PCI endpoint function from the endpoint controller. + */ +void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf) +{ + if (!epc || IS_ERR(epc) || !epf) + return; + + mutex_lock(&epc->lock); + clear_bit(epf->func_no, &epc->function_num_map); + list_del(&epf->list); + epf->epc = NULL; + mutex_unlock(&epc->lock); +} +EXPORT_SYMBOL_GPL(pci_epc_remove_epf); + +/** + * pci_epc_linkup() - Notify the EPF device that EPC device has established a + * connection with the Root Complex. + * @epc: the EPC device which has established link with the host + * + * Invoke to Notify the EPF device that the EPC device has established a + * connection with the Root Complex. + */ +void pci_epc_linkup(struct pci_epc *epc) +{ + if (!epc || IS_ERR(epc)) + return; + + atomic_notifier_call_chain(&epc->notifier, LINK_UP, NULL); +} +EXPORT_SYMBOL_GPL(pci_epc_linkup); + +/** + * pci_epc_init_notify() - Notify the EPF device that EPC device's core + * initialization is completed. + * @epc: the EPC device whose core initialization is completeds + * + * Invoke to Notify the EPF device that the EPC device's initialization + * is completed. + */ +void pci_epc_init_notify(struct pci_epc *epc) +{ + if (!epc || IS_ERR(epc)) + return; + + atomic_notifier_call_chain(&epc->notifier, CORE_INIT, NULL); +} +EXPORT_SYMBOL_GPL(pci_epc_init_notify); + +/** + * pci_epc_destroy() - destroy the EPC device + * @epc: the EPC device that has to be destroyed + * + * Invoke to destroy the PCI EPC device + */ +void pci_epc_destroy(struct pci_epc *epc) +{ + pci_ep_cfs_remove_epc_group(epc->group); + device_unregister(&epc->dev); + kfree(epc); +} +EXPORT_SYMBOL_GPL(pci_epc_destroy); + +/** + * devm_pci_epc_destroy() - destroy the EPC device + * @dev: device that wants to destroy the EPC + * @epc: the EPC device that has to be destroyed + * + * Invoke to destroy the devres associated with this + * pci_epc and destroy the EPC device. + */ +void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc) +{ + int r; + + r = devres_destroy(dev, devm_pci_epc_release, devm_pci_epc_match, + epc); + dev_WARN_ONCE(dev, r, "couldn't find PCI EPC resource\n"); +} +EXPORT_SYMBOL_GPL(devm_pci_epc_destroy); + +/** + * __pci_epc_create() - create a new endpoint controller (EPC) device + * @dev: device that is creating the new EPC + * @ops: function pointers for performing EPC operations + * @owner: the owner of the module that creates the EPC device + * + * Invoke to create a new EPC device and add it to pci_epc class. + */ +struct pci_epc * +__pci_epc_create(struct device *dev, const struct pci_epc_ops *ops, + struct module *owner) +{ + int ret; + struct pci_epc *epc; + + if (WARN_ON(!dev)) { + ret = -EINVAL; + goto err_ret; + } + + epc = kzalloc(sizeof(*epc), GFP_KERNEL); + if (!epc) { + ret = -ENOMEM; + goto err_ret; + } + + mutex_init(&epc->lock); + INIT_LIST_HEAD(&epc->pci_epf); + ATOMIC_INIT_NOTIFIER_HEAD(&epc->notifier); + + device_initialize(&epc->dev); + epc->dev.class = pci_epc_class; + epc->dev.parent = dev; + epc->ops = ops; + + ret = dev_set_name(&epc->dev, "%s", dev_name(dev)); + if (ret) + goto put_dev; + + ret = device_add(&epc->dev); + if (ret) + goto put_dev; + + epc->group = pci_ep_cfs_add_epc_group(dev_name(dev)); + + return epc; + +put_dev: + put_device(&epc->dev); + kfree(epc); + +err_ret: + return ERR_PTR(ret); +} +EXPORT_SYMBOL_GPL(__pci_epc_create); + +/** + * __devm_pci_epc_create() - create a new endpoint controller (EPC) device + * @dev: device that is creating the new EPC + * @ops: