summaryrefslogtreecommitdiffstats
path: root/fs/f2fs/segment.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /fs/f2fs/segment.h
parentInitial commit. (diff)
downloadlinux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz
linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip
Adding upstream version 5.10.209.upstream/5.10.209
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fs/f2fs/segment.h')
-rw-r--r--fs/f2fs/segment.h931
1 files changed, 931 insertions, 0 deletions
diff --git a/fs/f2fs/segment.h b/fs/f2fs/segment.h
new file mode 100644
index 000000000..979296b83
--- /dev/null
+++ b/fs/f2fs/segment.h
@@ -0,0 +1,931 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * fs/f2fs/segment.h
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ */
+#include <linux/blkdev.h>
+#include <linux/backing-dev.h>
+
+/* constant macro */
+#define NULL_SEGNO ((unsigned int)(~0))
+#define NULL_SECNO ((unsigned int)(~0))
+
+#define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
+#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
+
+#define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
+#define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */
+
+/* L: Logical segment # in volume, R: Relative segment # in main area */
+#define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
+#define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
+
+#define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
+#define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
+#define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
+
+static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
+ unsigned short seg_type)
+{
+ f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
+}
+
+#define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
+#define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
+#define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
+
+#define IS_CURSEG(sbi, seg) \
+ (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
+ ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
+ ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
+ ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
+ ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
+ ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \
+ ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \
+ ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
+
+#define IS_CURSEC(sbi, secno) \
+ (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
+ (sbi)->segs_per_sec) || \
+ ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
+ (sbi)->segs_per_sec) || \
+ ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
+ (sbi)->segs_per_sec) || \
+ ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
+ (sbi)->segs_per_sec) || \
+ ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
+ (sbi)->segs_per_sec) || \
+ ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
+ (sbi)->segs_per_sec) || \
+ ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \
+ (sbi)->segs_per_sec) || \
+ ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \
+ (sbi)->segs_per_sec))
+
+#define MAIN_BLKADDR(sbi) \
+ (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
+ le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
+#define SEG0_BLKADDR(sbi) \
+ (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
+ le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
+
+#define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
+#define MAIN_SECS(sbi) ((sbi)->total_sections)
+
+#define TOTAL_SEGS(sbi) \
+ (SM_I(sbi) ? SM_I(sbi)->segment_count : \
+ le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
+#define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
+
+#define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
+#define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
+ (sbi)->log_blocks_per_seg))
+
+#define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
+ (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
+
+#define NEXT_FREE_BLKADDR(sbi, curseg) \
+ (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
+
+#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
+#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
+ (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
+#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
+ (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
+
+#define GET_SEGNO(sbi, blk_addr) \
+ ((!__is_valid_data_blkaddr(blk_addr)) ? \
+ NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
+ GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
+#define BLKS_PER_SEC(sbi) \
+ ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
+#define CAP_BLKS_PER_SEC(sbi) \
+ ((sbi)->segs_per_sec * (sbi)->blocks_per_seg - \
+ (sbi)->unusable_blocks_per_sec)
+#define CAP_SEGS_PER_SEC(sbi) \
+ ((sbi)->segs_per_sec - ((sbi)->unusable_blocks_per_sec >>\
+ (sbi)->log_blocks_per_seg))
+#define GET_SEC_FROM_SEG(sbi, segno) \
+ (((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
+#define GET_SEG_FROM_SEC(sbi, secno) \
+ ((secno) * (sbi)->segs_per_sec)
+#define GET_ZONE_FROM_SEC(sbi, secno) \
+ (((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
+#define GET_ZONE_FROM_SEG(sbi, segno) \
+ GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
+
+#define GET_SUM_BLOCK(sbi, segno) \
+ ((sbi)->sm_info->ssa_blkaddr + (segno))
+
+#define GET_SUM_TYPE(footer) ((footer)->entry_type)
+#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
+
+#define SIT_ENTRY_OFFSET(sit_i, segno) \
+ ((segno) % (sit_i)->sents_per_block)
+#define SIT_BLOCK_OFFSET(segno) \
+ ((segno) / SIT_ENTRY_PER_BLOCK)
+#define START_SEGNO(segno) \
+ (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
+#define SIT_BLK_CNT(sbi) \
+ DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
+#define f2fs_bitmap_size(nr) \
+ (BITS_TO_LONGS(nr) * sizeof(unsigned long))
+
+#define SECTOR_FROM_BLOCK(blk_addr) \
+ (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
+#define SECTOR_TO_BLOCK(sectors) \
+ ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
+
+/*
+ * indicate a block allocation direction: RIGHT and LEFT.