function pointers for performing EPC operations + * @owner: the owner of the module that creates the EPC device + * + * Invoke to create a new EPC device and add it to pci_epc class. + * While at that, it also associates the device with the pci_epc using devres. + * On driver detach, release function is invoked on the devres data, + * then, devres data is freed. + */ +struct pci_epc * +__devm_pci_epc_create(struct device *dev, const struct pci_epc_ops *ops, + struct module *owner) +{ + struct pci_epc **ptr, *epc; + + ptr = devres_alloc(devm_pci_epc_release, sizeof(*ptr), GFP_KERNEL); + if (!ptr) + return ERR_PTR(-ENOMEM); + + epc = __pci_epc_create(dev, ops, owner); + if (!IS_ERR(epc)) { + *ptr = epc; + devres_add(dev, ptr); + } else { + devres_free(ptr); + } + + return epc; +} +EXPORT_SYMBOL_GPL(__devm_pci_epc_create); + +static int __init pci_epc_init(void) +{ + pci_epc_class = class_create(THIS_MODULE, "pci_epc"); + if (IS_ERR(pci_epc_class)) { + pr_err("failed to create pci epc class --> %ld\n", + PTR_ERR(pci_epc_class)); + return PTR_ERR(pci_epc_class); + } + + return 0; +} +module_init(pci_epc_init); + +static void __exit pci_epc_exit(void) +{ + class_destroy(pci_epc_class); +} +module_exit(pci_epc_exit); + +MODULE_DESCRIPTION("PCI EPC Library"); +MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/pci/endpoint/pci-epc-mem.c b/drivers/pci/endpoint/pci-epc-mem.c new file mode 100644 index 000000000..a97b56a6d --- /dev/null +++ b/drivers/pci/endpoint/pci-epc-mem.c @@ -0,0 +1,263 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * PCI Endpoint *Controller* Address Space Management + * + * Copyright (C) 2017 Texas Instruments + * Author: Kishon Vijay Abraham I <kishon@ti.com> + */ + +#include <linux/io.h> +#include <linux/module.h> +#include <linux/slab.h> + +#include <linux/pci-epc.h> + +/** + * pci_epc_mem_get_order() - determine the allocation order of a memory size + * @mem: address space of the endpoint controller + * @size: the size for which to get the order + * + * Reimplement get_order() for mem->page_size since the generic get_order + * always gets order with a constant PAGE_SIZE. + */ +static int pci_epc_mem_get_order(struct pci_epc_mem *mem, size_t size) +{ + int order; + unsigned int page_shift = ilog2(mem->window.page_size); + + size--; + size >>= page_shift; +#if BITS_PER_LONG == 32 + order = fls(size); +#else + order = fls64(size); +#endif + return order; +} + +/** + * pci_epc_multi_mem_init() - initialize the pci_epc_mem structure + * @epc: the EPC device that invoked pci_epc_mem_init + * @windows: pointer to windows supported by the device + * @num_windows: number of windows device supports + * + * Invoke to initialize the pci_epc_mem structure used by the + * endpoint functions to allocate mapped PCI address. + */ +int pci_epc_multi_mem_init(struct pci_epc *epc, + struct pci_epc_mem_window *windows, + unsigned int num_windows) +{ + struct pci_epc_mem *mem = NULL; + unsigned long *bitmap = NULL; + unsigned int page_shift; + size_t page_size; + int bitmap_size; + int pages; + int ret; + int i; + + epc->num_windows = 0; + + if (!windows || !num_windows) + return -EINVAL; + + epc->windows = kcalloc(num_windows, sizeof(*epc->windows), GFP_KERNEL); + if (!epc->windows) + return -ENOMEM; + + for (i = 0; i < num_windows; i++) { + page_size = windows[i].page_size; + if (page_size < PAGE_SIZE) + page_size = PAGE_SIZE; + page_shift = ilog2(page_size); + pages = windows[i].size >> page_shift; + bitmap_size = BITS_TO_LONGS(pages) * sizeof(long); + + mem = kzalloc(sizeof(*mem), GFP_KERNEL); + if (!mem) { + ret = -ENOMEM; + i--; + goto err_mem; + } + + bitmap = kzalloc(bitmap_size, GFP_KERNEL); + if (!bitmap) { + ret = -ENOMEM; + kfree(mem); + i--; + goto err_mem; + } + + mem->window.phys_base = windows[i].phys_base; + mem->window.size = windows[i].size; + mem->window.page_size = page_size; + mem->bitmap = bitmap; + mem->pages = pages; + mutex_init(&mem->lock); + epc->windows[i] = mem; + } + + epc->mem = epc->windows[0]; + epc->num_windows = num_windows; + + return 0; + +err_mem: + for (; i >= 0; i--) { + mem = epc->windows[i]; + kfree(mem->bitmap); + kfree(mem); + } + kfree(epc->windows); + + return ret; +} +EXPORT_SYMBOL_GPL(pci_epc_multi_mem_init); + +int pci_epc_mem_init(struct pci_epc *epc, phys_addr_t base, + size_t size, size_t page_size) +{ + struct pci_epc_mem_window mem_window; + + mem_window.phys_base = base; + mem_window.size = size; + mem_window.page_size = page_size; + + return pci_epc_multi_mem_init(epc, &mem_window, 1); +} +EXPORT_SYMBOL_GPL(pci_epc_mem_init); + +/** + * pci_epc_mem_exit() - cleanup the pci_epc_mem structure + * @epc: the EPC device that invoked pci_epc_mem_exit + * + * Invoke to cleanup the pci_epc_mem structure allocated in + * pci_epc_mem_init(). + */ +void pci_epc_mem_exit(struct pci_epc *epc) +{ + struct pci_epc_mem *mem; + int i; + + if (!epc->num_windows) + return; + + for (i = 0; i < epc->num_windows; i++) { + mem = epc->windows[i]; + kfree(mem->bitmap); + kfree(mem); + } + kfree(epc->windows); + + epc->windows = NULL; + epc->mem = NULL; + epc->num_windows = 0; +} +EXPORT_SYMBOL_GPL(pci_epc_mem_exit); + +/** + * pci_epc_mem_alloc_addr() - allocate memory address from EPC addr space + * @epc: the EPC device on which memory has to be allocated + * @phys_addr: populate the allocated physical address here + * @size: the size of the address space that has to be allocated + * + * Invoke to allocate memory address from the EPC address space. This + * is usually done to map the remote RC address into the local system. + */ +void __iomem *pci_epc_mem_alloc_addr(struct pci_epc *epc, + phys_addr_t *phys_addr, size_t size) +{ + void __iomem *virt_addr = NULL; + struct pci_epc_mem *mem; + unsigned int page_shift; + size_t align_size; + int pageno; + int order; + int i; + + for (i = 0; i < epc->num_windows; i++) { + mem = epc->windows[i]; + mutex_lock(&mem->lock); + align_size = ALIGN(size, mem->window.page_size); + order = pci_epc_mem_get_order(mem, align_size); + + pageno = bitmap_find_free_region(mem->bitmap, mem->pages, + order); + if (pageno >= 0) { + page_shift = ilog2(mem->window.page_size); + *phys_addr = mem->window.phys_base + + ((phys_addr_t)pageno << page_shift); + virt_addr = ioremap(*phys_addr, align_size); + if (!virt_addr) { + bitmap_release_region(mem->bitmap, + pageno, order); + mutex_unlock(&mem->lock); + continue; + } + mutex_unlock(&mem->lock); + return virt_addr; + } + mutex_unlock(&mem->lock); + } + + return virt_addr; +} +EXPORT_SYMBOL_GPL(pci_epc_mem_alloc_addr); + +static struct pci_epc_mem *pci_epc_get_matching_window(struct pci_epc *epc, + phys_addr_t phys_addr) +{ + struct pci_epc_mem *mem; + int i; + + for (i = 0; i < epc->num_windows; i++) { + mem = epc->windows[i]; + + if (phys_addr >= mem->window.phys_base && + phys_addr < (mem->window.phys_base + mem->window.size)) + return mem; + } + + return NULL; +} + +/** + * pci_epc_mem_free_addr() - free the allocated memory address + * @epc: the