+ * RIGHT means allocating new sections towards the end of volume.
+ * LEFT means the opposite direction.
+ */
+enum {
+ ALLOC_RIGHT = 0,
+ ALLOC_LEFT
+};
+
+/*
+ * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
+ * LFS writes data sequentially with cleaning operations.
+ * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
+ * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
+ * fragmented segment which has similar aging degree.
+ */
+enum {
+ LFS = 0,
+ SSR,
+ AT_SSR,
+};
+
+/*
+ * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
+ * GC_CB is based on cost-benefit algorithm.
+ * GC_GREEDY is based on greedy algorithm.
+ * GC_AT is based on age-threshold algorithm.
+ */
+enum {
+ GC_CB = 0,
+ GC_GREEDY,
+ GC_AT,
+ ALLOC_NEXT,
+ FLUSH_DEVICE,
+ MAX_GC_POLICY,
+};
+
+/*
+ * BG_GC means the background cleaning job.
+ * FG_GC means the on-demand cleaning job.
+ * FORCE_FG_GC means on-demand cleaning job in background.
+ */
+enum {
+ BG_GC = 0,
+ FG_GC,
+ FORCE_FG_GC,
+};
+
+/* for a function parameter to select a victim segment */
+struct victim_sel_policy {
+ int alloc_mode; /* LFS or SSR */
+ int gc_mode; /* GC_CB or GC_GREEDY */
+ unsigned long *dirty_bitmap; /* dirty segment/section bitmap */
+ unsigned int max_search; /*
+ * maximum # of segments/sections
+ * to search
+ */
+ unsigned int offset; /* last scanned bitmap offset */
+ unsigned int ofs_unit; /* bitmap search unit */
+ unsigned int min_cost; /* minimum cost */
+ unsigned long long oldest_age; /* oldest age of segments having the same min cost */
+ unsigned int min_segno; /* segment # having min. cost */
+ unsigned long long age; /* mtime of GCed section*/
+ unsigned long long age_threshold;/* age threshold */
+};
+
+struct seg_entry {
+ unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
+ unsigned int valid_blocks:10; /* # of valid blocks */
+ unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
+ unsigned int padding:6; /* padding */
+ unsigned char *cur_valid_map; /* validity bitmap of blocks */
+#ifdef CONFIG_F2FS_CHECK_FS
+ unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
+#endif
+ /*
+ * # of valid blocks and the validity bitmap stored in the last
+ * checkpoint pack. This information is used by the SSR mode.