EPC device on which memory was allocated + * @phys_addr: the allocated physical address + * @virt_addr: virtual address of the allocated mem space + * @size: the size of the allocated address space + * + * Invoke to free the memory allocated using pci_epc_mem_alloc_addr. + */ +void pci_epc_mem_free_addr(struct pci_epc *epc, phys_addr_t phys_addr, + void __iomem *virt_addr, size_t size) +{ + struct pci_epc_mem *mem; + unsigned int page_shift; + size_t page_size; + int pageno; + int order; + + mem = pci_epc_get_matching_window(epc, phys_addr); + if (!mem) { + pr_err("failed to get matching window\n"); + return; + } + + page_size = mem->window.page_size; + page_shift = ilog2(page_size); + iounmap(virt_addr); + pageno = (phys_addr - mem->window.phys_base) >> page_shift; + size = ALIGN(size, page_size); + order = pci_epc_mem_get_order(mem, size); + mutex_lock(&mem->lock); + bitmap_release_region(mem->bitmap, pageno, order); + mutex_unlock(&mem->lock); +} +EXPORT_SYMBOL_GPL(pci_epc_mem_free_addr); + +MODULE_DESCRIPTION("PCI EPC Address Space Management"); +MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/pci/endpoint/pci-epf-core.c b/drivers/pci/endpoint/pci-epf-core.c new file mode 100644 index 000000000..c977cf9dc --- /dev/null +++ b/drivers/pci/endpoint/pci-epf-core.c @@ -0,0 +1,391 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * PCI Endpoint *Function* (EPF) library + * + * Copyright (C) 2017 Texas Instruments + * Author: Kishon Vijay Abraham I <kishon@ti.com> + */ + +#include <linux/device.h> +#include <linux/dma-mapping.h> +#include <linux/slab.h> +#include <linux/module.h> + +#include <linux/pci-epc.h> +#include <linux/pci-epf.h> +#include <linux/pci-ep-cfs.h> + +static DEFINE_MUTEX(pci_epf_mutex); + +static struct bus_type pci_epf_bus_type; +static const struct device_type pci_epf_type; + +/** + * pci_epf_unbind() - Notify the function driver that the binding between the + * EPF device and EPC device has been lost + * @epf: the EPF device which has lost the binding with the EPC device + * + * Invoke to notify the function driver that the binding between the EPF device + * and EPC device has been lost. + */ +void pci_epf_unbind(struct pci_epf *epf) +{ + if (!epf->driver) { + dev_WARN(&epf->dev, "epf device not bound to driver\n"); + return; + } + + mutex_lock(&epf->lock); + epf->driver->ops->unbind(epf); + mutex_unlock(&epf->lock); + module_put(epf->driver->owner); +} +EXPORT_SYMBOL_GPL(pci_epf_unbind); + +/** + * pci_epf_bind() - Notify the function driver that the EPF device has been + * bound to a EPC device + * @epf: the EPF device which has been bound to the EPC device + * + * Invoke to notify the function driver that it has been bound to a EPC device + */ +int pci_epf_bind(struct pci_epf *epf) +{ + int ret; + + if (!epf->driver) { + dev_WARN(&epf->dev, "epf device not bound to driver\n"); + return -EINVAL; + } + + if (!try_module_get(epf->driver->owner)) + return -EAGAIN; + + mutex_lock(&epf->lock); + ret = epf->driver->ops->bind(epf); + mutex_unlock(&epf->lock); + + return ret; +} +EXPORT_SYMBOL_GPL(pci_epf_bind); + +/** + * pci_epf_free_space() - free the allocated PCI EPF register space + * @epf: the EPF device from whom to free the memory + * @addr: the virtual address of the PCI EPF register space + * @bar: the BAR number corresponding to the register space + * + * Invoke to free the allocated PCI EPF register space. + */ +void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar) +{ + struct device *dev = epf->epc->dev.parent; + + if (!addr) + return; + + dma_free_coherent(dev, epf->bar[bar].size, addr, + epf->bar[bar].phys_addr); + + epf->bar[bar].phys_addr = 0; + epf->bar[bar].addr = NULL; + epf->bar[bar].size = 0; + epf->bar[bar].barno = 0; + epf->bar[bar].flags = 0; +} +EXPORT_SYMBOL_GPL(pci_epf_free_space); + +/** + * pci_epf_alloc_space() - allocate memory for the PCI EPF register space + * @epf: the EPF device to whom allocate the memory + * @size: the size of the memory that has to be allocated + * @bar: the BAR number corresponding to the allocated register space + * @align: alignment size for the allocation region + * + * Invoke to allocate memory for the PCI EPF register space. + */ +void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar, + size_t align) +{ + void *space; + struct device *dev = epf->epc->dev.parent; + dma_addr_t phys_addr; + + if (size < 128) + size = 128; + + if (align) + size = ALIGN(size, align); + else + size = roundup_pow_of_two(size); + + space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL); + if (!space) { + dev_err(dev, "failed to allocate mem space\n"); + return NULL; + } + + epf->bar[bar].phys_addr = phys_addr; + epf->bar[bar].addr = space; + epf->bar[bar].size = size; + epf->bar[bar].barno = bar; + epf->bar[bar].flags |= upper_32_bits(size) ? + PCI_BASE_ADDRESS_MEM_TYPE_64 : + PCI_BASE_ADDRESS_MEM_TYPE_32; + + return space; +} +EXPORT_SYMBOL_GPL(pci_epf_alloc_space); + +static void pci_epf_remove_cfs(struct pci_epf_driver *driver) +{ + struct config_group *group, *tmp; + + if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS)) + return; + + mutex_lock(&pci_epf_mutex); + list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry) + pci_ep_cfs_remove_epf_group(group); + list_del(&driver->epf_group); + mutex_unlock(&pci_epf_mutex); +} + +/** + * pci_epf_unregister_driver() - unregister the PCI EPF driver + * @driver: the PCI EPF driver that has to be unregistered + * + * Invoke to unregister the PCI EPF driver. + */ +void pci_epf_unregister_driver(struct pci_epf_driver *driver) +{ + pci_epf_remove_cfs(driver); + driver_unregister(&driver->driver); +} +EXPORT_SYMBOL_GPL(pci_epf_unregister_driver); + +static int pci_epf_add_cfs(struct pci_epf_driver *driver) +{ + struct config_group *group; + const struct pci_epf_device_id *id; + + if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS)) + return 0; + + INIT_LIST_HEAD(&driver->epf_group); + + id = driver->id_table; + while (id->name[0]) { + group = pci_ep_cfs_add_epf_group(id->name); + if (IS_ERR(group)) { + pci_epf_remove_cfs(driver); + return PTR_ERR(group); + } + + mutex_lock(&pci_epf_mutex); + list_add_tail(&group->group_entry, &driver->epf_group); + mutex_unlock(&pci_epf_mutex); + id++; + } + + return 0; +} + +/** + * __pci_epf_register_driver() - register a new PCI EPF driver + * @driver: structure representing PCI EPF driver + * @owner: the owner of the module that registers the PCI EPF driver + * + * Invoke to register a new PCI EPF driver. + */ +int __pci_epf_register_driver(struct pci_epf_driver *driver, + struct module *owner) +{ + int ret; + + if (!driver->ops) + return -EINVAL; + + if (!driver->ops->bind || !driver->ops->unbind) + return -EINVAL; + + driver->driver.bus = &pci_epf_bus_type; + driver->driver.owner = owner; + + ret = driver_register(&driver->driver); + if (ret) + return ret; + + pci_epf_add_cfs(driver); + + return 0; +} +EXPORT_SYMBOL_GPL(__pci_epf_register_driver); + +/** + * pci_epf_destroy() - destroy