+ */
+ unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
+ unsigned char *discard_map;
+ unsigned long long mtime; /* modification time of the segment */
+};
+
+struct sec_entry {
+ unsigned int valid_blocks; /* # of valid blocks in a section */
+};
+
+struct segment_allocation {
+ void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
+};
+
+#define MAX_SKIP_GC_COUNT 16
+
+struct inmem_pages {
+ struct list_head list;
+ struct page *page;
+ block_t old_addr; /* for revoking when fail to commit */
+};
+
+struct sit_info {
+ const struct segment_allocation *s_ops;
+
+ block_t sit_base_addr; /* start block address of SIT area */
+ block_t sit_blocks; /* # of blocks used by SIT area */
+ block_t written_valid_blocks; /* # of valid blocks in main area */
+ char *bitmap; /* all bitmaps pointer */
+ char *sit_bitmap; /* SIT bitmap pointer */
+#ifdef CONFIG_F2FS_CHECK_FS
+ char *sit_bitmap_mir; /* SIT bitmap mirror */
+
+ /* bitmap of segments to be ignored by GC in case of errors */
+ unsigned long *invalid_segmap;
+#endif
+ unsigned int bitmap_size; /* SIT bitmap size */
+
+ unsigned long *tmp_map; /* bitmap for temporal use */
+ unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
+ unsigned int dirty_sentries; /* # of dirty sentries */
+ unsigned int sents_per_block; /* # of SIT entries per block */
+ struct rw_semaphore sentry_lock; /* to protect SIT cache */
+ struct seg_entry *sentries; /* SIT segment-level cache */
+ struct sec_entry *sec_entries; /* SIT section-level cache */
+
+ /* for cost-benefit algorithm in cleaning procedure */
+ unsigned long long elapsed_time; /* elapsed time after mount */
+ unsigned long long mounted_time; /* mount time */
+ unsigned long long min_mtime; /* min. modification time */
+ unsigned long long max_mtime; /* max. modification time */
+ unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */
+ unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */
+
+ unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
+};
+
+struct free_segmap_info {
+ unsigned int start_segno; /* start segment number logically */
+ unsigned int free_segments; /* # of free segments */
+ unsigned int free_sections; /* # of free sections */
+ spinlock_t segmap_lock; /* free segmap lock */
+ unsigned long *free_segmap; /* free segment bitmap */
+ unsigned long *free_secmap; /* free section bitmap */
+};
+
+/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
+enum dirty_type {
+ DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
+ DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
+ DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
+ DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
+ DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
+ DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
+ DIRTY, /* to count # of dirty segments */
+ PRE, /* to count # of entirely obsolete segments */
+ NR_DIRTY_TYPE
+};
+
+struct dirty_seglist_info {
+ const struct victim_selection *v_ops; /* victim selction operation */
+ unsigned long *dirty_segmap[NR_DIRTY_TYPE];
+ unsigned long *dirty_secmap;
+ struct mutex seglist_lock; /* lock for segment bitmaps */
+ int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
+ unsigned long *victim_secmap; /* background GC victims */
+};
+
+/* victim selection function for cleaning and SSR */
+struct victim_selection {
+ int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
+ int, int, char, unsigned long long);
+};
+
+/* for active log information */
+struct curseg_info {
+ struct mutex curseg_mutex; /* lock for consistency */
+ struct f2fs_summary_block *sum_blk; /* cached summary block */
+ struct rw_semaphore journal_rwsem; /* protect journal area */
+ struct f2fs_journal *journal; /* cached journal info */
+ unsigned char alloc_type; /* current allocation type */
+ unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */
+ unsigned int segno; /* current segment number */
+ unsigned short next_blkoff; /* next block offset to write */
+ unsigned int zone; /* current zone number */
+ unsigned int next_segno; /* preallocated segment */
+ bool inited; /* indicate inmem log is inited */
+};
+
+struct sit_entry_set {
+ struct list_head set_list; /* link with all sit sets */
+ unsigned int start_segno; /* start segno of sits in set */
+ unsigned int entry_cnt; /* the # of sit entries in set */
+};
+
+/*
+ * inline functions
+ */
+static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
+{
+ return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
+}
+
+static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
+ unsigned int segno)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ return &sit_i->sentries[segno];
+}
+
+static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
+ unsigned int segno)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
+}
+
+static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
+ unsigned int segno, bool use_section)
+{
+ /*
+ * In order to get # of valid blocks in a section instantly from many
+ * segments, f2fs manages two counting structures separately.
+ */
+ if (use_section && __is_large_section(sbi))
+ return get_sec_entry(sbi, segno)->valid_blocks;
+ else
+ return get_seg_entry(sbi, segno)->valid_blocks;
+}
+
+static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
+ unsigned int segno, bool use_section)
+{
+ if (use_section && __is_large_section(sbi)) {
+ unsigned int start_segno = START_SEGNO(segno);
+ unsigned int blocks = 0;
+ int i;
+
+ for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
+ struct seg_entry *se = get_seg_entry(sbi, start_segno);
+
+ blocks += se->ckpt_valid_blocks;
+ }
+ return blocks;
+ }
+ return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
+}
+
+static inline void seg_info_from_raw_sit(struct seg_entry *se,
+ struct f2fs_sit_entry *rs)
+{
+ se->valid_blocks = GET_SIT_VBLOCKS(rs);
+ se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
+ memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
+ memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
+#ifdef CONFIG_F2FS_CHECK_FS
+ memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
+#endif
+ se->type = GET_SIT_TYPE(rs);
+ se->mtime = le64_to_cpu(rs->mtime);
+}
+
+static inline void __seg_info_to_raw_sit(struct seg_entry *se,
+ struct f2fs_sit_entry *rs)
+{
+ unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
+ se->valid_blocks;
+ rs->vblocks = cpu_to_le16(raw_vblocks);
+ memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
+ rs->mtime = cpu_to_le64(se->mtime);
+}
+
+static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
+ struct page *page, unsigned int start)
+{
+ struct f2fs_sit_block *raw_sit;
+ struct seg_entry *se;
+ struct f2fs_sit_entry *rs;
+ unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
+ (unsigned long)MAIN_SEGS(sbi));
+ int i;
+
+ raw_sit = (struct f2fs_sit_block *)page_address(page);
+ memset(raw_sit, 0, PAGE_SIZE);
+ for (i = 0; i < end - start; i++) {
+ rs = &raw_sit->entries[i];
+ se = get_seg_entry(sbi, start + i);
+ __seg_info_to_raw_sit(se, rs);
+ }
+}
+
+static inline void seg_info_to_raw_sit(struct seg_entry *se,
+ struct f2fs_sit_entry *rs)
+{
+ __seg_info_to_raw_sit(se, rs);
+
+ memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
+ se->ckpt_valid_blocks = se->valid_blocks;
+}
+
+static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
+ unsigned int max, unsigned int segno)
+{
+ unsigned int ret;
+ spin_lock(&free_i->segmap_lock);
+ ret = find_next_bit(free_i->free_segmap, max, segno);
+ spin_unlock(&free_i->segmap_lock);
+ return ret;
+}
+
+static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
+{
+ struct free_segmap_info *free_i = FREE_I(sbi);
+ unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
+ unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
+ unsigned int next;
+ unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
+
+ spin_lock(&free_i->segmap_lock);
+ clear_bit(segno, free_i->free_segmap);
+ free_i->free_segments++;
+
+ next = find_next_bit(free_i->free_segmap,
+ start_segno + sbi->segs_per_sec, start_segno);
+ if (next >= start_segno + usable_segs) {
+ clear_bit(secno, free_i->free_secmap);
+ free_i->free_sections++;
+ }
+ spin_unlock(&free_i->segmap_lock);
+}
+
+static inline void __set_inuse(struct f2fs_sb_info *sbi,
+ unsigned int segno)
+{
+ struct free_segmap_info *free_i = FREE_I(sbi);
+ unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
+
+ set_bit(segno, free_i->free_segmap);
+ free_i->free_segments--;
+ if (!test_and_set_bit(secno, free_i->free_secmap))
+ free_i->free_sections--;
+}
+
+static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
+ unsigned int segno, bool inmem)
+{
+ struct free_segmap_info *free_i = FREE_I(sbi);
+ unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
+ unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
+ unsigned int next;
+ unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
+
+ spin_lock(&free_i->segmap_lock);
+ if (test_and_clear_bit(segno, free_i->free_segmap)) {
+ free_i->free_segments++;
+
+ if (!inmem && IS_CURSEC(sbi, secno))
+ goto skip_free;
+ next = find_next_bit(free_i->free_segmap,
+ start_segno + sbi->segs_per_sec, start_segno);
+ if (next >= start_segno + usable_segs) {
+ if (test_and_clear_bit(secno, free_i->free_secmap))
+ free_i->free_sections++;
+ }
+ }
+skip_free:
+ spin_unlock(&free_i->segmap_lock);
+}
+