the created PCI EPF device + * @epf: the PCI EPF device that has to be destroyed. + * + * Invoke to destroy the PCI EPF device created by invoking pci_epf_create(). + */ +void pci_epf_destroy(struct pci_epf *epf) +{ + device_unregister(&epf->dev); +} +EXPORT_SYMBOL_GPL(pci_epf_destroy); + +/** + * pci_epf_create() - create a new PCI EPF device + * @name: the name of the PCI EPF device. This name will be used to bind the + * the EPF device to a EPF driver + * + * Invoke to create a new PCI EPF device by providing the name of the function + * device. + */ +struct pci_epf *pci_epf_create(const char *name) +{ + int ret; + struct pci_epf *epf; + struct device *dev; + int len; + + epf = kzalloc(sizeof(*epf), GFP_KERNEL); + if (!epf) + return ERR_PTR(-ENOMEM); + + len = strchrnul(name, '.') - name; + epf->name = kstrndup(name, len, GFP_KERNEL); + if (!epf->name) { + kfree(epf); + return ERR_PTR(-ENOMEM); + } + + dev = &epf->dev; + device_initialize(dev); + dev->bus = &pci_epf_bus_type; + dev->type = &pci_epf_type; + mutex_init(&epf->lock); + + ret = dev_set_name(dev, "%s", name); + if (ret) { + put_device(dev); + return ERR_PTR(ret); + } + + ret = device_add(dev); + if (ret) { + put_device(dev); + return ERR_PTR(ret); + } + + return epf; +} +EXPORT_SYMBOL_GPL(pci_epf_create); + +const struct pci_epf_device_id * +pci_epf_match_device(const struct pci_epf_device_id *id, struct pci_epf *epf) +{ + if (!id || !epf) + return NULL; + + while (*id->name) { + if (strcmp(epf->name, id->name) == 0) + return id; + id++; + } + + return NULL; +} +EXPORT_SYMBOL_GPL(pci_epf_match_device); + +static void pci_epf_dev_release(struct device *dev) +{ + struct pci_epf *epf = to_pci_epf(dev); + + kfree(epf->name); + kfree(epf); +} + +static const struct device_type pci_epf_type = { + .release = pci_epf_dev_release, +}; + +static int +pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf) +{ + while (id->name[0]) { + if (strcmp(epf->name, id->name) == 0) + return true; + id++; + } + + return false; +} + +static int pci_epf_device_match(struct device *dev, struct device_driver *drv) +{ + struct pci_epf *epf = to_pci_epf(dev); + struct pci_epf_driver *driver = to_pci_epf_driver(drv); + + if (driver->id_table) + return pci_epf_match_id(driver->id_table, epf); + + return !strcmp(epf->name, drv->name); +} + +static int pci_epf_device_probe(struct device *dev) +{ + struct pci_epf *epf = to_pci_epf(dev); + struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver); + + if (!driver->probe) + return -ENODEV; + + epf->driver = driver; + + return driver->probe(epf); +} + +static int pci_epf_device_remove(struct device *dev) +{ + int ret = 0; + struct pci_epf *epf = to_pci_epf(dev); + struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver); + + if (driver->remove) + ret = driver->remove(epf); + epf->driver = NULL; + + return ret; +} + +static struct bus_type pci_epf_bus_type = { + .name = "pci-epf", + .match = pci_epf_device_match, + .probe = pci_epf_device_probe, + .remove = pci_epf_device_remove, +}; + +static int __init pci_epf_init(void) +{ + int ret; + + ret = bus_register(&pci_epf_bus_type); + if (ret) { + pr_err("failed to register pci epf bus --> %d\n", ret); + return ret; + } + + return 0; +} +module_init(pci_epf_init); + +static void __exit pci_epf_exit(void) +{ + bus_unregister(&pci_epf_bus_type); +} +module_exit(pci_epf_exit); + +MODULE_DESCRIPTION("PCI EPF Library"); +MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); +MODULE_LICENSE("GPL v2"); |