+static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
+ unsigned int segno)
+{
+ struct free_segmap_info *free_i = FREE_I(sbi);
+ unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
+
+ spin_lock(&free_i->segmap_lock);
+ if (!test_and_set_bit(segno, free_i->free_segmap)) {
+ free_i->free_segments--;
+ if (!test_and_set_bit(secno, free_i->free_secmap))
+ free_i->free_sections--;
+ }
+ spin_unlock(&free_i->segmap_lock);
+}
+
+static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
+ void *dst_addr)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+
+#ifdef CONFIG_F2FS_CHECK_FS
+ if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
+ sit_i->bitmap_size))
+ f2fs_bug_on(sbi, 1);
+#endif
+ memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
+}
+
+static inline block_t written_block_count(struct f2fs_sb_info *sbi)
+{
+ return SIT_I(sbi)->written_valid_blocks;
+}
+
+static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
+{
+ return FREE_I(sbi)->free_segments;
+}
+
+static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
+{
+ return SM_I(sbi)->reserved_segments +
+ SM_I(sbi)->additional_reserved_segments;
+}
+
+static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
+{
+ return FREE_I(sbi)->free_sections;
+}
+
+static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
+{
+ return DIRTY_I(sbi)->nr_dirty[PRE];
+}
+
+static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
+{
+ return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
+ DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
+ DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
+ DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
+ DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
+ DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
+}
+
+static inline int overprovision_segments(struct f2fs_sb_info *sbi)
+{
+ return SM_I(sbi)->ovp_segments;
+}
+
+static inline int reserved_sections(struct f2fs_sb_info *sbi)
+{
+ return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
+}
+
+static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
+ unsigned int node_blocks, unsigned int dent_blocks)
+{
+
+ unsigned int segno, left_blocks;
+ int i;
+
+ /* check current node segment */
+ for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
+ segno = CURSEG_I(sbi, i)->segno;
+ left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
+ get_seg_entry(sbi, segno)->ckpt_valid_blocks;
+
+ if (node_blocks > left_blocks)
+ return false;
+ }
+
+ /* check current data segment */
+ segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
+ left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
+ get_seg_entry(sbi, segno)->ckpt_valid_blocks;
+ if (dent_blocks > left_blocks)
+ return false;
+ return true;
+}
+
+static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
+ int freed, int needed)
+{
+ unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
+ get_pages(sbi, F2FS_DIRTY_DENTS) +
+ get_pages(sbi, F2FS_DIRTY_IMETA);
+ unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
+ unsigned int node_secs = total_node_blocks / BLKS_PER_SEC(sbi);
+ unsigned int dent_secs = total_dent_blocks / BLKS_PER_SEC(sbi);
+ unsigned int node_blocks = total_node_blocks % BLKS_PER_SEC(sbi);
+ unsigned int dent_blocks = total_dent_blocks % BLKS_PER_SEC(sbi);
+ unsigned int free, need_lower, need_upper;
+
+ if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
+ return false;
+
+ free = free_sections(sbi) + freed;
+ need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed;
+ need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
+
+ if (free > need_upper)
+ return false;
+ else if (free <= need_lower)
+ return true;
+ return !has_curseg_enough_space(sbi, node_blocks, dent_blocks);
+}
+
+static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
+{
+ if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
+ return true;
+ if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
+ return true;
+ return false;
+}
+
+static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
+{
+ return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
+}
+
+static inline int utilization(struct f2fs_sb_info *sbi)
+{
+ return div_u64((u64)valid_user_blocks(sbi) * 100,
+ sbi->user_block_count);
+}
+
+/*
+ * Sometimes f2fs may be better to drop out-of-place update policy.
+ * And, users can control the policy through sysfs entries.
+ * There are five policies with triggering conditions as follows.
+ * F2FS_IPU_FORCE - all the time,
+ * F2FS_IPU_SSR - if SSR mode is activated,
+ * F2FS_IPU_UTIL - if FS utilization is over threashold,
+ * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
+ * threashold,
+ * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
+ * storages. IPU will be triggered only if the # of dirty
+ * pages over min_fsync_blocks. (=default option)
+ * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
+ * F2FS_IPU_NOCACHE - disable IPU bio cache.
+ * F2FS_IPUT_DISABLE - disable IPU. (=default option in LFS mode)
+ */
+#define DEF_MIN_IPU_UTIL 70
+#define DEF_MIN_FSYNC_BLOCKS 8
+#define DEF_MIN_HOT_BLOCKS 16
+
+#define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
+
+enum {
+ F2FS_IPU_FORCE,
+ F2FS_IPU_SSR,
+ F2FS_IPU_UTIL,
+ F2FS_IPU_SSR_UTIL,
+ F2FS_IPU_FSYNC,
+ F2FS_IPU_ASYNC,
+ F2FS_IPU_NOCACHE,
+};
+
+static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
+ int type)
+{
+ struct curseg_info *curseg = CURSEG_I(sbi, type);
+ return curseg->segno;
+}
+
+static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
+ int type)
+{
+ struct curseg_info *curseg = CURSEG_I(sbi, type);
+ return curseg->alloc_type;
+}
+
+static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
+{
+ struct curseg_info *curseg = CURSEG_I(sbi, type);
+ return curseg->next_blkoff;
+}
+
+static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
+{
+ f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
+}
+
+static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
+{
+ struct f2fs_sb_info *sbi = fio->sbi;
+
+ if (__is_valid_data_blkaddr(fio->old_blkaddr))
+ verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
+ META_GENERIC : DATA_GENERIC);
+ verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
+ META_GENERIC : DATA_GENERIC_ENHANCE);
+}
+
+/*
+ * Summary block is always treated as an invalid block
+ */
+static inline int check_block_count(struct f2fs_sb_info *sbi,
+ int segno, struct f2fs_sit_entry *raw_sit)
+{
+ bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
+ int valid_blocks = 0;
+ int cur_pos = 0, next_pos;
+ unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
+
+ /* check bitmap with valid block count */
+ do {
+ if (is_valid) {
+ next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
+ usable_blks_per_seg,
+ cur_pos);
+ valid_blocks += next_pos - cur_pos;
+ } else
+ next_pos = find_next_bit_le(&raw_sit->valid_map,
+ usable_blks_per_seg,
+ cur_pos);
+ cur_pos = next_pos;
+ is_valid = !is_valid;
+ } while (cur_pos < usable_blks_per_seg);
+
+ if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
+ f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
+ GET_SIT_VBLOCKS(raw_sit), valid_blocks);
+ set_sbi_flag(sbi, SBI_NEED_FSCK);
+ return -EFSCORRUPTED;
+ }
+
+ if (usable_blks_per_seg < sbi->blocks_per_seg)
+ f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
+ sbi->blocks_per_seg,
+ usable_blks_per_seg) != sbi->blocks_per_seg);
+
+ /* check segment usage, and check boundary of a given segment number */
+ if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
+ || segno > TOTAL_SEGS(sbi) - 1)) {
+ f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
+ GET_SIT_VBLOCKS(raw_sit), segno);
+ set_sbi_flag(sbi, SBI_NEED_FSCK);
+ return -EFSCORRUPTED;
+ }
+ return 0;
+}
+
+static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
+ unsigned int start)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ unsigned int offset = SIT_BLOCK_OFFSET(start);
+ block_t blk_addr = sit_i->sit_base_addr + offset;
+
+ check_seg_range(sbi, start);
+
+#ifdef CONFIG_F2FS_CHECK_FS
+ if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
+ f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
+ f2fs_bug_on(sbi, 1);
+#endif
+
+ /* calculate sit block address */
+ if (f2fs_test_bit(offset, sit_i->sit_bitmap))
+ blk_addr += sit_i->sit_blocks;
+
+ return blk_addr;
+}
+
+static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
+ pgoff_t block_addr)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ block_addr -= sit_i->sit_base_addr;
+ if (block_addr < sit_i->sit_blocks)
+ block_addr += sit_i->sit_blocks;
+ else
+ block_addr -= sit_i->sit_blocks;
+
+ return block_addr + sit_i->sit_base_addr;
+}
+
+static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
+{
+ unsigned int block_off = SIT_BLOCK_OFFSET(start);
+
+ f2fs_change_bit(block_off, sit_i->sit_bitmap);
+#ifdef CONFIG_F2FS_CHECK_FS
+ f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
+#endif
+}
+
+static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
+ bool base_time)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ time64_t diff, now = ktime_get_boottime_seconds();
+
+ if (now >= sit_i->mounted_time)
+ return sit_i->elapsed_time + now - sit_i->mounted_time;
+
+ /* system time is set to the past */
+ if (!base_time) {
+ diff = sit_i->mounted_time - now;
+ if (sit_i->elapsed_time >= diff)
+ return sit_i->elapsed_time - diff;
+ return 0;
+ }
+ return sit_i->elapsed_time;
+}
+
+static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
+ unsigned int ofs_in_node, unsigned char version)
+{
+ sum->nid = cpu_to_le32(nid);
+ sum->ofs_in_node = cpu_to_le16(ofs_in_node);
+ sum->version = version;
+}
+
+static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
+{
+ return __start_cp_addr(sbi) +
+ le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
+}
+
+static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
+{
+ return __start_cp_addr(sbi) +
+ le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
+ - (base + 1) + type;
+}
+
+static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
+{
+ if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
+ return true;
+ return false;
+}
+
+/*
+ * It is very important to gather dirty pages and write at once, so that we can
+ * submit a big bio without interfering other data writes.
+ * By default, 512 pages for directory data,
+ * 512 pages (2MB) * 8 for nodes, and
+ * 256 pages * 8 for meta are set.
+ */
+static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
+{
+ if (sbi->sb->s_bdi->wb.dirty_exceeded)
+ return 0;
+
+ if (type == DATA)
+ return sbi->blocks_per_seg;
+ else if (type == NODE)
+ return 8 * sbi->blocks_per_seg;
+ else if (type == META)
+ return 8 * BIO_MAX_PAGES;
+ else
+ return 0;
+}
+
+/*
+ * When writing pages, it'd better align nr_to_write for segment size.
+ */
+static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
+ struct writeback_control *wbc)
+{
+ long nr_to_write, desired;
+
+ if (wbc->sync_mode != WB_SYNC_NONE)
+ return 0;
+
+ nr_to_write = wbc->nr_to_write;
+ desired = BIO_MAX_PAGES;
+ if (type == NODE)
+ desired <<= 1;
+
+ wbc->nr_to_write = desired;
+ return desired - nr_to_write;
+}
+
+static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
+{
+ struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
+ bool wakeup = false;
+ int i;
+
+ if (force)
+ goto wake_up;
+
+ mutex_lock(&dcc->cmd_lock);
+ for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
+ if (i + 1 < dcc->discard_granularity)
+ break;
+ if (!list_empty(&dcc->pend_list[i])) {
+ wakeup = true;
+ break;
+ }
+ }
+ mutex_unlock(&dcc->cmd_lock);
+ if (!wakeup || !is_idle(sbi, DISCARD_TIME))
+ return;
+wake_up:
+ dcc->discard_wake = 1;
+ wake_up_interruptible_all(&dcc->discard_wait_queue);
+}